ТЕРМОДИНАМИЧЕСКИЕ ФЛУКТУАЦИИ В ДВУМЕРНЫХ ВЫРОЖДЕННЫХ АНТИФЕРРОМАГНИТНЫХ СТРУКТУРАХ

В. М. Розенбаум

Институт химии поверхности Национальной академии наук Украины 252022, Киев, Украина

Поступила в редакцию 27 июня 1996 г.

Предложена модель двумерного антиферромагнетика с произвольным анизотропным взаимодействием, допускающим вырождение основного состояния. В рамках самосогласованного метода вычисления гауссовских угловых флуктуаций, являющегося асимптотически точным в области низких температур, рассмотрены снятие вырождения термодинамическими флуктуациями и возникающие при этом эффекты. Показано, что флуктуации приводят к коллинеарному упорядочению ориентаций магнитных подрешеток, что инициирует дальний ориентационный порядок в системах с анизотропным взаимодействием. Приводятся температурные зависимости ориентационных корреляторов для частных случаев дипольной и изотропной близкодействующих моделей. Обсуждается природа изингоподобного поведения рассматриваемых систем при сильной анизотропни корреляторов, соответствующей квазиодномерному поведению.

1. ВВЕДЕНИЕ

Среди различных систем со сложными периодическими ориентациями магнитных или электрических моментов особое место занимают системы с непрерывно вырожденным основным состоянием. Такое вырождение, как правило, соответствует определенным вращениям моментов в антиферромагнитных подрешетках и может сниматься термодинамическими флуктуациями, что приводит в ряде случаев к интересным физическим последствиям. К обсуждаемым системам можно отнести многие шпинели [1, 2], гранецентрированные кубические антиферромагнетики [3], включающие, например, γ -Mn [4] или Cd_{1-x}Mn_xTe для больших x [5], объемноцентрированные кубические антиферромагнетики типа гранатов [6] или активно исследуемые сейчас материалы типа Gd₃Ga₅O₁₂ со сложной антиферромагнитной структурой [7], а также двумерные антиферромагнетики с диполь-дипольными взаимодействиями на квадратной [8–10] и шестиугольной [10–12] решетках.

Возможность упорядочения моментов в антиферромагнитных подрешетках за счет термодинамических флуктуаций объясняется тем, что в отличие от энергии основного состояния H_0 , закон дисперсии $J_0(\mathbf{k})$ спин-волновых возбуждений (вычисленный при температуре T = 0) и свободная энергия системы

$$F(T \to 0) = H_0 - \frac{1}{2}T \sum_{\mathbf{k}} \ln \frac{2\pi T}{J_0(\mathbf{k})}$$
(1)

зависят от параметра вырождения α . Минимизация выражения (1) по α приводит к выводу о возникновении дискретной симметрии с коллинеарными ориентациями моментов в подрешетках [3, 10, 13]. Специфика двумерных вырожденных систем заключается в том, что в них может отсутствовать дальний ориентационный порядок, определяемый величиной [14]

$$\rho_0 = \lim_{|\mathbf{r}| \to \infty} \left\langle \cos(\varphi_{\mathbf{r}_1 + \tau} - \varphi_{\mathbf{r}_1}) \right\rangle = \exp\left[-\frac{T}{N} \sum_{\mathbf{k}} \frac{1}{J_0(\mathbf{k})} \right]$$
(2)

(угловые флуктуации φ_r отсчитываются относительно векторов магнитных моментов в основном состоянии). В этом случае $\rho_0 = 0$ из-за расходимости интеграла от $J_0^{-1}(\mathbf{k})$ по **k**. Тогда возникаст вопрос, может ли существовать обсуждаемое термодинамическое упорядочение и если может, то будет ли селекция коллинеарных состояний приводить к возникновению дальнего ориентационного порядка. Монте-карловские эксперименты, которые по своей природе ограничены моделированием конечных систем, дают противоречивые результаты, как подтверждающие [15, 16], так и опровергающие [17] наличие фазы с дискретной симметрией в рассматриваемых системах.

В данной статье на основе анализа предложенной здесь общей модели вырожденного антиферромагнетика на квадратной решетке доказывается, что в системах с изотропным близкодействием перенормированный термодинамическими флуктуациями закон дисперсии $J(\mathbf{k})$ спиновых возбуждений (при $T \neq 0$) обеспечивает термодинамическое упорядочение моментов без возникновения дальнего порядка ($\rho_0 = 0$). С другой стороны, в системах с диполь-дипольными взаимодействиями перенормированная функция $J(\mathbf{k})$ одновременно с термодинамическим упорядочением приводит и к возникновению дальнего ориентационного порядка ($\rho_0 \neq 0$).

2. МОДЕЛЬ ДВУМЕРНОГО ВЫРОЖДЕННОГО АНТИФЕРРОМАГНЕТИКА НА Квадратной решетке

Рассмотрим систему магнитных или электрических моментов в узлах г плоской решетки Браве, характеризующуюся гамильтонианом общего вида

$$H = \frac{1}{2} \sum_{\mathbf{r},\mathbf{r}'} V^{\alpha\beta}(\mathbf{r} - \mathbf{r}') e_{\mathbf{r}}^{\alpha} e_{\mathbf{r}'}^{\beta} = \frac{1}{2} \sum_{\mathbf{k}} \tilde{V}^{\alpha\beta}(\mathbf{k}) \tilde{\mathbf{e}}_{\mathbf{k}}^{\alpha} \tilde{\mathbf{e}}_{-\mathbf{k}}^{\beta}, \tag{3}$$

в котором взаимодействия $V^{\alpha\beta}(\mathbf{r}) = V^{\alpha\beta}(-\mathbf{r}) = V^{\beta\alpha}(\mathbf{r})$ могут быть анизотропными и дальнодействующими, $\mathbf{e}_{\mathbf{r}}$ — единичные двумерные векторы ориентаций моментов, $\alpha, \beta = x, y$, и по дважды повторяющимся греческим индексам подразумевается суммирование. Основное состояние системы определяется наименьшим собственным значением \tilde{V}_{min} и соответствующим единичным собственным вектором (или векторами) η_p тензора $\tilde{V}^{\alpha\beta}(\mathbf{k})$. Чтобы ввести четырехподрешеточное антиферромагнитное основное состояние с вырождением ориентаций магнитных моментов в подрешетках, ограничимся случаем квадратной решетки и потребуем, чтобы минимальное значение \tilde{V}_{min} достигалось в двух симметричных точках \mathbf{k}_A и $\mathbf{k}_{A'}$ первой зоны Бриллюэна (рис. 1*a*). Тогда

$$\tilde{V}^{\alpha\beta}(\mathbf{k}_{A})\eta_{0}^{\beta} = \tilde{V}_{min}\eta_{0}^{\alpha}, \quad \tilde{V}^{\alpha\beta}(\mathbf{k}_{A'})\eta_{1}^{\beta} = \tilde{V}_{min}\eta_{1}^{\alpha}, \quad \boldsymbol{\eta}_{1} \perp \boldsymbol{\eta}_{0}$$

$$\tag{4}$$

и структура моментов в основном состоянии $\mathbf{e}_{\mathbf{r}} = \boldsymbol{\xi}_0(\mathbf{r})$ с энергией $H_0 = N V_{min}/2$ будет вырождена по угловому параметру α :

$$\boldsymbol{\xi}_0(\mathbf{r}) = \boldsymbol{\eta}_0 \exp(i\mathbf{k}_A \mathbf{r}) \cos\alpha + \boldsymbol{\eta}_1 \exp(i\mathbf{k}_{A'} \mathbf{r}) \sin\alpha.$$
(5)

Рис. 1. Первая зона Бриллюэна квадратной решетки (*a*); четырехподрешеточная структура моментов на квадратной решетке (*b*). Здесь точечные линии соответствуют ортонормированному базису η_0 , η_1 , сплошные жирные стрелки задают конфигурацию моментов $\xi_0(\mathbf{r})$ в основном состоянии, сплошные тонкие стрелки — структуру векторов $\xi_1(\mathbf{r})$. Штриховые стрелки изображают угловые флуктуации \mathbf{e}_r около основного состояния

Поскольку $\mathbf{r} = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2$ (\mathbf{a}_1 и \mathbf{a}_2 — основные векторы решетки, n_1 и n_2 — целые числа), $\mathbf{k}_A \mathbf{r} = \pi n_1$, $\mathbf{k}_{A'} \mathbf{r} = \pi n_2$, фигурирующие в (5) экспоненты принимают значения ±1, и мы получаем четырехподрешеточную структуру, изображенную на рис. 16. Для изотропных взаимодействий $V^{\alpha\beta}(\mathbf{r}) = V(\mathbf{r})\delta_{\alpha\beta}$ ориентации векторов $\eta_0 = (\cos\beta, \sin\beta)$ и $\eta_1 = (-\sin\beta, \cos\beta)$ относительно осей решетки оказываются произвольными. Для неизотропных взаимодействий значение параметра β фиксировано (например, для дипольдипольных взаимодействий $\beta = \pi/2$). В обоих случаях угол 2α между ориентациями дипольных моментов в подрешетках, сдвинутых относительно друг друга на векторы \mathbf{a}_1 или \mathbf{a}_2 , остается произвольным в основном состоянии.

Для того чтобы ввести угловые флуктуации $\varphi_{\mathbf{r}}$ векторов $\mathbf{e}_{\mathbf{r}}$ относительно ориентационной структуры основного состояния, целесообразно использовать зависящий от \mathbf{r} ортонормированный базис $\xi_0(\mathbf{r}), \xi_1(\mathbf{r}),$ где

$$\boldsymbol{\xi}_1(\mathbf{r}) = \boldsymbol{\eta}_1 \exp(i\mathbf{k}_A \mathbf{r}) \cos \alpha - \boldsymbol{\eta}_0 \exp(i\mathbf{k}_{A'} \mathbf{r}) \sin \alpha$$
(6)

и разложить в этом базисе вектор er:

$$\mathbf{e}_{\mathbf{r}} = \boldsymbol{\xi}_0(\mathbf{r}) \cos \varphi_{\mathbf{r}} + \boldsymbol{\xi}_1(\mathbf{r}) \sin \varphi_{\mathbf{r}}$$
(7)

(такое разложение для произвольной решетки Браве было предложено в [14]). Подставляя выражение (7) в (3), получаем

$$H = \frac{1}{2} \sum_{\mathbf{r},\mathbf{r}'} V^{\alpha\beta}(\mathbf{r} - \mathbf{r}') \sum_{\sigma=\pm 1} \left[\zeta_{\sigma}^{\alpha\beta}(\mathbf{r},\mathbf{r}') \cos(\varphi_{\mathbf{r}} - \sigma\varphi_{\mathbf{r}'}) + \sigma \tilde{\zeta}_{\sigma}^{\alpha\beta}(\mathbf{r},\mathbf{r}') \sin(\varphi_{\mathbf{r}} + \sigma\varphi_{\mathbf{r}'}) \right], \quad (8)$$

где

$$\begin{aligned} \zeta_{\sigma}^{\alpha\beta}(\mathbf{r},\mathbf{r}') &= \frac{1}{2} \left[\xi_{0}^{\alpha}(\mathbf{r})\xi_{0}^{\beta}(\mathbf{r}') + \sigma\xi_{1}^{\alpha}(\mathbf{r})\xi_{1}^{\beta}(\mathbf{r}') \right], \\ \tilde{\zeta}_{\sigma}^{\alpha\beta}(\mathbf{r},\mathbf{r}') &= \frac{1}{2} \left[\xi_{0}^{\alpha}(\mathbf{r})\xi_{1}^{\beta}(\mathbf{r}') + \sigma\xi_{1}^{\alpha}(\mathbf{r})\xi_{0}^{\beta}(\mathbf{r}') \right]. \end{aligned}$$
(9)

Для корректного вычисления низкотемпературной асимптотики свободной энергии необходимо учесть, что корреляторы $\langle \varphi_r, \varphi_{r'} \rangle$ могут расходиться (как в фазе Березинского-Костерлица-Таулесса [18, 19]) и нельзя ограничиваться разложением выражения (8) до членов, квадратичных по φ_r . Выделение главных вкладов, получающихся от суммирования рядов по φ_r , можно провести различными способами [18–20]. Здесь мы воспользуемся наиболее наглядным вариационным методом, асимптотически точным в пределе низких температур, с помощью которого описывалось ориентационное упорядочение в двумерных системах с анизотропными и дальнодействующими взаимодействиями [14].

Введем эффективный гамильтониан гауссовских угловых флуктуаций

$$H_{eff} = \frac{1}{2} \sum_{\mathbf{k}} J(\mathbf{k}) \tilde{\varphi}_{\mathbf{k}} \tilde{\varphi}_{-\mathbf{k}}$$
(10)

с функцией $J(\mathbf{k})$, минимизирующей правую часть неравенства Фейнмана [21]:

$$F \leq \frac{\operatorname{Sp} H \exp(-H_{eff}/T)}{\operatorname{Sp} \exp(-H_{eff}/T)} - T \frac{\partial}{\partial T} \left[T \ln \operatorname{Sp} \exp\left(-\frac{H_{eff}}{T}\right) \right] =$$

$$= \frac{1}{4} N \sum_{\mathbf{r}} \sum_{\sigma = \pm 1} \left[W_0(\mathbf{r}) + \sigma W_1(\mathbf{r}) \right] \left[\exp(i\mathbf{k}_A \mathbf{r}) \cos^2 \alpha + \sigma \exp(i\mathbf{k}_{A'} \mathbf{r}) \sin^2 \alpha \right] \rho(\mathbf{r}|\sigma) -$$

$$- \frac{1}{2} T \sum_{\mathbf{k}} \ln \frac{2\pi eT}{J(\mathbf{k})}, \qquad (11)$$

где Sp означает интегрирование по комплексным переменным $\tilde{\varphi}_{\mathbf{k}} = \tilde{\varphi}^*_{-\mathbf{k}}$,

$$W_p(\mathbf{r}) = \eta_p^{\alpha} V^{\alpha\beta}(\mathbf{r}) \eta_p^{\beta}, \quad p = 0, 1,$$
(12)

$$\rho(\mathbf{r}|\sigma) = \langle \cos(\varphi_{\mathbf{r}'+\mathbf{r}} - \sigma\varphi_{\mathbf{r}'}) \rangle = \exp\left[-\frac{T}{N}\sum_{\mathbf{k}}\frac{1 - \sigma\cos\mathbf{kr}}{J(\mathbf{k})}\right]$$
(13)

и использовано тождество

$$\langle \cos(\varphi_{\mathbf{r}} \pm \varphi_{\mathbf{r}'} + C) \rangle = \operatorname{Re} \exp\left[-\frac{1}{2} \left\langle (\varphi_{\mathbf{r}} \pm \varphi_{\mathbf{r}'})^2 \right\rangle - iC\right],$$
 (14)

справедливое при усреднениях гауссовских флуктуаций углов, описываемых гамильтонианом (10). Варьирование выражения (11) по J(k) приводит к уравнению

$$J(\mathbf{k}) = -\frac{1}{2} \sum_{\mathbf{r}} \sum_{\sigma=\pm 1} [W_0(\mathbf{r}) + \sigma W_1(\mathbf{r})] \left[\exp(i\mathbf{k}_A \mathbf{r}) \cos^2 \alpha + \sigma \exp(i\mathbf{k}_{A'} \mathbf{r}) \sin^2 \alpha \right] \times (1 - \sigma \cos \mathbf{k} \mathbf{r}) \rho(\mathbf{r}|\sigma),$$
(15)

которое определяет функцию $J(\mathbf{k})$.

3. ОБЩИЙ АНАЛИЗ УРАВНЕНИЙ

Прежде всего заметим, что при T = 0 корреляторы $\rho(\mathbf{r}|\sigma) = 1$ и уравнение (15) сразу приводит к выражению

$$J_0(\mathbf{k}) = \tilde{W}_1(\mathbf{k} + \mathbf{k}_A) \cos^2 \alpha + \tilde{W}_0(\mathbf{k} + \mathbf{k}_{A'}) \sin^2 \alpha - \tilde{V}_{min}, \qquad (16)$$

которое действительно зависит от α . В разд. 4 и 5 будет показано, что это выражение сводится к известным соотношениям для двух короткодействующих моделей [13, 17]. В силу определений (4) и (12), имеем $\tilde{W}_0(\mathbf{k}_A) = \tilde{W}_1(\mathbf{k}_{A'}) = \tilde{V}_{min}$, так что, учитывая свойство

$$\tilde{W}_{p}(\mathbf{k}+2\mathbf{k}_{A})=\tilde{W}_{p}(\mathbf{k}+2\mathbf{k}_{A'})=\tilde{W}_{p}(\mathbf{k}),$$

получаем

$$J_0(\mathbf{k}_J) = 0 \quad (\mathbf{k}_J = \mathbf{k}_A + \mathbf{k}_{A'}),$$

см. рис. 1*а*. Поскольку для близкодействующих и диполь-дипольных взаимодействий величины $\tilde{V}^{\alpha\beta}(\mathbf{k})$ вблизи точек $\mathbf{k} = \mathbf{k}_A$ и $\mathbf{k}_{A'}$ имеют квадратичные асимптотики по соответствующим смещениям волнового вектора [14, 22], то $J_0(\mathbf{k} + \mathbf{k}_J)$ квадратично по \mathbf{k} и суммы по \mathbf{k} в (13) расходятся, если только величины $1 - \sigma \cos \mathbf{k}_J \mathbf{r}$ не обращаются в нуль. Так обстоит дело, если использовать неперенормированную термодинамическими флуктуациями функцию $J_0(\mathbf{k})$ (16).

Можно показать, что при $T \to 0$ (но $T \neq 0$) в перенормированном законе дисперсии $J(\mathbf{k})$ вблизи точки $\mathbf{k} = \mathbf{k}_J$ возникает щель. Для этого следует воспользоваться решеточно-подрешеточными соотношениями [22,23] и изотропией тензоров $\tilde{V}^{\alpha\beta}(\mathbf{k})$ в симметричных точках $\mathbf{k} = 0$ и \mathbf{k}_J . В результате получаем

$$J(\mathbf{k} + \mathbf{k}_J) \approx \frac{1}{2} \left[\tilde{V}(0) - \tilde{V}(\mathbf{k}_J) \right] \left[\rho(\mathbf{a}_1 | 1) - \rho(\mathbf{a}_2 | 1) \right] \cos 2\alpha + J_0(\mathbf{k} + \mathbf{k}_J), \tag{17}$$

где оставлены только те не равные единице корреляторы, которые дают основной вклад в образование щели.

Раскладывая величины $\tilde{W}_{\sigma}(\mathbf{k})$ в окрестностях точек \mathbf{k}_A и $\mathbf{k}_{A'}$:

$$\bar{W}_{0}(\mathbf{k} + \mathbf{k}_{A}) = \bar{V}_{min} + C_{x}(\mathbf{ka}_{1})^{2} + C_{y}(\mathbf{ka}_{2})^{2},
\tilde{W}_{1}(\mathbf{k} + \mathbf{k}_{A'}) = \tilde{V}_{min} + C_{y}(\mathbf{ka}_{1})^{2} + C_{x}(\mathbf{ka}_{2})^{2},$$
(18)

 * представим $J_0(\mathbf{k} + \mathbf{k}_J)$ в виде

$$J_0(\mathbf{k} + \mathbf{k}_J) = \frac{1}{2} (C_x + C_y) q^2 (1 - v \cos 2\theta_{\mathbf{k}}),$$
(19)

где

$$v = \frac{C_x - C_y}{C_x + C_y} \cos 2\alpha, \quad \mathbf{q} = \mathbf{k}a \tag{20}$$

и $\theta_{\mathbf{k}}$ — угол между вектором **k** и осью x. Наличие щели в спектре (17) предотвращает обращение в нуль корреляторов $\rho(\mathbf{a}_1|1)$ и $\rho(\mathbf{a}_2|1)$ при ненулевой температуре. Действительно, подставляя уравнения (17) и (19) в (13) и проводя асимптотическое интегрирование вблизи точки $\mathbf{q} = 0$, получаем

$$\rho(\mathbf{a}_1|1) \approx \rho(\mathbf{a}_2|1) \approx \exp\left[-\frac{T}{\pi(C_x + C_y)\sqrt{1 - v^2}} \left|\ln\gamma(v)T\right|\right],$$

$$\left|\rho(\mathbf{a}_1|1) - \rho(\mathbf{a}_2|1)\right| \propto T, \quad T \to 0,$$
(21)

10 ЖЭТФ, №2

где коэффициент $\gamma(v)$ определяется интегрированием по первой зоне Бриллюэна для каждой конкретной модели.

Поскольку величина энергетической щели в уравнении (17) пропорциональна температуре, то при $T \rightarrow 0$ ею можно пренебрегать при вычислении физических величин, не имеющих сингулярностей в точках, где $J_0(\mathbf{k}) = 0$. Это относится к линейному по температуре энтропийному вкладу в свободную энергию (1). Учитывая, что при повороте системы координат на угол 90° входящие в уравнение (16) величины преобразуются по закону

$$\tilde{W}_{0,1}(\mathbf{k} + \mathbf{k}_A) \leftrightarrow \tilde{W}_{1,0}(\mathbf{k} + \mathbf{k}_{A'}),$$

зависящий от α вклад в свободную энергию можно представить в следующем виде:

$$\Delta F(\alpha) = \frac{1}{2}T \sum_{\mathbf{k}} \ln J_0(\mathbf{k}) = \frac{1}{4} \sum_{\mathbf{k}} \ln \left[A_+^2(\mathbf{k}) - A_-^2(\mathbf{k}) \cos^2 2\alpha \right] \le \frac{1}{4}T \sum_{\mathbf{k}} \ln A_+^2(\mathbf{k}),$$

$$A_{\pm}(\mathbf{k}) = \frac{1}{2} \left\{ \left[\tilde{W}_1(\mathbf{k} + \mathbf{k}_A) - \tilde{V}_{min} \right] \pm \left[\tilde{W}_0(\mathbf{k} + \mathbf{k}_{A'}) - \tilde{V}_{min} \right] \right\}.$$
(22)

Отсюда следует предпочтительность коллинеарных ориентаций моментов в подрешетках, т. е. $2\alpha = 0$ и π . Ввиду положительности энергетической щели в уравнении (17) выбор значения $\alpha = 0$ или $\pi/2$ при учете знака $\tilde{V}(0) - \tilde{V}(\mathbf{k}_J)$ (или $C_x - C_y$) задает знак $\rho(\mathbf{a}_1|1) - \rho(\mathbf{a}_2|1)$.

Если $J_0(\mathbf{k})$ не обращается в нуль ни в одной точке, кроме $\mathbf{k} = \mathbf{k}_J$, то квадрат параметра дальнего порядка ρ_0 , определяемый уравнением (2) с перенормированной функцией $J(\mathbf{k})$, находится из соотношения

$$\rho_0 \approx \rho^{1/2}(\mathbf{a}_1|1) \tag{23}$$

и оказывается ненулевым. Именно так обстоит дело в системах с диполь-дипольными взаимодействиями [24], которые рассматриваются в следующем разделе.

В случае изотропных взаимодействий $W_0(\mathbf{r}) = W_1(\mathbf{r})$, в уравнениях (11), (15) остаются только члены с $\sigma = 1$ и поэтому J(0) = 0. Для случаев близкодействия функция $J(\mathbf{k})$ характеризуется квадратичными асимптотиками вблизи $\mathbf{k} = 0$, что приводит к расходимости интеграла от $J^{-1}(\mathbf{k})$ и отсутствию дальнего порядка ($\rho_0 = 0$ при $T \neq 0$). Один из возможных примеров систем такого рода рассматривается в разд. 5.

4. ДИПОЛЬНАЯ БЛИЗКОДЕЙСТВУЮЩАЯ МОДЕЛЬ

Отличные от нуля компоненты тензоров взаимодействий дипольных моментов, находящихся в соседних узлах квадратной решетки, описываются соотношениями

$$V^{xx}(\mathbf{a}_{1}) = V^{yy}(\mathbf{a}_{2}) = W_{1}(\mathbf{a}_{1}) = W_{0}(\mathbf{a}_{2}) = -2V,$$

$$V^{yy}(\mathbf{a}_{1}) = V^{xx}(\mathbf{a}_{2}) = W_{0}(\mathbf{a}_{1}) = W_{1}(\mathbf{a}_{2}) = V,$$
(24)

$$V^{xx}(\mathbf{q}) = W_1(\mathbf{q}) = V(-4\cos q_x + 2\cos q_y),$$

$$\tilde{V}^{yy}(\mathbf{q}) = \tilde{W}_0(\mathbf{q}) = V(2\cos q_x - 4\cos q_y),$$
(25)

в которых $\mathbf{q} = \mathbf{k}a$, $V = \mu^2/a^3$ — характерная энергия диполь-дипольных взаимодействий (μ — дипольный момент, a — постоянная решетки). В выбранной параметризации угол β на рис. 16 равен $\pi/2$, а углы вырождения α задают наклон векторов основного состояния к оси y квадратной решетки. Вводя компактные обозначения для корреляторов ближайших соседей

$$\rho_1 = \rho(\mathbf{a}_1|1), \quad \rho_2 = \rho(\mathbf{a}_2|1), \quad \rho_3 = \rho(\mathbf{a}_1|-1), \quad \rho_4 = \rho(\mathbf{a}_2|-1),$$
(26)

преобразуем функцию (15) к следующему виду:

$$J(\mathbf{k}) = \frac{1}{2} \left| \tilde{V}_{min} \right| J(q_x, q_y), \quad J(q_x, q_y) = \rho_3 (1 + \cos q_x) + \rho_4 (1 + \cos q_y) - v \left[\rho_1 (1 - \cos q_x) - \rho_2 (1 - \cos q_y) \right],$$
(27)

где

$$\frac{1}{2}\left|\tilde{V}_{min}\right| = C_x + C_y = 3V, \quad v = \frac{1}{3}\cos 2\alpha.$$
(28)

Значения $C_x = V$, $C_y = 2V$ согласуются с определением v в (20) и позволяют оценить низкотемпературное поведение ρ_1, ρ_2 по формуле (21). При T = 0, когда все корреляторы равны 1, функция (27) с точностью до обозначений и выбора параметризации совпадает с приведенной в [17].

Вычисляя интегралы в (13) по первой зоне Бриллюэна с функцией (27), получаем следующую систему уравнений для корреляторов (26):

$$\rho_{1,2} = \rho_0^2 / \rho_{3,4}, \quad \rho_0 = \exp(-\tau L_0), \quad \tau = T/3V,$$
(29)

$$L_0 = \frac{1}{(2\pi)^2} \iint_{-\pi}^{\pi} \frac{dq_x dq_y}{J(q_x, q_y)} = \frac{1}{\pi} \left[\frac{\rho_3 \rho_4}{\rho_3^2 \rho_4^2 - v^2 \rho_0^4} \right]^{1/2} K(m),$$
(30)

 $\rho_{3,4} = \exp(-\tau L_{3,4}),$

$$L_{3,4} = \frac{1}{(2\pi)^2} \iint_{-\pi}^{\pi} \frac{1 + \cos q_{x,y}}{J(q_x, q_y)} dq_x dq_y = \frac{\rho_{3,4}}{\rho_{3,4}^2 \pm v\rho_0^2} \left[1 - \Lambda_0(\varepsilon_{3,4}, m) \right], \tag{31}$$

$$m = \frac{(\rho_3^2 + v\rho_0^2)(\rho_4^2 - v\rho_0^2)}{\rho_3^2\rho_4^2 - v^2\rho_0^4}, \quad \varepsilon_{3,4} = \arcsin\left[\frac{\rho_3\rho_4 \mp v\rho_0^2}{\rho_{3,4}(\rho_3 + \rho_4)}\right]^{1/2}, \tag{32}$$

где K(m) — полный эллиптический интеграл первого рода, $\Lambda_0(\varepsilon, m)$ — лямбда-функция Хеймана [25]. Параметр дальнего порядка $\rho_0^{1/2}$ связывает корреляторы ближайших соседей и принимает ненулевые значения в низкотемпературной области при $\rho_3 > \rho_4$. Последнее неравенство соответствует структурам с $\alpha = 0$, когда v > 0, $\rho_1 < \rho_2$ и щель $J(\pi, \pi) = 2v(\rho_2 - \rho_1) > 0$. В [24] была выбрана параметризация, соответствующая $\beta = 0$ в основном состоянии, при которой $J(\pi, \pi) = 2v(\rho_1 - \rho_2) > 0$ и $\rho_3 < \rho_4$.

Система уравнений (29)–(32) допускает аналитическое решение в случае малых значений параметра v (или малых ρ_0 , когда $m \to 1$):

$$\rho_{3,4} = \rho \pm \delta, \quad \rho = \exp\left[-\frac{\tau}{2\rho}\right],$$
(33)

10*

Рнс. 2. Температурные зависимости квадрата параметра дальнего порядка (кривая θ) и корреляторов ближайших соседей ρ_j (кривые j = 1, ..., 4) для дипольной (сплошные линии) и изотропной (штриховые линии) близкодействующих моделей при v = 1/3

$$\rho_0 = \exp\left\{\frac{\tau}{2(\pi\rho - 2\tau)} \ln\frac{(\pi - 2)v^2\tau}{4\rho^4 \left[2\pi\rho - (\pi - 2)\tau\right]}\right\}, \quad \tau < \frac{\pi\rho}{2},$$
 (34)

$$\delta = \frac{(\pi - 2)\rho_0^2 v\tau}{\rho \left[2\pi\rho - (\pi - 2)\tau\right]}.$$
(35)

Уравнение (33) определяет изменение ρ от 1 до $e^{-1} \approx 0.3679$ при увеличении температурного параметра τ от 0 до $\tau_c = 2e^{-1} \approx 0.7358$. Однако при несколько меньшем значении $\tau_{c'} = (\pi/2)\exp(-\pi/4) \approx 0.7162$ знаменатель $\pi\rho - 2\tau$ обращается в нуль. В точке $\tau = \tau_{c'}$ знак логарифмического сомножителя отрицателен при $v < v^* = 2\exp(-\pi/2)\left[(6-\pi)/(\pi-2)\right]^{1/2} \approx 0.6579$ и параметр дальнего порядка $\rho_0^{1/2}$ также обращается в нуль, что соответствует спонтанному нарушению дискретной симметрии Z₄. В узкой температурной области $\tau_{c'} < \tau < \tau_c$ имеем $\rho_0 = \rho_1 = \rho_2 = 0$, $\delta = 0$, корреляторы $\rho_3 = \rho_4 = \rho$ изменяются от $\exp(-\pi/4) \approx 0.4559$ до e^{-1} и может реализоваться только фаза с ближним порядком. Температурные зависимости $\rho_0, \rho_1, \ldots, \rho_4$ для v = 1/3 представлены на рис. 2 сплошными линиями.

5. ИЗОТРОПНАЯ БЛИЗКОДЕЙСТВУЮЩАЯ МОДЕЛЬ

Рассмотрим двумерную модель XY моментов, учитывающую изотропные обменные взаимодействия как ближайших соседей на квадратной решетке (V_1) , так и соседей, связанных диагоналями квадратов решетки (V_2) [3,13]:

$$V^{\alpha\beta}(\mathbf{r}) = V(r)\delta_{\alpha\beta}, \quad V(a) = V_1, \quad V\left(\sqrt{2}a\right) = V_2,$$
 (36)

$$\tilde{V}(\mathbf{q}) = \tilde{W}_0(\mathbf{q}) = \tilde{W}_1(\mathbf{q}) = 2V_1(\cos q_x + \cos q_y) + 4V_2 \cos q_x \cos q_y.$$
(37)

При 0 < V_1 < 2 V_2 система в основном состоянии характеризуется энергией $H_0 = -2NV_2$ ($\tilde{V}_{min} = -4V_2$) и распадается на две квадратные ($\sqrt{2} \times \sqrt{2}$) подрешетки, каждая из которых антиферромагнитно упорядочена и имеет произвольные углы 2α между ориентациями моментов в подрешетках. Вследствие изотропии взаимодействий (36)

ориентации моментов вообще не связаны с ориентациями осей решетки и в отличие от дипольной модели угол β также произволен. Такая модель может реализоваться, например, в двух прилегающих квадратных слоях CuO₂, центрированных один над другим (как в некоторых высокотемпературных сверхпроводниках), в которых V_1 описывает малые межслоевые обменные взаимодействия [13].

Функция (15) для рассматриваемой модели принимает вид

$$J(\mathbf{k}) = \frac{1}{2} \left| \tilde{V}_{min} \right| J(q_x, q_y),$$

$$J(q_x, q_y) = (\rho_3 + \rho_4)(1 - \cos q_x \cos q_y) + (\rho_3 - \rho_4) \sin q_x \sin q_y + + 2v \left[\rho_1(1 - \cos q_x) - \rho_2(1 - \cos q_y)\right],$$
(38)

где

$$\rho_1 = \rho(\mathbf{a}_1|1), \quad \rho_2 = \rho(\mathbf{a}_2|1), \quad \rho_3 = \rho(\mathbf{a}_1 + \mathbf{a}_2|1), \quad \rho_4 = \rho(\mathbf{a}_1 - \mathbf{a}_2|1), \quad (39)$$

$$|V_{min}| = C_x + C_y, \quad C_{x,y} = 2V_2 \pm V_1, \quad v = (V_1/2V_2)\cos 2\alpha.$$
 (40)

При T = 0 все корреляторы равны 1 и выражение (38) сводится к полученному в [13]. Поправка к свободной энергии (22) оказывается равной

$$\Delta F(\alpha) = \frac{1}{2}NT \left\{ -\ln 2 + \frac{2}{\pi} \left[f\left(\frac{\pi}{2} + \delta\right) + f\left(\frac{\pi}{2} - \delta\right) \right] \right\} \xrightarrow[v \to 0]{} \frac{1}{2}NT \left(\frac{4}{\pi}G - \ln 2 - \frac{1}{\pi}v^2 \right),$$
(41)

где $f(\delta)$ — интеграл Клаузена, $\sin \delta = v$ и $G \approx 0.916$ — постоянная Каталана [25]. Асимптотика малых v в формуле (41) согласуется с результатом монте-карловского моделирования [15] $\Delta F(\alpha) \approx \text{const} + 0.04NT(2\alpha)^2$ (при $V_1 = V_2$) и с точностью до потерянного в [13] сомножителя 1/2 совпадает с полученным там путем численного интегрирования выражением $\Delta F(\alpha) \approx \text{const} - 0.32NTv^2$ (коэффициент 0.32 есть не что иное, как π^{-1}).

Интегралы в (13) с функцией $J(q_x, q_y)$ (38) легко вычисляются:

$$M_{1}(\rho_{1},\rho_{2},\rho_{3},\rho_{4}) = \frac{1}{(2\pi)^{2}} \iint_{-\pi}^{\pi} \frac{1-\cos q_{x}}{J(q_{x},q_{y})} dq_{x} dq_{y} = \frac{1}{\pi B^{1/2}} \ln \frac{(A+B)^{1/2} + (2B)^{1/2}}{(A-B)^{1/2}}, \quad (42)$$
$$A = 2\rho_{3}\rho_{4} - 2v^{2}\rho_{1}\rho_{2} + v(\rho_{1}-\rho_{2})(\rho_{3}+\rho_{4}), \quad B = \rho_{3}\rho_{4} - v^{2}\rho_{1}^{2},$$

$$M_2(\rho_1,\rho_2,\rho_3,\rho_4) = \frac{1}{(2\pi)^2} \iint_{-\pi}^{\pi} \frac{1-\cos q_y}{J(q_x,q_y)} dq_x dq_y = M_1(-\rho_2,-\rho_1,\rho_4,\rho_3),$$
(43)

$$M_{3,4}(\rho_1,\rho_2,\rho_3,\rho_4) = \frac{1}{(2\pi)^2} \iint_{-\pi}^{\pi} \frac{1 - \cos(q_x \pm q_y)}{J(q_x,q_y)} dq_x dq_y = = \frac{1}{\rho_{3,4}} \left\{ \frac{1}{2} - v(\rho_1 M_1 - \rho_2 M_2) + \operatorname{sign}(\rho_{3,4} - \rho_{4,3}) \left[1 + \frac{1}{\pi} \operatorname{arctg} \frac{|\rho_3 - \rho_4|}{(2A)^{1/2}} \right] \right\},$$
(44)

и корреляторы ρ_1, \ldots, ρ_4 определяются системой уравнений

$$\rho_j = \exp\left[-\tau M_j(\rho_1, \rho_2, \rho_3, \rho_4)\right], \quad j = 1, \dots, 4, \quad \tau = \frac{T}{2V_2}.$$
(45)

Предположим, что $\rho_3 > \rho_4$. Тогда из формулы (44) следует $M_3 > M_4$, а из (45) — $\rho_3 < \rho_4$. Полученное противоречие доказывает, что уравнения (45) имеют решения только с $\rho_3 = \rho_4$.

Низкотемпературное поведение корреляторов ρ_1 и ρ_2 определяется формулой (21), тогда как температурная зависимость ρ_3 при $v \le 0.5$ с хорошей точностью описывается уравнением $\rho_3 = \exp[-\tau/2\rho_3]$. На больших расстояниях $\mathbf{R} = 2n_1\mathbf{a}_1 + 2n_2\mathbf{a}_2$ и при $\tau \ll 1$ те же корреляторы убывают как

$$\rho(\mathbf{a}_{1} + \mathbf{R}|1) \sim (\lambda_{1}R/a\tau^{2})^{-\tau/2\pi\sqrt{1-v^{2}}},$$

$$\rho(\mathbf{a}_{1} + \mathbf{a}_{2} + \mathbf{R}|1) \sim (\lambda_{2}R/a)^{-\tau/\pi\sqrt{1-v^{2}}}$$
(46)

 $(\lambda_1$ и λ_2 — константы, не зависящие от **R** и τ) и обращаются в нуль при $R \to \infty$, что согласно (2) соответствует $\rho_0 = 0$.

Система уравнений (45) при $v \to 0$ и $0 < \tau < \tau_c \approx 2/e$ имеет следующее асимптотическое решение:

$$\rho_{3} = \rho_{4} = \exp\left[-\tau/2\rho_{3}\right],$$

$$\rho_{1} = \exp\left[\frac{\tau}{2(\pi\rho_{3}-\tau)}\ln\frac{v^{2}\tau}{4\pi\rho_{3}^{3}}\right], \quad \rho_{1} - \rho_{2} = \frac{\rho_{1}^{2}}{\pi\rho_{3}^{2}}v\tau.$$
(47)

Характер полученных температурных зависимостей иллюстрируют штриховые линии на рис. 2.

6. ОБСУЖДЕНИЕ

Прежде всего обсудим область применимости результатов, полученных в рамках самосогласованного метода вычисления гауссовских угловых флуктуаций. В [14] было показано, что используемый метод дает правильное описание низкотемпературных корреляционных функций в тех случаях, когда можно не учитывать статистику поворотов моментов на большие углы относительно их ориентаций в основном состоянии. Такая ситуация реализуется для вырожденных систем (характеризуемых определенным значением волнового вектора k, при котором $J(\mathbf{k}) = 0$) или для систем с малым возмущений являются рассмотренные в [14] локальные потенциалы $h_p \cos p\varphi_r \, c \, p = 2, 3, \ldots$ и $h_p \rightarrow 0$, которые приводят к возникновению в двумерной системе дальнего порядка в области низких температур и наличию промежуточной фазы с ближним порядком, начиная с некоторого значения p.

В данной статье в роли аналогичного возмущения выступают анизотропные поправки, пропорциональные параметру v. Действительно, из уравнения (19) при v = 0следует изотропия асимптотики закона дисперсии $J_0(\mathbf{k})$ вблизи точки $\mathbf{k} = \mathbf{k}_J$. Кроме того, при v = 0 имеем $\rho(\mathbf{a}_1|1) = \rho(\mathbf{a}_2|1)$ и в спектре возбуждений (17) отсутствует щель, так что функции $J(\mathbf{k})$ и $J_0(\mathbf{k})$ совпадают. Таким образом, условие малых возмущений, при котором справедлив используемый метод, реализуется при $v \ll 1$. С другой стороны, при $v \to 1$ асимптотика $J_0(\mathbf{k} + \mathbf{k}_J)$ стремится к $(C_x + C_y)a^2k_y^2$, что соответствует переходу к квазиодномерной системе с невзаимодействующими цепочками моментов. Малые значения межцепочечных взаимодействий по отношению к внутрицепочечным обусловливают изингоподобное поведение рассматриваемых систем и низкие температуры фазовых переходов.

Например, для диполь-дипольных взаимодействий коэффициенты C_x и C_y изменяются от V и 2V для близкодействующей модели до 0.1447V и 1.7873V при учете дальнодействия [14, 22], что соответствует изменению v от 1/3 до 0.8502. Увеличение значений v приводит к более быстрому уменьшению корреляторов (21) с ростом температуры. Это согласуется с результатами монте-карловского моделирования [17, 26], которые указывают на уменьшение температуры фазового перехода от значения $T_c = (1.52 \pm 0.01)V$ для близкодействующей модели до значения $T_c \approx 0.75V$ при учете дальнодействия дипольных сил. Первое значение оказывается близким к температуре фазового перехода $T_c = 1.641V$ в аналогичной точно решаемой дипольной близкодействующей изинговской модели [27], в которой диполи могут иметь 4 дискретные ориентации вдоль диагоналей квадратной решетки, соответствующие $\alpha = \pi/4$. Второе значение также хорошо коррелирует с результатом простого приближения межцепочечного самосогласованного поля ($T_c \approx 0.76V$ [28]), которое учитывает изингоподобное поведение дипольных моментов в цепочках.

Представленный в данной статье анализ обобщенной модели плоских вырожденных антиферромагнитных структур объясняет механизм возникновения коллинеарных ориентаций моментов за счет появления в спектре спин-волновых возбуждений линейной по температуре энергетической щели. Наличие последней обусловливает специфическую температурную зависимость корреляторов ближайших соседей (21), которые входят в определяемый монте-карловскими экспериментами [15, 17] коррелятор

$$\langle \Psi_{\mathbf{R}} \rangle = \frac{1}{4} \left\langle (\mathbf{e}_{\mathbf{a}_1 + \mathbf{a}_2 + \mathbf{R}} - \mathbf{e}_{\mathbf{R}}) (\mathbf{e}_{\mathbf{a}_1 + \mathbf{R}} - \mathbf{e}_{\mathbf{a}_2 + \mathbf{R}}) \right\rangle = \frac{1}{2} \left[\rho(\mathbf{a}_1 | 1) + \rho(\mathbf{a}_2 | 1) \right] \cos 2\alpha.$$
(48)

В случае неизотропных взаимодействий в системе возникает дальний порядок, характеризуемый такой же, как и в уравнении (21), температурной зависимостью ρ_0 . Аналогичная температурная зависимость параметра дальнего порядка ($\rho_0 \sim \exp(-T|\ln T|)$) была недавно доказана для плоского треугольного антиферромагнетика во внешнем магнитном поле [29]. Для изотропных близкодействующих взаимодействий дальний порядок отсутствует, но это не мешает установлению коллинеарных ориентаций магнитных моментов на расстояниях, меньших корреляционной длины фазы Березинского-Костерлица–Таулесса.

В заключение автор благодарит профессоров К. Л. Хенли (С. L. Henley) и Х. Ф. Фернандеса (J. F. Fernandez) за ряд полезных критических замечаний. Представленная работа была поддержана Государственным фондом фундаментальных исследований Государственного комитета по науке и технике Украины (проект № 2.4/308), а также совместным грантом № К64100 Международного научного фонда и Правительства Украины.

Литература

- 1. P. W. Anderson, Phys. Rev. 102, 1008 (1956).
- 2. J. Villain, Z. Phys. B 33, 31 (1979).
- 3. C. L. Henley, J. Appl. Phys. 61, 3962 (1987).
- 4. S. J. Kennedy and T. J. Hicks, J. Phys. F 17, 1599 (1987).
- 5. T. Giebultowicz, J. Magn. Magn. Mater. 54-57, 1287 (1986).
- 6. Е. Ф. Шендер, ЖЭТФ 83, 326 (1982).
- 7. P. Schiffer, A. P. Ramirez, D. A. Huse, and A. J. Valentino, Phys. Rev. Lett. 73, 2500 (1994).
- 8. П. И. Белобров, Р. С. Гехт, В. А. Игнатченко, ЖЭТФ 84, 1097 (1983).
- 9. В. М. Розенбаум, В. М. Огенко, ФТТ 26, 1448 (1984).
- 10. S. Prakash and C. L. Henley, Phys. Rev. B 42, 6574 (1990).
- 11. G. O. Zimmermann, A. K. Ibrahim, and F. Y. Wu, Phys. Rev. B 37, 2059 (1988).
- 12. V. M. Rozenbaum, Phys. Rev. B 51, 1290 (1995).
- 13. C. L. Henley, Phys. Rev. Lett. 62, 2056 (1989).
- 14. Ю. М. Малозовский, В. М. Розенбаум, ЖЭТФ 98, 265 (1990).
- 15. J. F. Fernandez, M. Puma, and R. F. Angulo, Phys. Rev. B 44, 10057 (1991).
- 16. J. N. Reimers and A. J. Berlinsky, Phys. Rev. B 48, 9539 (1993).
- 17. S. Romano, Physica Scripta 50, 326 (1994).
- 18. В. Л. Березинский, ЖЭТФ 59, 907 (1970); 61, 1144 (1971).
- 19. J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).
- 20. В. Л. Покровский, Г. В. Уймин, ЖЭТФ 65, 1691 (1973).
- 21. Р. Фейнман, Статистическая механика, Мир, Москва (1975).
- 22. V. M. Rozenbaum, Phys. Rev. B 53, 6240 (1996).
- 23. В. М. Розенбаум, ЖЭТФ 107, 536 (1995).
- 24. В. М. Розенбаум, Письма в ЖЭТФ 63, 623 (1996).
- 25. Справочник по специальным функциям, под ред. М. Абрамовица и И. Стиган, Наука, Москва (1979).
- 26. S. Romano, Nuovo Cim. D 9, 409 (1987).
- 27. В. М. Розенбаум, В. М. Огенко, Письма в ЖЭТФ 35, 151 (1982).
- 28. Yu. M. Malozovsky and V. M. Rozenbaum, Physica A 175, 127 (1991).
- 29. R. Rustelli, A. Tassi, A. Pimpinelli, and S. Sedazzari, Phys. Rev. B 45, 7936 (1992).