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The generalized joint simultaneous distribution of the electric microfield vector in plasmas and 
its time derivatives is presented. The results consistently generalize the approach of 
Chandrasekhar and von Neumann to the temporal fluctuations of the plasma microfield, taking 
into account the complexity of the plasma composition and screening by plasma electrons, 
repulsion and correlations between ions, and plasma polarization. Analytic formulas for the 
universal functions describing the constraint moments of the first time derivative of the 
ion microfield are obtained on the basis of the Baranger-Moser cluster expansion scheme. These 
results permit improvement in the theoretical approach to ion dynamics effects based on the 
time expansion of the microfield. A theoretical basis for the inclusion of rnicrofield fluctuations due 
to low-frequency collective plasma oscillations is developed. The results modify the notion 
introduced by Chandrasekhar of the dynamical friction experienced by a test or radiating ion in 
plasmas over microscopic distances, if it has nonzero velocity. These new contributions 
come from the totality of the effects considered, specifically the plasma composition, repulsion 
and correlations of ions, screening by electrons and the neutralizing electron background, 
and low-frequency plasma oscillations. O 1996 American Institute of Physics. 
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1. INTRODUCTION 

Temporal variation of the ion microfield in plasmas is 
found to be important for its spectral  characteristic^.'-^^ Sev- 
eral models and approaches have been developed to calculate 
spectra including the influence of the ion dynamics.1-'0"2-28 
Here we present the generalization of an approach27728 hav- 
ing its origin in the work of Chandrasekhar and von 
~eumann.' The theoretical treatment is based on the gener- 
alized Baranger-Moser cluster expansion and 
gives the statistical solution for the instantaneous low- 
frequency joint microfield distribution function of the elec- 
tric microfield vector and its time derivatives to within the 
accuracy of the two-particle correlation functions in the case 
of a neutral radiator and the three-particle correlations in the 
case of a charged one. Thus, the accuracy of results depends 
on the the accuracy of the correlation functions 
i n ~ o l v e d . ~ ~ , ~ ' - ~ ~  Formally this approach enables us to treat 
arbitrary mixtures of ions in plasmas with arbitrary values of 
the coupling parameters and allows any determination of the 
electric microfield to be used, and thus makes it possible to 
incorporate nonlinear electron screening on the basis of the 
Density Functional Theory (hereafter D F T ) . ~ ~ - ~ ~  However, 
often in practice for strongly coupled plasmas37-39 this still 
does not yield good agreement with computer simulations, 
for example by the Monte Carlo method. That is why it is 
shown how to obtain solutions similar to those mentioned 
above by an appropriate development of the APEX (Adjust- 
able Parameter Exponential ~ ~ ~ r o x i m a t i o n ~ ~ ' ~ ~ )  scheme, 
which was proved to be reliable for strongly coupled plas- 
mas. 

The general formula for the first constraint moment of 

the first time derivative of the electric ion microfield strength 
vector, with the electric ion microfield strength vector fixed, 
is derived for any arbitrary type of (static) electron screening 
and correlation functions, and any composition of the ion 
charges in the plasma, and thus for any value of the plasma 
coupling parameters. In particular, for a strongly coupled 
plasma this formula is obtained by elaboration of the APEX 
approach. This result incorporates so-called polarization 

which result from the finiteness of the plasma 
coupling parameters, and the "metamorphosis" of ions into 
quasiparticles that carry the screening cloud of electrons. In 
the OCP (One-Component Plasma ~ode l~ ' -~ ' )  limit for ions, 
these terms represent the influence of the negative uniform 
neutralizing background of the plasma electrons, which is 
absent from the Chandrasekhar-von Neumann formulation of 
the problem for stars.' The importance of the influence of the 
neutralizing background on the moments of the rnicrofield 
fluctuations in the OCP model was recognized previously for 
other cases. For example, the moment of the square of the 
time derivative of the absolute value F of the microfield, 
(F'), was considered in Ref. 16. It is noteworthy that the 
present consideration concerns distributions and fluctuations 
at t=O in comparison with studies of the time evolution of 
the joint microfield  distribution^.'^-'^^^^ Thu s, the above ef- 
fects yield new contributions to the dynamical friction,' the 
existence of which is established through analysis in which 
the first constraint moment of the first time derivative of the 
electric ion microfield with fixed electric ion microfield is a 
key quantity.' 

We distinguish two parts of the low-frequency plasma 
microfield. The first, which comes from individual ions (or 
quasiparticles) and was discussed above, is called the "indi- 
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vidual" part of the total microfield, while the second, which 
comes from the low-frequency plasma oscillations, is called 
the "collective" part of the total microfield. However, one 
should keep in mind that the individual part of the total mi- 
crofield has a many-body character, because it is produced 
by many ion-perturbers due to long-range interaction poten- 
tials. It is known that the contribution of low-frequency 
plasma oscillations to the total (or global) microfield in plas- 
mas may be important.20 The same is true of fluctuations of 
the collective part of the total (or global) microfield, which 
also contribute to the dynamical friction of an ion in plasmas. 
In the last section of this paper we present an approach that 
permits the self-consistent treatment of temporal fluctuations 
of the microfield due to low-frequency plasma oscillations 
and fluctuations of the microfield from separate particles (or 
quasiparticles). All this makes it possible to include the in- 
fluence of the temporal variation of the low-frequency col- 
lective part of the total microfield on the dynamical friction 
of ions in plasmas, in addition to the effects discussed ear- 
lier. 

2. GENERAL RESULTS FOR JOINT SIMULTANEOUS 
DISTRIBUTION FUNCTIONS OF ELECTRIC MICROFIELD 
AND ITS TIME DERIVATIVES 

Let a radiator with net charge Zo be located in the vicin- 
ity of field ions and electrons in plasma. The Hamiltonian of 
the whole system can be written in the form 

Here H o  is the unperturbed Hamiltonian of the radiator; H,,; 
are Hamiltonians of free plasma electrons and ions respec- 
tively; H ,  is the Hamiltonian of the radiation field; and the 
symbol designates the painvise interaction operators be- 
tween subsystems. We assume here that the radiation field is 
weak enough to ignore all interactions with it from the out- 
set. It is assumed that the levels of the radiator are rapidly 
populated, while the plasma is quasistationary and optically 
thin. 

Our aim is to trace the consequences connected with ion 
microfield time variation due to the thermal motion of par- 
ticles at the initial time t = O .  The interaction of the radiator 
with electrons may be considered either in the impact ap- 
proximation or in terms of the relaxation theory, or in the 
one-electron approximation.6 At this point in the treatment 
the traditional question of the initial correlations 
arises.32-34,37-43 Here we assume that it is possible to intro- 
duce effective potentials for the ion-radiator interaction, in- 
cluding the screening effects of plasma electrons. There are 
several possible ways of dividing this system into almost 
decoupled s ~ b s ~ s t e m s . ~ ~ - ~ ~ ~ ~ ~ - ~ ~  The only assumption is that 
the plasma microfield approach is This means in 
particular the neglect of ion perturber configurations pen- 
etrating within the bound electron orbits. Although the inter- 
action with such configurations may be treated in the many- 
body or the binary approach depending on the physical 
situation, it cannot be expressed in terms of the microfield, 

and their contribution should usually be suppressed due to 
the Coulomb repulsion between ions that pass within the 
bound electron orbits. 

Thus, we suppose that fo i  can be written in the form 

A A 

where d, Qmp are the dipole and quadrupole moment opera- 
tors of the radiator, respectively, with the sign of the electron 
charge included in their definition; il , j l  ,i1 are the operators 
of the Cartesian coordinates of the "optical electrons" radia- 
tor labelled by l; F is the ion electric microfield vector, de- 
fined at the origin of the coordinate system along with the 
derivatives of its components. The last term in (2) derives 
from plasma polarization. Although in this work we shall not 
use these expressions explicitly, they define the logical basis 
of our consideration. 

Assume that there is an arbitrary set {s} of species of ion 
perturbers in the plasma. Then by virtue of the quasineutral- 
ity condition 

where N ,  is the electron plasma density at infinity and N,  is 
the partial density of the ion perturbers of species s with 
effective net charge 2,. With these definitions, we can start 
with general expressions for the instantaneous joint simulta- 
neous distribution functions of the individual (but nonbinary) 
componeqt of the electric ion microfield F and its time de- 
rivatives F at the origin of an arbitrary laboratory system of 
coordinates, 

where A(p;u) denotes the characteristic function of the joint 
distribution. Equation (5) is derived assuming the additivity 
of the electric fields from the individual particles and their 
time derivatives, 

The characteristic function of (5) can be expressed in the 
form 

Using the generalization of the Baranger-Moser cluster ex- 
pansion approach,29-32 we obtain 
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cpS(p;r;a;5)= p ~ , ( r ) +  u ~ , ( r ) .  (12) 

Here ws(us) is the distribution function of the velocities us of 
perturbers of species s; Cs=NsIN; gsr(r) is the pair- 
correlation function between a perturber with charge Z, and 
a radiator with net charge Zo at the origin of the coordinate 
system, gssr(rl;rd is the pair-correlation function between 
perturbers with charges Z, and Z,! in the field of a radiator 
with charge Zo (in other words, this is a triple correlation 
function of two perturber ions with charges Z, and Z,I and 
the ion-radiator with charge Zo); Es(r) is the elementary 
electric field, produced by any single ion (quasiparticle) of 
species s at the origin that has the same instantaneous veloc- 
ity as the radiator at t=O. This field is determined by the 
effective interaction potential for this sort of particle in 
plasma, and can be expressed in terms of the following equa- 
tions: 

The result on the last line follows from the properties of the 
screening function ~ , ( r )  that come from its definition: 
K,(O)=O, K$(w)= 1. Thus, the excess of the free electron den- 
sity in the accumulation near the ion Z, is 

Now it is seen from (13)-(16) that results of Chandrasekhar 
and von Neumann can be recovered only if one neglects the 
neutralizing background of electrons, putting N, equal to 
zero. 

The time derivatives of the elementary ion field are then 

where n ~ r l r  and vs=us-u, is the relative thermal velocity 
of the particular perturber species s with respect to the ve- 
locity of the radiator u,. 

It can be seen from (19) that terms containing is appear 
i.e. 

where F(r) is the microfield at the location of the field ion 
species s, and m,, m, are the masses of the perturbers and 
the radiator respectively. These terms result in nonlinearity 
and the loss of locality of the joint distribution (5) if one 
attempts to include them in the second time derivative. In 
particular, the distribution of the microfield at the origin be- 
comes dependent on the values of the microfield over all 
space. This inconsistency can be avoided by postulating the 
constancy of the thermal velocities of the field particles, as 
was done in the work of Chandrasekhar, namely us =O for all 
s. However, the consequences of neglecting the mutual in- 
fluence of field particles requires special study beyond the 
scope of the present paper. 

As follows from (13)-(16), the screening function has 
~ , ( r ) 3 0  and can be determined, for example, by means of 
one of the recent developments of the ~ ~ ' I ' - a ~ ~ r o a c h ? ~  
which has a more direct connection with spectral features 
that can actually be observed. Here we will not present in 
detail the equations exhibiting the connection with the den- 
sity distribution of the bound electrons, assuming that the 
perturbers are strictly bare ions. Also we assume that quan- 
tum effects in the microfield distribution can be 
neglected.33.37-39 The joint distribution (5)-(20), obtained 
above, gives the "instantaneous" distribution function of the 
low-frequency (ion) individual (but many-body!) component 
of the plasma microfield and its time derivatives, which in 
fact are determined on a time scale T of order 
W; < 74 (U  i~!13)- l, where wp, is the electron plasma fre- 
quency, ui is the relative ion thermal velocity with respect to 
the radiator, and Ni is the ion density. 

The basic ideas that support this derivation were put for- 
ward by Baranger and Moser are unchanged since then, de- 
spite some differences in later approaches?7-28,30-32 because 
they are inherent in the plasma microfield formalism. 

It should emphasized once more that by virtue of (2) and 
(13)-(20), the effects of the neutralizing plasma electron 
background and its polarization (or in, other words the ap- 
pearance of nonuniformity in the plasma electron density 
distribution) are included prqperly in this treatment. Convo- 
lution of (5) over the F or F components leads to separate 
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distributions of the field or its time derivatives, and after the 
appropriate approximations recovers previous results on the 
subject. 

3. FIRST MOMENTS OF JOINT DISTRIBUTION AND SPEED 
OF MICROFIELD FLUCTUATIONS 

One of the most interesting properties of the joint distri- 
butions comes from consideration of the constraint moments, 
cbtained by averaging F (or under special assumptions also 
F) over the joint distribution (5) at a fixed vector value F 

~~~s(rl)ex~[icp~(~;~l)l(l -exp[icps,(p;r2)1) 

+~s:,,(r2)ex~[icp,l(P;r2)1(1 -exp[icps(~;rl)1)). 

(26) 
The expressions (21)-(25) for the first moments can be re- 
written in terms of the microfield distribution function, 
which can be useful for general analysis: 

-gsr(rl)gs~r(r2)l{~s(rl)[~(~-~s(r1)) 

- w ( ~ - ~ s ( r l ) - ~ ~ ~ ( r 2 ) ) l + ~ ~ ~ ( r 2 )  

X[W(F-Esl(r2))- W(F-Es(r1) 

-Es4r2))1). (27) 

The.expressions of @ can be obtained by substituting ~ , ( r )  
for Es(r) on the right hand side of (24)-(26), if we put Gs= 0 
for all {s) as discussed earlier. The results (1)-(26) have the 
most general form. 

In order to obtain more detailed expressions, one must 
make reasonable approximations concerning the correlation 
functions. Here we assume that the pair correlation functions 
depend only on the magnitude of the difference vector 
r=rl-r2. This enables us to identify and analyze the angle 
dependence explicitly. However the noncentral terms (see 
the second citation in Ref. 32) are omitted in this approxi- 
mation and a calculation of their contribution, although also 
important, is beyond the scope of the present paper. 

We use the Kirkwood approximation to factor the triple 
correlations; that 

The Kirkwood approximation is usually thought to be appro- 
priate mostly for weakly correlated plasmas.40741 However, 
here a mixed approximation is proposed: after applying the 
Kirkwood approximation for factoring the triple correlation 
function, the HCN (hypernetted chain) approximation should 
be used for the pair correlation function. The HCN approxi- 
mation in turn is thought to be reliable for strongly correlated 
plasmas40-43 as well. This procedure should be good for cal- 
culations of the microfield distribution that depend on corre- 
lation functions as "externally defined variables," i.e., cor- 
relation functions must be obtained from other special works. 
Nor do we consider the influence of dynamic screening and 
retardation effects on the correlation functions or the other 
quantities involved. One can then find the following general 
expressions for (28): 

s s ;  2 dk k2 jn(krl)jn(kr2)hssl(k), (31) I," 

Here P,(z) are the Legendre polynomials with the cosine of 
the angle between r, and r2 as the argument, while jn(y) are 
the spherical Bessel functions. Equations (27)-(31) enable 
us to simplify the general results (1)-(26) and obtain, for 
example, for the microfield distribution of the reduced mi- 
crofield value P=FIFo, where Fo is the normal more 
general formulas than were usually applied before. Thus, we 
have as in Refs. 28, 45, and 46 

w(P)= I m d k  o k sin k p  ~ ( k ) ,  
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lom 

sin k e s ( x )  
Zs(k) = d x  ~ ~ ~ , , ( r ~ x )  

To proceed with the first moments of the ion microfield 
time derivative, we use the following relation between the 
space and time derivatives: 

dFi 
(Fi)F= (-) (xk)vei 9 (38)  

Xgslr(r0~~)bss'(k;~1;~2), (50)  
d ~ k  ,7 

bss f (k ;x l  7 2 )  
where ei are the unit basis vectors of the Cartesian coordinate 
system, and the symbol (...), denotes the average over the 
perturber velocity distribution due to the first integrals in 

= Z s Q s ( x l )  ~ Z [ ~ ~ , ( X ~ ) I ~ ~ ~ ~ ( O ; ~ O X I  7 0 x 2 )  

(24), (25) .  We then substitute in this relation the expressions rn 

for the first moments of the components of the microfield 

[ 
nonuniformity tensor (compare with Ref. 45),  which can be 

-2 ( - 1 ) " ( 2 n + l )  
n=O - 1 )  j n [ k e s ( x l ) ]  

obtained in the compact form 
1 1 

where the universal functions B,(P) and BDo(/3) are defined b;;!(k)= /rdxl x;lo(1dx2 x; g s , ( r o x l )  
by 

2 p2 
B ~ ; ( P ) =  - - 2 C , C , ~ ~ ~ : ! ( P ) ,  (42)  Substituting (38)  into (37)  and cycling through the compo- 

w(p)  ,,I nents of F and u,, the desired result is 
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The contribution of the field variation due to ion perturb- 
ers vanishes as a consequence of the assumed spherical sym- 
metry of the perturber velocity distributions. It can also be 
seen from this result that the contributions of polarization 
effects, coming from BD(P) and BD,(P), have different signs 
in the expression for the vector directed along ur , but do not 
cancel each other due to the different symmetry of the inter- 
actions (quadrupole and scalar respectively) that give rise to 
these terms. This is also the case in the coefficient associated 
with F. Using the relations 

where mr is the mass of the radiator, it is possible to write an 
expression for the part of the second time derivative of the 
field, assuming u,=O for all {s), due to the time indepen- 
dence of the ion perturber ensemble: 

This expression with the opposite sign is proportional to the 
z z  component of the microfield nonuniformity tensor in the 
coordinate system in which F points in the direction of Z: 

The results (54) and (56) show a new physical effect in the 
theory of dynamical friction: the friction induced by the elec- 
tric field of the electron neutralizing background. This is the 
physical sense of the introduced polarization terms. These 
terms do not vanish if one takes the OCP limit for ions, when 
this background has a constant uniform density in the space. 
That is why the transition to the previous results of Chan- 
drasekhar and von Neumann evidently is possible only if we 
artificially set this density equal to zero. 

4. MODIFICATION OF JOINT DISTRIBUTIONS IN LIMITS OF 
WEAK AND STRONG PLASMA COUPLING 

The validity of the generalized Baranger-Moser ap- 
proach, strictly speaking, cannot be proved for strongly 
coupled plasma, although at the same time there are no rig- 
orous objections against its use for nonideal plasmas. That is 
why we consider here two additional approximations which 
traditionally are thought to correspond to weak and strong 
plasma coupling. In the limit of weak plasma coupling, when 
the ion-ion and the ion-electron coupling parameters are at 
most of order unity, it is possible to use the Debye-Hiickel 
approximation with linearization of the perturber-perturber 
correlation f~nction.~' The results in this approximation 
could be obtained from the general expressions written 
above by the following substitutions 

A 3'2 exp[ - ax] 

where in (60) we used the traditional notation from Ref. 30, 
and TI ,Te are the ion and electron temperatures in plasmas 
respectively. 

For large values of the ion-ion coupling parameter it is 
convenient to exploit the Adjustable Parameter Exponential 
(APEX) Approximation developed in Refs. 47, 48. Attempts 
to use  APEX^^,^^ to treat the microfield time dependence1'-l9 
and its spatial  derivative^^^-^^.^^ in strongly coupled plasmas 
were made recently by several groups of researchers. We 
prefer to follow here the general approach from Refs. 35,36, 
45 and the original work on the APEX The 
APEX field distribution for the microfield is the distribution 
with specified constraints on the second moment of F with 
modified Debye screening of the elementary electric field. 

In the present case in the construction of the joint distri- 
bution function it is necessary to use an expression for the 
time derivative of the elementary electric field not related 
directly to the APEX field expression, but which in principle 
should be obtained from the initial field expression (13), 
which comes from physical considerations and satisfies Eq. 
(15).45946 In other words in order to obtain the true joint dis- 
tribution, one must have the freedom to convolve over some 
of the independent variables to get the independent distribu- 
tion over the other part also of the independent variables 
entering in the definition of the joint distribution. However in 
the APEX approach, as we see below, these requirements 
may be fulfilled only partly. Indeed the generalization of the 
APEX approach in our notation is obtained by the following 
changes in the formulas of the preceding section 

APEX Es(r) 
gsr (r)=gsr(r) E ; ~ ~ ~ ( r )  9 

where cu, is the fitting APEX parameter for perturber ions of 
species s.57 On the other hand, the virtue of the APEX ap- 
proximation, which is formally confined to this substitution, 
is that it inevitably renormalizes the pair distributions for the 
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other variables. This is the price paid for restricting the space 
of the independent variables by the conditions at Zo#O 

where {as) is the set of parameters determined from (64)- 
(67). 

It can easily be shown that the results (1)-(56) of the 
preceding sections can be reexpressed in terms of the modi- 
fied APEX, using (61)-(67). On the other hand they differ 
from them by the absence of the correlation terms that stem 
from and by the renormalized perturber-radiator pair 
distribution function (62). In principle, the correlation terms 
can be recovered in APEX also, by using its renormalized 
version48 in the OCP modeL4' Thus, the results outlined in 
this section are quite sufficient to exploit the APEX approach 
together with the results of the preceding one, so we will not 
present here the lengthy formulas that are now evident from 
our consideration. 

Let us take the case of a single species so of ion perturb- 
ers and rewrite the expression for the first moment taking 
into account (21)-(26) and (61)-(67) in the form 

It is obvious from the above expression that our results in- 
clude renormalization and plasma polarization effects. Con- 
cerning the nearest-neighbor approximation limit (NNA) 
from (68), it is easily seen that the renormalization factor 
goes to unity at small r ,  and thus the NNA limit should be 
recovered. On the other hand, if we convolve the joint dis- 
tribution constructed in the APEX scheme over F, we get the 
distribution over the first (or second) time derivative of the 
microfield with the renormalized correlation function. So al- 
though there is no reason to use the time derivatives of the 
APEX electric field instead of the time derivatives of the 
initial elementary ion electric field in the construction of the 
joint distribution, one cannot restore the free distribution for 
the time derivative, which should follow from the starting 
formulas after the convolution over F. 

FIG. 1 .  Function B,@) versus fl for several values of  the ratio a=r,lr,, at 
charged point. 

The case of the neutral radiator can be treated in a 
slightly different manner in accordance with the original 
work on  APEX.^^ The reasoning concerning the choice of 
the expression for the time derivatives of the elementary 
electric field presented above is confirmed in the case of the 
neutral point by the corresponding results from Ref. 18. 

As stated by APEX'S authors,39 its applicability was 
checked up to ri- 100. On the other hand, from general con- 
siderations for larger Ti one should get a Gaussian for the 
microfield distribution function, corresponding to the physi- 
cal picture of very low particle kinetic energy compared to 
their potential energy and connected with their oscillations 
near the equilibrium sites. In this case such a simple approxi- 
mation as NNA fails, and one should apply the ideas of 
several nearest neighbors that are so familiar in the theory of 
the intercrystal electric field. 

In part these trends come to the APEX approximation 
through the HCN correlation functions. It is interesting that 
when Ti is increasing, the plasma ion frequency is less than 
ope for any real value of Z,, but may become larger than 
(U~N,!'~)-', and We Can have r D i 4 ~ ; ' l 3  and rDiGrD=rDe. 
Thus, while at small ri the plasma ion modes are slower than 
the individual particle motion, at large Ti+l this relation is 
reversed. That is why for large r it is also necessary to 
consider the statistical subsystem of the collective plasma 
oscil~ations~~ and the electric field produced by them, which 
is considered in this work after the derivation of the asymp- 
totic expansions for W(P),BD(P) ,BDO(p). 

The functions W(P) ,BD(P) ,BDo(P) were compared 
in detail for various values of the plasma parameters4s346 
in the ~ a r a n ~ e r - ~ o s e r . ~ ~ . ~ ~  Monte-Carlo (D. Gilles) and 
 APEX^^,^^ approaches.3s-36749 These studies show the main 
trends of their dependence on the plasma coupling and other 
parameters. 

The characteristic behavior of the BD(P),BD0(P) uni- 
versal functions is illustrated in Figs. 1 and 2. The results 
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FIG. 2. Function BDo(P) versus P for several values of the ratio a=rolrD, 
at charged point Z=1: 1) a=0.2, I t )  1 + ( 0 . 2 ) ' m ,  2 )  a=0.4, 2')  
0 . 9 9 2 + ( 0 . 4 ) ' ~ ,  3)  a=0.6, 3') 0 . 9 7 6 + ( 0 . 6 ) ' m ,  4 )  a=0.8, 4') 
0.949+ ( 0 . 8 ) ~ m .  

were obtained by Chantal Stehld in the linearized Debye- 
Hiickel approximation for the pair (ion-ion) correlation 
function, and depend on the parameter a, which is the ratio 
of the characteristic length scale coming from the definition 
of the normal field Fo to the electron Debye radius. 

In conclusion it should be noted that the algorithm of the 
APEX application considered is still incomplete. 

First of all, as was discussed earlier, we failed to con- 
struct a joint distribution with the help of the APEX ideas 
that would give after convolution over the microfield a free 
distribution over the time derivatives of the electric mi- 
crofield, i.e., not limited by any constraints. Therefore this 
distribution cannot serve as an initial value for the problem 
of the time evolution of the joint  distribution^.'^ 

Secondly, if we take Es(r) in the Debye form, then when 
the APEX screening in strongly correlated plasmas becomes 
larger than the screening of ~ , ( r ) ,~ t ; " ( r )  loses its physical 
sense. Specifically, ~ d ~ r g $ ~ ~ ' ( r )  becomes infinite, although 
the APEX microfield distribution gives correct results. How- 
ever, here we proposed using the DFT screening function 
K(r), which can have an effective screening parameter 
enough larger than the APEX one for such cases. If this is 
not true, the definition of B;;~'(P) given here will lead to 
divergence for cases when the APEX screening exceeds 
twice the value of the DFT screening. Then the diagonal 
components of (dFildxs), and thus (F), cannot be deter- 
mined by the method outlined above. The same is true of 
corresponding results in Refs. 35, 36, p. 89, 45, 46 as well.') 

The simplest way out of this difficulty consists in adopt- 
ing d(Es(r))i /dxk = d ( ~ t ~ " ( r ) ) ~  /dxk , thus making the 
joint distribution more restricted. Obviously it is now not so 
important, because one cannot obtain the joint distribution of 
the completely independent variables in APEX. Therefore 
this step could not make the situation more controversial 
than before. 

Another way, perhaps less rigorous, is connected with 
the fact that the function BDo(p) has the meaning of a neu- 
tralizing charge, and in order to compensate the drawbacks 

of g Y ( r )  it is natural to use the renormalized version of 
B$Y(/~) for these situations, when formally the integral 
over the APEX charge distribution diverges, inserting 
jo[kes(x)] - 1 in the integrand of the Eq. (46) instead of only 
j~[ke,(x)l-  

Anyway all this shows that the question of the APEX 
application still needs additional study. 

5. ASYMPTOTIC EXPANSIONS FOR W(P) ,  B,(P), BDo(/3) 

From these equations it follows that the functions BD(p) 
and BDO(p) have the following asymptotic dependence when 
p is small: 

It is clear from (71), (73) that the asymptotic functional de- 
pendence on P of the B-functions for /?< 1 (the difference in 
coefficients notwithstanding) is not changed by the screen- 
ing, correlations, or repulsion, with respect to the pure Cou- 
lomb case.' But it is changed by polarization e f f e ~ t s . ~ ~ , ~ ~ , ~ ~ , ~  
The asymptotic behavior of (55) can be simply determined 
from (69)-(75) by multiplying by p. The contributions of the 
correlations enter (71) and (73) through the double sums. 
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These results in the case of the Debye-Huckel approxima- 
tion for the correlation functions largely agree with corre- 
sponding results from.27,28,36 

In the case of large P one can use implicit variables to 
obtain an asymptotic expansion in a way similar to Ref. 31: 

The asymptotic expressions in the Debye-Huckel approxi- 
mation or for the APEX approach can be readily obtained 
from Eqs. (69)-(81) by the replacements outlined above in 
the previous two sections. These results in the case of the 
Debye-Hiickel approximation for the correlation functions 
for the most part agree with corresponding results of Refs;. 
27, 28, 36, and 46. 

6. JOINT DISTRIBUTIONS INCLUDING COLLECTIVE LOW- 
FREQUENCY PLASMA OSCILLATIONS 

These results allow us to consider with much more gen- 
erality the problem of including the low-frequency collective 
plasma oscillations in the joint distribution function?' It is 
now possible because the problem of dividing the microfield 
in plasmas into individual and collective parts was treated in 
detail in several outstanding publications51-53 following the 
idea of Bohm and Pines of collective  variable^?^ That is why 
we shall take the possibility of this separation for granted. 
Evidently, when there is a significant level of low-frequency 
oscillations in plasmas the joint distribution should take into 
account its contribution. Assuming that the statistical sub- 
systems of the individual and collective motions are indepen- 
dent, the full or global joint distribution function 
WG(FG ;FG) is the convolution of the joint distributions 
w ( F ; ~ )  from the sections above with the joint distribution 
W,(F, ;F,) of the collective field F, and its time derivatives 
F, ; 

The last equation is due to the convolution structure of the 
global distribution. It fo!lows immediately that the separate 
distributions of FG and FG are defined by 

Consider a multimode oscillatory field. Then 

where EK,j is the vectorial amplitude of the oscillations char- 
acterized by the wave vector K, the mode index j, and the 
random phase *K,j uniformly distributed over the interval 
(0 ,2~) ;  r, , u, are the position of a radiator and its velocity 
respectively. In accordance with the spirit of the quasistatic 
approximation in the theory of Stark broadening in plasmas, 
we are interested in the determination of a simultaneous sta- 
tionary distribution that can be observed on time scales much 
less than o,'-w>'. That is why without loss of generality 
we can put t=O and r,=O. 

In the three-dimensional case of isotropic distributions 
for amplitudes w ( E ~ ) = w ( E , ) I ~ T E ~  and wave vectors 
w (K) = w ( K ) / ~ T K ~ ,  applying methods from the well known 
review of Chandrasekhar (see the second citation in Ref. 1, 
p. 14, Eq. (91)) we arrive at the following remarkable result, 
if the total number of modes JV tends to infinity, while the 
energy density of plasma oscillations is finite (compare with 
Ref. 53) 

The factorization of these distributions should exist in a 
space of any integer dimension, i.e., for one-, two-, and 
three-dimensional turbulence. This means that the distribu- 
tions of the collective microfield and its time derivative are 
independent in the multimode case. This independence re- 
sults from the opposite phases in the time evolution of the 
field and its time derivative. 

The functional dependence of these distributions evi- 
dently has a Gaussian form, and depends on the amplitude of 
the oscillations 
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Here we defined the probability for a given pair E ,  and K by 
W ( E , ) W ( K ) / N .  Thus JY is canceled in the expressions for 
the mean squares listed above. However, for E,,ll K the fac- 
torization exists only if a radiator is at rest, v,=O. But for 
our treatment (see below) of the second constraint moment 
of the global microfield time derivative, it is sufficient that 
A,(p;a)  be a quadratic function of p  and a that is provided 
by the average over the random phase 

It is important that this type of function can be applied to 
the nonequilibrium distributions over degrees of freedom in 
plasmas. 

The second moments of the global joint distribution are 
defined by 

As can be seen from these results and Eq. (85) ,  they can be 
expressed in terms of the analogous quantities defined for the 
individual and collective subsystems. For an individual sub- 
system, in general 

+ N ~ C  C . C , ~  I d3rl d 3 r 2  g r s ( r l ) g r s ~ ( r 2 )  
s , s t  

X [ g s s l ( r ~  ;r2)-grs(r1)grsr(r2)1 

x ( ~ s ( r ~ ) ) a ( ~ s ~ ( r ~ ) ) ~ -  (97)  

At a neutral point, these expressions diverge due to the 
terms in the single-index sums. This can be eliminated only 

by incorporating quantum effects at small distances. These 
results are exact for real plasmas (compare with Ref. 38); we 
wrote these equations together to show the remarkable coin- 
cidence in their structure. 

The other interesting quantities in which nontrivial fea- 
tures might show up in this approach are the second con- 
straint moments of the global microfield time derivative 

d2&(p; a )  
X lim 

uj+ 0 d u a d u p  
9 (98)  

lim 
d2A ( P; a )  

cj+o d u a d u p  

Although it is difficult to analyze these expressions in gen- 
eral form, one can infer that they have the same block struc- 
ture of the time derivatives of the characteristic function of 
the individual microfield distribution as in Ref. 1. On the 
other hand, in a multimode collective subsystem, only the 
second derivatives ( c Y = / ~ )  of its characteristic function are 
nonvanishing in (98) ,  which is why the cross terms in (98)  
vanish in this case. 

Thus, we can conclude that the contributions to the tem- 
poral fluctuation rate of the global field due to the individual 
and collective subsystems are nearly independent. 

It is now possible to analyze the asymptotic behavior of 
the second moments of the global distribution at small 
/3G=FGIF0.  Let us consider the moment M , ( P G )  
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= (($):)FC~~i. Here as in Ref. 1 the symbol i signifies 
the component of FG perpendicular to FG . Clearly, at small 

the last term in (98) has the same dependence on PG a:s 
W(PG), and so after entering in M ,  will give the same de- 
pendence mpz2 as was obtained in Ref. 1 for the expression 
analogous to the first term in (98) after the neglect of the 
correlation, screening, and polarization effects. The first tern1 
in (98) will make a similar contribution at small PC. Thus, 
we have shown that in agreement with Ref. 50, the inclusion 
of three-dimensional low-frequency multimode plasma oscil- 
lations does not eliminate the divergent terms, which are 
proportional to / 3 ~ ~ ,  in the asymptotic behavior of the second 
moment of the global microfield time derivative, divided by 
F; ,  at small values of PC. 

This result does not agree with corresponding one from 
preceding based on much simpler ideas of the deri- 
vation of M, . There the finiteness of M ,  at small values O F  
the individual fields was obtained as if induced by low- 
frequency plasma oscillations. As one can see, this is not 
confirmed by the more consistent and sophisticated theory 
presented here. It seems that the statistical average in the first 
paper of this series5' was inappropriate to the physical for- 
mulation of the problem. Specifically, in Ref. 55 the average 
was taken over low-frequency plasma oscillations at fixed 
values of the individual part of the microfield despite the fact 
that for the weakly coupled plasmas parameters considered 
in Ref. 55, the low-frequency plasma oscillations have even 
lower-frequency variation than the individual component of 
the microfield. Neglecting the need to treat these two parts of 
the total microfield on the same footing led to the unrealistic 
behavior of the moment considered and made the results of 
further calculations, which, were based significantly on it, 
questionable.55'56 

Using results obtained in this section, we now are able to 
derive an expression for the rate of fluctuation of the global 
microfield ( F ~ ) ~ ~ ,  which is the key quantity for dynamical 
friction.' First of all, for the first derivative of the joint char-. 
acteristic function over a at a=? in the integrand of the 
expression for the first moment of FG , one will evidently get 

As follows from (92), (93), the second term in the above 
expression is zero. That is why the results (53)-(68) for 
(iG)FG are generalized by the substitution in (42),(43),(47)- 
(49) instead of A (k)+A(k)A,(k), where A,(k) 
=exp[-~k~],  K = ( F ~  )16Fi. The same is true as well for the 
APEX generalization, but it should be written in terms of' 
A ~ ~ ~ ~ ( k ) A c ( k ) .  

Thus, we see that low-frequency plasma oscillations lead 
only to some modulation of the integrand for the B-universal 
functions generalized to include the low-frequency plasma 
oscillations that enter particularly into the expression for 
(F)F. This provides the key to understanding the relative 
importance of the individual or collective part of the mi- 

crofield in line broadening and transport phenomena, if some 
resonance processes and mode interactions don't take place. 
If one considers very large coupling parameters then it is 
physically obvious that the contribution of individual motion 
will be suppressed in comparison with collective motion. 
However, it is insufficient to make any definite conclusion 
about the value of parameter K, for example, even at thermal 
equilibrium. Nevertheless, for K S ~ ,  which signifies that the 
energy in collective degrees of freedom greatly exceeds the 
energy in individual degrees of freedom, the contribution of 
the individual part to the global microfield and its temporal 
fluctuations will be suppressed due to the exponential modu- 
lation of the integrand mentioned above. As a consequence, 
one will get a Gaussian for the global microfield distribution. 
If simultaneously Ti% 1, then oPiS==viN; ' I 3 ,  as noted above, 
which signifies that the influence of the fluctuations of the 
collective part of the microfield is more important for a 
strongly coupled system than the fluctuations of the indi- 
vidual part, because the latter are slower. In the opposite 
limit KG 1, we recover the results controlled predominantly 
by individual degrees of freedom. 

In spite of some uncertainty in the convolution model 
used here, and based on the artificial assumption that the 
individual and collective degrees of freedom are indepen- 
dent, which is very difficult to justify for large coupling 

the model provides physically reasonable re- 
sults. For example, one can deduce from our expressions in a 
way similar to Ref. 1 that a charged test particle should gain 
energy under influence of the fluctuating electric fields in 
plasmas, i.e., the inclusion of all the effects considered in 
this article does not qualitatively change this general well- 
known result.' 

Although calculating the values of the diffusion coeffi- 
cients due to dynamical friction is outside the scope of this 
article, it is worth noting that for large coupling parameters, 
the procedure used for these calculations in current books on 
plasma physics is still valid if the kinetic energy of the test 
particle considerably exceeds the characteristic potential en- 
ergy of the field particles. When these quantities have com- 
parable values, another approach should be used, for ex- 
ample, the so-called liquid approximation.'6~'8~2374' 

7. DISCUSSION 

The main achievements of the present study are confined 
to the conceptualization of a way to construct the joint dis- 
tributions of the microfield and its temporal derivatives in 
classical plasmas on the basis of the current progress and 
understanding in the theory of the microfield distribution and 
the joint distributions of the microfield and its spatial deriva- 
tives. 

They may be enumerated as follows. 
1. The general expressions for the joint distribution of 

the individual pait of the ion plasma electric microfield and 
its time derivatives, and the first constraint moments of mi- 
crofield time derivatives are obtained for an arbitrary plasma 
composition: 

in the generalized Baranger-Moser cluster expansion 
scheme in terms of pair and triple correlation functions, 
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which is reliable at least for plasma coupling constants at 
most of order unity; 

in the generalized APEX approximation in terms of pair 
correlations for plasma coupling constants that may be much 
greater than unity. 

2. In the Kirkwood approximation neglecting noncentral 
correlations, the angle dependences are separated and ex- 
plicit analytic expressions are obtained for the joint distribu- 
tions and the first constraint moments of microfield time de- 
rivatives in terms of Fourier components of pair or triple 
correlation functions. 

3. It is shown that in general these distributions and mo- 
ments incorporate the effects of screening by plasma elec- 
trons and ion-ion correlations. The appearance of polariza- 
tion effects induced by the nonuniformity of the electron 
charge distribution around ions is important here. Analytic 
results are expressed in terms of universal functions of the 
reduced microfield. 

4. Assuming statistical independence of the collective 
and individual parts of the ion plasma electric microfield (the 
convolution model), the joint distribution of the collective 
part of the microfield and its time derivatives is explicitly 
obtained for a multimode low-frequency plasma oscillation 
model. 

5. On the basis of this convolution model, the joint dis- 
tribution of the total plasma low-frequency electric mi- 
crofield and its time derivatives is constructed and the as- 
ymptotic forms of the first and the second constraint 
moments of the microfield first time derivative are analyzed 
versus the reduced value of the total low-frequency plasma 
microfield. This gives new insight into the influence of the 
collective part of the microfield on dynamical friction. 

As explained above, the accuracy of the results depends 
on the accuracy of the available correlation functions, which 
should be determined specifically in HCN and DFT or other 
approaches. The general scheme will also not be changed if 
it includes noncentral terms with triple correlations (see the 
second work in Ref. 32), but the results will become more 
cumbersome. We have also shown that it is important to 
complete this scheme by the appropriate determination of the 
elementary electric field of an ion with account of screening 
by electrons, and by the appropriate definition of the time 
derivative of the elementary electric field. There are several 
ways of doing so, discussed above. We pointed out the ca- 
pabilities of DFT theory in the proper determination of the 
electron density around plasma ions. 

The explicit analytic results determine the initial condi- 
tions at t = O  versus the plasma coupling parameters, its com- 
position, and the radiator species for the various approaches 
to studying and constructing the probable time-dependent 
microfield dis tr ib~tions.~~~"~. '~- '~ Th ey also have fundamen- 
tal importance in connection with the behavior of the mi- 
crofield time fluctuations. The new important and interesting 
physical feature of these results is the presence of polariza- 
tion terms, which change the asymptotic dependence versus 
the microfield value of the first constraint moment of the 
microfield time derivative for small reduced values of the 
microfield. Thus, they qualitatively and quantitatively influ- 
ence dynamical f r i~ t ion . ' . '~ ,~~ In the OCP limit for ions, these 

terms are due to the friction induced by the uniform electron 
background. 

It is also proved that, in comparison with results of 
Chandrasekhar and von ~eumann, '  three-dimensional multi- 
mode collective oscillations in plasmas cannot change the 
asymptotic behavior of the constraint second moments of the 
microfield first time derivative at small values of the total 
electric microfield in plasmas. The boundary value of the 
second moment of the microfield time derivative sought in 
Ref. 55 might come from high-frequency electron plasma 
oscillations, but at present no reliable way to treat the time 
evolution of the electron and the ion parts of a plasma elec- 
tric field on the same footing is known in the context of Stark 
broadening in plasmas. 

These results assume static electron screening. Eliminat- 
ing the static approximation for the electron screening may 
need some dynamic generalization of the DFT-approach and 
proper accounting for retardation effects. Moreover, as the 
joint distribution is an instantaneous one, one should take 
care of the fact that it may in principle differ from the Monte 
Carlo simulation, which yields time-averaged results due to 
its usual settings in the case of weakly correlated plasmas. 
This results from ion-ion screening, which should not be 
effective on the time scales under consideration for weakly 
correlated plasmas, but should be effective for strongly cor- 
related plasmas, because collective modes become faster in 
the latter case. Thus, these and other approaches fall short 
through the absence of an automatic and self-consistent ad- 
justment to the appropriate time scales relevant to the physi- 
cal problems under consideration. 

These difficulties also apply to calculations in terms of 
correlation functions, which cannot distinguish among vari- 
ous time scales, expressions for the initial elementary electric 
field defined in terms of the pseudopotential, etc. 

Finally, in the context of the time evolution of plasma 
electric fields, it is worthwhile to underline the intuitiveness 
of the microfield approach, based from the beginning more 
on physical images than on rigorous mathematical deriva- 
tions of statistical mechanics and the theory of plasma inter- 
actions with a radiator. One of its obvious shortcomings is 
inability to provide correct calculations of interactions at 
short distances between a perturber and a radiator, as well as 
artificiality of the separation into the collective and indi- 
vidual parts of the microfield and into the low-(ion) and 
high-frequency (electron) parts of the microfield, which re- 
flects rather crude attempts to use the hierarchy of time 
scales to simplify the solution. But on the other hand, it is 
important that the same things were successful for deriving a 
physically correct zero-order approximation for such a com- 
plex system as plasmas with strong coupling between its 
parts that in contrast to much more sophisticated models and 
approaches, much less tractable, supplied a visual basis for 
the sufficiently reliable treatment of the spectral observations 
in experiments. 

However, attempts to overcome these difficulties are a 
task for future work. 
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