XOTD, 1997, mom 111, wn. 3, cmp. 1001-1015 | ©1997

ON THE THEORY OF QUANTUM INTERFERENCE BETWEEN INELASTIC
AND ELASTIC ELECTRON SCATTERING EVENTS

V. V. Rumyantsev, E. V. Orlenko, B. N. Libenson

Technical University of St. Petersburg
195251, St. Petersburg, Russia

Submitted 11 June 1996

The mechanism of weak localization of relatively fast electrons scattered with a fixed energy
loss from disordered media is examined. The main focus of this paper is to put forward an
explanation why coherent enhancement of electron scattering in the inelastic-scattering channel
takes place at angles which differ from . A simplified kinematic model is proposed to determine
the basic properties of the weak localization of electrons in the inelastic scattering channel. The
model reproduces easily the range of scattering angles typical of the weak localization of electrons
with a fixed energy loss. The procedure does not require calculation of the contribution from the
crossed diagrams. The results agree with those based on the dynamical theory associated with the
calculation of the crossed and ladder diagrams. It is possible to follow the transition from the
new type of weak localization to the ordinary weak localization with decreasing energy loss. The
new-type weak localization is in agreement with the regular weak localization if the energy loss
is approximately equal to the energy of an optical phonon.

" 1. INTRODUCTION

The weak localization of conduction electrons and backscattering enhancement of classical
waves in disordered media have been studied extensively during the last few decades (see, for
example [1-9]). The two phenomena, which are connected with the constructive interference
of random wave fields, are closely related to each other. In the case of conduction electrons,
coherent quantum mechanical backscattering can be regarded as a precursor of the exponential
localization. It gives rise to a variety of quantum transport phenomena, particularly to the
logarithmic increase in the resistance of metallic films with decreasing temperature which
approaches absolute zero. In the case of electromagnetic waves and other classical fields, weak
localization manifests itself in the enhancement of scattering in a narrow angular cone of width
on the order of 1/(kl) < 1 in the backward direction (k is the electron wave vector or the
wave vector of a classical wave, and [ is the mean free path).

Now we observe a partial shift of interest in the studies of weak locahzatton from
the problems of electron conductivity or elastic backscattering of light to new domains
associated with the electron motion in disordered media. The discovery of universal conduction
fluctuations has shifted the interest from average values of physical quantities to their variance
and to the behavior of separate groups of electrons with fixed energies. Another point of interest
is associated with the dissipation effects, because the inelastic scattering leads to the loss of
phase memory of the wave function and suppresses the weak localization and the resistance
fluctuations.

Finally, coherent phcnomena are also of interest in the scattering of external particles (such
as electrons) with a fixed energy incident on disordered samples. In contrast to electronic
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‘measurements which can only measure the conductance of a system, experiments with the
beams of intermediate-energy electrons have the advantage of measuring the angular and energy
spectra of electrons for an experimental realization. In [10-12], the weak localization of external
electrons (with energies from tens to thousands of electronvolts) has been studied. Neutrons
have also been the subject of such a consideration [13]. According to those studies, coherent
phenomena can be observed in the elastic backscattering of electrons, in spite of sufficiently
high energies of external electrons.

In contrast with the scattering of electromagnetic waves, the interaction of an external
energetic electron with a disordered medium leads, with high probability, to inelastic scattering.
The effects of inelastic processes on the conductivity under weak localization have been studied
extensively (for example, see [1,2]). We now see a new wave of this activity. One method
of treating inelastic processes when they occur only in an electron reservoir (coupled to a
device without inelastic processes) was developed in [14, 15] and elsewhere subsequently. The
quantum kinetic equation, which can be employed for describing quantum transport, has
been derived under the assumption that the inelastic scattering is caused by noncorrelated
point scatterers [16]. Much attention has been given to the effect of inelastic scattering on
the observed coherent phenomena like the Aharonov-Bohm oscillations [17], conductance
fluctuations [18,19], persistent current [20], resonance behavior of the conductance [21],
conductance of a disordered linear chain [22], and destruction of weak localization in inelastic
scattering of particles [23]. We also point out an elegant experimental study [24], in which
the authors tried to use the weak localization as a thermometer. Some studies are devoted to
the effect of dissipation on the localization of classical fields. The reflection and transmission
coefficients in the presence of absorption under the localization of classical fields have been
considered in [25]. The effect of absorption on the wave transport has been studied in [26-35].
In many cases the absorption has been introduced as a uniform imaginary energy part. The
common feature of those studies is that inelastic scattering destroys the phase memory and
forbids the quantum interference effect.

In some cases, however, the inelastic processes do not lead to a phase memory loss. A
very simple example was considered recently [36]. In that study the authors demonstrated the
effect in which the electron-photon interaction in a ballistic microstructure plays the same role
as the impurity scattering in disordered media. In the presence of an external electromagnetic
field all relevant photons are coherent, and spatial interference in electron-photon scattering
becomes allowed, despite the inelastic nature of the collisions. The electrons do not couple to
a large number of degrees of freedom, and their phase memory is preserved. The interference
effects are, therefore, certainly possible in the system, even though the electron scattering is
inelastic.

The quantum interference can occur even if an electron undergoes a single inelastic
scattering while interacting with an incoherent electromagnetic field. Because of a single
inelastic collision, the electron loses a fixed energy, fuw, and finds itself in the so-called inelastic-
scattering channel. The energy of this electron is different from the energy of the incident
particles. It can escape the medium and then be detected. In addition to the single inelastic
collision, the electron should undergo at least one elastic scattering before it leaves the medium
through the same surface through which it penetrates the medium. There are two ways to
realize this process, since it can either start or end with an inelastic collision. The interference
of electron waves associated with these complementary processes has been proved [37, 38] to
be constructive. It manifests itself in the enhancement of electron scattering through an angle
which differs from «.. The difference of this angle from 7« may be considerable. . The new
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coherent phenomenon is called «a new (or different) type of weak localization».

The ratio v/w <. 1 (where « is the particle collision frequency, and hw is the particle
energy loss) has been considered in [37-39]. Recently, the opposite limiting case v/w > 1,
which is closer to the usual weak localization (i.e., weak localization in the elastic-scattering
channel), has been considered in [40,41]. In both cases the new type of weak localization
appears to be clearly observable.

The main difference between the ordinary and the new weak localization is the typical
electron scattering angle. The angular distribution of particles and radiation undergoing weak
localization in a disordered medium can be found by calculating the contribution of the crossed
(or so-called «fan») diagrams into an electron (radiation) cross section or density matrix.
However, it is also useful to have a simple physical model explaining why coherent phenomena
are particularly pronounced in particle scattering at certain angles. This approach is clear and
enables us to evaluate the scattering angles without calculating the crossed diagrams. The main
goal of the present article is to find the physical interpretation of the fact that constructive
interference of the new weak localization is pronounced at scattering angles different from =.

In the case of the ordinary weak localization, there is a particular simple graphic
method [2,42], which provides insight into the phenomenon and which explains why the angle
7 is specific for the regular weak localization. This method takes into account that an electron
with a momentum k is scattered via two complementary series of intermediate scattering states
k—>kl >k —...>K_, -k, =-kand k= k| -k, —...>k,_, > k,” =—k

into the —k state. The momentum changes are qi,q, . ..,q,—1,9, for the first series, and
Qn,qn—1,---,q2,q; for the second one. The amplitudes in the final state —k are identical,
A" = A = A, and interfere constructively. This is because the complementary scattering

series have the same momentum changes in opposite sequences.

The weak localization of electrons in the inelastic-scattering channel increases the electron
scattering cross section at scattering angles different from w. Moreover, the effect is pronounced
in a considerably wider range of angles than for the localization in the elastic-scattering channel.
In this article we show that there exists a simple kinematic method which reproduces the range
of scattering angles typical of the new type of weak localization. We explain the mechanism
of particle localization with a fixed energy loss. The results obtained in the framework of
our kinematic approach are compared with those based on the exact dynamical theory. The
scattering angles typical of coherent scattering and calculated in the kinematic and dynamical
approaches are in good agreement.

We shall also show that the localization of the new type turns into an ordinary localization
“in the limit of vanishing fixed energy loss.

2. KINEMATIC APPROACH TO DESCRIBE THE FEATURES OF WEAK LOCALIZATION

Let us consider a process in which the electron moving in a disordered medium undergoes
elastic collisions and a single inelastic collision. The electron energy is assumed to be higher
than the energies of the conduction electrons. The fixed energy loss iuw of the electron occurs
due to the inelastic collision. There are many sources of inelastic scattering, which provide
a clearly distinguishable energy loss, for instance, plasmons and a number of electron atomic

‘e transitions.

In the regular weak localizations and in the new type of weak localizations the interference

of the electron waves is described by crossed diagrams. In contrast with the ordinary weak
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localization, one of the crossed lines in the new type of weak localization corresponds to the
inelastic interaction, while the others correspond to elastic interaction with randomly distributed
force centers. In accordance with Eq. (18) of [37], the crossed diagrams, together with the
corresponding ladder diagrams, contribute to the scattering probability factor

Fw,x) =Qmn)~? /in ¢i wi(gi, w)F(gi,w, X), ¢))
0

where y is the electron scattering angle, w;(g;, w) is the rate of inelastic scattering accompanied
by excitation of the medium with a momentum ¢; and energy hw. The function & is given by

Fgi,w,x) =h’ / dQy, |Gk — 4, Ex — hw) + Gk — Q+ q;, Ep)* . 2

Here G(k — q;, Ex — hw) and G(k — Q + q;, E}) are the electron Green’s functions. The
former describes electron motion between the inelastic and elastic scattering events and the
latter refers to the process with the opposite sequence of events. Ej. and k are the initial energy
and momentum of an incident electron, respectively; Q = q; + q. is the total momentum
transfer to the medium, and q. corresponds to the elastic scattering. The integration in Eq. (2)
is performed over possible orientations of q;. Equation (2) can be rewritten in the form

1 1 2
+
vq;, —w —hg}/2m — iy  w—Vq; — hg?/2m — iy

Flgi,w,X) = / da, 3)

Here we assume that the electron energy is £, = h2K? /2m, v and V' are the electron velocities
in the initial and final states, respectively, and ~ is the electron collision frequency.

The function (3) is convenient for studying the weak localization since it describes the
propagation of electron waves between collisions. Equation (3) contains three terms. The
squared absolute value of the first Green’s function gives the contribution of a ladder-type
diagram and describes the process in which the first collision is inelastic. The squared absolute
value of the second Green’s function corresponds to a ladder-type diagram for the case in which
the inelastic collision is the last collision. In both cases the expressions are independent of the
electron-scattering angle, x = cos™!(w/vv’). There is also the third term, which contains
the product of the first and second Green’s functions. It corresponds to the crossed diagrams
and describes the interference of two electron waves which propagate along the same path in
opposite directions. The integration over Q,, in this term does not kill the x-dependence that
describes the weak localization. The function & describes it at a fixed length of q;, while Eq. (1)
is appropriate if the length of q; is not fixed. ’

If an inelastic collision occurs between two elastic collisions, the weak localization does
not exist [38]. It was also shown [38] that elastic multiple scattering at arbitrary angles does
not change the angular dependence determined by the functions & and <.

The squared absolute value of the first Green’s function in Eq. (3) at small v can be
represented in the form

1 2
Ek - Ek—q; — hw — i"y

~ %5(& — By, — hw). 4

1004



XIOT®, 1997, 111, gvin. 3 On the theory of quantum interference. . .

The squared absolute value of the second Green’s function in Eq. (3) can be written similarly.
The term in the integrand of Eq. (3) which describes the interference has the form

1 1
+
(Ek —Eyq, —hw—i7) (E’C —Ei_q+qi +i’7) (E’C —Ex_q+a; _i7) (Ek —Exq _h“)+i7)

. (5a)

It is evident that the ratio of Eq. (5a) to Eq. (4) is proportional to the small quantity . We
can assume, therefore, that the frequency ~ in the denominators of Eq. (5a) is (as a first
approximation) an infinitesimal quantity. This enables us to rewrite Eq. (5a) in the form

1 . )
[? ———_Ek “F i +inb(Ey —Ek—q; —hw)} [? —in6(Fy —Ek"Q+lIi )] +

1
Er—Ev_qu

! —in6(Ej—Eyy, —hw)] . (5b)

+ —_—

1
P ———————+inb(Er—Ex_qsq,) | |
Er—Fr o (Er—Ex_q+q;)
An estimate reveals that in Eq. (5a) the ratio of the terms containing the product of two delta
functions to the terms which contain the principal values is

hw k
Vqc q::.

Here g, is the maximum momentum g; (for example, the cutoff plasmon momentum). As long
as k > q., the contribution of the product of the delta functions is dominant. This means that
although the quantum transport generally (and the weak localization specifically) occurs due
to such electron collisions at which every next scattering begins before the end of the previous
one, weak localization permits (to the first approximation) a physical interpretation, which starts
from the analysis of the consequences of the simultaneous satisfaction of the two conditions,

6

E'k - Ek_Q+q'. =0 and Ek - Ek_q‘. —hw=0. (7)

These conditions come from the two delta functions and have the meaning of energy momentum
conservation. An analysis based on Egs. (7) is called the kinematic method in the theory of
weak localization.

Below we compare the results of the kinematic analysis with the so-called dynamic results of
the exact theory. We shall prove that the kinematic approach reproduces the angular properties
of the weak localization with fairly good accuracy.

Let us rewrite Egs. (7) in the form

Ek' - Ek—q; = 0’ (8)

Ey = Ex—q. =0, &)

and show that the vectors q; and q., the momentum transfers during the inelastic and elastic
collisions, are reciprocal orthogonal vectors.
Subtracting Eq. (8) from Eq. (9), we have

k- k)k+k)=(q; — q.)(2k — q; — q.). (10
From Eq. (9) we obtain g2 = 2kq,. Since Q =k —k' = g; + q., we obtain
%kQ-¢-9)=Q -¢ - (11)

1005



V. V. Rumyantsev, E. V. Orlenko, B. N. Libenson XOTPD, 1997, 111, ¢win. 3

Fig. 1. Kinematic diagram of the sequence of
events which give rise to a weak localization

Since Q = g, + q., we obtain Q* = ¢? + ¢2. Therefore,
94q. = 0. (12)

Let us now represent graphically the sequence of events which give rise to a new type of
weak localization. The circles in Fig. 1 have the radii R =k and R' = k' = Vk? - 2mh ™" w,
respectively. The radii coincide with the lengths of the electron wave vectors in the initial and
final states. Let us first consider the case in which the first collision is elastic. For brevity, we
denote this process as {m,k'|H;GH,|n,k). Here m and n correspond to the initial and final
states of the medium. The end of the vector q., the momentum transfer during the elastic
scattering (which may involve multiple elastic scattering), touches the circle R , so that the
electron wave vector becomes equal to k; as a result of elastic scattering. The following event of
the scattering is an inelastic collision with a momentum transfer q;, and the condition q;q. = 0
is satisfied. The vector q; connects the end of the vector k; with the point A on the circle
R' = k' (where the end of the vector k' rests). The energy of the final state electron is lower
by fuw than the energy of the initial state.

In the complementary scattering process (m,k'|H.G H;|n,k) the particle first loses its
energy and only then undergoes the elastic scattering. The interference between two realizations
of the scattering process is effective if the wave vectors transferred during inelastic scattering
in each realization are parallel and if they have the same lengths. Therefore, the momentum
transfer ¢/ in the event of inelastic scattering in the process (m,k'|H.GH;|n,k) is shown with
the segment that connects the end of the vector k and the point B on the circle R' = k', where
the vector q; is perpendicular to the vector q.. The vector q., in the process under consideration
is shown with the segment AB. The vectors q. and q; in the process {m,k'|H,GH,|n,k) and
the vectors q; and q., in the process (m,k'| H.GH;|n,k) convert the vector k to k'.

As can be seen from Fig. 1, there is the other set of vectors q;, q. and g}, q,. In this case g;
connects the point C (at the end of k') with the end of k;. The segment C D and the segment
joining the point D and the end of k define q, and q.

As a rule, the two sets of solutions, which correspond to the segments AB and C D, cannot
be realized simultaneously. It is obvious that a solution concerned with the existence of the
segment C' D corresponds to the length gq;,

g = Vk?* = (g /22 + k" — (¢./2)?,
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and to the electron-scattering angle, _ .
_7 =1 —1{ Qe )
=_+ + de

X~z Tem (2k> sin™ (2k’ ’

sothat 7/2< x £ .
Therefore,

@} = K? + k" + 2kK' sin (13)

) (2kk' cos x)?
Q™ ¥ k2 + 2Kk siny

(14)

It is evident that g; / g. > 1, an inequality that is difficult to realize. For example, in the case
of plasmon excitations there is a cutoff vector ¢; = ¢;. = wv;l (where vy is the electron Fermi
velocity), and the probability of plasmon excitation with ¢; > ¢;. is zero. In other cases of
inelastic scattering the processes with small momentum transfers are also probable. However,
when taking the limit of the ordinary weak localization (¥’ — k), the solution of Egs. (13)
and (14) corresponds to the correct description of the process. When the ratio fuw/E is small,

we have »
1 hw’
X : 8 [(2k/Qe)2 - 1] ( E ) ’ )

and x - m as hw — 0.

When we consider the new type of weak localization, the solution associated with small
momentum transfers q; is realized. In this case the interference conforms to the rectangle with
the vortices ABLM. According to Fig. 1, the dependence of the length of the vector q; on x
has the form

@i = Vk* = (ge/2? — k2 — (gc/2)?, (16)
and
— alp—1 Qe s —1 qe
X = Sll.'-l (5_15) + sin (Z_k’) . 17)

From Egs. (16) and (17) we obtain
. (2kK' sin x)?

Q™ k2T k7 + 2kk cos (18)
2mw
i = . 19
¢ hy/k? + k' + 2kk’ cos x 1)
We see from Eq. (19) that
2 + ”2 2
cosy = — k"t k 2w (20)

T o2
2kk' w'g?

This expression determines the electron-scattering angle under weak locahzatlon at different
values of q;, the inelastic momentum transfer.
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If k— k' < k, then

2

-_ or COoS
2
vig; q

N
Il
|&

cosy =-1+

<
-

It is convenient to rewrite them as
x = 2cos™! (-“’-) 1)
Uq;

If the electron scattering excites the electromagnetic waves (longitudinal or transverse), Eq. (21)
can be interpreted as the condition of the electron scattering through the double Cerenkov angle.
This circumstance was pointed out in [37].

There is a top value of the vector q. (this vector is represented by the dashed line M F')
at which the vector q; drawn from the point F' perpendicularly to the segment M F' ceases to
cross the inner circle. Accordingly, it is impossible to expect the new type of weak localization
to be at electron-scattering angles close to m. We see from the geometric consideration that
the top scattering angle is

h
xo =m —cos™! (1 - -2—;%) . 22)

Therefore, we obtain

gio = ksinxo = V2mwh™". (23)

The new type of weak localization takes place only if g; < gio-

Now we can determine the range of scattering angles of the electrons that undergo weak
localization for different types of medium excitations. When a bulk plasmon is excited and its
wave vector is in the range

w w.
2 <gi<g=-%,
v VF

the coherent phenomena at electron scattering occur at
0 < x < 2cos™ ! (wp /v). (24)

The range of wave vectors of the transverse electromagnetic waves (at the Cerenkov excitation)
is

w w

— < g; < —y/€.

v ST Ve

The most intense scattering will then occur in the range of scattering angles

0 < x < 2cos™! (UL\/E) . (25)

In the case of excitation and ionization of atoms [37] we have
. eV/Z
qt - | dz mn I b
1008



X3TD, 1997, 111, evin. 3 On the theory of quantum interference. . .

Fig. 2. Three-dimensional diagram of
the realization of constructive interference

where Z is the atomic number, and d .., is the matrix element of the atomic dipole for
excitation from the ground state n to the upper state m. Therefore, the coherent phenomena
at electron scattering will be pronounced at /

T mnl)
X = 2cos ( vz ) (26)

For an optical-phonon excitation, the weak localization is effective when

2mw
N il L Te]

k
(G is the reciprocal lattice vector). The appropriate range of the electron-scattering angles is

0 < x < 2cos™! (\/hw/4E) . (27)

Until now we have assumed that every vector in Fig. 1 lies in the same plane. However,
the vector q;, which is perpendicular to q. does not necessarily lie in the plane of the vectors k
and q.. If the vectors q;, q, q;,q., k, and k' are situated as shown in Fig. 2, the complementary
scattering processes will be accompanied by a constructive interference. In this case the ends
of the vectors q; and q; are situated on the circles formed by intersection of the inner sphere
R’ = k' and the planes which are perpendicular to q. and pass through the points L and M.
The vectors q; and ¢/ form the «fan»

Wpoh

w2 . 2mw
T —cosx < g; < min [\/ et maz] . (28)
Instead of Eq. (15) in this case we have
1 hw\
cosy =—1+ — 1, 29
°X 8 [(2k/q.7 — 1] cosp ( E) 29)

where ¢ is the azimuthal angle (in the plane perpendicular to k) between the vectors k/ and
q.. Although the kinematic diagram of the realization of effective interference is now three-
dimensional, our conclusions about the interference mechanism and about the features of
electron-scattering angles remain valid.
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3. DYNAMICAL APPROACH FOR THE DESCRIPTION
OF THE NEW TYPE OF WEAK LOCALIZATION

Although the description of weak localization requires, first of all, the contribution from
the poles of the Green’s functions in Eq. (3), the contribution from the principal value might
modify the results of the previous section. In addition, we shall consider the uncertainty of the
radii of the spheres in Figs. 1 and 2 due to the image potential of the medium. The uncertainty
is kK ~ V2mU'[2hv/E]~! , where U’ is the image potential mentioned above.

Moreover, the momentum transfer q; usually is not fixed in experiments. Hence we should
perform integration over q;. It is convenient to introduce the function

k+k’
[ dg; wi(gi,w)Fc(gi,w, X)

M) = -7 , (30)

[ dgi wilgi, w)F L(gi,w)
0

which is called the degree of coherency. Equations (12), (18), and (19) in [37] clarify the
definition of M (x). In Eq. (30) w;(g;,w) is the rate of excitation of a state with energy hw
and momentum gq;.

The functions &. and & occur due to the crossed and ladder diagrams; and they are
defined as

Fo(gisw,x) =2 Re / 07 ‘

vq; — w — hg?/2m + i) (w — VqQ; — hg?/2m — iv)

, @D

1 1
g iy = /d + . 32

. Here the damping is v = kv.
To analyze the weak localization during excitation of the long-wavelength medium states,
¢.g., of plasmons or optical phonons, it is convenient to write w;(g;,w) as follows:

wi(qiaw) = ?(w)ql_z 0(‘]1. maz T Q'L)

The function & (w) is the long-wavelength limit of the imaginary part of the reverse dielectric
function of the medium accurate within a constant. The degree of coherency will then be

min(k+k',¢i maz)
dqi gc(qi7w7 X)
M(x)= : (33)

min(k+k’,q; max)

dgi Fr(gi,w)

0

The function &, determines the incoherent part of the electron cross section and takes
the form :

+w+hg? oy — Hl
gL(q‘ivw) = 2m {l |:tg—l (/Uql s hQ1/2m) +tg—l (vql w hqt/Zm)] +

Yq: (U 8 Y
1 'g; + w — hg? 'a, —w + ha?
+ : [tg_l (1) a4 wfy hq,/2m> rg! (v g w’y hql/2m>] } (34)
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The coherent part is deternined by

4
Fo(gi,w,x) = -q—7_r Re {3”1(v,v’,w,wc,x,qi) x

2(w') + (ha? 2 _ D+
x log &) (hq,/Zm)z w9+qu ) (35)
(W) + (hg?/2m)" — w2—q;: ¥
where #(v,v',w,w,, X, ¢;) has the form
2 2 2\ 2 12
9={w3 (v—v')z—l<q,-[w'1>2+2"j‘;#—(%) ‘”"’ZJ} . (6)

Here w, = w — 7.
The position of the angular features of the interference part in the electron cross section
is mainly determined by zeros of the function 2. The equation & = 0 has two roots:
8w [[W]* + (hw/m)?] (v + ¥))~?
W] + 20 wwem=2 + /W1 + dhw (W — wo)m =2 [wW']’

(37

(g =

2_72 W] + 2h%ww.m=2 + VIWE + dhwe(w — w)m=2[w ]2

” RO 9

(g =

We can associate these roots with the value g; defined by Eq. (19). The association is clearly

seen in the limit of v — 0. In this case w. — w, and from Eq. (37) we obtain
] \/m ‘

Equation (39) coincides with Eq. (19). This means that the kinematic approach yields a
reasonably good accuracy.
In the same approximation Eq. (38) yields

(39

(40)

_[k*+ k™ = 2k%k" cos 2
42 k2 + k2 + 2Kk’ cos x
From Egs. (40), (18), and (19) we see the sum of Eq. (18) and the squared Eq. (19) is equal
to the squared right-hand side of Eq. (40). Therefore, Eq. (40) corresponds to the case where
q; = Q. This solution is not significant for the new type of weak localization.

Since the equations are rather complicated and do not give a transparent insight into the
dependence of the electron cross section on the various parameters, we present the theoretical
features in Figs. 3-6 for a few typical cases.

Figure 3 shows M () for the plasmon excitation in metals. Every curve shows a clearly
defined slope. The nature of the sharp decrease has been explained in Sec. 2 on the basis
of Eq. (22). In the case of a particular excitation the condition (22) might undergo some
change. The dynamical approach takes into account these changes. In the particular case
of the bulk plasmon excitation the change can be described in terms of the Cerenkov and
bremsstrahlung generation of plasmons. The weak localization takes place when the plasmon

1011



V. V. Rumyantsev, E. V. Orlenko, B. N. Libenson XOTP, 1997, 111, eun. 3

0.05 =T Fig. 3. Degree of coherency versus electron-
scattering angle for plasmon excitation. The
z s sharp decrease of the curves is due to
E the absence of the Cerenkov generation of
-5‘0-05 [ plasmons. The difference in the degree of
%’ coherency from zero at angles which lie in
3 -0.10f the range from 2cos™ ' (v /v) up to = is due
50 to the finiteness of v and the contribution
Aa-0.15¢ from the principal value in Eq. (5b). hAw =
=10eV, U' = 1 eV. Curve I corresponds
=020 e to E =200 eV, 2— 300 eV, 3 — 400 eV,
0 40 80 120 160 4—500 eV, and 5 — 600 eV
Electron scattering angle
03 T T T T T T T
)
g
E Fig. 4. Degree of coherency at different
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generation mechanism differs only slightly from the Cerenkov mechanism. The absence of the
Cerenkov generation of plasmons at

2cos lwp /vy < x <7

implies that at these angles the new type of weak localization is suppressed. The difference in
the cross sections from zero at the angles which lie in the range from 2cos™!(vp /v) up to 7
is due to the finiteness of -« and the contribution from the principal value in Eq. (5b).

Figure 4 shows the plot of M (x) versus the energy loss due to the plasmon excitation.
With an increase in fuw,,, the peak position shifts to smaller x. If hw = 2 eV, the constructive
interference takes place at x,, = 150°. If hiw = 4 eV, we have y,, = 120°. These results agree
with Eq. (21) which was obtained from a kinematic analysis.

The curves M (x) depend also on the image potential. As shown in Fig. 5, a considerable
decrease in the degree of coherency at x = w (i.e., in the range of bremsstrahlung plasmon
generation) takes place up to y/w = 0.5. Only at /w ~ 1 the angular dependence begins to
smooth out when x = 2cos™!(w/vg;). In that case it looks like a peak on the curve M(x).
With an increase in +, it shifts to xy = .

Figure 6 shows a theoretical curve M (x) for excitation of polar optical phonons. Weak
localization associated with this excitation corresponds to curve 5. We assume that hwyn =
= 0.05 eV. Other curves correspond to hwpy, larger than for ordinary optical phonons. These
curves show a variation of M () when the energy loss increases from phonon to plasmon losses.
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At hw < 0.5 eV, the width of the coherent peak at x ~ 7 is equal to 15° and it does not get
narrower with a further decrease of hw. This means that the weak localization of an electron
during elastic scattering does not differ noticeably from the new type of weak localization during
quasielastic scattering.

4. CONCLUSIONS

With a decrease in the energy loss, the new type of weak localization transforms into an
ordinary weak localization. The transition is described by taking into account that the term
¢2/2m in the denominator of the Green’s functions in Eq. (3) is more significant than hw in
the limit w — 0.

We have mentioned this fact at the end of Sec. 3. One can study the transition further by
analyzing the variation of the ratio &,/ with 2mw/q? at different scattering angles. The
transition of the ordinary weak localization (i.e., at hw = 0) to the new localization (fw # 0) is
shown in Fig. 7. For example, at 2mwg;” 2 = 0.8 an announced maximum occurs for x =~ 175°.
The transition seems to take place for those hw and q?/2m which are > ~.

It can now be stated with assurance that we have explained why the angles typical of the new
type of weak localization differ from 7. The simple kinematic approach enables us to estimate
these angles very accurately. The dependence of the angles on the electron energy loss and on
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other parameters can be predicted. Finaliy, we have shown that there is no wall between new
and ordinary weak localizations. The two phenomena are two different manifestations of the
constructive quantum interference of electron waves.

We thank Prof. D. G. Yakovlev for critical reading of our paper and for helpful advice.
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