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Trans-А1fVеniс shock waves are considered in the approximation of sma11 amplitude and 
a1most parallel propagation to the magnetic field. Such shocks are nonevolutionary, since 
the problem of time evolution of their small perturbation does not Ьауе а unique solution. 
Therefore, they cannot ехШt as stationary configurations and must disintegrate or transform to 
some more general, nonsteady flow. Thе disintegration configuration necessarily includes ап 
A1fVen discontinuity that is also nonevolutionary. It is shown that the contradiction inherent 
in the nonevolutionary configuration is removed if its time evolution has the form of oscillatory 
disintegration, i.e., reversible transformation of опе type of the discontinuity to the other. In this 
process fast and slow shock or rarefaction waves as well as contact discontinuities are ernitted. 

1. INТRODUCTION 

@1998 

Тhe problem of disintegration of hydrodynamic discontinuities has а 1оng history since the 
publication of the paper Ьу Kotchine [1]. Не considered the disintegration of ап arbitmry 
discontinuity into а set of other discontinuities and rarefaction waves in the framework of 
nonmagnetic hydrodynamics. Some time later, Bethe [2] studied the disintegration of а shock 
wave. Magnetic field complicates the situation, enlarging the number of possible disintegration 
configurations. For а small-amplitude arbitrary discontinuity such configurations were obtained 
Ьу Lyubarskii and Polovin [3]. In general, the problem cannot Ье solved in ап analytical form. 
Gogosov [4] has given а quantitative solution that determines the type of the confJ.gUration, 
depending оп the flow parameters. 

The disintegration of а shock wave is closely related to the problem of its evolutionarity, 
formulated in Refs. [5-7]. It is suggested that small perturbations should Ье imposed оп the 
discontinuity surface to study the question of its disintegration. In this case small-amplitude 

. waves occur оп both sides of the surface. The amplitudes of these waves are related Ьу the 
linearized boundary conditions obtained from conservation laws at the discontinuity.. If the 
amplitudes ofthe outgoing waves cannot Ье determined unambiguously from these conditions Ьу 
the amplitudes ofthe incident waves, then the problem ofthe time evolution ofthe infinitesimal 
perturbations does not have а unique solution, and the discontinuity is called nonevolutionary. 
This problem is encountered when the number of unknown parameters (the amplitudes of 
the outgoing waves and the discontinuity displacement) is incompatible with the number of 
independent equations. 

Since а physical problem must have а unique solution, it is not correct to assume that the 
perturbation of а nonevolutionary discontinuity is infinitesimal. Such а discontinuity cannot 
exist in а real medium as а stationary сопfщurаtiоп, because the infmitesimal perturbation leads 
to а finite variation of the initial flow. This variation is the disintegration of the discontinuity 
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into other discontinuities, which move away from the place oftheir formation, or а transition to 
а more general nonsteady flow. In the ideal medium the disintegration is instantaneous in the 
sense that the secondary discontinuities Ьесоте separated in the beginning of the disintegration 
process. In а dissipative medium the spatial рrоШеs of the rnagnetohydrodynarnic (МНО) 
properties are continuous. Nevertheless, the principal result remains the same, the flow is 
rearranged toward а nonsteady state, and after а large enough period of time the disintegration 
manifests itself. 

The evolutionarity requirement gives additional (compared to the Zemplen theorem) 
restrictions оп the flow parameters at the shock surface. They fol1ow from the fact that the 
direction of wave propagation (toward the discontinuity surface or away from it) and hence 
the number of the outgoing waves depends оп the flow velocity at the surface. If it is large 
enough, then the given wave тау Ье carried down Ьу the flow. Therefore, at ап evolutionary 
discontinuity the flow velocity must Ье such that it provides the compatibility of the set of 
boundary equations. This form of evolutionarity condition was applied to МНО shock waves 
in Refs. [8-10]. 

As а result, the fast (1 ---+ II) and slow (Ш ---+ IV) shocks, for which the flow velocity 
both upstream and downstream is larger and smaHer than the Alfven vel0city, respectively, 
are evolutionary, while the trans-Alfvenic shock waves (TASWs) are not. Here the Roman 
numbers indicate the states upstream and downstream of the shock, in which the values of 
the normal flow velocity [аН into the intervals separated Ьу the three phase velocities: fast 
magnetosonic, Alfven, and slow magnetosonic velocities. These states are arranged in order of 
increasing entropy. 

The important fact that favors the nonexistence of nonevolutionary shock transitions is that 
they сап (while the evolutionary ones cannot) Ье realized also through а set of several shock 
and rarefaction waves [11-13]. Опе more argument for the nonexistence of nonevolutionary 
shocks is that they are isolated solutions of the Rankine--Hugoniot problem that do not have 
neighboring solutions corresponding to зтаН deviation ofboundary states [14]. This is confirrned 
Ьу the fact that the configurations neighboring to such shocks are time-dependent [15, 16]. For 
such configurations the coplanarity of the boundary states is violated and therefore they are 
not solutions of the Rankine--Hugoniot problem. 

The problem of structural instability of МНО shocks has recently progressed to а new 
point due to the consideration of а nonplanar shock structure [17-20]. Кеnnеl et al. [19] 
discussed nonplanar shocks of зтаll amplitude. They have demonstrated that the structure of 
nonevol~tionary, TASWs, is not unique. Namely, the transitions 11 ---+ 111 сап Ье connected Ьу 
two integral curves, left-hand and right-hand polarized, and the transitions 1 ---+ 111 and 11 ---+ N 
allow ап infinite number of connecting integral curves. These conclusions are in agreement with 
those of Наи and Sonnerup [18], who analyzed the stationary points of the МНО equations 
corresponding to the boundary states of the shock transitions in the case where the magnetic 
diffusivity is the опlу nonzero transport coefficient. Recal1 that under the assumption of а planar 
shock structure the trans-Alfvenic transitions also do not have а unique structure for аll values 
of the dissipative transport coefficients [21-23]. 

It сап Ье shown [19] that the integral over the shock thickness of the out-of-plane 
component of the magnetic field is independent of time if the upstream and downstream states 
of the зтаll amplitude shock satisfy the Rankine-Hugoniot conditions. This means that the 
flow outside the shock is in опе рlапе. This integral characterizing the nonplanar structure 
remains constant during the evolution of the initial рroШе, and it labels uniquely the integral 
curve that connects the given states. For the evolutionary, 1 ---+ 11 and 111 ---+ N, shocks the 
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flow is planar, and the integral is zero. For the shock transition 11 -+ 111 the integral takes two 
values with equal modules and opposite signs, and for the transitions II -+ lV and 1 -+ 111 it 
falls into some interval which describes а one-parameter family of structиres. 

То гетоуе the ambiguity ofthe solution for the TASWs, Kennel е! а/. [19] postulated that 
in addition to the boundary states, the integral characterizing the nonplanar structиre should 
Ье fIXed. The solution of the boundary value problem describing the shock will then Ье unique. 
То assure this, however, опе must assume that the сопfщиrаtiоп contains опе shock. This is 
not the only possibility. As discussed аЬоуе, the trans-Alfvenic shock transitions сап Ье realized 
also through а set of several shock and rarefaction waves. Thus, the ambiguity of the structиre 
connecting the nonevolutionary boundary states is not lifted [24], and the TASW is structurally 
unstable. Nevertheless, the conservation ofthe quantity that fIXes the structиre ofthe nonplanar 
shock is ап additional factor that governs the disintegration process. 

Indeed, at а Т ASW the tangential magnetic field changes sign. Consequently, it must 
change sign at а secondary discontinuity. This mау take place either at another TASW or at 
ап Alfven discontinuity. As is knоwn [25], the Alfven discontinuity is also nonevolutionary in 
the presence of arbitrary small, but nonzero dissipation. Since the evolution of а nonplanar 
shoek is related to its structиre, it eannot Ье assumed that the dissipation is absent. Therefore, 
the Alfven discontinuity also cannot exist as а stationary eonfigиration. In the present рарег we 
suggest а new scenario for the evolution ofthe TASW, oseillatory disintegration, i.e., reversible 
transformation to the Alfven discontinuity. Such а form of evolution resolves the contradiction 
inherent in the nonevolutionary configurations. 

We consider the small amplitude shocks that propagate almost рага1lеl to the magnetic 
field. This approximation allows us to use ап analytical approach, and, at the same time, 
to determine some featиres of the behavior of finite-amplitude discontinuities. In Sec. 2 we 
obtain the disintegration еопfщиrаtiоп for the TASW of sma11 amplitude that propagate almost 
рага1lеl to the magnetic field. In Sec. 3 we diseuss the evolutionarity and some other properties 
of nonplanar shoeks. In Sec. 4 we describe the time evolution of the Т ASW in the сме where 
the transverse magnetic field is not srnall and in the еше of almost parallel propagation. Finally, 
we present oиr conclusions in Sec. 5. 

2. STRUCТURAL INSTAВILIТY OF TRANS-ALFVENIC SHOCКS 

We first eonsider the disintegration еопfщиrаtiопs of srnall-amplitude, almost parallel 
MHD shoeks. We choose the frame of reference in which В 11 v and the х axis is directed 
along the погтаl to the discontinuity. We proceed from the following jump conditions at the 
diseontinuity surface: 

(1) 

(2) 

(3) 

(4) 
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1 2 'у _ 
"2 PVxil(v ) + 'у _ 1 il(pvx) - о. (5) 

In solving this set of equations we imply that the variations il of all МНО properties, except 
Ву, are small compared to their values at а reference state, and that Ву « Вх • То the lowest 
order in the small parameters Ву / ВХ and ilp/ р Eqs. (1)-(5) have the following solutions which 
describe the relationship between the jumps of the МНО properties. For the first four solutions 
ilBy ~ Ву, 

ilBy = -Ву (1 ± 1 + 2 Vlx - V} ilP ) = В А V 2 - У , 
Ау Р 

(6) 

(7) 

ilvx = cVilp/p, (8) 

ilp = V}ilp, (9) 

where V = VAx and V А = В/ J41ГР is the Alfven velocity. Here с = +1 for the waves moving 
in the positive х direction and с = -1 for the waves moving in the opposite direction. We 
assume for definiteness that VAx > Vs . The plus (<<+») sign in Eq. (6) will then correspond to а 
TASWand the minus (<<-») sign wШ correspond to а fast shock wave. In zeroth approximation 
the propagation velocity of both waves is VAx ' The TASW is of the 11 -+ 111 type, i.e., 

if 

and of 1 -+ 111 type, i.e, 

if 

Here 

Ву! 1 -1 < - <--- Ву2 - 2' 

1 Вуl --<-<0. 2 - Ву2 -

(10) 

(11) 

are the phase velocities of the fast (+) and slow ( -) small-amplitude waves, and the subscripts 
«1» and «2» indicate the states upstream and downstream of the shock, respectively. 

Two more solutions of the set of equations (1)-(5), for which ilBy « Ву, correspond to 
slow shocks. They are given Ьу the formulae 
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В - V.2B y !1p 
!1 у - - V2 _ V 2 - , 

Ах s Р 
(12) 

(13) 

and Ьу Eqs. (8) and (9) with V = Vs , where Vs = V,p/ р is the sound velocity. Expressions (8), 
(9), (12), and (13) coincide with those for small-amplitude waves. At ап A1fven discontinuity 

(14) 

where the + sign is used if the discontinuity is absent and the - sign is used if it rotates the 
magnetic field through 1800. Finally, the only nonzero jump at а contact discontinuity is !1р. 

Assume now that the TASW with the amplitude !1ор moves in the positive х direction. If 
the shock transition сап Ье represented as а set of more than опе discontinuity, the amplitudes 
of the secondary discontinuities are determined from the condition that the sums of the jumps 
of the МНО properties at them are equal to those at the initial shock. It should Ье mentioned 
that in so doing the variation of Ву at the secondary waves must Ье taken into account in 
Eqs. (6)-(9) and (12)-(14), while the other quantities equal to their values upstream of the 
initial shock тау Ье substituted. We thus find that in zeroth approximation the trans-A1fvenic 
shock transition сап Ье realized through а fast shock, with the same amplitude !1j+l) р = !1ор, 
and the A1fven discontinuity moving in the same direction. However, since these secondary 
waves move with zero velocity with respect to еасЬ other, there is по disintegration. 

Let us now solve Eqs. (1)-(5), taking into account higher-order terms. For simplicity we 
assume that B~ / B~ ;s др / р. Otherwise (when В; / B~ ~ др / р), the approximation of almost 
parallel propagation is violated. ТЬе сопесtiопs to the quantities (6)-(9) are determined Ьу 
the expressions that follow [roт the expansion of Eqs. (1)-(5) in the small parameters Ву/ ВХ 
and др/р, 

Here 

ДVу = -с; VAy [А + а - ~ (1 + А) ~] , 

дvх = с; VAx д: [1 - ~ (1 - ~) д:] , 
ДР = Vs2др + Vl~~p)2 - :: а(1 + А). 

2АЗ + (, + 4)А2 + b1A + Ь2 др 
а = 2А(1 + А) Р , 

vlx др 
Ь 1 = 2 + 2Ь2 - (, + 3)-­

V2 Р 
Ау 

The velocity in front of such shocks is 
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(21) 

Next, we set equal again the sums of the jumps at the secondary waves to those at the 
initiaI Т ASW. In substituting the relationship between the MHD properties for the waves absent 
in zeroth approximation it is sufficient to use Eqs. (6)-(9), (12), and (13), which are vaIid in 
the Iowest order, because the amplitudes of these waves are smalI compared to the ampIitude 
of the initiaI shock. 

As а result, we find that the fast wave moving in the direction opposite to the initiaI shock 
has the ampIitude 

(22) 

the ampIitude of the contact discontinuity is 

1 2 уlх - V} l10p 
+ 2 ' VAyl Р 

(23) 

and the amplitudes of the sIow waves moving in the positive and negative х directions are 

(Е) 1 VAx (-1) р(1 + A-)V1YI [ VAx ( 1 t1op)] 11 Р = --11 Р+Е--I1 р+ а++а +Е-- а++а ---
s 2 с v: f 2(у2 - V 2) - v: - 2 р . 

s Ах s S 

(24) 

Here А and а are given Ьу Eqs. (6), (19), and (20), in which Ву = Вуl and I1p = t1op, and 
the subscripts «+» and «-» сопеsропd to the sign in Eq. (6). It сап Ье shown, with the help 
of Eqs. (17) and (21), that the absolute value ofthe normaI flow velocity behind the fast shock 
moving in the positive х direction is larger than the normal Alfven velocity in front ofthe Alfven 
discontinuity. Непсе, these waves Ьесоте separated as time goes оп (Fig. 1). 

Note that ifVs is comparabIe with VAx, then the flow in the fast and trans-Alfvenic shocks, 
which is dеtепniпеd Ьу Eqs. (6)-(9), is isentropic, but only to the lowest order. The jump of 
the entropy at such shocks is 

I1s = 1. Vl y I1p А2 • 

4 V} р 
(25) 

In case where др/ р « Vly/Vlx this expression coincides with that obtained Ьу Bazer and 
Ericson [26]. After the disintegration, the difference between the entropy jumps at the trans­
Alfvenic and the fast shock is taken Ьу the contact discontinuity at which the entropy jump is 
of the same order of magnitude as the density jump 

F S с s AF 

, 

~> 
Fig. 1. Disintegration configuration for the 

2 
г-

trans-Alfvenic shock in the case V. ~ VAy. . I 1 In zeroth approximation the dotted lines 
j are absent 

О х 
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!!s = (as) !!р = __ '_ !!р. 
др р ,- 1 р 

(26) 

Thus, the consideration of the сопесtiопs to zeroth approxirnation reveals two properties 
of the disintegration configиration. First, the fast shock and the fJfven discontinuity rnoving in 
the sarne direction as the initial shock acquire а srnall relative velocity. Second, the arnplitudes 
of the discontinuities, which have fmite velocity with respect to each other, Ьесоrnе nonzero. 

We ernphasize that the absence of disintegration in zeroth approxirnation is essentially 
а consequence of the assurnption that the tangential rnagnetic field is srnall. Тhis result is 
consistent with the fact фаt the exact1y parallel TASW сап Ье represented as а switch-on 
and а switch-off shock, but they do not Ьесоrnе separated [10,11]. However, the parallel 
shock disintegrates when it collides with srnall-arnplitude shocks incident оп both sides of the 
discontinuity surface [11]. It should Ье rnentioned that Eqs. (6) and (7) are not valid for the 
exact1y parallel shock, because it necessarily has а finite arnplitude if v;, is not close to VAx. 

We сап also consider the case Vs «: VAx , which was discussed Ьу Kennel et al. [19]. Note 
that, оп the other hand, Vs2 rnust Ье rnuch larger than Vl y!!p/ р (or V~y/Vlx) for а srnall­
arnplitude shock. The character of the disintegration changes significantly when Vs ~ VAy ' 
Under this condition the flow is not isentropic in the lowest order (see Eqs. (23), (25), and 
(26». То this order the jurnps !!cs, !!ср, and !!~e) р, are not equal to zero, in contrast with the 
case Vs » VAy ' At the sarne tirne, the velocity of the slow shocks Vs is srnall. Therefore, in 
zeroth approxirnation they are not separated frorn the contact discontinuity which is at rest 
with respect to the rnediurn. 

As а result, the initial TASW disintegrates into two structures. The first structure, denoted 
Ьу А + Р, is forrned Ьу the Alfven discontinuity and the fast shock, which are at rest with 
respect to each other. The second, denoted Ьу S + с + S, is forrned Ьу two slow shocks and 
the contact discontinuity. These structures have the finite relative velocity VAx. The peculiarity 
of such а configиration is that the only nonzero total jurnp at the structure S + с + S is !!с s , 
because, as сап ье seen fюrn Eqs. (22)-(24), the total density jurnp equals zero when Vs ~ VAy ' 
Consequent1y, the disintegration in this case takes place in the lowest order, although its only 
rnanifestation is the tirne-dependent епtюру proflle along the х axis (Fig. 2). In higher orders 
the proflles of the other МНО рюреrtiеs also Ьесоrnе nonsteady. 

3. EVOLUТIONARI1Y OF NONPLANAR SHOCKS 

N ext, we consider the influence of the nonplanar structure оп the shock evolution. If the 
boundary states of the shock are coplanar, the evolution of the conflgUration is characterized 
Ьу additional conservation laws. This сап Ье understood, for exarnple, fюrn the z-cornponent 
of the induction equation, 

S+C+S A+F 

о х 

Fig. 2. Time-dependent entropy рюШе 
after the disintegration ofthe trans-A1fvenic 

shock in case V. ~ VAy 
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(27) 

where V m is the magnetic diffиsivity. Since the flow outside the discontinuity is planar and 
homogeneous, the integration over the thickness of the transition layer дх = Х2 - х! yields 

(28) 

Simi1arly, it follows [roт the z-component of the momentum equation, 

(29) 

that theintegral of the quantity pVz is also conserved in the process of time evolution of the 
configuration, 

(30) 

Here 77 is the shear viscosity. 
As shown in Ref. [19], if the integra1 of B z over the ргоШе of the small amplitude 

almost parallel 11 -. III shock is prescribed, then the ratio Ву!/ Ву2 of the upstream to the 
downstream values of the transverse magnetic field is fixed. Thus, the state behind the shock 
is unambiguously determined Ьу the state in front of it. This gives us ап additiona1 equation 
for the amplitudes of the waves that occur after the disintegration. Assuming tlшt this equation 
is valid to the second order in the amplitude, it сап Ье shown with the help of Eqs. (12), 
(13), and (15)-(18) that the amplitudes of the initial and secondary TASWs are equal, while 
аll other secondary waves are absent. ТЬе same is trиe for the 1 -. 111 shock. The difference 
is that in the latter case there is по additional equation, because the given integra1 over the 
рroШе allows infinite number of boundary states [19]. However, the fast wave moving in the 
direction of the initial shock is absent. Therefore, the number of equations is again equa1 to 
the number of secondary waves. These equations have опlу а trivial solution. Consequent1y, 
in the approximation under consideration а Т ASW cannot appear after the disintegration as а 
secondary wave. 

It should Ье mentioned that the conclusion about the relationship between the integral 
quantity, which characterizes the strиcture, and the amplitude ofthe wave is made in Ref. [19] 
опlу for isentropic flows. As shown in Sec. 2, this is not always the case for the almost parallel 
propagation. Nevertheless, this conclusion тау Ье also шаdе оп the basis of the following 
reasoning. ТЬе consideration of the stationary points of the MHD equations, corresponding to 
the boundary states of the shock transitions, shows that the transition 11 -. 111 сап Ье realized 
through two integra1 curves, right-hand and left-hand polarized, in contrast with the transitions 
1 -. 111 (11 -. IV) and 1 -. IV which are described Ьу опе- and two-parameter families of 
curves, respectively (see, e.g., Ref. [18]). Since the strиcture of the 11 -. 111 shock does not 
contain free parameters other than the amplitude (a1though it is nonunique), for the given 
quantity characterizing the strиcture and the given state in front of the shock its amplitude is 
fixed. 

622 



ЖЭТФ, 1998, 1lЗ, выn. 2 Osci/latory disintegration . .. 

Below we restrict the discussion to the shocks of the 11 -+ 111 type. The evolution of 
these shocks is the most important feature for the following reason. In contrast with the other 
types, the nonevolutionarity of the 11 -+ 111 shocks is essentially based оп the fact that for 
normal1y propagating waves the equations for the Alfven perturbations are separated from those 
for the magnetosonic and entropy perturbations [10]. Therefore, the evolutionarity criterion 
must Ье satisfied separately for both groups of waves. This makes the shock nonevolutionary, 
although the total number of perturbations is compatible with the total number of boundary 
conditions. Since under the assumption of а nonplanar shock structure the separation does not 
take place [20], this argument formally does not hold. Nevertheless, the соирling of Alfven 
modes to magnetosonic and entropy modes does not alter the conclusions made оп the basis 
of the evolutionarity principle. Let us clarify this point. 

In the linear approximation Eqs. (27) and (29) for the perturbations proportional to 
ехр( iwt) take the following form after the integration over х 

(31) 

(32) 

where 8 is the small perturbation, and the unperturbed quantities correspond to the stationary 
shock. The term responsible for the coupling is the first integra1 оп the left-hand side ofEq. (32). 

Let us assume now that the Alfven wave, which transfers оnlу the perturbations 8vz 

and 8Bz , is incident оп the 11 -+ 111 shock. In this сме there is опе outgoing Alfven 
wave, whose amplitude is the unknown parameter that should ье determined from Eqs. (31) 
and (32). Because the perturbation 8р enters into Eq. (32), when V z =f о, the latter becomes 
ап additional equation for the amplitudes of outgoing magnetosonic and entropy waves which 
тау Ье generated Ьу the incident Alfven wave. The perturbation 8 р inside the transition layer 
depends оп the amplitudes of the waves outside it and оп the stationary shock structure. Since 
8р should Ье determined from Eq. (32), the term with 8р cannot Ье much sma11er than all 
otller terms. Estimating the first terms оп the left- and right-hand sides of Eq. (32), we obtain 
in the order of magnitude 

(33) 

where the subscript о' indicates some characteristic values. 
In general, Ll8vz '" 8vz o. In addition, the unperturbed quantities and the discontinuity 

thickness do not depend оп the frequency of the perturbation. Consequently, for the 
perturbation with small enough w the quantity 8ро/ Ро is arbitrarily large compared to 8vzo/vzo. 
However, this result is valid for апу nonevolutionary shock; namely, as discussed in Sec. 1, 
infinitesimal incident perturbation (8v z in the present сме) causes а finite variation of the flow 
(8р). Therefore, since the соирling of the modes is weak, the contradiction inherent in the 
11 -+ 111 shock is not resolved even in the absence of the separation of the boundary conditions. 

In connection with the nonunique shock structure, Wu [20] argued that the shocks of 
the remaining types Ьесоте evolutionary if the free parameters characterizing their structure 
are added to the total number of perturbations of the shock. However, the additional free 
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parameters оп their own also do not resolve the contradiction. In the presence of dissipation 
such parameters are provided, in particular, Ьу the amplitudes of purely dissipative waves, 
which are absent in the ideal medium [25]. The problem is that the boundary conditions, that 
follow from the conservation laws at the shock, are incompatible. Therefore, а free parameter 
contributes to the evolutionarity only if it enters into the conservation laws. For example, purely 
dissipative waves damp within the length of the order of the shock thickness. Consequently, 
their amplitudes do not enter into the boundary conditions, and they should Ье disregarded when 
solving the problem of evolutionarity of а shock wave, unless it is of switch-off or switch-on 
type [25]. At the same time, it сап Ье shown that in the case of dissipative discontinuities 
inside inviscid shock waves the additional dissipative waves affect the evolutionarity condition. 
Apparently, the structure variations are also confined within the transition layer. 

4. TIME EVOLUТION OF NONEVOLUТIONARY DISCONТINUIТIES 

Let us now tum to the time evolution of the TASWs. For ап illustration we first consider 
the case in which the ratio Ву! ВХ is not small. То the first order in t:.pj р we сап then reduce 
the expressions for the jumps of the МНО properties at the TASWas follows [12]: 

(34) 

Here Q = (р, р, v x , vy , Ву) is the vector of state, i.e., the set of МНО properties, AOj are 
the known coefficients, and t:.A are the jumps at the Alfven discontinuity given Ьу Eq. (14). 
In the present case the jump t:.IByl is small compared to IByl, hence, the inequality (10) is 
satisfied, and the TASW is of the II -+ III type. 

The jumps at the fast and slow shock (or rarefaction) waves coincide with those at 
the corresponding small-amplitude waves. As а result, the equations that determine the 
disintegration configuration take the form 

(35) 

where the subscript i indicates the type of the discontinuity, and Aij are known quantities. 
The solution of these algebraic equations 

(36) 

expresses the amplitudes of secondary waves in terms of the amplitude of the initial TASW. 
The explicit expressions for the quantities ai are given in Ref. [12]. 

Thus, the initial nonevolutionary shock тау disintegrate into а contact discontinuity, 
magnetosonic waves, and ап Alfven discontinuity. At the same time, as shown Ьу Roikhvarger 
and Syrovatskii [25], the Alfven and the contact discontinuities are also nonevolutionary in 
the presence of ап arbitrarily small but nonzero dissipation and heat conduction. Тhis stems 
from the fact that the flow velocity in this case is equal to the phase velocity of the Alfven and 
the entropy wave, respectively. As а result, the wavelength of the small perturbation with а 
fixed frequency tends to zero. This makes it necessary to account for the dissipation and, as 
а consequence, leads to the occurrence of additional outgoing (dissipative) waves that damp 
within the length much larger than the discontinuity thickness. 
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However, the nonevolutionarity does not lead to the disintegration of the discontinuity 
if it cannot Ье represented as а set of several discontinuities. This is the case for а contact 
discontinuity. Indeed, under the condition that Ву is not smal1 the jumps t:.vy and t:.By at а 
TASW or at an A1fven discontinuity are much larger than аl1 other jumps. То provide по field 
reversal in sum, the disintegration configuration must contain two discontinuities at which Ву 
and vy change sign or it must not contain them at аl1. In the latter case the equations for 
the jumps have only the trivial solution. It сап ье readily verified, with the help of Eqs. (14) 
and (35), that in the former case t:.vy and t:.By cannot Ье compensated simultaneously, since t:.vy 
depends оп the direction of propagation, while t:.By does not. Непсе, the contact discontinuity 
is structural1y stable. In contrast, the A1fven discontinuity is unstable, and it тау disintegrate. 

Оп this basis we suggest а new scenario for evolution ofthe configurations with the magnetic 
field reversal, oscillatory disintegration. Under the action of an infinitesimal perturbation the 
TASW disintegrate into а system of waves including the A1fven discontinuity. In this process 
the integra1s (28) and (30) over the nonplanar рroШе of the initial wave are conserved and are 
equal to the integrals over the рroШе of the A1fven discontinuity, while the flow in the remaining 
secondary waves is plane. In contrast with а shock wave, the out-of-plane structure of ап A1fven 
discontinuity is not related to the boundary states due to their degeneration. Therefore, such 
а disintegration сопfщurаtiоп сап always Ье adjusted to the initial discontinuity. The A1fven 
discontinuity, in turn, also disintegrates, producing the TASW with an amplitude equal to that 
of the initial wave, which is unambiguously determined Ьу the quantity fJ.Xing the structure. 

The amplitudes of the remaining waves satisfy Eq. (35), in which t:.Qp is replaced оп the 
right-hand side. Therefore, they are given Ьу Eq. (36), in which ai is replaced Ьу -ai; i.e., shock 
waves instead of rarefaction waves occUr and vise versa, compared to the case of disintegration 
of the TASW. After that the process is repeated. The waves of different types тау catch 
ир with and outrun each other during their propagation. Since the waves are structurally 
stable, their types are not changed in this process. If the characteristic time between the 
disintegrations is not small, the waves ofthe same types catch ир with each other at infmite time. 
In the approximation of small amplitudes the secondary waves do not interact with each other. 
This means that the feedback effect of the disintegration оп the nonevolutionary discontinuity 
manifests itself in higher orders. 

It should Ье mentioned that the contradiction associated with the nonevolutionarity of the 
A1fven discontinuity is also resolved if it has а time-dependent thickness. То some extent, 
the situation is sirnilar to that for the corrugationally unstable shocks in the nonmagnetic 
hydrodynamics [27,28]. As is known [29,30], such shock transitions сап always ье represented 
as а combination of several discontinuities. This makes it possible to assume that the unstable 
shocks mау disintegrate rather than undergo the growing undulation [30]. However, as well 
as in the present case, the physica1 mechanism that distinguishes whether the discontinuity 
maintains itself during the evolution or transforms to another configuration remains unclear. 

Let us return to the almost paral1el shocks. In this case the equations that determine the 
disintegration configuration are not linear equations, in contrast with Eq. (35). Nevertheless, 
to the lowest order, the amplitudes of waves occurring after the disintegration of the A1fven 
discontinuity and the Т ASW are also equal in absolute value and have opposite signs. This сап 
Ье shown Ьу indicating that the expressions for the variations of the MHD properties t:. at the 
rarefaction waves coincide with those for shock waves. In the approximation of smal1 Ву the 
equations describing the rarefaction waves (see, e.g., Ref. [31]) take the form 
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dp р 

dp = V 2 
dp S • 
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(37) 

(38) 

(39) 

(40) 

We thus obtain to the lowest order Eqs. (6)-(9), (12), and (13) for the differences д of the 
downstream to the upstream values. 

In the case of small Ву the difference between the velocity of the fast shock and rarefaction 
waves is small. Therefore, if the disintegration takes place at finite intervals, these waves тау 
catch ир with each other at а finite time. Moreover, under the condition vs .::s VAy , the 
feedback effect of the disintegration оп the initial wave is of the same order of magnitude as 
its amplitude. А disintegration scheme in this case is presented in Fig. 3. In this fщиrе the 
lowest-order waves only are shown, И = S + с + В, and the TASW are denoted Ьу ТА. As 
сап ье seen fюm Fig. 3, after the fast rarefaction Rз catches ир with the fast shock Р2 the 
configиration U4 that moves toward Т Аз remains there. Since the TASW are nonevolutionary 
and structurally unstable, their interaction results in disintegration. 

After the complete cycle of the osci11atory disintegration the system comes to the state 
shown in Fig. 4. The quantities 8з and 84 are 

"у V1Y1 ДоР ( 
2 

1- Vlx ) (41) 8з = 81 + '4 V} р 1- V 2 ' Ауl 

ТА 1 И2 ИЗ Иs As+Fs 
-~- i i 

I I 

172 F:z 
I s4 I 

А2 I I 
I I 

-~-
-~-

-~- s2 
I I 
I I 
I I 

172 J!L ..L1L Rз Р2 
I I 

SЗ 
I I 

.уз I I 

~ -~- -~- -~-
I I 
I I 
I I 

и2 из ТАз и4 I I S, 
I I 
I I 

~ -~- ~ I I 
I I 

И2 ИЗ Иs As Fs о ~7J ~T2 ~t Х 

Рис. 3 Рис. 4 

Fig. З. Scheme of osciIlatory disintegration of the initial trans-A1fvenic shock (denoted Ьу Т А) 
into the A1fven discontinuity (А), the fast shock (Р) and rarefaction (R) waves, and the structиre 
и = s + с + S. The vertical апоws show the time evolution and the horizonta1 апоws indicate 

the vetocity with respect to the nonevolutionary discontinuity 

Fig. 4. Entropy рroШе in the state of the system after the complete cycle of the disintegration. Т1 

and Т2 are the moments of time at which the disintegration takes place 
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V1Y l tlop ( Vlx) 84=81+'-2--- 1+-2- . 
Vs Р VAy1 

(42) 

This state resembles the state shown in Fig. 2, except for the configurations ИЗ апд Иs that 
compensate each other. Thus, the nonevolutionary shock emits the discontinuities S + с + S 
in the process of its evolution. 

5. CONCLUSIONS 

We have examined the disintegration of small-amplitude nonevolutionary shock waves. 
We have shown that in case of almost parallel propagation to the magnetic field the shock 
is structurally unstable in the second order in its amplitude. Such а shock transition сап Ье 
represented as а set of several discontinuities moving with respect to each other. As а result, 
the shock structure is ambiguous not only because of the boundary states are connected Ьу а 
nonunique integral curve, but also because of the shock transition сап Ье rea1ized through the 
single shock апд through the configuration that consists of more than опе discontinuity. 

However, the disintegration configuration necessarily includes ап Alfven discontinuity that 
is also nonevolutionary. The contradiction сап Ье resolved ifthe further time evolution has the 
form of oscillatory disintegration, i.e., reversible transformation to the Alfven discontinuity. In 
this process shock апд rarefaction waves, as well as contact discontinuities, which тоуе with 
respect to each other, are emitted. 

Such а process is similar to spontaneous emission of small-amplitude waves Ьу а shock wave 
without а magnetic field. This phenomenon was observed in the laboratory experiments [32, 33]. 
It appears in the special case of corrugational instability ofthe shock when its small perturbation 
does not grow with time, but propagates away from the discontinuity surface in the form of 
nondamping waves, whose energy is supplied fюm the whole moving medium. The similarity is 
natural, because in this case the reflection and refraction coefficients at the discontinuity surface 
tend to infinity in the presence of incident waves (see, e.g., Ref. [34]). Consequently, such а 
shock is nonevolutionary, since the problem ofsmall perturbation does not have а solution [24]. 

At the same time, the oscillatory disintegration has two significant distinctions. First, the 
amplitudes of the emitted waves, i.e, those occurring after the disintegration, are comparable 
with the amplitude of the initial wave. Second, the emission is associated with the transition 
from one type of the discontinuity to the other, rather than with the oscillation of the 
discontinuity surface. 

Thus, the scenario of time evolution of а trans-Alfvenic shock wave suggested Ьу us is 
in agreement with the viewpoint according to which the shock cannot exist as а stationary 
configuration. 
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