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The electron spin resonance (ESR) spectrum and the spectrum of the adjoining resonances of 
impurity ions found in crystalline electric fields of icosahedral symmetry are predicted. 
The spin Hamiltonian is obtained, and its eigenvalues, the transition frequencies, and the resonant 
magnetic fields for an arbitrary orientation of the latter are found. The ESR spectrum is 
constructed and analyzed as a function of the magnitude of the total angular momentum J. A 
comparison with the spectra of paramagnetic centers of lower, particularly cubic, 
symmetry is made. The possibilities of observing the effects predicted are discussed. O 1996 
American Institute of Physics. [S 1063-7761 (96)01710-61 

1. INTRODUCTION 

Symmetries whose elements include rotations by an 
angle that is a multiple of 2 d 5 =  72" did not arouse interest 
for a long time, since it was assumed that the objects corre- 
sponding to them do  not occur in nature on the atomic level. 
Such symmetries as C5, C5", D5,  D S h ,  Y, and Yh, espe- 
cially the last two, were not given proper attention, in con- 
trast to, for example, the familiar 32 point groups.'-3 How- 
ever, numerous pieces of evidence have appeared in recent 
years, indicating that such symmetries are not only of aca- 
demic interest, but also reflect real structures, which are 
promising for applications in some cases.4 

For example, Morokhov et ~ 1 . ~  discovered that small 
( S  1 o3 A) metallic particles can assume the form of a regular 
pentagon or have more complicated structures (icosahedral, 
pentagonal-pyramidal). The formation of clusters from a 
small number of atoms is also typical of other elements, for 
example, the noble gases, an icosahedral structure being pos- 
sible in the case of xenon and argon. So-called 
quasicrystals6.7 also have unusual symmetries: pentagonal 
dodecahedrons, for example, can be clearly identified in their 
grains. Also, the presence of small regions with atoms in an 
icosahedral configuration is generally characteristic of dense 
supercooled liquids. An icosahedral symmetry has been dis- 
covered in several molecules (B,~H;:, C20H20), as well as 
in more complicated objects (like v i ruse~) .~  A model of spe- 
cific paramagnetic centers in the form of so-called dangling 
bonds in diamond-like crystals has been discussed for almost 
40 years? A new model based on a fivefold-coordinated sili- 
con atom has been proposed in recent years, and the corre- 
sponding state of the unpaired electron has been termed a 
"floating bond."1° A very close analog of this model is the 
model of another defect that appears at dislocations in sili- 
con: a fivefold-coordinated silicon atom can be clearly iden- 
tified along with a more distant sixfold-coordinated atom in 
the (1 11) plane in the region of the defect. A new class of 
carbon clusters (containing an icosahedron), which have ro- 
tations by 72" as symmetry elements, has recently been 
discovered.' ' 

However, the discovery of f u ~ l e r e n e s , ' ~ ~ ' ~  molecules of 
C60 having icosahedral symmetry, and crystals derived from 

them, i.e., fullerites, aroused great interest. Not only the 
unique structure and symmetry of these new carbon forma- 
tions, but also the unusual properties of such substances are 
of interest. It has been shown, for example that semiconduc- 
tor, metallic, and even superconducting properties can appear 
when atoms of other elements are implanted in them. It has 
been possible to implant atoms of elements belonging to dif- 
ferent groups in the periodic table (up to the lanthanides and 
even uranium) directly in fu~lerenes. '~- '~ 

Thus, the existence of diverse nlolecular and crystalline 
structures with impurity atoms found in a crystalline electric 
field of icosahedral symmetry is possible. For this reason 
investigations of the energy structure, resonance properties, 
and other characteristics of such systems would be timely. 
The purpose of the present work is to predict and analyze the 
electron spin resonance (ESR) spectrum of such systems. 

2. GROUPS OF THE ICOSAHEDRON 

We distinguish between four groups of the icosahedron: 
the simple (Y), complete (Yh), simple double (Y'), and 
complete double (YA) groups. Group Y consists only of ro- 
tations about the symmetry axes. There are 6 fifth-order axes 
with 24 rotations about these axes, 10 third-order axes with 
20 rotations about them, and 15 second-order axes with 15 
rotations about them. The total number of elements in the 
group is 60. Consideration of the inversion operation leads to 
the group Yh = Y X CI (CI is the inversion group) containing 
120 elements. The group Y' is obtained from the Y group by 
adding the element Q,  i.e., rotation by 2rr, so that 
Y1=YXQ. Inanalogy t o y h  wealsohave YI,=YtxC1. The 
Y'  and YI, groups contain 120 and 240 elements, respec- 
tively. 

The characters and notation of the irreducible represen- 
tations of the Y h  group are presented in Table I . '~ , '*  The 
subscripts g and u in it denote, respectively, even and odd 
parity of the states with respect to inversion. All the elements 
are numbered in the row of headings in the table, making it 
possible to cite rules to successively obtain all the elements 
of the group from a minimal number of these elements 
(Table 11). As shown by the a geometric treatment of the 
icosahedron, two rotations about different fifth-order axes 
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TABLE I. Characters of the irreducible representations of the Y h  group. 

Class 

IE 12ck4 1 2 ~ ; ~  2 o c y  ISC; I 1 2 1 x c : > ~  121xc ;~  2 0 1 ~ ~ ~ ~  151xc ;  
Irreducible 
representation 1 2-13 14-25 26-45 46-60 6 1 62-73 74-85 86-105 106-120 

Note. Here C: is an rn-fold rotation about an nth-order axis; the number in front of the notation of an element is the number of elen~ents in the class; 
Et=(12JS)/2.  

can be selected as the generating elements in the case of the 
Y group. To be specific, here we select elements Nos. 2 and 
5,  which correspond to rotations by 72' about the b j a  and 
d + c  axes, which pass through vertices of the icosahedron 
(Fig. I). In the case of the Y h  group, the inversion operation 
I =  No. 61 is added as a generating element, and any element 
after No. 61 is obtained from elements of the Y group by 
multiplication by I. Therefore, as a supplement to 
Table I1 we can symbolically write 60+ n = I X  n, where 
n= 1 ,  2 , .  . . ,59, 60. 

The characters and notation of the irreducible represen- 
tations of the Y'  group are presented in Table 111.l~~'~ In this 
case elements Nos. 2 and 5 and Q can be selected as the 
generating elements. As in Table 11, we can write a rule for 
successively obtaining the remaining elements of the group 
from them. For the sake of brevity, we shall not write out the 
corresponding table, noting only that the specific feature of 
the double group, i.e., the duality of the geometrically iden- 
tical elements, must be taken into account in it. The charac- 
ters of the YE, group are obtained from the characters of the 
Y' group by multiplying the latter by the characters ( 2  1 ) of 

the C ,  group, so that elements Nos. 2 and 5 ,  Q, and I act as 
the generating elements here. For the sake of brevity, we 
shall likewise not write out the character table of the YE, 
group. 

3. MATRIX REPRESENTATION OF THE ELEMENTS OF THE 
GROUP OF AN ICOSAHEDRON 

There are several ways to obtain the spin Hamiltonian 
describing an ESR spectrum.20 However, they all require 
knowledge of the transformation properties of the basis func- 
tions of the irreducible representations or operator functions 
(irreducible tensor operators, equivalent operators, etc.). 
Stated differently, they require knowledge of the matrix rep- 
resentation of the group elements. A brief description of the 
method that we developed to obtain these matrices as applied 
to icosahedral symmetry is given below. The method was 
used in this work to find the matrices of all the elements of 
all the irreducible representations of each group of an icosa- 
hedron, but it can also be employed for other purposes. 

a 
TABLE 11. Rule for successively obtaining all the elements of the Y group. 

1 2 3 4 

14=2X2 10=7X9 35=2X23 48=27X 35 
20=2X 14 18=6X6 30=2X24 49=31X35 

C 

33=2X25 50= 26X 29 8=2X20 24=6X 18 
1 7 ~ 5 x 5  12=6X24 26= 36X 36 51=27X29 
23=5X17 22= 1OX 10 37=27X 27 52=28X 30 
11=5X23 4=22X22 38=28X 28 53=31X32 
3=2X11 16=4X4 29=39X 39 54=32X 33 
7 = l l X 2  1 = 2 X 8  40= 30X 30 55=26X28 

15=3X3 27=2X3 41=31X31 56= 30X 35 
21=3X 15 28=2X4 42= 32X 32 57=26X31 
9=3X21  32=2X5 43= 33X 33 58=27X 32 

19=7X7 44=2X6 34= 44X 44 59=28X 33 
25=7X 19 31=2X7 45=35X35 60= 29X 34 
13=7X25 36=2X21 46= 27X 30 
6 = 2 X 9  39= 2 X 22 47= 26X 34 b 

Note. The multiplication should be carried out from top to bottom, begin- FIG. I. Icosahedron: 20 faces, 12 vertices, and 30 edges. The letters mark 
ning from the f rst column. the vertices through which the axes of the generating elements pass. 

768 JETP 83 (4). October 1996 Roitsin et a/. 768 



TABLE 111. Characters of the irreducible representations of the Y '  group. 

Class 

Irreducible ~ Q C ;  ~ Q C :  ~ Q C :  6 0 ~ :  1 0 ~ ~ :  IOQC: 1 5 ~ ~ :  
representation 1 1' 8'-13' 2'-7' 20'-25' 14'-19' 36'-45' 26'-35' 46'-60' 

A 1 1 1 1 1 1 I 1 1 

F 1 3 3 E +  E  + 8- E  - 0 0 - 1 
F2 3 3 E  - E  - E  + E +  0 0 - 1 
G 4 4 - 1 - 1 - 1 - 1 1 1 0 
ri 5 5 0 0 0 0 - 1 - 1 1 
E ;  2 - 2 E  + - E +  E  - E -  1 - 1 0 - 

E; 2 - 2 E  _ & - - E +  E + 1 - 1 0 - 
G' 4 - 4 1 - 1 - 1 1 - 1 1 0 
I' 6 - 6 - 1 1 1 - 1 0 0 0 

Note. The notation is the same as in Table I. The primes on the numbers label elements obtained from the unprimed elements by multiplying the latter by 
Q. 

Using Tables I and 111, we can obtain an expansion of 
the irreducible representations of the rotation group D in the 
irreducible representations of the group of the icosahedron 
(Table IV). It is seen from Table IV, in particular, that for the 
angular momentum values J = 0 ,  112, . . . ,2, 512 the rotation 
group D j  "is expanded" in only one irreducible representa- 
tion of the group of an icosahedron, i.e., the representation 
D j  and the irreducible representation of the group of the 
icosahedron corresponding to it coincide. Hence it follows 
that the matrices of the irreducible representations of the ro- 
tation group can be chosen as the matrices of such irreduc- 
ible representations. The matrix elements of the latter have 
the following form:21 

where 1 and s take values from - J to + J ;  a, p ,  and y  are 
the Euler angles, and k  takes values defined by the inequali- 
tiesk 2 0 , k  2 s-1,k G J -  1,andk~J+s.Itfollowsdirectly 
from a geometric analysis that for element No. 2 we have 
a= 72" and P= y= 0 and that for element No. 5 we have 
a= y= 18" and sinp=2cosp=2/fi. These data are suffi- 
cient for constructing the matrices of the generating elements 
on the basis of (1) for the irreducible representations A,  
F ,, H ,  E  , G' , and I f ,  as well as the reducible representa- 
tions D 3  and D l 2  that are used below. 

To obtain the matrices of element No. 2 for the irreduc- 
ible representations E; , F2,  and G we utilized the fact that 
the cyclic group C5 is a subgroup of a group of the icosahe- 
dron, and element No. 2 corresponds to an element of the 
C5 group. For this purpose we preliminarily established 
which irreducible representations of the C5 and C; groups 
are contained in the E; , F2,  G ,  D3= F 2 + G ,  D7,2=EI+I' 
representations of each group of the icosahedron. The matri- 
ces of element No. 2 for the D3 and D712 representations 
were next obtained using Eq. (1). A comparison of the diag- 
onal matrices thus obtained with the elements of the one- 
dimensional matrices of the C5 and C; groups made it pos- 
sible to establish which of them belong to the original 
irreducible representations E2,  F2 ,  and G .  As a result, diag- 
onal matrices of element No. 2 were obtained for the latter. 

TABLE IV. Expansion of the D, representation in irreducible mpresenta- and the elements of these matrices are the characters of the 
tions of the Y and Y'  groups of the icosahedron. irreducible representations of the C5 and C; groups. 

Integer J Half-integer J Two approaches were used to obtain the matrices of el- 
ement No. 5. The first is based on solving the system of 

irreducible Irreducible 
J representation J representation equations for the matrix elements. The required number of 

eauations was found from the reauirement that the matrices 
0 A I 12 E I be unitary and by equating the sum of the diagonal elements 
1 FI 312 G' 
2 H 512 I' to the values of the characters determined. This procedure 

3 F,, G 712 E ; ,  I' was used to find the matrices of the irreducible representa- 
4 G ,  H 912 GI, I' tions E2 and F2.  The second approach is based on a prelimi- 
5 FI, F 2 ,  H 1112 E ; ,  G', I' nary search for functions which realize the irreducible repre- 
6 A ,  F I ,  G ,  H sentation sought. The matrix of element No. 5 for-the 
Note. The second columns show which imducible representations am con- irreducible representation G was found by this method. since 
tained in the D, representation. D 3  = F2+ G ,  the known matrices of the D 3  and F2 represen- 
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tations were used to preliminarily find the functions of 
the irreducible representations F2 in the form of a linear 
combination of the functions $L(M = - 3, . . . , + 3) of the 
D3 representation by virtual expansion of the reducible rep- 
resentation (D3) in the irreducible representations (F2) (see 
Ref. 1):') 

The expression sought for the functions (PC of the irreducible 
representation G was obtained in the following general form: 

3 

The coefficients kMi were found from the condition that the 
functions (2) and (3) be orthonormalized and the condition 
that the functions (3) satisfy the transformation correspond- 
ing to element No. 2. As a result, we have 

The matrix sought for the irreducible representation G was 
obtained on the basis of (4) and the known matrix of element 
No. 5 of the D3 representation. The matrices of generating 
elements Nos. 2 and 5 of all the irreducible representations 
are listed in Appendix A . ~ )  Using these data and tables like 
Table 11, we obtained (using a specially developed computer 
program) the matrices of all the elements for the irreducible 
representations of the Y, Y h  , Y ', and YA groups.3) 

The matrices obtained by the methods described above 
are complex in the general case. However, in some cases it is 
convenient to use the real matrices that correspond, for ex- 
ample, to ordinary coordinate transformations (the irreduc- 
ible representation F,). Tensor transformation matrices, 
which describe a reducible representation in the general case, 
can be obtained inductively from the law of vector transfor- 
mation. Bearing in mind the specific application in the 
present work, we also obtained the matrices of the irreduc- 
ible representation F , which describe a coordinate transfor- 
mation. The corresponding generating elements are pre- 
sented in Appendix A (Sec. c). 

To apply the methods for obtaining the spin Hamiltonian 
we must also know the matrices of the time-reversal operator 
6 for all the irreducible representations. They can be ob- 
tained from the results presented above. In the case of the 
irreducible representations A, E , F G' , H, and I t ,  which 
follow directly from the representations of the rotation 
group, the basis functions are I);. According to Ref. 22, for 
these functions we have 

In the case of the irreducible representations E ; ,  F2, and 
G,  we can select linear combinations of the functions $& as 
the basis functions. For the irreducible representations F2 
and G they are given by Eqs. (2) and (4). For the irreducible 
representation E; virtual expansion of the reducible repre- 
sentation DTI2 in the irreducible representations E;  and I' 
(Ref. 1) gives 

The combined use of Eqs. (2), (4), (5 ) ,  and (6) enables us to 

find the transformation law of the functions (P?, (P?, and 

(P: under the action of the operator 6. 

4. MATRICES OF A PERTURBATION OPERATOR 

A perturbation-matrix technique was used in this work to 
obtain the spin Hamiltonian. The essence of the method can 
be briefly described as follows.20 Let an arbitrary matrix el- 
ement of the kth component of the operator t P  have the 
form 

where a, p, and y and i, j, and k characterize the irreducible 
representation and the basis components within each irreduc- 
ible representation, respectively, and d r  is a volume element. 
Performing the transformation corresponding to each ele- 
ment of the G group under the integral sign and summing 
over all the elements, we obtain 

where the GL are the matrix elements of the operators of the 
group that specify the transformation properties 

and N is the total number of elements in the group. Equation 
(7) is the starting expression, which relates the matrix ele- 
ments of the perturbation operator sought to one another and 
specifies the matrix elements that are equal to zero. The total 
number of equations like (7) is equal to S,X S,X SP (where 
Ss is the dimensionality of the irreducible representations 
4, i.e., the total number of matrix elements. However, not 
all of them are independent. Some of the independent equa- 
tions make it possible to express a few matrix elements in 
terms of others and, thus, to reduce the number of matrix 
elements that are subject to calculation or are used as param- 
eters. The maximum number of independent parameters is 
equal to the number which indicates how many times the 
irreducible representation y* is contained in the direct prod- 
uct a* X p. The results of the corresponding calculation for a 
group of an icosahedron are presented in Table V. The num- 
bers in it indicate how many times the irreducible represen- 
tation in the heading of the respective column is contained in 
the direct product of irreducible representations in the head- 
ing of the respective row. The square brackets denote sym- 
metric products, and the curly brackets denote antisymmetric 
products. The table does not include trivial situations like 
AX F ,  = F and the division into even and odd states has 
also been eliminated, since it is easily obtained from the 
table, if a "parity conservation law," for example, 
Fig X F2,,= Gu+ H,,  , is taken into account. 

Equation (7) should be supplemented by the relation22 
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TABLE V. Expansion of direct products of irreducible representations of 

[ F l X F , I  
{ F l X F , }  
F l X F ,  
F I X G  
F , X H  

[F,XF,I 
{ F ,  XF,)  
F 2 X G  
F 2 X H  

[ G x G l  
{ G  X  G I  
G X H  
[ I I X H ]  

{ H  X  HI 

the Y '  group. 

[ E ; x E ; I  
{ E I X E I I  
E ; x E ;  
E ; X G 1  
E ; X I f  

[ E ; x E S I  
{ E ; X E ; }  
E ~ x G '  
E ; X I f  

[G' X G ' ]  
{ G f  X G ' )  

G ' X I '  
[I '  x I t ]  
{ I ' X I ' )  

Product A F ,  F ,  G  H  

which follows from the symmetry with respect to the time- 
A 

reversal operator 8. It can lead to an additional decrease in 
the number of parameters. Finally, when the resultant square 
matrix intended for determining the energy spectrum of the 
system is formed from individual blocks of matrix elements, 
the condition that it be Hermitian should be imposed. 

The principal initial perturbation operator defining an 
A 

ESR spectrum is the Zeeman energy operator V H =  - fiH, 
where fi and H are, respectively, the magnetic moment op- 
erator and the magnetic field strength. The operator fi, which 
is insensitive to the inversion operation, transforms as a basis 
of the irreducible representation F1. Taking this into account, 
we calculated the matrices M ( u ,  X a2) of the operator qH 
between all the pairs of irreducible representations a ,  and 
a2 that give nonzero matrix elements according to Table V 
on the basis of Eqs. (7) and (8) and the matrix elements 
GL that we obtained (see Sec. 3). The matrices used in this 
work to construct the spin Hamiltonian are presented in Ap- 
pendix B. 

Product A F ,  F ,  G H 

5. SPIN HAMlLTONlAN 

Let us take into account the character of the splitting of 
the atomic terms with a given J in a field of icosahedral 
symmetry, and let us, accordingly, construct the matrices for 
each J from blocks of matrices of the perturbation operator. 
In each of the matrices of dimensionality 2J+ 1 obtained we 
move over to another basis representation: from symmetrized 
functions to functions of the angular momentum [using for- 
mulas which are the inverses of Eqs. (2),  (4), and (6)]. We 
express the matrices obtained in terms of standard functions, 
i.e,, the operators Gf;, ( m  = - L ,  . . . ,+ L )  (Ref. 20), which 
are linear combinations of products of the components J i  of .. 
the operator J and, like spherical harmonics, comprise a ba- 
sis of the irreducible representation DL of the rotation group. 
The number of cofactors is indicated by the value of L. The 
maximum value of L for a given J equals 25. As a result, we 
obtain the following expression for the spin Hamiltonian: 

\iv=\iv,+fiF,, f i  - a ( 1 )  \ i v ( Z ) + k ( 3 ) ,  H - W H  + ti H (9) 

.. A 

where W, and WH are, respectively, the interaction energy 
operators with the crystalline electric field and the external 
magnetic field: 

Since L is restricted by the value of J ( L  < 2J),  the number 
of terms appearing in (9) depends on J: for J < 2 only the 
term kt) is nonzero; for J =S 512 w:) and kg) are non- 
zero; for J S 3  w#) ,  ~ g ) ,  and W ,  are nonzero; and for J 
3 712, all the terms of the spin Hamiltonian (9) are main- 
tained. 

The physical meanings of the parameters appearing in 
(9) are as follows: d is proportional to the energy gap be- 
tween the levels e @  in a zero magnetic field; the g i  are linear 
combinations of the matrix elements (fiz)i.. Thus, we have 
d= ( ~ ~ - & ~ ) 1 7 5 f i  and ( ( e l ,  - e E ; ) / 3 ~ 6  respectively, for 

J=3 and 712; gl=2m9, m8,  2m6/3, m4/2, 2 (ml -  10mZ/7), 
(m5 + $m7)/7, and (516)(-m, + llm2/7+ ( 2 / 5 ) m m 3 ) ,  
respectively, for J =  112, 1, 312, 2, 512, 3, and 712; 
g2= $m2/5f i ,  ($miS-m7) /26m,  and f i (m l  -9mZl 
7 + 4m 315 m ) / 6 5  fi, respectively, for J = 512, 3, and 712; 
g3= f i ( r n l - 5 m 2 + 2 ~ m 3 ) 1 4 5 0 &  for J=7/2. The ex- 
plicit expressions presented for the parameters of the spin 
Hamiltonian make it possible to perform their numerical cal- 
culations in a definite approximation and a specific model of 
the center. 

6. ESR SPECTRUM 

We find the eigenvalues of the operator (9) in the ap- 
proximation of strong magnetic fields. We select the operator 
w::) as the operator of the zeroth approximation and the 
remaining terms as a perturbation. In first-order theory we 
obtain 

where 

+ 4 2  sin5 0 sin 5 q)116, 

n, and n, are numerical coefficients, which are equal to the 
diagonal matrix elements of the operators & and 4, respec- 
tively, i.e., 
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FIG. 2. Projection of an icosahedron onto the xy plane that passes through 
its center and is perpendicular to the z axis, which is directed toward the 
reader. The solid line and the letters not in brackets indicate the projection 
of the part of the figure located above the plane, and the dashed line and the 
letters in brackets indicate the projection of the part of the figure located 
below the plane. The 6-+a axis, which coincides with the z axis, is the 
fifth-order axis for element No. 2; the d-+c axis, which passes through 
vertices d and c ,  is the fifth-order axis for element No. 5. 

A = J ( J + ~ ) , B = A ~ - ~ A + ~ ~ , x = c o s ~ ,  6andcp are thepo- 
lar and azimuthal angles of the vector H, and the choice of 
the coordinate system is shown in Fig. 2. To simplify the 
analysis of the spectrum, the term from w;;) containing the 
highest power J i ( L = 7 )  was not included in Eq. (10); in 
decreasing order of magnitude, it is the next term after 
w;;) which also contains the magnetic field. 

On the basis of ( l o ) ,  for the resonant value of the mag- 
netic field H ,  of the M 4 M  - 1 transition we obtain 

- g 2 ~ ! O ) n f , ( ~ , ~ ) l f i 1 l g l ,  (1  1) 

where 

H ~ ) = h v l g 1  , n:(J ,M)= m [ n , ( J , M )  

- n,(J,M - 1 ) ] /30 ,  

n;,(J,M)= f i  [ n H ( J , M )  -n,(J,M- 1)] /30 .  

The explicit expressions for nr and n& have the form 

n & ( ~ , ~ ) = 7 [ 3 ~ ~ - 6 ~ ~ + ( 9 - 2 ~ ) ~ ~ - 2 ~ ( 3 - ~ )  

It is seen from ( 1  1) that in the absence of a perturbation 
(d= g2= 0) all the lines in the spectrum coincide and are 

FIG. 3. Angular dependence of the ESR spectrum of paramagnetic centers 
of icosahedral symmetry: a - cP(O,cpO), cpo= l S O  ( I ) ,  0' (Z), 54O (3); b - 
@(O, ,cp) ,  O0=66O ( I ) ,  114" (Z), 30" (3). 40" (4). 

found at HSO) regardless of the orientation of the field H. 
When d # 0 or g2  # 0 holds this line can split into 25  lines, 
each of which has an angular dependence @ ( 6, cp) . A char- 
acteristic feature of the latter is repetition of the spectrum 
every 72" as the magnetic field revolves about the z axis (at 
an arbitrary value of 6 which does not cause the multiplier 
cos 0 sin56 to vanish). As the angle 6 varies (at an arbitrary 
value of cp), the spectrum repeats every 180'. Figure 3 pre- 
sents the expected angular dependence with respect to cp and 
8 for several fixed values of one of the angles that are char- 
acteristic of Y symmetry. 

As a specific example, let us consider the most common 
case of impurity ions with J =  712. This case corresponds, for 
example, to the frequently encountered paramagnetic centers 
based on E U ~ +  and ~ d ~ +  ions.4) Table VI presents the values 
of n l ( J , M )  for it. The ESR spectrum calculated on the basis 
of (1 1) for d # 0 and g2  = 0 is presented in Fig. 4a. It is seen 

TABLE VI. Values of the coefficients n f ( J , M )  for J=7/2 and squares of 
the matrix elements of the M - M  - 1 transition. 
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FIG. 4. ESR spectrum of a center with J=7/2 specified by the terms in the 
spin Hamiltonian with the constants d and g, .  The relative intensities were 
plotted with consideration of each transition (indicated below) and the 
square of its matrix element: a - d # 0 ,  g2=O; 1 - 512-312 and 
- 112- - 312; 2 - - 512- - 712; 3 - 112- - 112; 4 - 712-512; 5 - 
312- 112 and -312~-512;  b - d=O, g2 # 0 ;  1 - 512-312 and 
-312~-512; 2 - 3/2++1/2 and - 112~-312;  3 - 712tt512, 
112- - 112. and - 512- - 712. 

that the operator W, causes incomplete splitting of the origi- 
nal line ((I= 0, g 2  = 0) into five lines. When d= 0 and g2 
# O  hold (Fig. 4b), the lines with H,=HIO) split into three 
lines. Thus, different interaction mechanisms produce differ- 
ent ESR spectra, making it possible to identify the different 
terms of the spin Hamiltonian and to determine their param- 
eters from the spectrum. 

7. DISCUSSION OF RESULTS; CONCLUSIONS 

1. Let us consider the results of this paper from a some- 
what different standpoint, omitting the formalism of the per- 
turbation matrix method. The spin Hamiltonian for a definite 
value of J can also be obtained, if we preliminarily find 
(2J  + 1 )2 linearly independent operators which transform ac- 
cording to the irreducible representation D L  of the rotation 
group, the values of L being specified by the expressions 

25 2 J 

D T x D J =  DL and 2 ( 2 ~ +  1 ) = ( 2 ~ +  I ) ~ .  (12) 
L=O L = O  

Each group of operators with a given L includes 2L + 1 op- 
erators consisting of products of the L operators Ji. Then the 
virtual expansion of D L  in the irreducible representations of 
the point group should be performed. The sets of operators 
needed to derive an expression which is invariant toward 
all the transformations of the point group are obtained as a 
result. 

The crystal-field operator should be invariant under any 
group of the icosahedron (the irreducible representation A) .  
Its existence requires that the D L  representation contain the 
irreducible representation A at least once. According to 
Table IV, the unit representation is contained in the Do  and 
D 6  representations. The former case is trivial and corre- 
sponds to the isotropic operator j2 ,  which causes identical 
displacement of all the levels. The latter case can arise only 
for J 3 3 ,  since, according to (12), L,,,=U. This means that 

the first nonvanishing crystal-field operators are terms con- 
taining products of the operators ji in the sixth power. This 
result correlates with the data in Table IV, from which it also 
follows that the splitting of the terms in a field of icosahedral 
symmetry begins only from J = 3. 

Similarly, the nonzero terms of the Zeeman energy 
operator will contain the first and fifth powers of the opera- 
tors ji , since the irreducible representation F , ,  according to 
which the operator J transforms, is contained, according to 
Table IV, only in the D l  and D 5  representations. The former 
case is possible for J 3 112, and the latter case is possible for 
J 2 512. This result correlates with the data in Table V, ac- 
cording to which the irreducible representation F ,  is con- 
tained once in all the direct products, except I' X I ' ,  indicat- 
ing that the Zeeman energy operator is represented by only 
one term of the form j~ when J G 2. According to Table V, 
when J=5/2 ,  the irreducible representation F 1  is contained 
twice in Z ' X Z ' ,  pointing out the presence of an additional 
anisotropic term - Hi$ . 

2. Let us compare the results obtained in this work with 
the known data for paramagnetic centers of other symme- 
tries. The highest previously considered symmetry is 
In this sense it is closer to icosahedral symmetry and is there- 
fore of primary interest. In the case of icosahedral symmetry, 
the crystal-field splitting of the terms begins at higher values 
of J ,  i.e., at J =  3 and 712, and if we take into account that 
~ d ~ +  and E U ~ +  ions in the S state are the most common and 
easily observed ions, it begins in effect at J = 712. This means 
that up to these values of J a crystal field of icosahedral 
symmetry does not directly manifest itself in the zero-field 
resonance or in the angular dependence of the ESR lines and 
the spectrum is isotropic. In the case of cubic symmetry the 
crystal-field splitting of the atomic terms begins at J= 2 and 
512. Thus, in the case of icosahedral symmetry the first non- 

* 
vanishing crystal-field operators are terms containing Ji 
raised to the sixth power (in the general case six cofactors of 

* 
the different projections Jk), while in cubic symmetry these 
terms begin at the fourth power. In the case of icosahedral 
symmetry the first nonvanishing anisotropic Zeeman energy 
operator begins at the fifth power ( J  3 5/2), and in the case of 
cubic symmetry it begins at the third power (Js312).  Stated 
differently, probes of higher spin are needed for a direct or 
indirect manifestation of the crystal field in the case of icosa- 
hedral symmetry than in the case of cubic symmetry. 

However, in the microscopic theory the parameters of 
the spin Hamiltonian associated with higher powers of the 
* 
Ji correspond to higher orders of perturbation theory and are, 
therefore, usually smaller in magnitude than the parameters 

A 

associated with lower powers of the Ji . Thus, they are mani- 
fested less strongly in the ESR spectra. Nevertheless, these 
parameters have been measured fairly reliably in the case of 
other symmetries, such as, for example, cubic symmetry,23 
even against a background of nonzero terms with lower pow- 
ers of the ji ( - j?  and j:). As we have already mentioned, in 
the case of icosahedral symmetry, the latter terms are absent. 
This facilitates measurement of the parameters for the higher 
powers (--$ and i f )  in a pure form and is thus a favorable 
factor for icosahedral symmetry. 
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The differences in the spin Hamiltonians cause differ- 
ences in the ESR spectra. For example, in contrast to the case 
of icosahedral symmetry, complete splitting of the lines in 
the spectrum appears in the case of cubic symmetry. The 
angular dependence of the spectral lines also has a different 
character. In the case of cubic symmetry it has the form 

which differs significantly from the expression following Eq. 
(10). 

Other symmetries lower than cubic can be examined in a 
similar manner, and significant differences between their 
ESR spectra and the spectra for icosahedral symmetry can be 
demonstrated. Thus, qualitatively new features not previ- 
ously observed in ESR spectra appear in the case of icosa- 
hedral symmetry. 

3. Although the two principal terms of the spin Hamil- 
tonian (w;  and d H )  that determine the ESR spectra were 
considered in detail in this work, the results obtained can be 
automatically extended to the hyperfine, quadrupole, and 
nuclear Zeeman interactions, since the transformation prop- 
erties of the electronic ( j )  and nuclear (i) angular momenta, 
as well as of the vector fi, are identical. This requires per- 

,. ,. 
forming only the appropriate replacements, viz., J-I, 
,. ,. ,. ,. 
JHH, and IHH, in the corresponding expressions. For ex- 
ample, the hyperfine interaction operator, which is linear 
with respect to 5, is obtained from W, by the simple replace- ,. 
ment H+I, and the quadrupole interaction operator for I 

3 is obtained from W ,  by replacing 4 j by 5. Therefore, 
the results obtained in this work are transferrable to the de- 
scription of both nuclear magnetic resonance spectra and 
nuclear quadrupole resonance spectra, if the nucleus is sur- 
rounded by a crystal field of icosahedral symmetry. 

4. Although there are already a fairly large number of 
reports on the introduction of atoms of other elements into 
fullerenes, the data from radio-frequency spectroscopic ex- 
periments on such substances are still Impurities 
of La and Sc in the fullerene Cs2, which has C2 local syni- 
metry in each center, have been investigated for the most 

part. According to the authors of the papers cited, the impu- 
rity atoms have a threefold positive charge with a total elec- 
tronic angular momentum J =  112. A hyperfine structure of 
eight lines is clearly observed as a result of their interaction 
with 1 3 9 ~ a  and 4 5 ~ ~  nuclei (the spin of each of these nuclei 
equals 712). It has been shownz6 by other methods indepen- 
dently of these experiments that Gd and Eu atoms exist in the 
fullerene Cm in the ~d~~ and E U ~ +  states, respectively, 
which are distinguished by a high total angular momentum 
( J =  712). These data point to the possibility of creating con- 
ditions for observing ESR on high-spin ions in fullerenes, 
particularly in Cm . 

5. When experiments are performed, two cases should be 
distinguished. The first is the case of random orientation of 
the paramagnetic centers, in which fullerenes or other mol- 
ecules containing impurity ions are in a gaseous phase, a 
solution, or a powder. In this case the axes of the molecules 
are distributed randomly in space with respect to the field H, 
and the corresponding averaging of Eq. (1 1) with respect to 
the angles 8 and cp must be performed preliminarily to de- 
scribe the ESR spectrum. The second case corresponds to 
identical orientations of all the paramagnetic centers in 
space. It is possible in supercooled liquids or crystals like 
fullerites. In this case the angular dependence of the ESR 
spectrum considered above is displayed directly. However, 
being in crystals, the impurity atoms experience not only the 
influence of the field of icosahedral symmetry of the nearby 
atoms of, for example, the fullerene, but also, possibly, the 
weak field of more distant atoms. The latter field can be of a 
lower symmetry, for example, cubic symmetry.13 It can in- 
troduce corrections to the basic ESR spectrum defined by Eq. 
(1 1) in the form of weak splitting or displacement of the 
lines in the spectrum. In this case, to describe the ESR spec- 
trum additional terms of appropriate symmetry must be in- 
troduced into the spin Hamiltonian and treated as a perturba- 
tion to the spin Hamiltonian of icosahedral symmetry. 

This work was performed with support from the Ukrai- 
nian State Committee for Science and Technology. 

APPENDIX A. MATRICES OF THE GENERATING ELEMENTS OF THE GROUP OF THE  ICOSAHEDRON^) 

a) Generating element No. 2 

Its nonzero elements are located on the principal diagonal. They are listed below in order from left to right (top to bottom): 

the irreducible representation A : 1, 

the irreducible representation F ,  : c; , 1, c7, 

the irreducible representation F2 : - c6, 1, - C: , 

the irreducible representation G: - C: , C; , c7, - c6, 

the irreducible representation H: - c6, C; , I, c7, - C: , 

the irreducible representation E ;  : C: , c6,  

the irreducible representation E i  : - c; , - c7, 

* the irreducible representation G': - c7, C: , c6, - c7 , 
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the irreducible representation I t :  - 1 ,  - c 7 ,  C: , c 6 ,  - C; , - 1. 

b) Generating element No. 5 

the reducible representation A : ( 1 ) , 

the reducible representation F : 

(complex) : 

+ 
the reducible - c ; ~  -cZ0 -a4  

representation F 2  ( - c; 
a 2  c20 ) , 
C20 -C28 

-c17 -cT C: 

the reducible -cT -cT6 -a2 
representation G: 

C; -a2 

~ 7 0  C24 -c& -C25 a 3  

the reducible C24 -CTI  C ~ 3  -a: c?5 

representation H: 

the reducible 
the reducible -cg  b: 

representation E : (:! ) representation E : ( - c;)  

cT2 c4 -cg* -61 
the reducible 

cT3 b: 
representation G1 : 

l 3  :I ) , 
-b;  -c5 c c12 

c) Generating element of the irreducible representation F I (real): 

I C26 - c T S  C19 -cT8 -b: C13 
the reducible 

-c: C 1 9  -cT4 62  cT9 
representation I' : 

- -cT8 by -el4 -cY9 -cg 

- a 6  a 9  -a7  a ,  

No. 2 ( ;  ; !), No. 5 ( ; ;  ;; ; i s ) ,  

' 

where 
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a l =  115, a6= ~ + / 2 ~ ,  b ;  = iNz /5 ,  

a2= l lp ,  a,= R+/2qp,  b: = i R ' l ~ q ,  

a , ' = ( 3 + ~ ) / 1 0 ,  a 8 = ( p -  1) /4 ,  b ? = i ~ ' / p ~ ,  
a' - 

4 - ( P %  1)12p, a9=(3p+ l ) / 4 p ,  b~=iLJ ' /5pq,  

a5=R+lqp ,  

i=-, p = J 3 ,  t=J?;, q=@, R'==, 

N' = \I-, U' = J-, 
and * denotes complex conjugation. 

APPENDIX: B. MATRIXES OF THE PERTURBATION OPERATOR kH 
D I H z  D3T* 0  

D3T D2Hz D4T* 0  0  D6T 

O -"" I 

3T*/2p 0  0  Tlq - H z  -T*/2p 

-Tl2p H z  T*lq 0  0  -3Tl2p 

Tlt -Hz /3  2T*/3 
M ( G ' X C 1 ) = m 6  

0  2Tl3 Hz/3 
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where 

D l = - 5 m 1 + 7 m 2 ,  D 2 = - 3 m , + 5 m 2 ,  

and Jrl is the Ith basis function of the respective irreducible 
representation. The common factor nzi before the entire ma- 
trix means that all of its matrix elements must be multiplied 
by m i .  

 ere and in the following the first (second) subscript corresponds to the 
upper (lower) sign. 

')The matrices of the elements I and Q for all the irreducible representations 
differ from the matrix of the unit element only with respect to the common 
sign. 

3 )~hese  results are fairly lengthy, therefore, we shall not present them in this 
Paper. 

4)The treatment also applies qualitatively to such frequently encountered 
ions with J =  512 as ~ n ' +  and ~ e ~ + ,  since it is sufficient to set d= 0 for 
them in (I 1). 

')The following notation is introduced for convenience: a denotes only real 
matrix elements, b denotes only imaginary elements, and c denotes com- 
plex matrix element. 
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