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A theory of nonlocal electronic heat transport in plasma with ion-acoustic turbulence has been 
developed. Two different thermal conductivities characterizing plasma response to inverse 
bremsstrahlung absorption of high-frequency radiation and to quasistatic low-frequency electric 
field have been determined. Since the electron free paths in turbulent and laminar plasmas 
are described by similar functions of the velocity, the effective thermal conductivities are also 
described by similar functions of the wave vector magnitude. But owing to anisotropy of 
electron scattering by acoustic fluctuations of ion charge density in turbulent plasma, the effective 
thermal conductivity is essentially anisotropic. The nonlocal nature of the heat transport in 
turbulent plasma appears when the scale of the electron temperature perturbation is considerably 
smaller than in laminar plasma. At the same time, the decrease in the heat flux is notably 
larger because of an essentially higher effective collision frequency. O 1996 Anlerican Institute 
of Physics. [S1063-7761(96)00812-81 

1. INTRODUCTION 

In recent years some progress has been made in under- 
standing the nature of inhibition of electron thermal conduc- 
tivity of plasma. This has been ascribed as a 
result of computer simulations of collisional heat transport in 
fully ionized plasma4-9 to peculiarities of transport in weakly 
collisional plasma, where the electron free path is longer 
than the typical length scale of perturbations of the electron 
density distribution. The progress in analytical techniques 
applied to the kinetic theory of weakly collisional 
plasmas'O~" has allowed us to interpretI2 the results of com- 
puter  simulation^.^-^ It turned out that energy transport in 
weakly collisional plasma is due to thermal collisionless 
electrons, and an increase in the electron energy in the case 
of either inverse bremsstrahlung absorption of high- 
frequency waves or due to low-frequency electric field may 
be caused by subthermal colliding electrons. Plasma elec- 
trons can be classified as collisionless and highly collisional 
because the electron mean free path is a function of its ve- 
locity v ,  namely, the mean free path is proportional to its 
fourth power. As a result of this peculiar property of weakly 
collisional plasma, where heat is conducted by one (major- 
ity) group of thermal electrons and energy supplied from 
outside is absorbed by another group, firstly, electron heat 
transport is essentially nonlocal, and secondly, it has become 
clear now that nonlocal electron thermal conductivity cannot 
be described by a single parameter. The latter conclusion was 
supported by a computer simulation.13 Hence, the effective 
nonlocal thermal conductivity in plasma heated by inverse 
bremsstrahlung absorption of radiation calculated 
analyticallylo is notably different from the similar parameter 
in the case of plasma driven by a quasistatic electric 
field 14,15 

All these results of the theory of nonlocal electron heat 
transport explaining the cause of the inhibition of electron 
heat transport in laser produced plasmas have been derived 
in recent years from the kinetics of laniinar plasmas. On the 

other hand, weakly collisional plasma is often easily trans- 
formed to a turbulent state,I6 where intense oscillations of 
plasma fields substaintially modify scattering of charged par- 
ticles, so the equations which describe heat transport are no- 
tably different from those in laminar plasma. Note that ini- 
tially the inhibition of the heat transport in laser produced 
plasmas was ascribed to the generation of ion-acoustic 
instability.17 However, at that time, firstly, the quantitative 
theory of ion-acoustic turbulence had not been developed, 
and secondly, there was no theory of anomalous transport in 
weakly collisional plasma. The progress than has been made 
in these fields at present has allowed us to formulate in this 
paper principles of the theory of the nonlocal-field effect on 
weakly collisional plasma with developed ion-acoustic tur- 
bulence. As a result, we can identify, in particular, an anoma- 
lous decrease in the electronic thermal conductivity of 
plasma when, beside electron scattering by charged particles, 
scattering by low-frequency ion-acoustic fluctuations of the 
charge density is also important. 

In the next section we formulate the basic kinetic equa- 
tion (2.3) of our theory describing both plasma turbulence 
and plasma perturbations which, according to Eq. (2.12), are 
responsible for heating by both high-frequency radiation and 
low-frequency (quasistatic) electric fields. Section 3 contains 
essential information about the spectrum of turbulent ion- 
acoustic fluctuations. Section 4 gives a solution of the kinetic 
equation for the antisymmetrical component of the electron 
distribution function taking account of the scattering of slow 
electrons by turbulent oscillations. An equation for the sym- 
metrical component of the distribution function and its solu- 
tion are given. 

Section 5 contains a description of the perturbed density 
and temperature of cold (subthermal) electrons due to the 
nonlocal nature of their interaction with electric field. This 
section also gives an expression for the effective nonlocal 
thermal conductivity responsible, according to Ref. 13, for 
plasma heating by inverse bremsstrahlung absorption. Sec- 
tion 6 describes results derived from the theory of plasma 
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perturbed by an low-frequency electric potential, and the 
complex dielectric function and nonlocal effective thermal 
conductivity controlled by interaction between the electrons 
and field are given. Finally, conclusions and discussion of 
the results are given in Sec. 7. 

2. BASIC KINETIC EQUATION 

The subject of our study is fully ionized nonisothermal 
plasma with ion-acoustic turbulence in a high-frequency 
electromagnetic field defined by the formula 

where the amplitude E = E(r , t )  changes little during the pe- 
riod 2 7 ~ 1 0 ~ .  We assume that the frequency wo is much 
higher than the Langmuir electron frequency oLe and the 
effective collision frequencies between electrons and either 
ions or ion-acoustic fluctuations of the charge density. Under 
these conditions, the effect of the ion-acoustic turbulence on 
the high-frequency motion of electrons driven by high- 
frequency electric field is relatively so that it can 
be neglected in deriving the perturbed component of the 
electron distribution function linear in the high-frequency 
field intensity and oscillating at the frequency oO. In con- 
trast, contrary, the motion of subthermal electrons is largely 
controlled by the turbulence and in what follows is described 
by a quasilinear collision operator 

- k v )  w'N(k) ( k&) f. 
k2w2 

Here e and m are the electron charge and mass, N ( k )  is the 
population of the ion-acoustic waves with the wave vector - 
k and frequency w ,  = ku, I&-, us= wIAr, ,  and r ,  is 
the electronic Debye radius. The formula for the frequency 
w, depends on the plasma composition. In plasma with two 
species of ions w;= w t ,  + wt2  where w ~ ,  is the Langmuir 
frequency of the species identified by a, and if all ions are 
identical, wL is their Langmuir frequency. Finally, 
f =  f ( v , r , t )  is the electron distribution function which 
changes little over the period 277-loo. 

In the linear approximation with respect to the radiation 
intensity, the distribution function is governed by the kinetic 
equation 

1 d 1 
- -V..-St - --V.. St - - 

4 ' I  du; 
d f  (2.3) 

d 4 " ( i i u i ' d u l ) '  

where Eo= Eo(r , t )  is the quasistationary ambipolar electric 
field in the plasma, we have written 
v ,=eElmoo ,  and 

is the tensor of oscillating velocities. Beside the quasilinear 
collision operator StQL(f) defined by Eq. (2.2), the right- 
hand side of Eq. (2.3) contains the electron-ion operator 
St(f) and the electron-electron collision operator St( f ,f): 

The collision frequencies in Eqs. (2.5) and (2.6) are ex- 
pressed as 

where n is the electron density, Zeff is the effective ion 
charge, 

e ,  and n ,  are the charge and density of ions identified by the 
index a,  and the Coulomb logarithms 11 and A ,  are consid- 
ered to be flat functions of velocity. 

The kinetic equation (2.3), which is linear with respect 
to the radiation intensity, is sufficient for description of the 
low-frequency response due to electrons if the amplitude of 
electron velocity oscillations driven by high-frequency elec- 
tric field U E  is much smaller than the velocity of thermal 
electron motion U T .  Let us consider only solutions of Eq. 
(2.3) at a relatively low radiation intensity, when 
U ~ < V ~ Z , ~ ~  holds. Then we can neglect the perturbations of 
the local Maxwellian electron distribution function fm due to 
the inverse bremsstrahlung absorption of radiation, 

Let us assume that the length scale of the plasma density and 
temperature is much larger than the thermal electron mean 
free path but smaller than the length scale of the high- 
frequency field multiplied by the large factor v ~ . / u ~ .  This 
condition allows us to neglect the effect of the high- 
frequency field on the spectrum of ion-acoustic turbulence 
due to the gradient of the electron pressure and the quasis- 
tatic field Eo, which is itself proportional to the gradient of 
the electron distribution function. We assume that the fre- 
quency of electron-electron scattering is so high that the 
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deviation of the isotropic component of the electron distribu- 
tion function from the Maxwellian distribution can be ig- 
nored. 

Under these conditions, we express the solution of Eq. 
(2.3) as a sum of the local Maxwellian electron distribution 
function and two small nonequilibrium components: 

The perturbation Sfn is generated by the quasistationary 
electric field Eo and the nonunifomity of the local Maxwell- 
ian distribution function. If we neglect the small change in 
the electron energy caused by the Cherenkov interaction with 
ion-acoustic waves and the weak Coulomb scattering of elec- 
trons at times much longer than the reciprocal frequency of 
electron scattering by turbulence, the function 6fn is deter- 
mined by the equation 

7l1is is the basic equation for our description of the basic 
turbulent plasma state, which is not affected by high- 
frequency radiation. The perturbation Sf, on the contrary, is 
fully dependent on the weak high-frequency electric field. 
Under the conditions defined above, it is governed by the 
linear equation 

where Sp is the perturbation of the quasistationary field po- 
tential (SEo= -Tap). Equation (2.12) allows us to study 
the kinetics of electrons in plasma with ion-acoustic turbu- 
lence driven by a high-frequency field. Before proceeding to 
this investigation, let us recall the basic properties of the 
spectrum of ion-acoustic turbulence and quasilinear collision 
operator. 

3. SPECTRUM OF TURBULENT FLUCTUATIONS 

According to the principles of the quasilinear theory, Eq. 
(2.11) yields the derivative of the function 6f,, without the 
specific spectrum of ion-acoustic turbulence. Then the 
growth rate of the ion-acoustic instability due to the Cheren- 
kov radiation of acoustic waves by drifting electrons is cal- 
culated. Thereafter, the distribution of ion acoustic waves 
over wave vectors is derived from the balance condition for 
waves generated by electrons with due account of both the 
Cherenkov absorption of these waves by superthermal reso- 
nant ions and induced scattering by thermal ions. This theory 
is describetl in detail el~ewhere.~' In this section we only 
recall the basic results of the self-consistent nonlinear theory 

of ion-acoustic turbulence. If the plasma contains only one 
species of ions, the distribution of acoustic waves has the 
form 

where Ok is the angle between k and R, R is the effective 
density of the force generating the instability, and 

The shape of the angular distribution of the wavevector de- 
pends on the effective force density. When 

and 

where S is the ratio between the Cherenkov sound damping 
rates due to ions and electrons, and rDi is the ion Debye 
radius, we have 

In Eq. (3.7.) we have put x = cosOk, and small dimensionless 
parameters a and E are functions of the force density R: 

In the case of a large force density, when the condition (3.5) 
is reversed, the function @(x) has the form 

where a l  =0.26, a 2 =  -0.19, a3=0.31, and n4=0.09. 
In a plasma with two species of ions characterized by 

different charge to mass ratios, the variety of distribution 
functions for acoustic waves is considerably wider because 
the dynamic separation of charged ions in the field of inter- 
acting ion-acoustic waves changes the probability of induced 
scattering.21922 This effect is not essential if 

where r,), is the Debye radius for ions labeled by the index 
a. In this case the ion-acoustic turbulence distribution with 
respect to the absolute value of the wave vector is still de- 
scribed by Eqs. (3.2) and (3.3). The shape of the angular 
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distribution in the wavevector space is little changed and can 
be described by Eqs. 3.5-3.1 1 with slightly different param- 
eters, namely 6 and R I  in Eq. (3.6) are substituted by 
6 ,  + ($2 and 

respectively, where 6 ,  characterizes the Cherenkov absorp- 
tion of waves due to ions labeled by the index a. 

The effect of dynamic charge separation, in contrast, 
considerably changes turbulent oscillations when the condi- 
tion (3.12) is reversed. In this case the distribution of turbu- 
lent noise with respect to the magnitude of the wave vector is 
described by an equation like Eq. (3.2) with the function 
F, (krD)  replaced by 

where A=0.55. The angular distribution of waves is also 
modified. In this case the condition for the smallness of the 
effective force density is defined by modified relations simi- 
lar to Eqs. (3.5) and (3.6): 

The angular distribution is described by expressions similar 
to Eqs. (3.7)-(3.10) with 6 replaced by al+ S2 and R 1  by 
2Ri2) .  If the condition (3.15) is reversed, the function 
@(x)  has the form 

(3.17) 

where b 1  =0.51, b2=0.08, b3= -0.33, and b4= -0.92. 
Given the above information about the spectrum of ion- 
acoustic turbulence, we can explicitly express the quasilinear 
collision operator in Eq. (2.12). After omitting small pertur- 
bations of the order of w, l kv  G 1 , we obtain in the spherical 
coordinate system where the polar axis is aligned with the 
effective force density R 

where s=cos6,, 6, and cp are the angles detining the velocity 
vector, 

FIG. 1. Electron collision frequency which governs electron flows along the 
anisotropy axis of the ion-acoustic turbulence as a function of angle. Curve 
1 corresponds to the limit of low force density R [Eq. ( 3 3 1 ,  when the 
distribution in the ion-acoustic turbulence is described by Eqs. (3.7) and 
(3.22), A ,  =0.02 [Eq. (3.10)]. Curve 2 corresponds to the limit of large R ,  
when the distribution in the turbulence is described by Eqs. (3.11) and 
(3.24). Curve 3, corresponding to Eqs. (3.17) and (3.26), is realized in the 
limit of large R in plasma with two ion species. 

The specific forms of the turbulent collision frequency v, and 
the function $(x )  describing the anisotropy of electron scat- 
tering depend on the plasma composition and the value of 
the effective force density. 

For a plasma containing one species of ions and the 
value of R limited by the condition (3.5), we have 

@ ( X I =  ( 1  + 6 ) @ ( x ) ,  (3.22) 

where @ ( x )  is defined by Eq. (3.7). In the opposite case, 
when the condition (3.5) is reversed, we have 

v,= JE J%/nmvs, (3.23) 

The dimensionless collision frequencies X and 2 corre- 
sponding to Eqs. (3.22) and (3.24), respectively, are plotted 
in Figs. 1 and 2. 

In a plasma with two species of ions with approximately 
equal charge-to-mass ratios [see Eq. (3.12)] v, and * ( x )  are 
determined by Eqs. (3.21-3.24) with 6 replaced by 61 + S2 
and R ,  by R:'). 

If the dynamic separation of ions is strong, i.e., the con- 
dition opposite Eq. (3.12) is satisfied, then Eqs. (3.21), 
(3.22), and (3.7) with 6 replaced by 61 + 62 and R I by Ri2' 
are valid at small R limited by the condition (3.15). In the 
case of a large effective force density, when the condition 
(3.15) is reversed, we obtain the following equations for v, 
and @ ( x )  [compare to Eqs. (3.23) and (3.24)]: 
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FIG. 2. Effective frequency of electron collisions which determines the 
electron flow perpendicular to the axis of anisotropy of ion-acoustic turbu- 
lence as a function of angle. Curves 1, 2, and 3 correspond to the same 
equations as the respective curves in Fig. 1. 

Figures 1 and 2 show curves of the functions X and for a 
plasma with two species of ions with very different charge- 
to-mass ratios. 

4. KINETICS OF SUBTHERMAL ELECTRONS 

Let us consider Eq. (2.12). Assume that the tensor of 
oscillating velocities V i j  and perturbations 640 of the electric 
potential and Sf of the distribution function are proportional 
to the following function of time and coordinates: 

exp(iq.r- i o t ) .  (4.1) 

The perturbed distribution function is expressed as a sum of 
components independent of the frequency o and collision 
frequencies, and an additional term 6fc  : 

eScp u i  1 d2f,,, 
8 f z S f c -  ~ f m - ~ f r n f  g V i j ~ .  mu,  4vT (4.2) 

Since the frequency of electron-electron collisions is small 
as compared to the frequency of scattering by turbulence, we 
will ignore the effect of electron-electron collisions on the 
anisotropic addition to the distribution function. Then using 
Eqs. (4.1) and (4.2), we derive from Eq. (2.12) 

Let us  consider corollaries of Eq. (4.3) in the case of rela- 
tively small perturbations, when 

We will concentrate our attention on the kinetics of slow 
electrons whose mean free path in turbulent plasma is 
smaller than the typical scale of the low-frequency perturba- 
tions: 

The function Sfc for slow electrons can be expressed as a 
sum of the dominant, isotropic component 

where d R  is a solid angle of the velocity vector, and a 
smaller, anisotropic term Sfa= Sfc- Sfo. In what follows we 
need only Sf - , the part of S f ,  which is odd with respect to 
the velocity vector. Taking into account the smallness of the 
electron-electron collision frequency vee(v )  as compared to 
the frequency v , (v )  of scattering by the turbulence in the 
case of low-frequency [Eq. (4.4)], long-wave [Eq. (4.5)] per- 
turbations and using the explicit expression for the quasi- 
linear collision operator given by Eq. (3. lg), we derive from 
Eq. (4.3) 

[4z5+41 m c o s ( c p -  cp , ) l iu~ fo /v , (v )  

where cp, is the azimuthal angle of the vector q, 
q2=q; +q: qz=q.n ,  n=RIR is the unit vector aligned with 
the vector of the effective force density. 

The equation for the function Sfo,  in its turn, is derived 
by averaging Eq. (4.3) over the angles in velocity space. 
Using Eqs. (4.4) and (4.5) and the smallness of the function 
Sfa in comparison with Sf,, we obtain the following equa- 
tion for Sf,: 

In order to analyze this equation, we have to calculate the 
function Sf -  using Eq. (4.7). A solution of the partial dif- 
ferential equation (4.7) is sought in the form of the sum of 
two independent functions: 
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We obtain an ordinary second-order differential equation 
system for the functions g and g2:  

For analysis of Eq. (4.8) only the integrals 

of the functions g l  and g2 are needed. Let us calculate the 
parameters pll and p, in the most interesting cases. First we 
calculate pll. Using the condition of regularity of the deriva- 
tive of g  ](t) at t= -t- 1, we have from Eq. (4.10) the follow- 
ing equation: 

After integrating the expression on the right of Eq. (4.12) by 
parts with due account of Eqs. (4.14) and (3.19), we obtain 

The numerical value of PII depends on the angular distribu- 
tion of the ion-acoustic turbulence in the space of wave vec- 
tors @(x) .  If the distribution is given by Eqs. (3.7) and 
(3.22), for a 4  1 and E G 1 we have PI,= 0.18. The values of 
PII for the distributions defined by Eqs. (3.11), (3.24) and 
Eqs. (3.17), (3.26) are fairly close: ~1')=0.25 and 
/3i2)=0.23. In calculating Dl we need a solution to Eq. 
(4.1 1) with the boundary conditions 

The numerical integration of Eq. (4.1 1) under the condition 
(4.16) with a view to calculating P, using Eq. (4.13) yields 
P, =0.02 if the turbulent noise distribution is defined by 
Eqs. (3.7) and (3.22) for a 4  1 and ~4 1 ; pi1)= 0.80 and 
Pi2)=0.85 hold for the distributions defined by Eqs. (3.11), 
(3.22) and Eqs. (3.17), (3.26), respectively. 

Let us use the solution in the form given by Eq. (4.9) and 
Eqs. (4.12), (4.13) to transform Eq. (4.8). After introducing 
the new function F ( x ) =  F(v2/2u;) and using the definition 

where the parameter N ,  is expressed as 

we derive from Eq. (4.8) the equation 

In this equation we have used the notation I=v i /4v$  and 
vei= v ( v T )  f i 3 6  and omitted the term i w 8 f o ,  which was 
present in Eq. (4.8). Since for our further analysis only elec- 
trons with velocities v  - u TN; '174 u T are essential, the term 
i o 8 f o  can be omitted if the following condition on the per- 
turbation frequency is satisfied: 

Equation (4.19) differs from the similar equation in the ki- 
netic theory of laminar plasma'0." in the parameter N ,  which 
is expressed in the laminar model as 

where le i=vT/v , i ,  and this parameter is replaced in our 
model by a smaller quantity 

Here I t =  u T /  ut is the mean free path of a thermal electron 
due to scattering by turbulence, 6, is the angle between the 
vectors q and R. 

Following the technique proposed in Refs. 10 and 11, a 
solution to Eq. (4.19) asymptotically exact at N,* l can be 
expressed as 

where r(z) is the gamma-function, KI l7 ( z )  and Il17(z) are 
modified Bessel functions, and 

In subsequent sections, the correction to the distribution 
function due to collisions given by Eqs. (4.17), (4.22)-(4.25) 
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is used in calculating perturbations of the electron density 
and temperature caused by either inverse bremsstrahlung ab- 
sorption or perturbation of the electric potential. Perturba- 
tions of the density and temperature are determined by rela- 
tively slow subthermal electrons with velocities 

The condition of small anisotropy of the perturbed distribu- 
tion function [see Eqs. (4.5) and (4.9)] takes the form 
q11+(1111,e)4, where I,,-Zefflei is the electron free path due 
to electron-electron collisions. At the same time, the distri- 
bution defined by Eqs. (4.22-4.25) occurs for N,+ I ,  when 

Since 1,,%1, holds in turbulent plasma, the condition of the 
weak anisotropy of subthermal electron distribution defined 
by Eq. (4.26) is satisfied automatically if Eq. (4.27) holds. 
Thus our model applies if the mean free path of thermal 
electrons is sufficiently long: 

lee+ a*17 (4.28) 

where L -  l lq is the typical length scale of perturbations. 
According to Eq. (4.28), we have 1 , , 9 L ,  whereas the mean 
free path due to electron scattering by turbulent oscillations 
of charge density can be either larger, 1,>L, or smaller, 
l , < L ,  than the typical density variation because L ,  is smaller 
than I , ,  if the condition (4.28) is satisfied. But even in the 
case l e e 9 1 , 9 L ,  i.e., when thermal electrons propagate with- 
out collisions, the subthermal electrons, which are essential 
in our model, have an effective mean free path smaller than 
the scale of the density variation owing to the relation 
l f ( ~ ) - ( v / u T ) 4 ~ l  between the mean free path and velocity 
typical of the Coulomb scattering: 

In connection with the above discussion, we should recall 
that, although the perturbations of the charge density and 
temperature are controlled by subthermal colliding electrons 
with a short mean free path given by Eq. (4.29), heat is 
conducted by thermal electrons with v - u and longer mean 
free path [Eq. (4.28)] (Ref. 12). 

5. NONLOCAL THERMAL CONDUCTIVITY RELATED TO 
INVERSE BREMSSTRAHLUNG ABSORPTION 

The perturbation of the distribution function due to col- 
lisions given by Eqs. (4.17) and (4.22) contains two indepen- 
dent terms caused by the inverse bremsstrahlung absorption 
and perturbation of the electric potential. In this section we 
consider the case when the perturbation of the distribution 
function is entirely due to inverse bremsstrahlung absorption. 
Let us calculate the electron density perturbation using the 
additional term of the distribution function determined by 
Eqs. (4.2) and (4.17). After retaining only the terms propor- 
tional to I in these equations, we obtain 

where Po is a numerical factor of order unity: 

Taking the term in 8fc proportional to I [Eq. (4.22)], one can 
calculate the perturbation of the electronic pressure due to 
absorption: 

Here S p , 4 r n v ~ S n ,  holds as long as N ; ~ ~ <  1. Since we 
have p = nkBT,  where kB is Boltzmann's constant, and 
S p , l p  is smaller than Sn, In ,  we can write the expression 

which determines the electron temperature perturbation due 
to electron-ion collisions. The Fourier components of the 
thermal flux and temperature perturbations are related by the 
equation 

where ~ ( q )  is the Fourier transform of the effective thermal 
conductivity. On the other hand, in steady state we derive 
from Eq. (4.8) the following relation: 

which indicates that the electron heating due to absorption in 
collisions is balanced by cooling due to electron heat trans- 
port. Using Eqs. (5.5-5.7), we calculate the effective thermal 
conductivity in the strongly nonlocal limit, when N , 9  1 
holds: 

where ~ , ~ = ( 1 2 8 / 3 ' r r ) n k ~ u ~ 1 , ~  is the electronic thermal con- 
ductivity of fully ionized plasma with highly ionized atoms, 
Zeff% 1. Unlike the effective nonlocal thermal conductivity 
of laminar plasma, Eq. (5.8) contains the additional small 
factor ( N , I N ) ' ~ -  ( l r / l , i ) u 7 G  1. This means that ion- 
acoustic turbulence leads to a further decrease in the nonlo- 
cal electron thermal conductivity. 

Compare the nonlocal thermal conductivity defined by 
Eq. (5.8) to the electron thermal conductivity of turbulent 
plasma in the local limit. Given a certain spectrum of ion- 
acoustic turbulence, when the collision operator has the form 
defined by Eq. (3.18), the Fourier component Q I 1 ( q )  of the 
thermal flux along the vector q is related to the Fourier com- 
ponent of a large-scale temperature perturbation by the local 
relation 

where the thermal conductivity ~ ~ ( 0 ~ )  is a function of the 
angle between the vector q and the anisotropy axis of the 
ion-acoustic turbulence n = RIR: 
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Note that directions of the thermal flux and gradient of the 
temperature perturbation may be different in plasma with 
ion-acoustic turbulence because the thermal conductivities in 
directions parallel and perpendicular to the turbulence anisot- 
ropy axis, K I I =  K , ( @ , =  0) and K ,  = K , ( @ ~ =  7r/2), are differ- 
ent owing to the electron scattering anisotropy. 

The expressions for ~ ( q )  [Eq. (5.8)] ,  ~ ~ ( 0 ~ )  [Eq. 
(5.10)], and K , ~  yield a unified interpolation formula for the 
effective thermal conductivity in the form 

217 21 1 , ) 5 / 7 ) - 1  X ( l e i / l t )  ( 9  ee el 9 (5.1 1 )  

where lee=(2Zef,497r)lei is the effective electron free path 
due to electron-electron collisions, and the factor A,(Oq) is a 
function of the angle 0 ,  defined by the formula 

- 

Equation (5.1 1 )  describes a transition to the case of laminar 
plasma, when the effective thermal conductivity is given by 
the 

~ ~ ( q ) =  ~ , h [ 1  + (21qJE,,1,,)1017]-1. (5.13) 

At the same time, in the turbulent state we have 1,<lei and 
electron-ion collisions may be ignored. In this case Eq. 
(5.11) takes the form 

According to Eq. (5.14), the effective thermal conductivity is 
reduced by the nonlocal effects in turbulent plasma for 
N I B  1 .  Since we have N , G N ,  the nonlocal effects in plasma 
with developed ion-acoustic turbulence become essential for 
thermal conductivity at temperature perturbations lower than 
in laminar plasma. 

6. SOUND DAMPING AND RELATED THERMAL 
CONDUCTIVITY 

In this section we consider the results of the theory re- 
lated to low-frequency perturbations of the distribution func- 
tion driven by the electric potential 69. Using the collision- 
less corrections to the Maxwellian distribution function [Eq. 
(4.2)] and those due to collisions [Eqs. (4.17), (4.22), and 
(4.24)], either being proportional to 6q, we find the corre- 
sponding perturbation of the electron density. In accordance 
with the definition in Eq. (5.1) and Eqs. (4.2) ,  (4.17), (4.22), 
(4.24), and (4.25), we obtain 

where P I l 2  is the numerical factor, 

Using the electron density perturbation, we express the 
electronic contribution to the longitudinal low-frequency di- 
electric function of turbulent plasma as 

On the right-hand side of Eq. (6.3)  we have added the term 
responsible for Landau collisionless damping. Equa- 

tion (6.3)  holds for w G q v T  and small perturbation wave- 
lengths: 

when the conditions N,% 1 or q21 ,e1 ,+~ , (0q )  are satisfied 
automatically. Using Eq. (6.3), we derive from the dispersion 
equation for longitudinal waves the sound damping rate 

The contribution to the damping rate due to collisions is 
larger than that of the Landau damping if the perturbation 
scale is sufficiently large: 

Since we have le ,P1, ,  the combination of conditions (6.4) 
and (6.6)  defines a fairly wide range of wavelengths in which 
the sound damping is controlled by collisions. As concerns 
Eq. (6.5) ,  which is applied to attenuation of ion-acoustic 
waves with relatively large wavelengths limited by Eq. (6.6) 
in plasma with ion-acoustic turbulence, let us recall that the 
turbulent collision frequency v, , which controls the effect, is 
due to electron scattering by ion-acoustic oscillations of 
charge density with wavelengths comparable to the electron 
Debye radius. Note also that in the short-wave range defined 
by Eq. (6.4) the effect of ion-ion collisions on sound damp- 
ing, including plasmas with two species of ions?3 is weak- 
ened if wavelengths of charge density perturbations are 
smaller than the effective ion free path. 

If multimoment hydrodynamics is applied?4-26 sound 
damping is determined by the Fourier component of elec- 
tronic thermal conductivity, ~ ( q ) ,  which characterizes the 
ratio between Fourier components of thermal flux and tem- 
perature (Eq. (5.6)) .  In this case the electronic contribution to 
the longitudinal dielectric function has the form'4 

By comparing Eqs. (6.3) and (6.7)  we derive the effective 
thermal conductivity. With a view to describing the transi- 
tion to the thermal conductivity of laminar plasma K , , ,  and of 
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turbulent plasma in the local limit, ~ ~ ( 8 , )  [Eq. (5.10)], we 
can write the following interpolation formula for the wave- 
length range defined by Eq. (6.6): 

517 21 1 ,)2/7)-1. 
X(leiJlt) ( 9  ee el (6.8) 

In plasma with developed ion-acoustic turbulence, when 
L e i s L ,  holds we derive from Eq. (6.8) 

According to Eqs. (6.8) and (6.9), the thermal conductivity 
of turbulent plasma in the strongly nonlocal limit 
q21e,1,S 1 is considerably lower than that of both laminar 
and turbulent plasmas in the local limit. Note also that, since 
we have lei91, ,  the inhibition of nonlocal thermal conduc- 
tivity in turbulent plasma is a factor of ( le i /1 , )5 '7~ 1 stronger 
than in laminar plasma, but this inhibition is important for 
the perturbation scales a factor of mS 1 lower than for 
laminar plasma. 

7. CONCLUSION 

The proposed model is based on several assumptions 
about its physical nature. We have assumed that electron 
scattering by low-frequency turbulent oscillations is inhib- 
ited when electrons are driven by an electromagnetic field at 
a frequency higher than the Langmuir frequency. This means 
that the effect of ion-acoustic oscillations on the inverse 
bremsstrahlung absorption due to Coulomb interaction be- 
tween electrons and ions can be neglected. On the other 
hand, if the electron distribution changes slowly, the inten- 
sity of electron scattering by turbulent oscillations is notably 
higher than by ions. Therefore, the electron mean free path 
1, with respect to scattering by turbulent oscillations is much 
less than the free path lei with respect to collisions with ions. 
It follows from our analysis that the electron mean free paths 
l,(u), lee(v), and lei(v) as functions of velocity are similar 
because electron scattering both by particles and by ion- 
acoustic turbulence is due to the Coulomb interaction. One 
manifestation of this similarity is that the scaling of Fourier 
components of the effective thermal conductivity27 given in 
this paper is similar to that in the theory of laminar weakly 
collisional plasma.10912~14~15 In contrast, the smallness of the 
mean free path 1, leads to a considerable decrease in the 
effective thermal conductivity of turbulent plasma as com- 

pared to the model of laminar plasma. The anomalous inhi- 
bition of the effective electron thermal conductivity demon- 
strated in this paper is essentially anisotropic, unlike the 
prediction by the model of weakly collisional laminar 
plasma, which is fully controlled by the anisotropy of the 
distribution of turbulent ion-acoustic oscillations. Using ana- 
lytical results of the ion-acoustic turbulence theory, we could 
not only detect the new phenomenon of inhibition of nonlo- 
cal electron thermal conductivity, but also calculate quanti- 
tative characteristics of this effect. 

The work is part of Project No. 94-02-0363 1 financed by 
the Russian Fund for Fundamental Research and was sup- 
ported by the INTAS-94-0870 grant. 

'J. K. Kephart, R. P. Godwin, and G. H. Mc Call, Appl. Phys. Lett. 25, 108 
(1974). 

'R. Benattar, C. Popovic, R. Sigel, and J. Virmort, Phys. Rev. Lett. 42,766 
(1979). 

'w. L. Kmer, Comm. Plasma Phys. and Contr. Fusion 5, 69 (1979). 
4 ~ .  F. Luciani, P. Mom, and J. Virmont, Phys. Rev. Lett. 51, 1664 (1983). 
'E. M. Epperlein, Phys. Rev. Lett. 65, 2145 (1990). 
6 ~ .  M. Epperlein and R. W. Short. Phys. Fluids B 4, 221 1 (1992). 
7 ~ .  M. Epperlein and R. W. Short, Phys. Fluids B 4, 4190 (1992). 
'R. W. Short and E. M. Epperlein, Phys. Rev. Lett. 68, 3307 (1992). 
9 ~ .  L. Berger, B. F. Lasinski, T. B. Kaiser et al., Phys. Fluids B 5, 2243 - 
(1993). 

''A. V. Maximov and V. P. Silin, Zh. Eksp, Teor. Fiz. 103,73 (1993) [JETP 
76, 39 (1993)l. 

"A. V. Maximov and V. P. Silin, Zh. Eksp, Teor. Fiz. 105, 1242 (1994) 
[JEW 78, 669 (!994)]. 

I2v. P. Silin, Zh. Eksp, Teor. Fiz. 106, 1398 (1994) [JETP 79,756 (1994)l. 
"E. M. Epperlein and R. W. Short, Phys. Plasmas 1, 3003 (1994). 
1 4 ~ .  V. Maximov and V. P. Silin, JETP Lett. 59, 534 (1994). 
"A. V. Maximov and V. P. Silin, Phys. Lett. A 192, 67 (1994). 
I6E. D. Volkov, V. A. Supmnenko, and A. A. Shishkin, Stellarator [in 

Russian], Naukova Dumka, Kiev (1983). 
I7R. I. Bickerton, Nucl. Fusion 13, 457 (1973). 
"v. P. Silin, Kratkie Soobshcheniya po Fizike FIAN, No. 5, 59 (1983). 
I9v. P. Silin and S. A. Uryupin, Zh. Eksp, Teor. Fiz. 98, 117 (1990) [Sov. 

Phys. JEW 71, 64 (1990)l. 
'OV. P. Silin, Spring College on Plasma Physics, Trieste (Italy) SMRIISO- 

23, p. 1-42 (1985). 
"V. P. Silin and S. A. Uryupin, Zh. Eksp, Teor. Fiz. 102, 78 (1992) [Sov. 

Phys. JETP 75, 41 (1992)l. 
2 2 ~ .  P. Silin and S. A. Uryupin, Fiz. Plazmy 19, 894 (1993) [Sov. J. Plasma 

Phys. 19,464 (1993)l. 
2 3 ~ .  M. Epperlein, R. W. Short, and A. Simon, Phys. Rev. E 49, 2480 

(1994). 
2 4 ~ .  W. Hammett and F. W. Perkins, Phys. Rev. Lett. 64, 3019 (1990). 
"G. W. Hammett, W. Dorland, and F. W. Perkins, Phys. Fluids B 4, 2052 

(1992). 
2 6 ~ .  V. Goldman, D. L. Newman, and F. W. Perkins, Phys. Rev. Lett. 70, 

4075 (1993). 
"v. P. Silin and S. A. Uryupin, JETP Lett. 63, 61 1 (1996). 

Translation was provided by the Russian Editorial office. 

1126 JETP 83 (6), December 1996 V. P. Silin and S. A. Uryupin 1126 




