СПОНТАННОЕ И ВЫНУЖДЕННОЕ ЧЕРЕНКОВСКОЕ ИЗЛУЧЕНИЕ ЭЛЕКТРОНАМИ В ЦИЛИНДРИЧЕСКИХ ДИЭЛЕКТРИКАХ

Н. К. Жеваго, В. И. Глебов

Российский научный центр «Курчатовский институт» 123182, Москва, Россия

Поступила в редакцию 14 мая 1996 г.

Развита теория вынужденного черенковского излучения в диэлектриках с цилиндрической симметрией в случае, когда пучок электронов движется вблизи поверхности диэлектрика. Исследован спектр возможных мод излучения и получены аналитические выражения для коэффициента усиления на частотах различных мод.

1. ВВЕДЕНИЕ

Вынужденное черенковское излучение представляет возможность создания лазеров на свободных электронах в широкой области спектра [1–5]. Основным фактором, приводящим к уменьшению коэффициента усиления в лазерах на свободных электронах черенковского типа является многократное кулоновское рассеяние электронов, которое оказывается существенным даже в случае газовой среды или относительно тонких мишеней. Альтернативой схемам лазеров на свободных электронах, в которых пучок электронов проходит через вещество, являются схемы, основанные на движении электронов над поверхностью диэлектриков [4,6]. В этом случае многократное рассеяние исчезает, однако интенсивность черенковского излучения экспоненциально убывает, когда расстояние до поверхности диэлектрика превышает величину $\lambda\gamma$, где λ — длина волны излучения, деленная на 2π , γ — лоренц-фактор электронов. Несмотря на это, удалось наблюдать достаточно интенсивное вынужденное черенковское излучение в миллиметровом [7] и субмиллиметровом [7] диапазонах, используя волноводы, нагруженные диэлектриком.

В настоящей работе будет развита теория черенковского излучения в случае, когда пучок электронов движется вблизи сплошного цилиндрического диэлектрика или внутри полого диэлектрического цилиндра, параллельно оси. Сначала сформулируем общий подход к проблеме энергетических потерь электроном, который может быть применен и к другим задачам, (например, возбуждению плазмонов), а также для более сложных структур (оптическое волокно с плавным профилем диэлектрической проницаемости). Затем мы исследуем структуру возможных мод черенковского излучения в сплошном и в полом диэлектрическом цилиндре. Основной целью работы является исследование вынужденного черенковского излучения в относительно коротковолновой области инфракрасного и оптического диапазонов. В рамках приближения холодного пучка электронов и относительно слабого усиления будут получены аналитические выражения для коэффициента усиления на частотах различных мод и проведен анализ оптимальных условий для усиления.

2. ЭЛЕКТРОМАГНИТНЫЕ ПОТЕРИ ЭНЕРГИИ ЭЛЕКТРОНА В СРЕДЕ С ЦИЛИНДРИЧЕСКОЙ СИММЕТРИЕЙ

Теория спонтанного черенковского излучения зарядом, движущимся параллельно оси цилиндрического канала в диэлектрике, была развита Богданкевич и Болотовским [10]. Однако ими анализировался случай движения внутри цилиндра, тогда как для целей разработки лазеров на свободных электронах интересен противоположный случай движения вне цилиндра. Нами будет развит общий подход к данной проблеме, который позволяет получить результаты для произвольного расстояния ρ_0 от электрона до оси цилиндра, при этом существенно дальше продвинуться в выводе аналитических выражений для спектра спонтанного черенковского излучения, что особенно важно для дальнейшего анализа вынужденного черенковского излучения.

Рассмотрим сначала подробно случай сплошного цилиндра, а более сложный случай полого цилиндра может быть исследован аналогичным методом (см. разд. 4). Пусть вещество, окружающее цилиндр, характеризуется диэлектрической проницаемостью $\varepsilon_1(\omega)$ (вообще говоря, комплексной), вещество цилиндра — диэлектрической проницаемостью $\varepsilon_2(\omega)$, а электрон движется параллельно оси цилиндра со скоростью v. Для дальнейшего решения неоднородных уравнений Максвелла с зарядом и током релятивистского электрона, разложим электромагнитное поле в интегралы Фурье по времени и по координате z вдоль оси цилиндра, а также в ряд Фурье по азимутальному углу ϕ , который отсчитывается от плоскости, содержащей ось цилиндра и траекторию электрона:

$$\mathbf{E}(\mathbf{r},t) = (2\pi)^{-2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \mathbf{E}(\rho,m,k_z,\omega) \exp(im\phi - i\omega t + ik_z z) dk_z d\omega,$$

$$\mathbf{H}(\mathbf{r},t) = (2\pi)^{-2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \mathbf{H}(\rho,m,k_z,\omega) \exp(im\phi - i\omega t + ik_z z) dk_z d\omega.$$
(1)

Потери энергии электроном W за все время движения совпадают с работой, производимой электрическим полем над зарядом

$$W = \int_{-\infty}^{\infty} \mathbf{j}^*(\mathbf{r}, t) \mathbf{E}(\mathbf{r}, t) d^3 r dt, \qquad (2)$$

где в рассматриваемом случае отлична от нуля лишь продольная компонента тока электрона

$$j_z(\mathbf{r},t) = ev\delta(\mathbf{r}_{\perp} - \mathbf{r}_{\perp 0})\delta(z - vt),$$

 $\mathbf{r}_{\perp 0}$ — радиус-вектор электрона в поперечной по отношению к оси цилиндра плоскости, $\mathbf{r} = (\mathbf{r}_{\perp 0}, z)$. Используем разложение типа (1) для тока электрона и для электрического поля и проведем интегрирование в (2). В результате получаем спектральное разложение потерь энергии в виде

$$W = \frac{ev}{\pi} \operatorname{Re} \sum_{m=-\infty}^{\infty} \int_{0}^{\infty} E_{z} \left(\rho_{0}, m, \frac{\omega}{v}, \omega \right) d\omega.$$
(3)

Как и следовало ожидать, потери энергии электроном определяются модами, фазовая скорость распространения которых вдоль оси цилиндра ω/k_z совпадает со скоростью электрона v, причем вклад дают лишь моды с ненулевой z-компонентой электрического поля.

Общее решение неоднородного уравнения Максвелла будем искать в виде суммы частного решения неоднородных уравнений, обозначаемого далее верхним индексом (p), и общего решения однородных уравнений, обозначаемого индексом (h). Первое слагаемое из этой суммы представляет собой электромагнитное поле движущегося электрона и в каждой из областей пространства $\rho < a$ и $\rho > a$, где $\rho = |\mathbf{r}_{\perp}|$, может быть выражено через z-компоненту векторного потенциала A_z в виде

$$\begin{aligned} H_{\rho}^{(p)} &= \frac{im}{\rho} A_z, \quad H_{\varphi}^{(p)} &= -\frac{\partial A_z}{\partial \rho}, \quad H_z^{(p)} &= 0, \\ E_{\rho}^{(p)} &= \frac{c}{v\varepsilon} \frac{\partial A_z}{\partial \rho}, \quad E_{\varphi}^{(p)} &= -\frac{im}{v\varepsilon\rho} A_z, \quad E_z^{(p)} &= i\left(\frac{\omega}{c} - \frac{ck_z}{v\varepsilon}\right)^{*} A_z, \end{aligned}$$

где нижние индексы соответствуют цилиндрическим компонентам полей, ε — диэлектрическая проницаемость среды:

$$\varepsilon = \begin{cases} \varepsilon_1(\omega) & \text{при } \rho > a \\ \varepsilon_2(\omega) & \text{при } \rho < a \end{cases}$$

В свою очередь z-компонента векторного потенциала A_z может быть записана в виде

$$A_{z}(\rho, m, k_{z}, \omega) = \frac{4\pi e}{c} f_{m}(\rho, \rho_{0}) \delta\left(k_{z} - \frac{\omega}{v}\right), \qquad (4)$$

$$f_m(\kappa\rho) = \begin{cases} K_m(\kappa\rho_0)I_m(\kappa\rho) & \text{при } \rho \le \rho_0\\ I_m(\kappa\rho_0)K_m(\kappa\rho) & \text{при } \rho \ge \rho_0 \end{cases}.$$
(5)

Здесь K_m, I_m — модифицированные функции Бесселя, $\kappa = ((\omega/c)^2 \varepsilon - k_z^2)^{1/2}$.

Как известно (см., например, [11]), общее решение однородных уравнений Максвелла может быть представлено в виде линейной комбинации TE-волн (у которых продольная компонента электрического поля $E_z^{(TE)}$ тождественно равна нулю) и TM-волн (с нулевой компонентой $H_z^{(TM)} \equiv 0$). Ненулевые продольные компоненты полей $E_z^{(TM)}$ и $H_z^{(TE)}$ удовлетворяют уравнению

$$\frac{1}{\rho}\frac{\partial}{\partial\rho}\left(\rho\frac{\partial F}{\partial\rho}\right) - (m^2 - \kappa^2)F = 0 ,$$

а поперечные компоненты могут быть выражены через $E_z^{(TM)}$ и $H_z^{(TE)}$. В частности, тангенциальные компоненты полей имеют следующий вид:

$$E_{\varphi}^{(h)} = \frac{i\omega}{c\kappa^2} \frac{\partial H_z^{(TE)}}{\partial \rho} + \frac{mk_z}{\kappa^2 \rho} E_z^{(TM)}$$

$$H_{\varphi}^{(h)} = -\frac{i\omega\varepsilon}{c\kappa^2} \frac{\partial E_z^{(TM)}}{\partial \rho} + \frac{mk_z}{\kappa^2 \rho} H_z^{(TE)}.$$

Продольные компоненты свободных полей при $k_z = \omega/v$ будем искать в виде

$$E_{z}^{(TM)} = LA_{m}^{(TM)}K_{m}(\kappa_{1}\rho) , \quad H_{z}^{(TE)} = LA_{m}^{(TE)}K_{m}(\kappa_{1}\rho) , \quad \rho \ge a,$$

$$E_{z}^{(TM)} = LB_{m}^{(TM)}I_{m}(\kappa_{2}\rho) , \quad H_{z}^{(TE)} = LB_{m}^{(TE)}I_{m}(\kappa_{2}\rho) , \quad \rho \le a,$$
(6)

где $A_m^{(TM)}$, $B_m^{(TM)}$, $A_m^{(TE)}$, $B_m^{(TE)}$ — неизвестные коэффициенты, $\kappa = (\omega/v)(1 - \varepsilon \beta^2)^{1/2}$, $\beta = v/c$. Множитель $2\pi\delta(k_z - \omega/v)$ в (4) при $k_z = \omega/v$ необходимо интерпретировать как длину пути электрона L. Неизвестные коэффициенты находятся из условий непрерывности тангенциальных и продольных компонент электрического $\mathbf{E} = \mathbf{E}^{(p)} + \mathbf{E}^{(h)}$ и магнитного $\mathbf{H} = \mathbf{H}^{(p)} + \mathbf{H}^{(h)}$ полей. Для этих коэффициентов получаем следующую систему линейных алгебраических уравнений:

$$A_m^{(TE)}K_m(\kappa_1 a) = B_m^{(TE)}I_m(\kappa_2 a),$$

$$\begin{split} A_m^{(TM)} K_m(\kappa_1 a) &+ \frac{2ie\omega}{c^2} \left(1 - \frac{1}{\varepsilon_1 \beta^2} \right) f_m(\kappa_1 a) = B_m^{(TM)} I_m(\kappa_2 a) + \frac{2ie\omega}{c^2} \left(1 - \frac{1}{\varepsilon_2 \beta^2} \right) f_m(\kappa_2 a), \\ &\frac{i\omega}{c\kappa_1^2} \left[A_m^{(TE)} \kappa_1 K_m'(\kappa_1 a) - \frac{im}{\beta a} A_m^{(TM)} K_m(\kappa_1 a) \right] - \frac{2iem}{v\varepsilon_1 a} f_m(\kappa_1 a) = \\ &= \frac{i\omega}{c\kappa_2^2} \left[B_m^{(TE)} \kappa_2 I_m'(\kappa_2 a) - \frac{im}{\beta a} B_m^{(TM)} I_m(\kappa_2 a) \right] - \frac{2iem}{v\varepsilon_2 a} f_m(\kappa_2 a), \\ &\frac{i\omega}{c\kappa_1^2} \left[\frac{im}{\beta a} A_m^{(TE)} K_m(\kappa_1 a) + \varepsilon_1 \kappa_1 A_m^{(TM)} K_m'(\kappa_1 a) \right] + \frac{2e\kappa_1}{c} f_m'(\kappa_1 a) = \\ &= \frac{i\omega}{c\kappa_2^2} \left[\frac{im}{\beta a} B_m^{(TE)} I_m(\kappa_2 a) + \varepsilon_2 \kappa_2 B_m^{(TM)} I_m'(\kappa_2 a) \right] + \frac{2e\kappa_2}{c} f_m'(\kappa_2 a), \end{split}$$

где штрих означает производную по аргументу.

Решив эту систему, находим продольную компоненту электрического поля $E_z(\rho_0, m, \omega/v, \omega)$:

$$L^{-1}E_{z}(\rho_{0} \leq a) = \frac{\Delta_{m}(\omega)}{D_{m}(\omega)}I_{m}(\kappa_{2}a) - \frac{2ie}{\omega}\frac{\kappa_{2}^{2}}{\varepsilon_{2}}I_{m}(\kappa_{2}\rho_{0})K_{m}(\kappa_{2}a),$$

$$L^{-1}E_{z}(\rho_{0} \geq a) = \frac{2ie}{\omega}\left\{\frac{\kappa_{1}^{4}I_{m}(\kappa_{2}a)}{aD_{m}(\omega)}\frac{K_{m}^{2}(\kappa_{1}\rho_{0})}{K_{m}(\kappa_{1}a)}\left[\frac{I_{m}(\kappa_{2}a)K_{m}'(\kappa_{1}a)}{\kappa_{1}} - \frac{I_{m}'(\kappa_{2}a)K_{m}(\kappa_{1}a)}{\kappa_{2}}\right] + \frac{\kappa_{1}^{2}}{\varepsilon_{1}}K_{m}(\kappa_{1}\rho_{0})I_{m}(\kappa_{1}a)\left[\frac{K_{m}(\kappa_{1}\rho_{0})}{K_{m}(\kappa_{1}a)} - 1\right]\right\}.$$
(7)

Здесь введены обозначения:

×

$$\Delta_{m} = \frac{2ie}{\omega} I_{m}(\kappa_{2}\rho_{0}) \left\{ \varepsilon_{1}\kappa_{1}^{4}\kappa_{2}^{2} \left[\frac{I_{m}(\kappa_{2}a)K_{m}'(\kappa_{1}a)}{\kappa_{1}} - \frac{I_{m}'(\kappa_{2}a)K_{m}(\kappa_{1}a)}{\kappa_{2}} \right] \times \left[\frac{K_{m}(\kappa_{2}a)K_{m}'(\kappa_{1}a)}{\varepsilon_{2}\kappa_{1}} - \frac{K_{m}'(\kappa_{2}a)K_{m}(\kappa_{1}a)}{\varepsilon_{1}\kappa_{2}} \right] - \left(\frac{m}{\beta a} \right)^{2} \frac{(\kappa_{2}^{2} - \kappa_{1}^{2})^{2}}{\varepsilon_{2}\kappa_{2}^{2}} I_{m}(\kappa_{2}a)K_{m}(\kappa_{2}a)K_{m}^{2}(\kappa_{1}a) \right\},$$

$$D_m(\omega) = \varepsilon_1 \varepsilon_2 \kappa_1^4 \left[\frac{I_m(\kappa_2 a) K'_m(\kappa_1 a)}{\kappa_1} - \frac{I'_m(\kappa_2 a) K_m(\kappa_1 a)}{\kappa_2} \right] \times$$

$$\times \left[\frac{I_m(\kappa_2 a)K'_m(\kappa_1 a)}{\varepsilon_2 \kappa_1} - \frac{I'_m(\kappa_2 a)K_m(\kappa_1 a)}{\varepsilon_1 \kappa_2}\right] - \left(\frac{m}{\beta a}\right)^2 \left(1 - \frac{\kappa_1^2}{\kappa_2^2}\right)^2 I_m^2(\kappa_2 a)K_m^2(\kappa_1 a).$$
(8)

Выражения для продольной компоненты поля (7) согласуются с аналогичными результатами работы [10], полученными другим методом.

Потери энергии электроном (3) в общем случае определяются полюсами компоненты электрического поля $E_z(\rho_0, m, \omega/v, \omega)$ (которая рассматривается как функция комплексной частоты ω), лежащими в верхней полуплоскости. В случае, когда поглощением электромагнитных волн в обеих средах можно пренебречь, мнимая часть диэлектрической проницаемости стремится к нулю, при этом спектр возможных возбуждений, приводящих к потерям энергии, определяется нулями функции $D_m(\omega)$. Таким образом, анализ спектра электромагнитных потерь энергии в относительно прозрачном веществе сводится к решению дисперсионного уравнения $D_m(\omega) = 0$ и последующему вычислению суммы вычетов подынтегрального выражения в (3). Как показывает дальнейший анализ, дисперсионное уравнение имеет решение как в области частот ω , где действительная часть диэлектрической проницаемости ε_1 или ε_2 отрицательна, так и в области частот, где ε_1 и ε_2 положительны, а скорость электрона превышает пороговую скорость образования черенковского излучения в одной из сред. Область отрицательных значений $\varepsilon(\omega)$ в металлах соответствует возбуждению колебаний электронной плотности среды (плазмонов) быстрым электроном и может быть предметом отдельного исследования. Отметим лишь, что спектр плазмонов, возбуждаемых в цилиндрическом образце, так же, как и в сферическом [12], может существенно отличаться от соответствующего спектра в сплошном веществе ($\varepsilon_1 = \varepsilon_2 = \varepsilon$), определяемого условием $\varepsilon(\omega) = 0$.

3. ПОТЕРИ ЭНЕРГИИ НА ЧЕРЕНКОВСКОЕ ИЗЛУЧЕНИЕ

Исследуем далее случай, наиболее интересный для генерации вынужденного черенковского излучения, когда электрон движется в вакууме, $\varepsilon_1(\omega) \equiv 1$, а цилиндр состоит из относительно прозрачного диэлектрика с проницаемостью $\varepsilon_2(\omega) \equiv \varepsilon(\omega)$. В этом случае аргумент у модифицированных функций Бесселя в (7) и (8) оказывается чисто мнимым и удобнее провести их замену на функции Бесселя $J_m(x)$, используя известные формулы соответствия: $I_m(iz) = i^m J_m(z)$. Кроме того, замечаем, что дисперсионное уравнение $D_m = 0$ является квадратным относительно отношения J'_m/J_m , в результате чего оно распадается на два уравнения:

$$\frac{J'_m(x)}{J_m(x)} = \frac{(\varepsilon\beta^2 - 1)^{1/2}}{2\varepsilon(1 - \beta^2)^{1/2}} \left\{ -(\varepsilon + 1)\frac{K'_m(y)}{K_m(y)} \pm (\varepsilon - 1) \left[\left(\frac{K'_m(y)}{K_m(y)}\right)^2 + \frac{4\varepsilon m^2\beta^2}{(\varepsilon\beta^2 - 1)^2y^2} \right]^{1/2} \right\}, \quad (9)$$

где введены обозначения: $x = (\omega a/v)(\varepsilon \beta^2 - 1)^{1/2}$, $y = (\omega a/v)(1 - \beta^2)^{1/2}$, причем необходимо учитывать оба знака перед вторым слагаемым в фигурных скобках. Введем бинарный индекс σ , который принимает значения 1 или – 1 в соответствии со знаком в уравнении (9), и обозначим нули дисперсионного уравнения как $\omega_{mn\sigma}$. Вычислим далее сумму вычетов в простых полюсах $\omega_{mn\sigma}$ при каждом из двух значений σ , что сводится к вычислению $\Delta_m(\omega)$ и производной $dD_m/d\omega$ в точках $\omega_{mn\sigma}$. Предположим, что исследуемая область частот излучения находится достаточно далеко от полос и линий поглощения вещества и поэтому частотная дисперсия диэлектрической проницаемости относительно мала: $|d\varepsilon/d\omega| \ll \varepsilon/\omega$. В этом случае при вычислении производной $dD_m/d\omega$ можно в первом приближении считать ε не зависящей от частоты ω . Чтобы упростить возникающие далее выражения, воспользуемся рекуррентными соотношениями между функциями Бесселя и их производными. Заменим возникающие осциллирующие слагаемые, содержащие функции Бесселя, слагаемыми, содержащими лишь монотонные функции K_m , используя для этого дисперсионное уравнение (9). В результате довольно длинной цепочки преобразований, детали которых мы опускаем, спектральное распределение черенковского излучения, возникающего в диэлектрическом цилиндре, можно представить в виде

$$\frac{dW}{d\omega} = \frac{4e^{2}L}{a^{2}} \sum_{n=1}^{\infty} \left[\frac{\gamma_{T}^{2}K_{0}^{2}(y\rho_{0}/a)}{\gamma^{2}K_{1}^{2}(y) + \varepsilon K_{0}^{2}(y)} \delta(\omega - \omega_{0n1}) + 2\sum_{m=1}^{\infty} \sum_{\sigma=\pm 1} \frac{K_{m}^{2}(y\rho_{0}/a)}{K_{m}^{2}(y)} \frac{S_{m} + \sigma}{Q_{m}} \delta(\omega - \omega_{mn\sigma}) \right].$$
(10)

Введены следующие обозначения:

$$Q_{m} = (\varepsilon - 1)(S_{m} + \sigma) + 2\varepsilon S_{m} \left(R_{m}^{2} - \frac{m^{2}}{x^{2}} \right) + [\varepsilon(S_{m} - \sigma) + S_{m} + \sigma] \left(F_{m}^{2} - \frac{m^{2}}{y^{2}} \right) ,$$

$$F_{m}(y) = \frac{K'_{m}(y)}{K_{m}(y)}, \quad S_{m}(y) = \left\{ 1 + \left[\frac{2\beta\beta_{T}}{\beta^{2} - \beta_{T}^{2}} \frac{m}{yF_{m}(y)} \right]^{2} \right\}^{1/2} , \quad (11)$$

$$R_{m}(y) = \left(\frac{\beta^{2} - \beta_{T}^{2}}{1 - \beta^{2}} \right)^{1/2} \frac{\beta_{T}}{2} \left[(\varepsilon - 1)\sigma S_{m}(y) - (\varepsilon + 1) \right] F_{m}(y) ,$$

$$x = \frac{\omega a}{v} (\varepsilon \beta^2 - 1)^{1/2}, \ y = \frac{\omega a}{v} (1 - \beta^2)^{1/2}$$

 $\beta_T = \varepsilon^{-1/2}$ — пороговая скорость электрона, отнесенная к скорости света, $\delta(\omega - \omega_{mn\sigma})$ — дельта-функция Дирака, которую при учете влияния конечности длины цилиндра на форму линии спонтанного излучения следует заменить на функцию

$$s(\omega - \omega_{mn\sigma}) = \frac{L}{2\pi v} \left(\frac{\sin\psi}{\psi}\right)^2, \quad \psi = \frac{L}{2v}(\omega - \omega_{mn\sigma}). \tag{12}$$

Дисперсионное уравнение (9) в этих обозначениях принимает вид $J'_m(x)/J_m(x) = R_m(y)$.

Первое слагаемое в фигурных скобках выражения (10) соответствует спектру излучения аксиально-симметричных мод (m = 0). Согласно (9), аксиально-симметричные моды распадаются на TM_{0n} - и TE_{0n} -моды с чисто поперечным магнитным или электрическим полями соответственно, причем вклад в излучение вносят лишь TM_{0n} -моды, соответствующие $\sigma = 1$. Дисперсионное уравнение для TM_{0n} -мод может быть представлено в виде

$$(1 - \beta^2)^{1/2} J_1(x) K_0(y) + \beta_T (\beta^2 - \beta_T^2)^{1/2} J_0(x) K_1(y) = 0.$$
(13)

Рнс. 1. Зависимость длины волны λ_{mn1} (штриховые кривые) и соответствующего коэффициента усиления G_{mn1} (в единицах $G_0 = 10^{-3}(i/i_0)(L/a)^3$) от лоренц-фактора электронов γ для различных мод излучения в диэлектрическом цилиндре ($\varepsilon = 2.3$) радиуса *a*. Цифры у кривых соответствуют значениям (*m*, *n*), показаны наиболее интенсивные моды с $\sigma = 1$

Остальные моды с $m \neq 0$ являются гибридными, т.е. ни электрическое, ни магнитное поле этих мод не является чисто поперечным, как это имеет место в обычном волноводе, и поэтому вклад в излучение вносят, вообще говоря, как моды с $\sigma = 1$, так и с $\sigma = -1$. Однако, как показывают численные расчеты, интенсивность черенковского излучения моды (m, n, 1) всегда оказывается существенно выше интенсивности моды (m, n, -1). Это связано с тем, что моды с $\sigma = -1$ имеют поляризацию, близкую к поперечной и при $m \neq 0$.

В случае, когда дисперсией диэлектрической проницаемости $\varepsilon(\omega)$ можно пренебречь, а энергия электрона существенно выше пороговой энергии, приближенное решение уравнения (13) имеет вид

$$\omega_{0n1} = \frac{v}{a} \frac{\alpha_n}{\sqrt{\varepsilon\beta^2 - 1}},\tag{14}$$

где α_n — последовательные нули функции Бесселя $J_0(\alpha_n)$, которые при достаточно больших *n* близки к величине $\pi(n - 1/4)$. В этом случае спектральное распределение энергии излучения гармоник с m = 0 приобретает особенно простой вид:

$$\frac{dW_0}{d\omega} = \frac{4e^2}{a^2} \frac{\gamma_T^2}{\gamma^2} \sum_{n=1}^{\infty} \frac{K_0^2(y\rho_0/a)}{K_1^2(y)} s(\omega - \omega_{0n1}), \qquad (15)$$
$$\gamma = (1 - \beta^2)^{-1/2}, \quad \gamma_T = (1 - \beta_T^2)^{-1/2}, \quad \gamma \gg \gamma_T.$$

Дисперсионные кривые для наиболее интенсивных мод ($\sigma = 1$), вычисленные согласно (9) для кварца в области оптических частот ($\varepsilon = 2.3$), представлены на рис. 1 (правая шкала ординат) штриховыми кривыми, цифры у которых соответствуют значениям (m, n). Длины волн $\lambda_{mn\sigma}$ почти всех мод стремятся к определенным пределам по мере увеличения энергии электрона. Исключение составляет единственная мода с m = 1, n = 1, длина волны которой растет логарифмически с ростом энергии электрона.

4. ЧЕРЕНКОВСКОЕ ИЗЛУЧЕНИЕ В КАПИЛЛЯРАХ

Другой случай, представляющий интерес для генерации вынужденного черенковского излучения, возникает при движении пучка электронов внутри полого диэлектрического цилиндра (капилляра). Пусть а — внутренний радиус капилляра, b — внешний радиус, оси цилиндров, образующих капилляр, совпадают, $\varepsilon_2(\omega)$ — диэлектрическая проницаемость вещества капилляра, $\varepsilon_1(\omega)$ — диэлектрическая проницаемость окружающей среды. Спектр спонтанного черенковского излучения находится с помощью формулы (3) методом, развитым выше в разд. 2. В области $\rho < a$ и $\rho > b$ компоненты полей ищутся в виде, аналогичном (6), а в области $a < \rho < b$ — в виде линейных комбинаций функций $I_m(\kappa_2\rho)$ и $K_m(\kappa_2\rho)$ с неизвестными коэффициентами. В результате сшивки полей на границах капилляра получается система линейных алгебраических уравнений для восьми неизвестных коэффициентов. В случае произвольных азимутальных индексов т решение имеет довольно громоздкий вид, поэтому ограничимся случаем аксиально-симметричных мод (m = 0). Отметим, что эти моды оказываются единственно возможными для излучения, если электрон движется вдоль оси капилляра $\rho_0 = 0$. Решая систему линейных алгебраических уравнений, находим следующее выражение для продольной компоненты поля $E_z(\rho_0, 0, \omega/v, \omega)$ в области $\rho_0 < a$:

$$L^{-1}E_{z}(\rho_{0} < a) = \frac{2ie}{\omega a} \frac{I_{0}(\kappa_{1}\rho_{0})}{I_{0}(\kappa_{1}a)} \left[\frac{K_{0}(\kappa_{2}a)a_{21} - I_{0}(\kappa_{2}a)a_{22}}{a_{11}a_{22} - a_{12}a_{21}} + \frac{\kappa_{1}^{2}a}{\varepsilon_{1}}K_{0}(\kappa_{1}a) \right], \quad (16)$$

$$a_{11} = \frac{\varepsilon_{1}}{\kappa_{1}}I_{1}(\kappa_{1}a)I_{0}(\kappa_{2}a) - \frac{\varepsilon_{2}}{\kappa_{2}}I_{0}(\kappa_{1}a)I_{1}(\kappa_{2}a),$$

$$a_{12} = \frac{\varepsilon_{1}}{\kappa_{1}}I_{1}(\kappa_{1}a)K_{0}(\kappa_{2}a) + \frac{\varepsilon_{2}}{\kappa_{2}}I_{0}(\kappa_{1}a)K_{1}(\kappa_{2}a),$$

$$a_{21} = \frac{\varepsilon_{1}}{\kappa_{1}}K_{1}(\kappa_{1}b)I_{0}(\kappa_{2}b) + \frac{\varepsilon_{2}}{\kappa_{2}}K_{0}(\kappa_{1}b)I_{1}(\kappa_{2}b),$$

$$a_{22} = \frac{\varepsilon_{1}}{\kappa_{1}}K_{1}(\kappa_{1}b)K_{0}(\kappa_{2}b) - \frac{\varepsilon_{2}}{\kappa_{2}}K_{0}(\kappa_{1}b)K_{1}(\kappa_{2}b).$$

Рассмотрим далее случай, когда вещество капилляра является относительно прозрачным диэлектриком (Im $\varepsilon_2 = 0$, Re $\varepsilon_2 = \varepsilon > 0$), а капилляр находится в вакууме $\varepsilon_1 \equiv 1$. Введем обозначение $k = -i\kappa_2$ и воспользуемся соотношением

$$K_0(\kappa_2 a) = (-i\pi/2) \left[J_0(ka) - iY_0(ka) \right],$$

где Y_0 — функция Неймана, тогда в результате интегрирования в (3) получаем следующее выражение для спектрального распределения энергии излучения мод с m = 0:

$$\frac{dW_0}{d\omega} = \frac{4e^2L}{a^2} \sum_{n=1}^{\infty} I_0^2(\xi\rho_0) \left\{ \left[\frac{4\varepsilon}{(\pi kaf_0)^2} - (\varepsilon - 1) \right] I_0^2(\xi a) - \frac{\gamma^2}{\gamma_T^2} I_1^2(\xi a) \right\}^{-1} s(\omega - \omega_{0n}) .$$
(17)

Рис. 2. Зависимость длины волны излучения λ_{0n} (штриховые кривые) и коэффициента усиления G_{0n} (в единицах $G_0 = 10^{-3}(i/i_0)(L/b)^3$) от лоренц-фактора электронов γ для различных аксиально-симметричных мод в капилляре с отношением радиусов a/b = 0.9 и $\varepsilon = 2.3$. Цифры у кривых показывают значения индексов (m, n) мод

Здесь введены обозначения:

$$\begin{split} f_0^2 &= \frac{\left[(\gamma^2 - \gamma_t^2)^{1/2} K_1(\xi b) p_0 - \varepsilon^{1/2} \gamma_T K_0(\xi b) q_0\right]^2}{\gamma^2 K_1^2(\xi b) + \varepsilon K_0^2(\xi b)}, \\ k &= \frac{\omega}{v} (\varepsilon \beta^2 - 1)^{1/2}, \quad \xi = \frac{\omega}{v} (1 - \beta^2)^{1/2}, \\ p_0 &= J_0(ka) Y_0(kb) - J_0(kb) Y_0(ka), \quad q_0 = \frac{\partial p_0}{\partial kb}, \quad r_0 = \frac{\partial p_0}{\partial ka}, \quad s_0 = \frac{\partial q_0}{\partial ka}, \end{split}$$

 ω_{0n} — корни дисперсионного уравнения. При выводе (17) мы воспользовались соотношением $p_0 s_0 - q_0 r_0 = 4/(\pi^2 k^2 ab)$, приведенным в [13]. Дисперсионное уравнение находится из условия обращения в нуль знаменателя в (16):

$$\frac{I_1(\xi a)}{I_0(\xi a)} + \frac{\varepsilon \xi}{k} \frac{k K_1(\xi b) r_0 - \varepsilon \xi K_0(\xi b) s_0}{k K_1(\xi b) p_0 - \varepsilon \xi K_0(\xi b) q_0} = 0.$$
(18)

В пределе, когда внутренний радиус капилляра велик по сравнению с длиной волны излучения ($ka \gg 1$), результат можно представить в более простом виде:

$$\frac{dW_0}{d\omega} = \frac{4e^2}{a^2} \sum_{n=1}^{\infty} I_0^2(\xi\rho_0) \left\{ (1+\varepsilon\delta)I_0^2(\xi a) + \left[\left(\left(\frac{\gamma}{\gamma_T}\right)^2 - 1 \right)\delta - 1 \right] I_1^2(\xi a) \right\}^{-1} s(\omega - \omega_{0n}), \quad (19)$$

Рис. 3. Зависимость длины волны моды (0, n) в капилляре при $\gamma = 10\gamma_T$ от величины отношения радиусов капилляра a/b

где $\delta = (b-a)/a$, причем дисперсионное уравнение также упрощается:

$$\operatorname{tg}\left[k(b-a)\right] = \frac{\varepsilon\xi}{k} \left[\frac{K_0(\xi b)}{K_1(\xi b)} + \frac{I_0(\xi a)}{I_1(\xi a)}\right]$$

Поскольку при этом выполняется неравенство $\xi \ll k$, то при $n \neq 1$ частоты мод в первом приближении определяются равенством

$$\omega_{0n} = \pi (n-1)v / \left[(b-a)(\varepsilon \beta^2 - 1)^{1/2} \right] .$$
⁽²⁰⁾

Зависимость длины волны излучаемой моды от лоренц-фактора электрона γ вычислена с помощью (18) и представлена штриховыми кривыми на рис. 2 в случае капилляра с $\varepsilon = 2.3$ и с отношением a/b = 0.9. При энергиях электрона, существенно превышающих пороговую ($\gamma \gg \gamma_T$), длины волн всех мод за исключением (0, 1) стремятся к определенному пределу. Этот предел определяется отношением внутреннего и внешнего радиусов a/b, что иллюстрируется соответствующей зависимостью, приведенной на рис. 3 для $\gamma = 10\gamma_T$. В тонкостенных капиллярах ($b - a \ll b$), как мы видим, длина волны моды определяется в большей степени толщиной стенок, а не радиусом.

5. ВЫНУЖДЕННОЕ ЧЕРЕНКОВСКОЕ ИЗЛУЧЕНИЕ

Коэффициент усиления за счет вынужденного излучения на частотах различных мод может быть сравнительно просто вычислен в приближении относительно слабого

усиления и холодного пучка электронов, когда нелинейные эффекты взаимодействия излучения с электронами пренебрежимо малы, а спектральная ширина линии излучения определяется лишь длиной области взаимодействия электронов с полем волны. Пусть N обозначает первоначальное число фотонов некоторой моды (m, n, σ) , между плоскостями z = 0 и z = L. В частности, это могут быть фотоны от внешнего источника. Изменение числа фотонов ΔN происходит как вследствие вынужденного излучения электронами на частоте соответствующей моды, так и за счет вынужденного поглощения фотонов электронами пучка. Вероятности этих процессов связаны с вероятностью спонтанного излучения известными соотношениями: $w_{ind} = w_{cap} = Nw_{sp}$. Значение $\Delta N = w_{ind} - w_{cap}$ отлично от нуля, если мы учтем сдвиг частоты моды вследствие квантовой отдачи при излучении и поглощении фотона. В результате получаем

$$\Delta N = N \frac{\partial w_{sp}}{\partial \psi} \Delta \psi , \qquad (21)$$

где фазовый угол ψ определяется (12), а его изменение $\Delta \psi$ — упомянутым сдвигом частоты моды.

Вероятность спонтанного излучения w_{sp} находится путем деления классической энергии излучения $dW_{mn\sigma}/d\omega$ соответствующей моды, вычисленной выше, на величину энергии фотона $\hbar\omega$. Что касается относительно малого сдвига $\Delta\psi$, то он может быть найден с помощью законов сохранения при излучении электроном фотона, соответствующего определенной моде (m, n, σ) . Пусть электрон в начальном состоянии имеет энергию E, продольный импульс p_z и нулевую проекцию импульса на плоскость xy. Соответствующие значения конечного состояния обозначим как E', p'_z и p'_{\perp} . В процессе излучения (поглощения) эти величины для системы электрон-фотон сохраняются, т. е. справедливы соотношения

$$E' = E \mp \hbar \omega, \ p'_z = p_z \mp \hbar k_z, \ p'_{\perp}^2 = (\hbar \kappa)^2, \tag{22}$$

где $(\hbar\kappa)^2 = (\hbar\omega/c)^2\varepsilon - (\hbar k_z)^2$ — квадрат поперечного импульса фотона в веществе (см. (5)). Поскольку также имеют место равенства $E^2 - p_z^2 = mc^2 = E'^2 - (p'^2 + p'_{\perp})$, $k_z^2 + \kappa^2 = \varepsilon\omega^2$, $p_z = Ev/c^2$, то с помощью (22) находим условие черенковского излучения (поглощения) различных мод с учетом квантовой отдачи

$$(\omega - k_z v) \pm \frac{\hbar \omega^2}{2E} (1 - \varepsilon) = 0.$$

Отсюда следует, что

$$\Delta \psi = \hbar \omega^2 (\varepsilon - 1) L / (2Ev) . \tag{23}$$

Коэффициент усиления G определяется далее следующим образом:

$$G = \frac{1}{e} \int_{S} \frac{\Delta N}{N} j(\rho_0, \varphi_0) dS , \qquad (24)$$

где $j(\rho_0, \varphi_0)$ — плотность электрического тока электронов, которая может иметь некоторое распределение по расстоянию ρ_0 от оси цилиндра и азимуту φ_0 , а интегрирование в (24) проводится по поперечному сечению пучка электронов S. Используя (21) и (23), коэффициент усиления на частоте моды (m, n, σ) можно представить в виде

$$G_{mn\sigma} = \frac{(\varepsilon - 1)\omega L}{2eEv} \int_{S} j(\rho_0, \varphi_0) \frac{\partial}{\partial \psi} \frac{dW_{mn\sigma}}{d\omega} dS , \qquad (25)$$

где $dW_{mn\sigma}/d\omega$ — спектральное распределение спонтанного черенковского излучения моды (m, n, σ) . Заметим, что коэффициент усиления (25) не содержит постоянной Планка и может быть получен с помощью чисто классической теории.

В случае сплошного диэлектрического цилиндра с помощью (10) и (25) находим коэффициент усиления на частоте моды (m, n, σ) в виде

$$G_{mn\sigma} = \frac{2i}{i_0} \frac{L^3(\varepsilon - 1)}{a^2 \lambda_{mn\sigma} \gamma \beta^2} \frac{\langle K_m^2(y\rho_0/a) \rangle}{K_m^2(y)} \frac{(S_m + \sigma)(2 - \delta_{m0})}{Q_m} \frac{d}{d\psi} \frac{\sin^2 \psi}{\psi^2}.$$
 (26)

Здесь использованы обозначения: $i_0 = mc^3/e$, i — полный ток электронов, $y = 2\pi a/(\lambda_{mn\sigma}\gamma\beta)$, $\lambda_{mn\sigma} = 2\pi c/\omega_{mn\sigma}$, δ_{m0} — символ Кронекера, а уголковые скобки соответствуют усреднению по поперечному сечению пучка. В частности, если электроны распределены равномерно по кольцу с внутренним радиусом $r \leq a$ и внешним радиусом R, то, используя формулы интегрирования из [14], получаем

$$\left\langle K_m^2 \left(\frac{y\rho_0}{a}\right) \right\rangle = \frac{\rho_0^2}{R^2 - r^2} \left[K_m^2 \left(\frac{y\rho_0}{a}\right) - K_{m-1} \left(\frac{y\rho_0}{a}\right) K_{m+1} \left(\frac{y\rho_0}{a}\right) \right] \Big|_r^R.$$
(27)

Для аксиально-симметричных мод (m = 0) коэффициент усиления (26) принимает более простой вид:

$$G_{0n\sigma} = \frac{2i}{i_0} \frac{L^3}{a^2 \lambda_{0n\sigma} \gamma \beta^2} \frac{\varepsilon \langle K_m^2(y\rho_0/a) \rangle}{\gamma^2 K_1^2(y) + \varepsilon K_0^2(y)} \frac{d}{d\psi} \frac{\sin^2 \psi}{\psi^2}.$$

Поскольку модифицированные функции Бесселя в (27) при больших значениях аргументов содержат в качестве множителя соответствующую затухающую экспоненту, то в эффективном усилении излучения с длиной волны $\lambda_{mn\sigma}$ принимают участие главным образом те электроны, которые движутся на расстояниях $\Delta = \rho_0 - a$ от поверхности цилиндра, не превышающих величины $\Delta_c = \lambda_{mn\sigma} \beta \gamma / 4\pi$. Таким образом, зазор Δ между пучком электронов и поверхностью диэлектрика определяет минимальную величину лоренц-фактора электронов $\gamma_c = 4\pi\Delta/\lambda_{mn\sigma}\beta$, необходимую для эффективного усиления излучения с длиной волны $\lambda_{mn\sigma}$. Зависимости коэффициента усиления (26) (при значении $\psi \approx -1.3$, отвечающем максимуму $G_{mn\sigma}$) для наиболее интенсивных мод с $\sigma = 1$ от отношения γ к своему пороговому значению γ_T представлены на рис. 1 в случае $\varepsilon = 2.3$ (оптическая область частот в кварце) и пучка с параметрами r = 1.1a, R = 2a(см. (27)). В этом случае минимальный зазор $\Delta = r - a$ составляет 0.1*a*. Коэффициент усиления измеряется в единицах $G_0 = 10^{-3} (i/i_0) (L/a)^3$. Как мы видим, с уменьшением длины волны (увеличением индекса моды n) значение γ , соответствующее максимуму коэффициента усиления, увеличивается, в то же время сама величина максимума уменьшается. Такая же картина наблюдается при усилении на частоте гармоники с фиксированными индексами (m, n) при увеличении величины зазора $\Delta = r - a$ (см. рис. 4).

Рис. 4. Зависимость от лоренц-фактора коэффициента усиления G_{mn1} на частоте моды с $m = 0, n = 1, \sigma = 1$ (сплошные кривые) и моды с $m = 0, n = 15, \sigma = 1$ (штриховые кривые) в цилиндре с $\varepsilon = 2.3$ и радиусом a для полого пучка электронов с внутренним радиусом r = Ca и внешним радиусом R = 2a. Значения коэффициента C указаны на рисунке

В случае полого диэлектрического цилиндра (капилляра) коэффициент усиления G_{0n} на частотах гармоник с m = 0 может быть представлен в виде

$$G_{0n} = \frac{2i}{i_0} \frac{L^3 \varepsilon}{a(b-a)\lambda_{0n}\gamma^3 \beta^2} \frac{\langle I_0^2(\xi\rho_0) \rangle}{I_1^2(\xi a)} \frac{d}{d\psi} \frac{\sin^2 \psi}{\psi^2}, \tag{28}$$

где $\xi = 2\pi / \lambda_{0n} \beta \gamma$. Если цилиндрический пучок электронов имеет равномерное распределение по сечению в пределах $0 \le \rho_0 \le R$, то получаем [14]

$$\langle I_0^2(\xi\rho_0)\rangle = I_0^2(\xi R) - I_1^2(\xi R).$$
⁽²⁹⁾

Результаты расчетов коэффициента усиления (28) в случае $\varepsilon = 2.3$ и R = 0.9a, когда зазор между пучком и стенками капилляра составляет 0.1 от внутреннего радиуса a, представлены на рис. 2. Эти результаты аналогичны тем, которые обсуждались выше для случая сплошного цилиндра (см. рис. 1).

6. ЗАКЛЮЧИТЕЛЬНЫЕ ЗАМЕЧАНИЯ

При выводе выражений (26),(28) для коэффициента усиления предполагалось, что линия спонтанного излучения имеет естественную ширину, связанную с конечностью времени взаимодействия электронов с диэлектриком. Полученные выражения остаются справедливыми и при учете неоднородного уширения, связанного с разбросом пучка

Рис. 5. Коэффициент усиления G_{mn1} для моды 111 в зависимости от дефекта резонансной энергии для различных значений резонансной энергии γ_r . Кривая *1* отвечает значению $\gamma_r/\gamma_T = 1.10, 2 - 1.21, 3 - 1.46, 4 - 1.70, 5 - 2.00$

электронов по углам и энергиям, если неоднородное уширение мало по сравнению с естественной шириной линии. Варьируя параметры фазового угла ψ (12) и считая, что $\delta \psi < \pi$, получаем следующие ограничения:

$$\Delta\theta^2 < (\varepsilon\beta^2 - 1)\lambda\beta/L\,,\tag{30}$$

$$\Delta \gamma / \gamma^3 < (\varepsilon \beta^2 - 1) \beta^3 \lambda / L \,, \tag{31}$$

где $\Delta\theta^2$ — среднеквадратичный разброс угла между скоростью электрона и осью диэлектрика, $\Delta\gamma \cdot mc^2$ — энергетический разброс электронов. Неравенства (30), (31) получены в предположении, что энергия электронов не слишком близка к пороговой и частоты мод определяются приближенными выражениями (14) и (20).

Неравенство (31) может служить также для оценки максимальной эффективности преобразования энергии электрона в энергию вынужденного черенковского излучения, если считать, что величина $\Delta \gamma$ целиком связана с изменением энергии электрона вследствие излучения. Эффективность оказывается относительно высокой, в особенности при высоких энергиях электрона $\gamma \gg \gamma_T$, однако, согласно рис. 1 и 2, коэффициент усиления уменьшается с ростом γ/γ_T . В области энергий электронов, сравнимых по величине с пороговой, где коэффициент усиления для большинства мод оказывается максимальным, простые оценки (30) и (31) теряют силу. Для этого случая на рис. 5 приведена зависимость коэффициента усиления как функция отклонения энергии электрона от резонансной энергии $E_r = mc^2\gamma_r$, соответствующей максимуму коэффициента

усиления. Кривые построены для моды 111 в сплошном цилиндре и для ряда постепенно увеличивающихся значений γ_{τ} (и соответствующих им длин волн (см. рис. 1)). Ширина кривых пропорциональна эффективности преобразования энергии электронов в энергию вынужденного излучения.

Вынужденное черенковское излучение в цилиндрических диэлектриках может служить для усиления излучения в широком диапазоне частот, от миллиметрового до оптического диапазона. Например, согласно полученным результатам, коэффициент усиления G_{01} составляет около 5% при длине волны излучения $\lambda = 190$ мкм, энергии электронов E = 1 МэВ и следующих параметрах капилляра: a = 100 мкм, b = 150 мкм, L = 5 см, i = 70 мкА. При этом угловой разброс пучка электронов не должен превышать величины $\approx 10^{-3}$ рад. Усиление в оптической области спектра при таких радиусах капилляра возможно при использовании мод с более высокими индексами $n \gtrsim 10$, при этом, однако, из результатов, приведенных на рис. 4, следует, что коэффициент усиления стенками диэлектрика.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект 95-2-04457а).

Литература

- 1. В. М. Арутюнян, С. Г. Оганесян, Письма в ЖЭТФ 7, 539 (1981).
- 2. W. Becker and J. K. McIver, Phys. Rev. A 25, 956 (1982).
- 3. В. А. Базылев, Н. К. Жеваго, М. А. Кумахов, ДАН СССР, Физика 263, 855 (1982)-
- 4. J. Walsh, B. Johnson, G. Dattoli, and A. Renieri, Phys. Rev. Lett. 53, 779 (1984).
- 5. N. K. Zhevago, Nucl. Instr. and Meth. A 331, 584 (1993).
- 6. E. P. Garate and J. E. Walsh, IEEE Trans. Plasma Sci. PS-13, 524 (1985).
- 7. E. P. Garate, J. E. Walsh, C. Shanghnessy, and B. Johnson, Nucl. Instr. and Meth. A 259, 125 (1987).
- 8. E. P. Garate, H. Kosai, K. Evans, and A. Fisher, Appl. Phys. Lett. 56, 1092 (1990).
- 9. Guigyan Wang, Shanfu Yu, Peijue Xun et al., Appl. Phys. Lett. 59, 2378 (1991).
- 10. Л. С. Богданкевич, Б. М. Болотовский, ЖЭТФ 32, 1421 (1957).
- 11. Л. Д. Ландау, Е. М. Лифшиц, Электродинамика сплошных сред, Наука, Москва(1982).
- 12. Н. К. Жеваго, В. И. Глебов, ЖЭТФ 98, 278 (1990).
- 13. М. Абрамовиц, И. Стиган, Справочник по специальным функциям, Наука, Москва(1979).
- И. С. Градштейн, И. М. Рыжик, Таблицы интегралов, сумм, рядов и произведений, Наука, Москва (1971).