
Three-parameter kinetics of a phase transition 
A. I. Olemskoi and A. V. Khomenko 

Sunly State University, 244007 Sumy, Ukraine 
(Submitted 17 April 1996) 
Zh. Eksp. Teor. Fiz. 110, 2144-2167 (December 1996) 

Using the Lorentz model we study the kinetics of first- and second-order phase transitions 
represented by an order parameter, a conjugate field, and a control parameter. We examine the 
various limiting cases in the ratios of the corresponding relaxation times. The phase 
portraits in various kinetic modes are studied both analytically and numerically. We show that 
oscillatory behavior result from a critical increase in the relaxation times of the order 
parameter and the conjugate field if the initial relaxation time of the control parameter is much 
longer that its value for other degrees of freedom. In the opposite case all phase trajectories 
rapidly converge p a universal section known as the "mainstream" (A. S. Zel'tser, T. K. 
Soboleva, and A. E. Filippov, JETP 81, 193 (1995)). O 1996 Anierican Institute of 
Physics. [S 1063-7761 (96)017 12-XI 

1. INTRODUCTION 

In recent years there has been an upsurge of interest in 
the kinetics of phase transitions (see the reviews in Refs. 1 
and 2 and the literature cited therein). The main reason why 
considerable progress has been made in describing the 
space-time evolution of systems undergoing a phase transi- 
tion lies in the scaling hypothesis, which was first used in the 
critical region.3 But while in this region the scale on which 
the coordinate varies is limited to the correlation length 
E+w, in describing the evolution of the new phase the role 
of the scale is taken by either the characteristic phase L of 
the antiphase domain (in describing the "Lifshitz foamw4) or 
the critical size R ,  of formation (in the coalescence picture5). 
Within the scale-invariance hypothesis the structure factor 
S ( r , t )  (in the case of coalescence, the probability distribu- 
tion P ( R , t )  over the formation sizes R )  is represented in a 
universal manner as a function of the coordinate r and pre- 
cipitation radius R measured on the respective scales. Scale 
invariance makes it possible to fix the time dependence of 
L ( t )  and R , ( t )  and establish the asymptotic behavior of the 
correlator S ( r l L ( t ) )  for r 4 L  and for r S L  (see Refs. 1 and 
2; in the Lifshitz-Slezov problem5 not only can the asymp- 
totic behavior of the distribution P ( R I R , ( t ) )  be established 
but even the analytical form of the distribution proper can be 
derived). It was found that the form of S ( r I L )  and 
P ( R I R , )  is insensitive to the choice of microscopic param- 
eters (such as the interatomic interaction potential) and is 
determined entirely by the condition that the order parameter 
must be constant and by the dimensionalities cl and n of the 
physical and order-parameter spaces (the Ising and Heisen- 
berg models have n = 1 and n = w ,  respectively). For ex- 
ample, the short-wave ( k L S  1 )  asymptotic behavior of the 
spatial Fourier transform of the correlator S ( r , t )  in the case 
of a conserved order parameter has the form of a generalized 
Porod law S ( k , t )  cx ~ - " k - ( " + " )  characterizing the presence 
of sharp phase boundaries.' In the limit the dornain 
size is determinecl by the relationship L"+"-' cx t ,  where 
c = 2 holds for a conserved order parameter and c = 0 for a 
nonconserved one, and the critical radius R: of a coagulating 
system is proportional to t (Refs. 1 and 2). 

The above shows that the universality of the phenom- 
enological pattern of a phase transition is inherent not only in 
the thermodynamic behavior but also in the kinetic (dynami- 
cal, to be more precise) behavior. Recently Zel'tser et 
discovered one more manifestation of the universality of the 
kinetic pattern of a phase transition. The researchers started 
from the fact that in the course of a phase transition the order 
parameter ~ ( t )  may change in a nonautonomous manner. 
For instance, if striction effects are important, the ordering of 
the medium is accompanied by the emergence of a strain 
field conjugate to the order parameter.k) Usually it is as- 
sumed that both fields are able to follow the variations of the 
order parameter. For this to be the case the relaxation time 
T,, of the conjugate field h ( t )  must be much shorter than the 
corresponding quantity 7, for the order parameter 
( ~ ~ 4 7 ~ ) .  Then we can easily show that the striction effect is 
reduced to the appearance of a long-range field that renor- 
malizes the thermodynamic potential. Under certain condi- 
tions the effect of this renormalization is such that the phase 
transition slows down (or even stops).6 This fact can be in- 
terpreted as a manifestation of the Le Chatelier principle, 
which reflects the presence of negative feedback between the 
order parameter and the conjugate field. 

The universality of the kinetic pattern of a phase transi- 
tion discovered by Zel'tser e t  becomes evident if we 
assume that the system's behavior is determined not only by 
the orcler parameter but also by another thermodynamic de- 
gree of freedom, T, whose characteristic relaxation time T ,  is 
commensurate with the corresponding quantity T ,  for the 
order parameter. In this connection the researchers examined 
another mechanism of the Le Chatelier principle, i.e., caused 
by the heating of the region adjoining the precipitation of the 
phase formed as a result of rapid cooling of the system below 
the first-order phase transition point. Here the local value of 
the temperature in the region of the precipitation phase acts 
as the control parameter T .  Reasoning heuristically, Zel'tser 
et obtained a system of nonlinear differential equations 
for determining the functions ~ ( t )  and T ( t ) .  A study of the 
phase portrait v ( T )  and the shape of the functions ~ ( r )  and 
T ( t )  shows that there are two areas in which the behavior of 
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the phase trajectories differs. In the first area both 7 and T  
evolve fairly rapidly with the passage of time, and the area 
has little effect on the kinetic behavior of the system. The 
behavior is fixed by the slow variation of ~ ( t )  and T ( t )  in 
the second area, whose position is determined by the prox- 
imity to the separatrix and which in Ref. 6 was aptly named 
the "mainstream." Thus, in the phase-portrait representation 
the universality of the kinetics of a phase transition manifests 
itself as a certain separatrix region (a line in the limit) whose 
position is independent of the microscopic details of the sys- 
tem's behavior. 

Note that the argument of Ref. 6 is based specifically on 
model ideas, although we believe the conclusions to be of a 
more general nature. In this connection it is important to 
formulate the given problem in a setting not restricted by 
model considerations. The present paper attempts to do this. 

The starting point of our approach is the synergetic con- 
cept of a phase transition. Within this concept a phase tran- 
sition is realized as a result of the mutually coordinated be- 
havior of three degrees of freedom: the order parameter 
~ ( t ) ,  the conjugate field h ( t ) ,  and the control parameter 
T ( t )  (see Ref. 7 ) .  As noted earlier, the variables in the first 
pair are linked by negative feedback. The basic assumption 
of the synergetic approach is that the positive feedback be- 
tween the second pair, ~ ( t )  and T ( t ) ,  can lead to self- 
organization of the system, which is the reason for the phase 
transition. 

Mathematically, the simplest way to describe self- 
organizing systems is to use the well-known Lorentz 
scheme? It consists of three differential equations that ex- 
press the rates 4, h ,  and T of variation of 11, h ,  and T  in 
terms of their values. A characteristic feature of these expres- 
sions is that they all contain dissipative terms whose values 
are inversely proportional to the corresponding relaxation 
times T ,  , T ~ ,  and T T .  The usual approach to studying the 
thermodynamics of a phase transition is to adopt the adia- 
batic approximation rh , r T + r v ,  which means that in the 
course of their evolution the conjugate field h ( t )  and the 
control parameter T(r )  change so rapidly that they are able to 
follow the slow variation of the order parameter ~ ( r )  (see 
Ref. 7 ) .  Here the evolution of the system is described by a 
(single) Landau-Khalatnikov equation in which the syner- 
getic potential acts as the free energy. As a result the syner- 
getic approach is reduced to the standard phenomenological 
scheme of a phase transition. The difference here is that in 
stochastic systems the self-organization process takes place 
in the high-temperature region, while in thermodynamic sys- 
tems it takes place in the low-temperature region. In addi- 
tion, while for thermodynamic systems the temperature of 
the medium coincides with that of the thermostat, for syner- 
getic phase transitions the negative feedback between the 
order parameter and the conjugate field, which reflects the Le 
Chatelier principle, lowers the steady-state value of the con- 
trol parameter in comparison to its value fixed by an external 
perturbation. 

One can easily see that to describe the kinetic features of 
a phase transition that are found from model consiclerations6 
and yet remain in the realm of the synergetic approach, we 
must weaken the standard coordination assuming 

that not one but two hydrodynamic degrees of freedom have 
the greatest relaxation time. As a result the kinetics of a 
phase transition is represented by a system of two differential 
equations. Our main goal is to study the possible scenarios 
that second-order (Sec. 2) and first-order (Sec. 3) phase tran- 
sitions follow. An essential merit of the synergetic approach 
is that, without resorting to limited model ideas, it allows for 
the action of a generalized Le Chatelier principle. In this 
sense the results of our investigation are fairly general. We 
find, in particular, that the Hamiltonian reproducing the non- 
dissipative terms in the Lorentz equations has the simplest 
Frohlich form.8 

2. SECOND-ORDER PHASE TRANSITION 

To simplify matters, we study the case of a noncon- 
served order parameter, for which there is no dependence on 
position. Then the initial system of Lorentz equations is7 

Here the dot stands for a derivative with respect to t  (time); 
T , ,  ~ h ,  and r7. are the relaxation times of the order param- 
eter q ( t ) ,  the conjugate field h ( t ) ,  and the control parameter 
T ( t ) ;  g , ,  g h  , and g ,  are positive coupling constants; and 
To is the thermostat temperature. A characteristic feature of 
the system (1)-(3) is the linearity of the right-hand side of 
Eq. (1) in the order parameter and the corresponding nonlin- 
earities in Eqs. (2) and (3). The first terms describe the re- 
laxation of the systeni to the steady-state values 7 = 0 ,  
h  = 0 ,  and T =  To, while the second terms describe the rela- 
tionship between the different hydrodynamic modes. The mi- 
nus in front of the nonlinear term in (3) reflects the action of 
the Le Chatelier principle, and the plus in front of VT in (2) 
reflects the presence of positive feedback between ~ ( t )  and 
T ( t ) ,  which is the reason for self-organization. 

If rh , T ~ <  r v ,  we can neglect the fluctuations in 
h ( t ) - - h ( v ( t ) )  and T ( t ) - T ( v ( t ) ) ,  setting h = O  and T = O  in 
Eqs. (2) and (3). This leads to equations expressing the con- 
jugate field and the control parameter in terms of the order 
parameter: 

where 

For "74 vrn Eq. (4) has a linear form characterized by a sus- 
ceptibility X =  (AhTO)-I .  AS the order parameter increases to 
v =  lj)l, ,  , the h ( v )  dependence becomes saturated, and for 
V >  v,,, the dependence becomes decreasing, which has no 
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physical meaning. This implies that the constant v,,, defined 
in (6) has the meaning of the maximum value of the order 
parameter. As for Eq. (5), it describes the decrease in the 
control parameter from the maximum value To at v = 0  to 
the minimum value ;T, at 7;1= 7,. Obviously, the decreas- 
ing nature of the T vs dependence is a manifestation of the 
Le Chatelier principle. 

Plugging (4) into (I), we arrive at an equation of the 
Landau-Khalatnikov form: 

where the synergetic potential V has the form 

If the thermostat temperature To is lower than the critical 
value T, defined by Eq. (9), V monotonically increases with 
7 and has its minimum at point go=O. Here the system does 
not become ordered. In the supercritical region To>T, the 
synergetic potential acquires a minimum at the nonzero 
value of the order paramete?) 

This means that when the system rapidly proceeds to the 
region where the dimensionless thermostat temperature 8 is 
greater than unity, it takes 

units of time for the order parameter to reach the steady-state 
value (10). Here the time dependence of 17 has the usual 
Debye form 

2.1. The case T, ,< .T , ,T~  

As we did earlier, we can set h=O in (2), which yields 
the following relationship: 

Plugging it into the remaining equations (1) and (3) and us- 
ing the scales II, , T,, and r0 for the time variation of the 
order parameter and the control parameter, we arrive at the 
following system of equations: 

Its behavior is fixed by two parameters, 

with the first defining the degree of excitation of the system, 
and the second the ratio of the relaxation times of the control 
parameter ant1 the order parameter. In the limit TG 1 the 
right-hand side of Eq. (15) assumes values so large that we 

can set T = O  in the left-hand side, and after the resulting 
dependence (5) is substituted in (14) we arrive at the above 
adiabatic approximation represented by Eqs. 7-9. 

Generally, the standard analysis9 of the system (14) and 
(15) shows that the phase portrait is marked by the presence 
of two singular points, D(To,O) and O(T, ,vO), with coordi- 
nates T= To, v= 0 and T= T, , v= 770, respectively, and with 
7;10 defined in (10). The corresponding Lyapunov exponents 
are 

1 
hD=2[(8- 1)- i '] 

We see that in the subcritical region (8< 1) the point D is a 
stable node, while the point 0 is not realized. This means 
that with the passage of time the system evolves to the sta- 
tionary disordered state corresponding to point D, according 
to the phase portrait depicted in Fig. la. An increase in the 
parameter r=rT/rl leads to the trajectories becoming 
twisted around point D,  i.e., as the inertia of variation of the 
control parameter grows in comparison to that of the order 
parameter, the tendency toward an oscillatory mode in- 
creases. 

As the phase portrait in Fig. 2 shows, this tendency is 
realized in full in the transition to the supercritical region 
8> 1, where D is transformed into a saddle point and an 
additional point 0 emerges. For values of the parameter r 
limited from above by 

the point 0 is a stable node, and as T becomes greater than 
T,  this point becomes a stable focus. 

Thus, in the supercritical region 1 < 8 s  2 for T,< TT an 
oscillatory mode with a characteristic frequency 

and a damping constant 

sets in (see Fig. 2c). With the temperature growing in the 
interval 1 < 8<2  the values of w and a grow 'and the critical 
relaxation-time ratio (19) decreases. In other words, excita- 
tion of the system expedites the appearance of damped os- 
cillations, as expected. However, as Fig. 2 shows, the in- 
crease in the parameter r= T T / r 1  is the largest factor in the 
manifestation of an oscillatory mode. 

The opposite limit rTGrT corresponds to the adiabatic 
approximation, which represents the standard pattern of a 
phase transition. According to Fig. 2, a decrease in the pa- 
rameter T to zero leads to a section MOD appearing in the 
phase portrait to which all the trajectories tinally converge. 
As the time curves in Fig. 3a show, an image point rapidly 
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FIG. 1. Phase portraits of the disordered phase (To= 0.7Tc) for a second- 
order phase transition: (a) rh<7,,= T T ,  (b) 7,,47,,= T T ,  and (c) 
T,< T,= T ,  . Here and in all figures that follow the temperature is measured 
in units of To; a dotted line indicates the points at which the phase trajec- 
tories have a vertical tangent, and a dashed line indicates the points at which 
the phase trajectories have a horizontal tangent. 

moves along a trajectory lying outside the M O D  section, 
while when such a point finds itself within this section, its 
motion becomes rapidly retarded, and the smaller the nona- 
diabaticity parameter r the stronger the retardation. Obvi- 
ously, the section MOD corresponds to an attractive set, 
which in Ref. 6 was named the "mainstream." The univer- 
sality of the kinetic pattern of a phase transition manifests 

FIG. 2. Phase portraits of the ordered phase (To= 1.5T,) for a second-order 
phase transition: (a) T,,* T,,= 1 0 ~ 7 ~ ~  (b) T,,* T,,= T T ,  (c) ~~9 TT= lo2?,,. 

ditions for 7 4 0 ,  the system promptly reaches the MOD 
section, whose position is independent of the microscopic 
details of the section's structure, and slowly evolves along 
this universal trajectory. 

2.2. The case r,e T,, , T~ 

Setting +=0  in (I), we arrive at the relationship 

itself in a situation in which, irrespective of the initial con- v = A  ,h, (22) 
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which when plugged into (2) and (3) yields the following 
system of equations: 

h=-h(1-T),  (23) 

T= T - ' [ o - ( T + ~ ~ ) ] ,  (24) 

where the quantities h, T, and t are measured in units of 
h, , T, , and T ~ ,  respectively, and we have introduced the 
characteristic parameters 

T~ 
7' - 

1 

Th 
(25) 

S s 

a 

As the temperature 6 rises, 7, decreases and the frequency 
w grows, but a remains unchanged. 

This analysis and the shape of the phase portraits in Fig. 
4 show that, as in the previous case, for large values of the 
parameter T the mode damping sets in (Fig. k), while as r 
decreases to values much smaller than unity, dissipative re- 
laxation sets in (Fig. 4a). Similarly, in the adiabatic limit 
r+0  the kinetic behavior becomes universal, which is re- 
flected in Fig. 4a by the presence of a special section 
MOD on which the system slowly evolves to the stationary 
point 0. 

I FIG. 3. The time dependence of the path s 

As in the first case, the phase portrait is determined by the 2.3. The case TT4Tq,Th 
presence singular points, D(To,O) and O(T, ,h), where 

Setting T = O  in (3), we arrive at the relationship 
hn=h, J8-1 (26) 

traversed by an image point moving along a 
2 phase trajectory: (a) a second-order phase 

2 - transition (curve I corresponds to the phase 
portrait in Fig. 2a, curve 2 to the phase por- 
trait in Fig. 4a, curve 3 to the phase polIrait 

3 in Fig. Sa, and curve 4 to the phase portrait 
in Fig. 5c), and (b) a first-order phase tran- 

3 
4 sition (curve I corresponds to the phase por- 

I trait in Fig. 7a, curve 2 to the phase portrait 
in Fig. 8a, curve 3 to the phase portrait in 
Fig. 9a, and curve 4 to the phase portrait in 
Fig. 9c). The origin of s is marked by X in 

0 . 1 . , . 1 . 1 . , the respective diagrams. 

0 40 80 t 0 40 80 t 

- ... 
T =  To-A,vh, 

determines the steady-state value of the conjugate field. The 
(32) 

Lyapunov exponents have the form which when inserted in (1) and (2) yields the following sys- 
tem of equations: 

7j=-71+h, 

X [ l Z J r ]  (2'7) 
h = ~ - ' [ ~ ~ - h ( l +  772)], (34) 

[(o- 1)-r-'12 ' where the quantities 71, h, and t are measured in units of 
v m ,  h,, and r,,, respectively, and where we have intro- 

(28) duced the relaxation-time ratio 

As above, the point D for 6< 1 is an attractive node, while rh 
.j-= -. 

7 
(35) 

for 6> 1 it is a saddle point. Point 0 is realized only in the 
ordered region 6> I ,  where it is an attractive node for small The phase portrait of the system has two singular points, 
values of the parameter 7 and a stable focus if T exceed the D(0,O) and O =  ( h , q ,  7 1 , W )  (Fig. 5), with the sec- 
critical value ond point being present only in the region 6> 1. The corre- 

1 sponding Lyapunov exponents have the form 

The corresponding values for the oscillation frequency and L 

the damping constant are X [ I %  J I + ~ T - ' ( I + T - ' ) - ~ ( o - I ) ] ,  (36) 

(31) For O< 1 the point D is a stable node, and the transition to 
the supercritical region O> 1 transforms it into a saddle 
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FIG. 4. Phase portraits of the ordered phase (To=  1 .5Tc )  for a second-order FIG. 5. Phase portraits of the ordered phase (To= 1 .5Tc )  for a second-onler 
phase transition: (a) T,% T ~ =  1O2r, ,  (b) 7,4 T ~ =  r~ , and (c) phase transition: (a) r,.4 T,= 1O3Th , (b)  rT9 T,= T~ , and (c) 
T,% TT= 1 0 ' ~ ~  . T T < r h =  102~,, . 

point. Point 0, which characterizes the ordered phase, is an 
attractive focus for values of T belonging to the interval 
( 7 -  , T + ) ,  where 

r2=36)-4? J 8 ( 6 -  1 ) ( 6 - 2 ) ,  (38) 

and an attractive node outside the interval. The characteristic 
values of the frequency, 

and the damping constant, 

are comparable for all values of 19 and T .  Here, in contrast to 
the cases considered earlier, the oscillatory mode is, for all 
practical purposes, absent. 

According to the phase portraits in Fig. 5, the kinetic 
behavior exhibits its universal nature both for rh< rrl and for 
rh4 r 7 .  In the first case the universal section is reached due 
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to the rapid variation of the conjugate field h ( t )  with the 
order parameter ~ ( r )  remaining practically unchanged (Fig. 
5a), while in the second case the opposite is true-the order 
parameter changes very rapidly and the conjugate field re- 
mains almost the same (Fig. 5c). In the intermediate region 
r,,,- rh universality manifests itself only for small initial val- 
ues h ( 0 )  and ~ ( 0 ) ,  i.e., h ( 0 ) 4  ho and ~ ( 0 ) 4  (Fig. 5b). 
Note that in contrast to the previous cases the universal sec- 
tion of the phase trajectories has an increasing nature rather 
than a decreasing one. 

3. FIRST-ORDER PHASE TRANSITION 

The simplest way to proceed from the above case of a 
second-order phase transition to that of a first-order one is to 
replace the constant relaxation time r ,  in (1) by the follow- 
ing dependence:7 

characterized by the positive constants TO. K ,  and 11,. Then, 
within the adiabatic approximation rh , r T 4  rO, the Lorentz 
system of equations (1)-(3) is reduced to Eq. (7), in which 
r,,, is denoted by 70, and the synergetic potential (8) assumes 
the form 

where Tc0=(r0rhg7gh)-1. For low values of To the V vs 
7 dependence has a monotonically increasing shape with its 
minimum at point v=0.  At 

a plateau appears, which for T o > e  is transformed into a 
minimum corresponding to nonzero values of the order pa- 
rameter and a maximum separating the ordered- and 
disordered-phase minima. When the temperature To in- 
creases still further, the ordered-phase minimum grows 
deeper and the height of the interphase barrier decreases, 
vanishing at the critical temperature 

The steady-state value of the order parameter has the form 

where the second equality is written for the case 
To- T,< T,,, and 

For To> T ,  the V vs 7 dependence has the same shape as for 
a second-order phase transition (see Sec. 2). Note that the 
energy barrier inherent in a first-order phase transition mani- 
fests itself only if the parameter a= vT/ 7, is no greater than 
unity. 

Next we measure 7, h ,  and T in units of 7, , h, , and 
T,  (see Eqs. (6),  (25) and (9)) and, as in the case of a second- 
order transition, examine the various limiting ratios of the 
relaxation times 7-0, rh , and r7., with the effective relaxation 
time r ,  in Eq. (1) given by (41). 

3.1. The case rh4 T O ,  TT 

Setting h=0 in (2), we can write (13) as h = T v .  Plug- 
ging this into Eq. (1) yields the following expression (time is 
measured in units of rO):  

which differs from (14) by the presence of the last term. The 
second equation, which follows from (3), has the same form 
(1 5) as above. 

The phase portrait of the system (47) and (15) has three 
singular points, D(0,0), O(T-  , v - ) ,  and S(T+ ,v+), where 
the characteristic values T ,  and ?+ are given by the follow- 
ing equations: 

1 -p22 \j(l -p2)2- $(1 - a 2 )  
T+ = 

1 -a2 (48) 

Here we have introduced the parameter /3= qool qm , where 
voo stands for the characteristic value of the order parameter 
(46). Point D corresponds to a Lyapunov exponent that dif- 
fers from (17) in that 0- 0,  is substituted for 8- 1,  where in 
accordance with (44) the quantity 0,= 1 + K defines a spin- 
odal point. Hence, as in the case of a second-order phase 
transition, for O< 0, the point D is a stable node, while for 
0> 0, it is a saddle point. The Lyapunov exponents of the 
points O(T-  ,v-) and S(T+ , ?.+) are expressed in terms of 
their coordinates (48) and (49) as follows: 

In the interval T:< T< T ,  in which a first-order phase tran- 
sition is realized, S is a saddle point and 0 an attractive node 
or focus. 

We see that as the thermostat temperature T o  grows, the 
phase portrait of the system changes in the following way 
(Fig. 6). For  to<^: when the dependence (42) has a mono- 
tonically increasing form, the points S and 0 are absent and 
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FIG. 6. Variation in the shape of phase portraits with temperature for a FIG. 7. Phase portraits for a first-order phase transition ( K =  1 and 
first-order phase transition ( K =  1 ,  a=O. 1, and ~~9 TO= rT): (a) To= Tco, a = 0 . 1 ) :  (a) To= 1.25TC0 and .rh9.r0= I O ~ T ~ ,  (b )  TO= 1.25Tc0 and 
(b )  To= 1.25Tc0, and (c) T0=2.5Tc0. ~~9 T ~ =  T ~ ,  and (c) To= l.8TcO and rh9 rT= 1 0 ~ ~ .  

D is a stable node corresponding to the disordered phase. 
Here the portrait resembles that of a second-order phase tran- 
sition (see Fig. la). When the temperature exceeds the criti- 
cal value (43), the system undergoes a bifurcation, which 
consists in the appearance of a saddle point S and a stable 
nodelfocus 0 determined by the coordinates (48) and (49). 
As the thermostat temperature To grows, the saddle point 
corresponding to an energy barrier in the V vs 7 dependence 
approaches the node D, and at T ,  absorbs it. A further rise in 
temperature leads to a situation corresponding to the ordered 
phase for a second-order phase transition. 

Figure 7 shows how the phase portrait of the ordered 
phase ( T : < T ~ < T , )  varies with the relaxation time ratio 
r =  rT/rO.  Comparing it with Fig. 2, we see that in the neigh- 
borhood of 0 the behavior of the phase portrait is practically 
the same as for a second-order phase transition: in the adia- 
batic limit r T G r o  the trajectories rapidly converge to the 
universal section MOS (Fig. 7 4 ,  while in the opposite limit 
rl .B ro damped oscillations set in (Fig. 7c). The only differ- 
ence is the appearance of a separatrix for small values of the 
order parameter, which is due to the presence of a barrier in 
the V vs 7 dependence. Studies of the time clependence of 
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the path s traversed by an image point moving along a tra- 
jectory show (see Fig. 3b) that, as in the case of a second- 
order phase transition, a slowdown occurs within the niain- 
stream region MOS, which corresponds to the neighborhood 
of the ordered-phase minimum on the V vs q dependence. 

These features of the kinetic behavior of the system can 
be understood by studying the dependence of the synergetic 
potential V on the values of the quantities q and T ,  which 
parametrize the behavior of the system. Here the reasoning 
should be based on the fact that in the course of its evolution 
the system stays mostly in the neighborhood of the extrema 
on the V(q,T) dependence. Since the time of relaxation 
along each of the q ,T  axes is inversely proportional to the 
curvature of V(7,T) along the respective axis?) the condi- 
tion rTarO means that the V(7,T) dependence changes 
much faster along the T  axis than it does along the q axis. As 
a result the surface of the function V(7,T) has a narrow 
trough along the universal trajectory determined by the T vs 
7 dependence (5). As Fig. 7a shows, the system rapidly 
slides down into the trough along the T axis, corresponding 
to the larger curvature. It is the presence of this trough that 
guarantees the universal nature of the kinetic behavior, since 
near the extrema the V(q,T) dependence is always shaped 
like a parabola: 

where q, and T ,  determine the position of an extremum, and 
the susceptibilities ,yT and xT determine its curvature. 

In view of what has been said it might seem that in the 
limit roe T T ,  which is the opposite of the adiabatic limit, the 
V(q,T) dependence should also acquire a trough, with the 
result that there is no explanation of the nature of the 
damped-oscillation mode shown in Fig. 7c. One must bear in 
mind, however, that near the minimum in the V( q,T) depen- 
dence the susceptibilities X ,  and xT in (52) are related to the 
relaxation times T,, and TT in different ways: xT" TT and 
x,,: r0l 0'- 0 , I - ' .  Since / 0 -  eCl a 1 holds, the curvature 

X ;  70 10- 0,l of the parabola (52) along the 7 axis 
proves to be comparable to the curvature , y ; ' m ~ , '  of the 
V(q,T) dependence along the T axis, notwithstanding the 
smallness of 70. In other words, in the r06 TT limit and near 
the ordered-phase minimum, the V( q ,  T) dependence re- 
sembles a paraboloid with curvatures that have small (and 
similar) values along the q and T  axes. As a result the image 
point, while sliding down into the minimum, may perform 
rotations along the paraboloid's surface. Obviously, such ro- 
tations represent the damped oscillations depicted in Fig. 7c. 

Note that this critical increase in the susceptibility ,y, in 
(52) is of an essentially thermodynamic nature1' and does 
not manifest itself near the maximum on the V(q,T) depen- 
dence. This explains the absence of twisting in the separatrix 
in the rO+ rT limit (see Fig. 7c). 

Concluding this section, we note that although the ex- 
pressions in (5 1) are cumbersome, they allow finding an ana- 
lytical expression for the critical value 7 ,  of the relaxation- 
time ratio 7= T ~ . / T O  starting at which the point O(T- , 7 - )  is 
transformed from node to focus (see Eq. (19)). But since this 

analytical expression proves to be extremely cumbersome, 
we do not give it here. 

3.2. The case ~~e T,, ,TT 

From the analytical point of view this is the most diffi- 
cult case of all since substituting the effective relaxation time 

(41) into the initial equation (I), where we must set $=0,  
leads not to the linear relationship (22) but to a cubic equa- 
tion (see Refs. 10 and l  l) .  It is convenient to write the so- 
lution of this equation in the form 

where we have introduced the functions 

and constants h h2, and h3 defined by the equations 

Inserting (53) in Eqs. (2) and (3) reduces the latter to the 
following form (cf. Eqs. (23) and (24)): 

h = - h + f ~ [ h +  q + ( h ) +  q-(h)], (56) 

where time is measured in units of rh and we have intro- 
duced the relaxation-time ratio T= T , /  rh . 

Although there is no way to find the singular points or 
the corresponding Lyapunov exponents analytically, a nu- 
merical study of the phase portrait (Fig. 8) shows that the 
system behavior coincides with that studied in Sec. 3.1. 
Comparing the phase portrait with that of a second-order 
phase transition (see Fig. 4), we note the appearance of a 
separatrix in the region of values of T and h corresponding 
to the energy barrier separating the ordered and disordered 
phases, as in the case in Sec. 3.1. 

If we follow the lines of reasoning of the previous case, 
we can easily see that for rT4 rh ,  when the universality of 
the system's kinetic behavior manifests itself in full (Fig. 
8 4 ,  the V(h,T) dependence has a narrow trough along the 
universal section of the trajectories. The presence of a 
damped mode in the opposite limiting case rTS Th (Fig. 8c) 
points to a critical increase in the susceptibility 
xh" rhl 0-  f I c / - '  corresponding to the conjugate field. Obvi- 
ously, the initial reason for such an increase is the critical 
rise in the susceptibility X,X rO1 0 -  Ocl - corresponding to 
the order parameter. It is the existence of the stringent func- 
tion relationship (53) between ~ ( t )  and h ( t )  (for a second- 
order phase transition it assumes the linear form (22)) that 
ensures the rise in the susceptibility corresponding to the 
conjugate field. 
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FIG. 8.  Phase portraits for a first-order phase transition ( K =  1 and FIG. 9. Phase portraits for a first-order phase transition ( K =  1 ,  a = 0 . 1 ,  
a = 0 . 1 ) :  (a) To=1.25Tc0 and T ~ < T ~ = I O ~ T , ,  (b) TO=1.25Te0 and and T0=1.25Tc0): (a) T , < T ~ = I O ~ T ~ ,  (b) T ~ < ~ ~ = T , , ,  and 
roe rh= T , ,  and (c) To= 1.8TcO and r0< T,= 107,. (c) ~~4 T ~ =  1 0 ~ 7 ~ .  

3.3. The case T& T,, , T,, 
As with second-order phase transitions, the system of equa- 

Setting T = O  in (3), we arrive at the relationship (32) in tions (34) and (58) has a singular point D(0,O) for which the 
dimensionless form: Lyapunov exponent is defined by Eq. (36) where 8,+ 7-' 

and 8- B,, with 0 , ~  1 + K ,  must be substituted for 1 + 7-' 
T =  0- 7,lh. 

and 8- 1 ,  respectively. For 0< 8, this point is a stable node 
Substituting this in Eq. (2) yields Eq. (34), and Eq. (1) as- and for 8> 8, it is a saddle point. 
sumes the form (cf. Eq. (33)) Numerical treatment of the phase portrait leads to the 

situation depicted in Fig. 9. Con~parison with the corre- 

] + h .  sponding portrait for a second-order phase transition (see 
1 + 7,12/a2 (58) Fig. 5) shows that, as before, the only complication lies in 
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the appearance of an additional separatrix in the region of 
small values of h and of 7. 

In studying a second-order phase transition in Sec. 2.3 
we noted that a characteristic feature of the given case is the 
universality of the system's kinetic behavior manifesting it- 
self not only in the rh4r0 limit (Fig. 9a) but also in the 
opposite case rhS r0 (Fig. 9c), where, it would seem, oscil- 
lations should appear. The point is that the curvatures of the 
parabolas along the h and 7 axes are determined by the 
values of the respective reciprocal susceptibilities 

rill 6- Ocl and X,'a 70'1 6- 8,1, which vary with 
temperature in a similar manner. Hence, notwithstanding the 
temperature dependence of the susceptibilities xh and X, for 
rh%-rO, the inequality xi14x, '  which implies that the cur- 
vature of V(7,h) along the h axis is much smaller than 
along the 7 axis, still holds. For this reason the trajectories in 
Fig. 9c along which image points slide down into the "main- 
stream" are directed practically along the 7 axis. 

4. CONCLUSION 

The above investigation shows that the system of Lor- 
entz equations (1)-(3) makes it possible to represent the 
main features of a phase transition. A thermodynamic de- 
scription is achieved by using the dependence of the syner- 
getic potential on the order parameter V(7). In the case of a 
second-order phase transition, this dependence has the form 
(8) and its nature is determined by the control parameter 
6= TOIT: for O< 1 we have a monotonically increasing V vs 
7 dependence with the minimum at point vO=O, while for 
6> 1 the minimum corresponds to the ordered phase charac- 
terized by an order parameter (10). The transition to the case 
of a first-order phase transition occurs if we assume that the 
relaxation time of the order parameter acquires a dependence 
on 7 according to (41). Then the function V(7) is of the 
form (42), where in comparison to (8) we have introduced 
two new parameters, K and 7,. According to (44), K deter- 
mines the renornlalization of the critical value of the control 
parameter, and vT specifies the ratio a= v T /  q m .  The V vs 
7 dependence has an energy barrier inherent in a first-order 
phase transition, a barrier that separates the ordered- and 
disordered-phase minima, provided that a< 1 .  In this case, 
in the interval (c ,T,) defined by (43) and (44) the phase 
transition is of first order, while for To>T, it is of second. 
The equilibrium value of the order parameter is determined 
by Eqs. (45) and (46). 

As noted in the introduction, the significant difference 
between a synergetic phase transition and a thermodynamic 
phase transition is that the steady-state value of the control 
parameter corresponding to the medium's temperature TO 
does not coincide with the value of To fixed by the thermo- 
stat. For a second-order phase transition this value is the 
critical temperature T, specified by (9). The same situation 
arises in a first-order phase transition for To>T,, while in 
the interval c< To<T, the temperature T+ (see Eq. (48)) 
corresponding to the maximum in the V vs 7 dependence is 
found. Since T, and T+ are the minimum values of the con- 
trol parameter at which ordering begins, the above means 
that the negative feedback between the order parameter and 

the conjugate field, reflected by the last term on the right- 
hand side of Eq. (3), reduces the control parameter so much 
that only in the limit does it ensure ordering in the medium. 
What is interesting here is that while in the region To> T, 
the temperature TO= T, of the medium is independent on the 
thermostat temperature To, for a first-order phase transition 
an increase in To from c to T, leads to a smooth increase in 
TO from the minimum value 

to the maximum value 

Since in the important range of values of the parameters LY 

and K limited by k,,= a 2 / (  1 - cr2) the minimum tempera- 
ture tin of the medium is lower than the minimum thermo- 
stat temperature c in the (c ,T,) interval the temperature 
TO of the medium is always lower than its value for the 
thermostat, To. At To= T, the temperatures are equal, and 
for To> T, we again have To> fl= T, . 

The kinetic pattern of the phase transition is represented 
by the phase portraits shown in Figs. 1, 2, and 4-9 and the 
time dependence of the path traveled by the image point 
along a trajectory (Fig. 3). In the case of a second-order 
phase transition (Figs. 1, 2, 4 and 5) the phase portrait for 
To<T, has an attractive node D corresponding to the disor- 
dered phase; for To> T, the node becomes a saddle point and 
an additional nodelfocus 0 corresponding to the ordered 
phase appears. In contrast, in the phase portrait of a first- 
order phase transition (Figs. 6-9) a bifurcation appears at 
To= and as result of this a saddle point S, corresponding 
to the energy barrier in the V vs 7 dependence, and an at- 
tractive node/focus 0, corresponding to the ordered phase, 
appear; the attractive node D of the disordered phase remains 
unchanged. As the control parameter grows in the ( c  ,T,) 
interval the saddle point S shifts toward the node D and 
absorbs the node at point T,, while the nodelfocus 0 shifts 
to higher values of the order parameter and the conjugate 
field. 

The type of singular point 0 corresponding to the order 
phase depends on the relationship between T,, r h ,  and 
rT .4) Obviously, if these relaxation times are incommensu- 
rate, the following six characteristic modes can be specified: 

(a) rh4 rT4 r h  , (b) r14 T T ~  r h  , 
( c ) r T e  rh< r,, (d) rT4 rD@ r h  9 

( e ) r h 6  T V 4  TT, (f)TV4 73. 

The above analysis shows that in the cases (a)-(d) the point 
0 is an attractive node, and after a short time interval the 
trajectory of the system reaches the universal section (the 
mainstream), whose position is determined by the external 
conditions (the value of To). This represents the universality 
of the kinetic pattern of a phase transition discovered by 
Zel'tser et aL6 As the phase portraits show, the mainstream 
is positioned in the parameter space v,h,T in such a way that 
when projected on the T, 7 and T,h planes it has the shape of 
a nlonotonically decreasing curve of type MOD in Fig. 2a (a 
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second-order phase transition) or of type MOS in Fig. 7a (a 
first-order phase transition). The projection on the h ,  7 plane 
is close to the bisectrix (see Figs. 5a and 9a). In addition, for 
a first-order phase transition a universal section NSP corre- 
sponding to the transition of the system appears across the 
energy barrier (Figs. 6-9). The phase portraits indicate that 
with the incommensurate nature of the relaxation times in 
modes (a)-(d) the universal section is reached by traveling 
along almost straight trajectories that are practically parallel 
to the axes and correspond to minimum relaxation times. For 
instance, in mode (a) the image point first moves very rap- 
idly along a straight line parallel to the h  axis, then along a 
section parallel to the T  axis with a rate rT/rh times lower 
than that along the previous section but T , / T T  times higher 
than that along the subsequent universal section. As a result 
it lands in the universal section. 

When the relationships between the relaxation times cor- 
rerspond to modes (e) and (f), the system undergoes damped 
oscillations in the plane corresponding to the two smallest 
relaxation times. A characteristic feature of these modes is 
that in both cases the relaxation time T ,  corresponding to the 
control parameter is the greatest of the three. As noted in 
Sec. 3.1, the reason for damped oscillations setting in in the 
system is the critical increase in the relaxation times r ,  and 
rh  according to a law of the form (1 1). Near the critical point 
0, this increase ensures the commensurability of 
T,( 0-  - ' and T ,  in mode (e) and of rhl 8- 0,l - and 
r, in mode (f), and as a result the relationships between the 
corresponding parameters 7 , T  and h,T acquire a resonant 
nature. As for the evolution along the h  and 7 axes, corre- 
sponding in modes (e) and (f) to shortest relaxation times, it 
retains the same nature as when the universal section is 
reached: the system moves into the corresponding plane 
along the perpendicular axis with a rate that is rT/rh (mode 
(e)) or rT/r7 (mode ( f ) )  times higher than the oscillation 
frequency. 

Just as we did in Sec. 3.1 when analyzing the particular 
case of rh< r0 , r T , ,  we can clarify the behavior of the ki- 
netic behavior by analyzing the dependence of the synergetic 
potential V on the complete set of parameters 7 ,  h ,  and T .  
Since the main contribution to the universal behavior of the 
system is provided by the neighborhoods of the extrema in 
this dependence, characterized by the coordinates 7, , h e ,  
and T , ,  in the quadratic approximation we have the follow- 
ing expression: 

where x , ,  x h ,  and xT are the susceptibilities determining 
the curvature of the dependence of V on 7 ,  h ,  and T  along 
the corresponding axes. Since these susceptibilities are pro- 
portional to the corresponding effective relaxation times of 
type (I I), we can write 

Characteristically, the values of the susceptibilities X ,  and 
x h  corresponding to the order parameter and the conjugate 
field increase without limit in the neighborhood of the criti- 
cal point O,, while the value of the susceptibility X, corre- 
sponding to the control parameter is temperature- 
independent. Hence for the three-dimensional paraboloid 
(60) the hierarchy (59) of the relaxation times does not al- 
ways ensure that the curvatures of the paraboloid (60) along 
the different axes are incommensurate. In particular, in the 
critical region the following may be true: 

and in modes (e) and (f) the curvatures of the paraboloid (60) 
become painvise commensurate. This means that near the 
ordered-phase minimum the V (  7 , h ,  T )  dependence in the 
T ,  7 and T,h planes becomes a paraboloid of revolution with 
a curvature much smaller than along the perpendicular axes 
( h  and 7,  respectively). As a result the image point not only 
slides down into the minimum of this paraboloid but is also 
in rotational motion on the paraboloid's surface. The rotation 
corresponds to the damped oscillations in the T , 7  plane 
(mode (e)) and in the T,h plane (mode ( f ) ) .  

Note that this critical decrease in curvature has an effect 
only near the ordered-phase minimum and is not present near 
the energy barrier. Hence the phase portraits in Figs. 7c and 
8c suggest that notwithstanding the fact that the trajectories 
near the point 0 are twisted, a change in the relaxation-time 
ratio has no effect on the separatrix near the saddle point 
S. 

As for the modes (a)-(g), here the critical behavior of 
the system does not disrupt the hierarchy (62) of the curva- 
tures ,y-' caused by the inequalities (59) between the relax- 
ation times T ,  and the system behavior rapidly becomes uni- 
versal. For instance, in mode (a), where the curvature x i  ' is 
the greatest and the curvature x i '  the smallest, the image 
point very rapidly slides down the surface specified by the 
V (  7 ,  h,T)  dependence along the h  axis or less rapidly along 
the T  axis, and then moves smoothly along the universal 
section. In other words, in the (a)-(d) modes the surface 
V ( v , h , T )  has the shape of a narrow trough whose bottom 
coincides with the universal trajectory. The fact that the uni- 
versal trajectory is not parallel to the axis corresponding to 
the smallest curvature X-' means that the extremum values 
along the other axes depend on the respective parameters. 
For instance, in mode (a) the extremum value of the conju- 
gate field, h , ( v ) ,  and that of the control parameter, T , ( v ) ,  
acquire in time TT a functional dependence of the form (4) 
and (5) on the order parameter. 

As is well known," a remarkable feature of the Lorentz 
system is that it describes a strange attractor in which the 
universal trajectory represents a fractal, a set of fractional 
dimensionality (see Ref. 13). Clearly, the two-dimensional 
damped oscillations discovered in modes (e) and (f) corre- 
spond to the sections of the strange attractor by the T , 7  and 
T,h planes (but are not reduced to these sections). To pro- 
ceed from these oscillations to the strange-attractor mode we 
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must include the motion along the perpendicular axis (the 
h axis in mode (e) and the 11 axis in mode (f)). The appro- 
priate relationships in (59) show that this can be achieved 
only if the corresponding relaxation times are comparable: 
rh-r,,. Thus, a transition to the strange-attractor mode 
should be expected if 

If the ratio T= rh 1 T,,  is varied, in the r e  1 limit the strange 
attractor degenerates into oscillations in the T, 71 plane, while 
in the opposite limit 7% 1 these oscillations appear in the 
T,h plane. But if the ratio T ~ / T , , , ~  decreases, the frequency 
of oscillations in the corresponding plane decreases, too. 

In conclusion we discuss the nature of these approxima- 
tions. First, we must bear in mind that the Lorentz system we 
employed describes phase transitions induced by noise, and 
ordering in such transitions emerges when the intensity of 
the noise caused by the stochastic action of an external me- 
dium (the thermostat) increases.14 An example of this type of 
transformation is the phase transition induced by a growth in 
pressure, which in this case acts as the control parameter (see 
Ref. 15). In equilibrium thermodynamic systems the tem- 
perature acts as the noise intensity (see Ref. 2), in view of 
which everywhere above we adopted the value of T as the 
magnitude of the control parameter. One must bear in mind, 
however, that ordering in thermodynamic systems occurs at 
small values of the control parameter rather than at large." 
Hence, as applied to such systems the control parameter cor- 
responds not to the temperature but to its reciprocal value. 
We note in this connection that a derivation of thermody- 
namic relationships based on the Gibbs distribution presup- 
poses the use of the reciprocal temperature (see Ref. 11). 

Another essential limitation of our approach is the fact 
that the systems we studied were spatially homogeneous, al- 
though in the case of a conserved order parameter an inho- 
mogeneous structure is always formed in the process of 
transiti0n.l~~ Two markedly different behavior patterns 
should be distinguished here: the binodal and the spinodal. In 
thermodynamic systems the first corresponds to the super- 
critical region and the second to the subcritical. The transi- 
tion between the two represents a loss of ergodicity of the 
stochastic system in the binodal region, the loss being related 
to the emergence of sharp interphase (antiphase) 
boundaries.I6 

One can easily see that in the spinodal region, where the 
coordinate dependence of the system parameters is smooth, 
allowing for this dependence presents no difficulties. Indeed, 
if we go from the coordinate representation to the wave rep- 
resentation, we only need to introduce into the initial relax- 
ation times the factors (1 + t2k2)- '  dependent on the wave 
vector k, where 5 is the correlation length corresponding to 
the given parameter. In the binodal region, besides 5 there 

appear additional scales L characterizing the macrostructure 
(see the Introduction), and the situation becomes much more 
~ o m ~ l i c a t e d . " ~  Its study constitutes a separate problem. 
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"1f the order parameter corresponds to spontaneous magnetization, the con- 
jugate field is reduced to magnetic induction. For ordered solid solutions, 
where the order parameter determines the long-range order in the alteration 
of atoms of different species, the conjugate field is the difference of the 
chemical potentials of the components. 
')since the value of qo is restricted by the condition q o S  v,,, , the excitation 

parameter 0 is bounded from above by the value 0,=2 
')This follows from the fact that the curvature is inversely proportional to 

the corresponding susceptibility, which in turn is proportional to the cor- 
responding relaxation time." 

 or a first-order phase transition, T, must be interpreted as the relaxation 
time T~ in Eq. (41). 
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