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Development of multiple-quantum coherences in solids has been analyzed using an exact 
solution for the zz-model. Simple analytical expressions which are in good agreement with 
experimental data have been obtained for intensities of multiple-quantum coherences. 
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1. INTRODUCTION condition can be taken as p(O)= S,. Then the final magne- 
tization can be expressed with due account of Eqs. (1) and 

Multiple-quantum NMR spectroscopy' is a version of 
multiple-pulse Fourier spectroscopy. Whereas a conventional 

( 3 ,  as 

(single-quantum) NMR absorption spectrum can be ex- 
pressed as a Fourier transform of a time correlation function (SZ(27+t))= T ~ ( S , U - ' ( T ) U ~ ( ~ ) U ( T ) S ~ )  
of a single-spin operator (magnetization), multiple-quantum 
spectra are Fourier transforms of time correlators of more =Tr P ( ~ ) x  pn exp(itnA) 
complex multiple-spin operators. Usually an experiment con- ( ,, 
sists of the following stages: a preparation period in which 
an initial density operator that describes a system of polar- = Tr(pnp-,)exp(itnA). (3) 
ized nuclear spins is transformed by a nonsecular Hamil- n 

tonian to a new state P(T) = U(~)p (0 ) ;  an evolution period 
during which the system is transformed by another Hamil- 
tonian; a mixing period during which the density operator is 
refocused by the inverse evolution operator U - ' ( T )  to a 
state characterized by a measurable magnetization; finally, 
the detection period in which the magnetization is measured. 

If the system has been acted upon by a fairly compli- 
cated operator during the preparation period, the density op- 
erator p(7) is a sum of a large number (infinite in an infinite 
system) of various multiple-spin operators. These operators 
can be grouped according to their symmetry under rotation 
about the quantization axis z: 

where 

and Sz= ZiSiz is the total z-component of the magnetization. 
The operator p, is called a multiple-quantum coherence of 
order n. Let the initial density operator p(0) describe a high- 
temperature state in which spins are polarized along the 
z-axis: 

and let the ultimately observed quantity be the 
z-component of the magnetization. Assume that the only in- 
teraction during the evolution period is the offset field A. 
Owing to this field, coherences of different orders gain dif- 
ferent phase shifts [Eq. (2)], hence they can be separated. (In 
real experiment it is usually done by sequences of pulses 
with phase shifts proportional to time.') The unit operator in 
Eq. (2) can be omitted because it is invariant, and the initial 

In deriving this equation, we have used the fact that 
Tr(pnp-,) is nonzero only when n = -m (this follows from 
the invariance of the trace under unitary transformations; to 
prove this it is sufficient to consider rotations about the 
z-axis). Taking the Fourier transform with respect to time, 
we obtain the intensities of multiple-quantum coherences: 

We can see that the spectrum is a sum of sfunctions with 
intensities given by Eq. (4). If the Hamiltonian acting during 
the evolution period is more complicated, each &function 
should be replaced with a corresponding multiple-quantum 
spectrum, the total intensity of each spectrum being deter- 
mined by Eq. (4). Note two obvious properties of intensities 
of multiple-quantum coherences: gn= - g - ,, , which follows 
from the fact that the operators commute -under the trace, and 
Z,g,=const, which follows from the invariance of Tr p2 

with respect to the evolution operator. 
By investigating the evolution of multiple-quantum co- 

herence~, we can obtain a physical picture of the evolution of 
a complex many-particle system to its equilibrium state in 
terms of the emergence of coherences of successively higher 
order. On the other hand, it is clear that a theoretical descrip- 
tion of such a process is more complicated than, for example, 
calculation of any given correlator. Therefore, in previously 
used theoretical approaches, the real dynamics has been re- 
placed with random-walk models in abstract spaces.'-3 An 
alternative approach is to simplify the spin Hamiltonian and 
to try to obtain an exact solution of the dynamic problem. 
This approach is described in the paper. 
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The simplest technique for generating multiple-quantum 
coherences4 is to act on a system of nuclear spins interacting 
through the secular dipolar Hamiltonian 

by a sequence of two pulses: ( d 2 ) y  -r-( - ~ 1 2 ) ~ .  If we 
omit the exchange term and only retain the interaction of 
z-components of spins, we obtain the Hamiltonian 

which gives much simpler spin dynamics. For example, the 
calculation of NMR line shape (the correlator 
(Sx(t)Sx(0))) with this Hamiltonian becomes trivial. The 
intensities of multiple-quantum coherences with this Hamil- 
tonian will be calculated in the next section. 

The action of a pulse sequence on a spin system can be 
described in two ways. One may assume that the pulses ei- 
ther act on the density operator or change the Hamiltonian 
(passive or active frames). In the second case the density 
operator remains unchanged, p(0) = S, , and the Hamiltonian 
defined by Eq. (6) is transformed, e.g., by the sequence of 
two pulses described above to an effective Hamiltonian 
BXx. In selective multiple-pulse experiments,' they often 
use the pulse sequences which transform the dipolar Hamil- 
tonian in Eq. (5) to the effective Hamiltonian 

Thus we may consider the Hamiltonian Sz, ( S x x )  as a 
model of the dipolar Hamiltonian in Eq. (5) for a two-pulse 
excitation or of the effective Hamiltonian in Eq. (7) in 
multiple-pulse experiments. 

3. CALCULATION OF INTENSITIES OF MULTIPLE- 
QUANTUMCOHERENCES 

In the case of a translationally invariant system, it is 
sufficient to consider the initial condition p(0) = So,, where 
the index 0 denotes a selected spin. The solution of the equa- 
tion of motion 

with this initial condition can be rewritten in a compact 
form: 

where 

In order to separate the terms corresponding to multiple- 
quantum coherences of different orders in the density opera- 
tor determined by Eq. (9), it should be subjected to a rotation 

about the z-axis. In other words, imagine that a resonance 
detuning A =  1 is acting during the evolution period: 

By substituting Eqs. (9) and (10) into Eq. (1 1) and using the 
algebra of spin S =  112 operators (Pauli matrices), we obtain 
the following expression for the density operator at time 
t+  7: 

p(t+ r )=  (112) SoZ n ( l j  cos a j+ iBj  sinaj) 
{ I  

+ II ( I j  cos aj- iBj sin a;.) 
i I 

+ (i12) (Soy cos t - Sox sin t) 

X II ( l j  cos aj+iBj  sin aj) I j 

- n ( l j  cos aj- iBj sin aj) , 
I I 

where aj= bjr/2 and 

It is evident that the first line on the right of Eq. (12) is 
nonzero only when the number of multipliers with Bj is even 
(the terms with the odd numbers of multipliers with Bj have 
opposite signs). In the second line, only the terms with an 
odd numbers of multipliers contribute, and since the factors 
with sin t and cos t change the coherence order by + 1. So 
the right-hand side of Eq. (12) is nonzero only in the case of 
coherences of an even order. 

It follows from the definition of the n-quantum coher- 
ence, Eq. (2), that 

so the intensity of an n-quantum coherence, Eq. (4), can be 
expressed as 

- '7r 

xexp(in(t- t')). (15) 

After substituting Eqs. (12) and (13) into Eq. (15) and taking 
into account that only the terms quadratic in the operators 
lj and Bj for each spin have nonzero traces, we obtain the 
following equation for the intensities of multiple-quantum 
coherences of even orders: 

X{COS nt- (112) cos[(n+ l)t]- (1/2)cos[(n- l)t]}. 

(16) 
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FIG. 1. Intensities g, of multiple-quantum coherences for (crosses) n  = 4, 
(circles) n = 8 ,  (slanted crosses) n= 12, and (triangles) n =  16 versus time. 
The experimental points are data from Ref. 1, the curves are calculations by 
Eq. (20). 

In most three-dimensional solid structures (except mag- 
netically diluted systems and those with clearly defined spin 
clusters), each spin has many neighbors with close absolute 
values of the constants of dipolar interaction. In this case, an 
NMR line shape for the zz-model, e.g., can be described 
fairly accurately by a Gaussian curve. Using this property, 
we can simplify Eq. (16), considerably. The product over j 
contains a lot of cofactors with close values. This means that, 
when the product decays significantly, each cofactor is still 
close to unity, i.e., the condition a j 4  1 holds for all a j .  
After expanding each cofactor in powers of aj  and present- 
ing it in an exponential form, we obtain the following ex- 
pression: 

where 

is the second moment of the Hamiltonian from Eq. (6). Us- 
ing modified Bessel functions 

IJX) = ( 11 4 lOvdt exp(x cos t)cos n t, (19) 

FIG. 2. Intensity distribution of multiple-quantum coherences versus their 
orders at (1) T ( M , ) " ~ = ~ ,  (2) 10, and (3) 15. 

we can express the final result in a more compact form: 

Figure 1 shows the intensities g, of multiple-quantum 
coherences for n = 4,8,12,16 calculated using Eq. (20). The 
calculations are compared to experimental data for polycrys- 
talline hexamethylbenzene taken from Ref. 1 (the quantity 
g, + g-, = 2g, was measured). The numerical value 
M, 'I2= 57 ,us was selected to plot the experimental points. 
Given that the accuracy of these measurements is not high 
and the Hamiltonian is a model one, the agreement is fairly 
good. 

Figure 2 illustrates the evolution of the coherence inten- 
sity versus its order (let us recall that only coherences of 
even orders are nonzero) by curves plotted for three mo- 
ments of time: r(M2)lI2=5, 10, and 15. Then the intensities 
decay proportionally to r- ' . This picture is consistent with 
the increase in the maximum order of the observed coher- 
ences: n r. 

The author is indebted to E. B. Fel'dman for fruitful 
discussions. The work was supported by Russian Foundation 
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