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Trans-Alfvénic shock waves are considered in the approximation of small amplitude and
almost parallel propagation to the magnetic field. Such shocks are nonevolutionary, since
the problem of time evolution of their small perturbation does not have a unique solution.
Therefore, they cannot exist as stationary configurations and must disintegrate or transform to
some more general, nonsteady flow. The disintegration configuration necessarily includes an
Alfvén discontinuity that is also nonevolutionary. It is shown that the contradiction inherent
in the nonevolutionary configuration is removed if its time evolution has the form of oscillatory
disintegration, i.e., reversible transformation of one type of the discontinuity to the other. In this
process fast and slow shock or rarefaction waves as well as contact discontinuities are emitted.

1. INTRODUCTION

The problem of disintegration of hydrodynamic discontinuities has a long history since the
publication of the paper by Kotchine [1]. He considered the disintegration of an arbitrary
discontinuity into a set of other discontinuities and rarefaction waves in the framework of
nonmagnetic hydrodynamics. Some time later, Bethe [2] studied the disintegration of a shock
wave. Magnetic field complicates the situation, enlarging the number of possible disintegration
configurations. For a small-amplitude arbitrary discontinuity such configurations were obtained
by Lyubarskii and Polovin [3]. In general, the problem cannot be solved in an analytical form.
Gogosov [4] has given a quantitative solution that determines the type of the configuration,
depending on the flow parameters.

The disintegration of a shock wave is closely related to the problem of its evolutionarity,
formulated in Refs. [5-7]. It is suggested that small perturbations should be imposed on the
discontinuity surface to study the question of its disintegration. In this case small-amplitude

- waves occur on both sides of the surface. The amplitudes of these waves are related by the
linearized boundary conditions obtained from conservation laws at the discontinuity. If the
amplitudes of the outgoing waves cannot be determined unambiguously from these conditions by
the amplitudes of the incident waves, then the problem of the time evolution of the infinitesimal
perturbations does not have a unique solution, and the discontinuity is called nonevolutionary.
This problem is encountered when the number of unknown parameters (the amplitudes of
the outgoing waves and the discontinuity displacement) is incompatible with the number of
independent equations.

Since a physical problem must have a unique solution, it is not correct to assume that the
perturbation of a nonevolutionary discontinuity is infinitesimal. Such a discontinuity cannot
exist in a real medium as a stationary configuration, because the infinitesimal perturbation leads
to a finite variation of the initial flow. This variation is the disintegration of the discontinuity
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into other discontinuities, which move away from the place of their formation, or a transition to
a more general nonsteady flow. In the ideal medium the disintegration is instantaneous in the
sense that the secondary discontinuities become separated in the beginning of the disintegration
process. In a dissipative medium the spatial profiles of the magnetohydrodynamic (MHD)
properties are continuous. Nevertheless, the principal result remains the same, the flow is
rearranged toward a nonsteady state, and after a large enough period of time the disintegration
manifests itself.

The evolutionarity requirement gives additional (compared to the Zemplen theorem)
restrictions on the flow parameters at the shock surface. They follow from the fact that the
direction of wave propagation (toward the discontinuity surface or away from it) and hence
the number of the outgoing waves depends on the flow velocity at the surface. If it is large
enough, then the given wave may be carried down by the flow. Therefore, at an evolutionary
discontinuity the flow velocity must be such that it provides the compatibility of the set of
boundary equations. This form of evolutionarity condition was applied to MHD shock waves
in Refs. [8-10].

As a result, the fast (I — II) and slow (III — IV) shocks, for which the flow velocity
both upstream and downstream is larger and smaller than the Alfvén velocity, respectively,
are evolutionary, while the trans-Alfvénic shock waves (TASWs) are not. Here the Roman
numbers indicate the states upstream and downstream of the shock, in which the values of
the normal flow velocity fall into the intervals separated by the three phase velocities: fast
magnetosonic, Alfvén, and slow magnetosonic velocities. These states are arranged in order of
increasing entropy.

The important fact that favors the nonexistence of nonevolutionary shock transitions is that
they can (while the evolutionary ones cannot) be realized also through a set of several shock
and rarefaction waves [11-13]. One more argument for the nonexistence of nonevolutionary
shocks is that they are isolated solutions of the Rankine-Hugoniot problem that do not have
neighboring solutions corresponding to small deviation of boundary states [14]. Thisis confirmed
by the fact that the configurations neighboring to such shocks are time-dependent [15, 16]. For
such configurations the coplanarity of the boundary states is violated and therefore they are
not solutions of the Rankine-Hugoniot problem.

The problem of structural instability of MHD shocks has recently progressed to a new
point due to the consideration of a nonplanar shock structure [17-20]. Kennel et al. [19]
discussed nonplanar shocks of small amplitude. They have demonstrated that the structure of
nonevolutionary, TASWs, is not unique. Namely, the transitions II — III can be connected by
two integral curves, left-hand and right-hand polarized, and the transitions I — IIland II — IV
allow an infinite number of connecting integral curves. These conclusions are in agreement with
those of Hau and Sonnerup [18], who analyzed the stationary points of the MHD equations
corresponding to the boundary states of the shock transitions in the case where the magnetic
diffusivity is the only nonzero transport coefficient. Recall that under the assumption of a planar
shock structure the trans-Alfvénic transitions also do not have a unique structure for all values
of the dissipative transport coefficients [21-23].

It can be shown [19] that the integral over the shock thickness of the out-of-plane
component of the magnetic field is independent of time if the upstream and downstream states
of the small amplitude shock satisfy the Rankine-Hugoniot conditions. This means that the
flow outside the shock is in one plane. This integral characterizing the nonplanar structure
remains constant during the evolution of the initial profile, and it labels uniquely the integral
curve that connects the given states. For the evolutionary, I — II and III — IV, shocks the
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flow is planar, and the integral is zero. For the shock transition IT — III the integral takes two
values with equal modules and opposite signs, and for the transitions II — IV and I — IIT it
falls into some interval which describes a one-parameter family of structures.

To remove the ambiguity of the solution for the TASWs, Kennel ef al. [19] postulated that
in addition to the boundary states, the integral characterizing the nonplanar structure should
be fixed. The solution of the boundary value problem describing the shock will then be unique.
To assure this, however, one must assume that the configuration contains one shock. This is
not the only possibility. As discussed above, the trans-Alfvénic shock transitions can be realized
also through a set of several shock and rarefaction waves. Thus, the ambiguity of the structure
connecting the nonevolutionary boundary states is not lifted [24], and the TASW is structurally
unstable. Nevertheless, the conservation of the quantity that fixes the structure of the nonplanar
shock is an additional factor that governs the disintegration process.

Indeed, at a TASW the tangential magnetic field changes sign. Consequcntly, it must
change sign at a secondary discontinuity. This may take place either at another TASW or at
an Alfvén discontinuity. As is known [25], the Alfvén discontinuity is also nonevolutionary in
the presence of arbitrary small, but nonzero dissipation. Since the evolution of a nonplanar
shock is related to its structure, it cannot be assumed that the dissipation is absent. Therefore,
the Alfvén discontinuity also cannot exist as a stationary configuration. In the present paper we
suggest a new scenario for the evolution of the TASW, oscillatory disintegration, i.e., reversible
transformation to the Alfvén discontinuity. Such a form of evolution resolves the contradiction
inherent in the nonevolutionary configurations.

We consider the small amplitude shocks that propagate almost parallel to the magnetic
field. This approximation allows us to use an analytical approach, and, at the same time,
to determine some features of the behavior of finite-amplitude discontinuities. In Sec. 2 we
obtain the disintegration configuration for the TASW of small amplitude that propagate almost
parallel to the magnetic field. In Sec. 3 we discuss the evolutionarity and some other properties
of nonplanar shocks. In Sec. 4 we describe the time evolution of the TASW in the case where
the transverse magnetic field is not small and in the case of almost parallel propagation. Finally,
we present our conclusions in Sec. 5.

2. STRUCTURAL INSTABILITY OF TRANS-ALFVENIC SHOCKS

We first consider the disintegration configurations of small-amplitude, almost parallel
MHD shocks. We choose the frame of reference in which B || v and the z axis is directed
along the normal to the discontinuity. We proceed from the following jump conditions at the
discontinuity surface:

A(pvg) = 0, (D

Ap + pugAv, + %A(Bi) =0, (2)
pUz AV, — %ABy =0, (3)

vy =V, By/B,, “4)
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1 2 v -
Epv:cA('v )+ mA@vz) =0. (5

In solving this set of equations we imply that the variations A of all MHD properties, except
B,, are small compared to their values at a reference state, and that B, < B,. To the lowest
order in the small parameters B, /B, and Ap/p Egs. (1)-(5) have the following solutions which
describe the relationship between the jumps of the MHD properties. For the first four solutions
AB, 2 B

Y~

Y

ABy=—By<1:i:\/1+2~V‘Z§/—j—VSE%>EByA, ®)
Yy

Avy = —eVy A, @)

Av, =eVAp/p, ®)

Ap=V2Ap, ' ©9)

where V =V, and V4 = B/+/4mp is the Alfvén velocity. Here ¢ = +1 for the waves moving
in the positive = direction and e = —1 for the waves moving in the opposite direction. We
assume for definiteness that V4, > V;. The plus («+») sign in Eq. (6) will then correspond to a
TASW and the minus («—») sign will correspond to a fast shock wave. In zeroth approximation
the propagation velocity of both waves is V.. The TASW is of the 11 — III type, i.e.,

V+l > Vg1 > VAzl, VA::Z > Vg2 > V——2
if
B, 1
1< <= 10
B, "2 (10)
and of I — III type, i.e,
Vg1 > Vi, Vaza > vz > Vo
if ‘
1 B,
—— <= <0 11
2~ By2 - ( )
Here

Vi= % [Vj + V2 (V2 + V22— 42V,

are the phase velocities of the fast (+) and slow (—) small-amplitude waves, and the subscripts
«1» and «2» indicate the states upstream and downstream of the shock, respectively.

Two more solutions of the set of equations (1)(5), for which AB, <« B, correspond to
slow shocks. They are given by the formulae
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V2B, Ap
=___ sy P 12
ABy ij _ ‘/;2 P) ’ ( )
V VayVaz Ap
=" 13
A'Uy VAZ ‘/52 P) ) ( )

and by Egs. (8) and (9) with V = V;, where V; = 1/-yp/p is the sound velocity. Expressions (8),
(9), (12), and (13) coincide with those for small-amplitude waves. At an Alfvén discontinuity

AB, = By(£1 - 1), Avy = —eVg,(£1 - 1), (14)

where the + sign is used if the discontinuity is absent and the — sign is used if it rotates the
magnetic field through 180°. Finally, the only nonzero jump at a contact discontinuity is Ap.

Assume now that the TASW with the amplitude Agp moves in the positive = direction. If
the shock transition can be represented as a set of more than one discontinuity, the amplitudes
of the secondary discontinuities are determined from the condition that the sums of the jumps
of the MHD properties at them are equal to those at the initial shock. It should be mentioned
that in so doing the variation of B, at the secondary waves must be taken into account in
Egs. (6)-(9) and (12)-(14), while the other quantities equal to their values upstream of the
initial shock may be substituted. We thus find that in zeroth approximation the trans-Alfvénic
shock transition can be realized through a fast shock, with the same amplitude A( l)p Ayp,
and the Alfvén discontinuity moving in the same direction. However, since these secondary
waves move with zero velocity with respect to each other, there is no disintegration.

Let us now solve Egs. (1)-(5), taking into account higher-order terms. For simplicity we
assume that B2 /B2 < Ap/p. Otherwise (when B2 /B2 >> Ap/p), the approximation of almost
parallel propagation is violated. The corrections to the quantities (6)-(9) are determined by
the expressions that follow from the expansion of Egs. (1)~(5) in the small parameters B, /B,
and Ap/p,

AB, = By(A +a), (15)
1 A
Av, = —€Vya, [A ta—(1+4) 7"] , (16)
1 1\ Ap
A 1--(1-=)=
Vg €VAZ p [ 5 (1 A) p] , (17)
V2 (Ap)2 BZ
Ap=Viap+ Az — Yol +
p=VAp oA 2, o+ A (18)
Here
_2A+ (A0 A+D Ap (19
24(1 + A) p’ )
Vi A
bi=2+2—(y+3)AE L, b= V2 =) (20)
Ay p VAy p

The velocity in front of such shocks is
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1 1\ Ap
= — + - + - —
Vg eVax [1 3 (1 A) p] . (21)

Next, we set equal again the sums of the jumps at the secondary waves to those at the
initial TASW. In substituting the relationship between the MHD properties for the waves absent
in zeroth approximation it is sufficient to use Egs. (6)-(9), (12), and (13), which are valid in
the lowest order, because the amplitudes of these waves are small compared to the amplitude
of the initial shock.

As a result, we find that the fast wave moving in the direction opposite to the initial shock
has the amplitude

1V2 A_(1+A_)Ayp
ACD ) = 2 TAyl
the amplitude of the contact discontinuity is
Vi Vi —V2 Ap
Acp=—(y — DAgp—oy [1 + 242 —= — | (23)
‘/52 V/%yl p

and the amplitudes of the slow waves moving in the positive and negative z directions are

o p(I+A? Vs 1
% A,(f 1)p+p2(,‘/2—‘/‘2;1 [a++a_ +e {; (a++a/—_'2' A_ze)] . (24)
s Az Vs s

1
A®p = —58cpte

Here A and a are given by Egs. (6), (19), and (20), in which B, = By and Ap = Agp, and
the subscripts «+» and «—» correspond to the sign in Eq. (6). It can be shown, with the help
of Egs. (17) and (21), that the absolute value of the normal flow velocity behind the fast shock
moving in the positive 2 direction is larger than the normal Alfvén velocity in front of the Alfvén
discontinuity. Hence, these waves become separated as time goes on (Fig. 1).

Note that if V, is comparable with V4., then the flow in the fast and trans-Alfvénic shocks,
which is determined by Egs. (6)-(9), is isentropic, but only to the lowest order. The jump of
the entropy at such shocks is

_7 ij Ap
As 22 A®. (25)
In case where Ap/p < V3, /VZ, this expression coincides with that obtained by Bazer and
Ericson [26]. After the disintegration, the difference between the entropy jumps at the trans-
Alfvénic and the fast shock is taken by the contact discontinuity at which the entropy jump is
of the same order of magnitude as the density jump

F S C S AF

Fig. 1. Disintegration configuration for the
2 P .. trans-Alfvénic shock in the case V; > Va,.

i In zeroth approximation the dotted lines

are absent

0 x
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As = (@> ap=—2_22 26)
or/, y=1p

Thus, the consideration of the corrections to zeroth approximation reveals two properties
of the disintegration configuration. First, the fast shock and the Alfvén discontinuity moving in
the same direction as the initial shock acquire a small relative velocity. Second, the amplitudes
of the discontinuities, which have finite velocity with respect to each other, become nonzero.

We emphasize that the absence of disintegration in zeroth approximation is essentially
a consequence of the assumption that the tangential magnetic field is small. This result is
consistent with the fact that the exactly parallel TASW can be represented as a switch-on
and a switch-off shock, but they do not become separated [10,11]. However, the parallel
shock disintegrates when it collides with small-amplitude shocks incident on both sides of the
discontinuity surface [11]. It should be mentioned that Egs. (6) and (7) are not valid for the
exactly parallel shock, because it necessarily has a finite amplitude if V is not close to V4.

We can also consider the case V;, <« V4., which was discussed by Kennel et al. [19]. Note
that, on the other hand, V? must be much larger than V Ap/p (or V4, /V3.) for a small-
amplitude shock. The character of the disintegration changes significantly when V, < Vay.
Under this condition the flow is not isentropic in the lowest order (see Egs. (23), (25), and
(26)). To this order the jumps A.s, A.p, and A%®)p, are not equal to zero, in contrast with the
case V, > Vy,. At the same time, the velocity of the slow shocks V; is small. Therefore, in
zeroth approximation they are not separated from the contact discontinuity which is at rest
with respect to the medium.

As a result, the initial TASW disintegrates into two structures. The first structure, denoted
by A + F, is formed by the Alfvén discontinuity and the fast shock, which are at rest with
respect to each other. The second, denoted by S + C + S, is formed by two slow shocks and
the contact discontinuity. These structures have the finite relative velocity V4. The peculiarity
of such a configuration is that the only nonzero total jump at the structure S+ C + S is A.s,
because, as can be seen from Egs. (22)-(24), the total density jump equals zero when V, < Vay.
Consequently, the disintegration in this case takes place in the lowest order, although its only
manifestation is the time-dependent entropy profile along the z axis (Fig. 2). In higher orders
the profiles of the other MHD properties also become nonsteady.

3. EVOLUTIONARITY OF NONPLANAR SHOCKS

Next, we consider the influence of the nonplanar structure on the shock evolution. If the
boundary states of the shock are coplanar, the evolution of the configuration is characterized
by additional conservation laws. This can be understood, for example, from the z-component
of the induction equation,

S+C+S A+F
— 5 Fig. 2. Time-dependent entropy profile
53 after the disintegration of the trans-Alfvénic
5 shock in case V, S Vg,
0 A4 x
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oB, & aB,
5 5 (Bzvz — Bgv, — Vm???) , (27)

where v, is the magnetic diffusivity. Since the flow outside the discontinuity is planar and
homogeneous, the integration over the thickness of the transition layer Az = z, — z; yields

z;

g
EE/Bzdz =0. (28)

)
Similarly, it follows from the z-component of the momentum equation,

dpv, ‘ 0

_ 1 Ov,
ot - ——a—.’li (pvwvz - EBZJBZ -7 o1 ) ) (29)

that the integral of the quantity pv, is also conserved in the process of time evolution of the
configuration,

z2

%/pvzdw =0. (30)

)

Here 7 is the shear viscosity.

As shown in Ref. [19], if the integral of B, over the profile of the small amplitude
almost parallel II — III shock is prescribed, then the ratio B,;/B,, of the upstream to the
downstream values of the transverse magnetic field is fixed. Thus, the state behind the shock
is unambiguously determined by the state in front of it. This gives us an additional equation
for the amplitudes of the waves that occur after the disintegration. Assuming that this equation
is valid to the second order in the amplitude, it can be shown with the help of Egs. (12),
(13), and (15)—(18) that the amplitudes of the initial and secondary TASWs are equal, while
all other secondary waves are absent. The same is true for the I — III shock. The difference
is that in the latter case there is no additional equation, because the given integral over the
profile allows infinite number of boundary states [19]. However, the fast wave moving in the
direction of the initial shock is absent. Therefore, the number of equations is again equal to
the number of secondary waves. These equations have only a trivial solution. Consequently,
in the approximation under consideration a TASW cannot appear after the disintegration as a
secondary wave.

It should be mentioned that the conclusion about the relationship between the integral
quantity, which characterizes the structure, and the amplitude of the wave is made in Ref. [19]
only for isentropic flows. As shown in Sec. 2, this is not always the case for the almost parallel
propagation. Nevertheless, this conclusion may be also made on the basis of the following
reasoning. The consideration of the stationary points of the MHD equations, corresponding to
the boundary states of the shock transitions, shows that the transition II — III can be realized
through two integral curves, right-hand and left-hand polarized, in contrast with the transitions
I — III (I — IV) and I — IV which are described by one- and two-parameter families of
curves, respectively (see, €.g., Ref. [18]). Since the structure of the II — III shock does not
contain free parameters other than the amplitude (although it is nonunique), for the given
quantity characterizing the structure and the given state in front of the shock its amplitude is
fixed.
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Below we restrict the discussion to the shocks of the II — III type. The evolution of
these shocks is the most important feature for the following reason. In contrast with the other
types, the nonevolutionarity of the II — III shocks is essentially based on the fact that for
normally propagating waves the equations for the Alfvén perturbations are separated from those
for the magnetosonic and entropy perturbations [10]. Therefore, the evolutionarity criterion
must be satisfied separately for both groups of waves. This makes the shock nonevolutionary,
although the total number of perturbations is compatible with the total number of boundary
conditions. Since under the assumption of a nonplanar shock structure the separation does not
take place [20], this argument formally does not hold. Nevertheless, the coupling of Alfvén
modes to magnetosonic and entropy modes does not alter the conclusions made on the basis
of the evolutionarity principle. Let us clarify this point.

In the linear approximation Egs. (27) and (29) for the perturbations proportional to
exp(iwt) take the following form after the integration over z

T, BZ
iw/éBzdx =-A (vxéBz — B b6v, — U 98 ) , (31)
ox
ri 7 1 86w
z +1 z = - 1:6 z _Bz(SBz - z N 32
w/vépdm zw/p&;dz A(p'u v o n6x> 32)

where § is the small perturbation, and the unperturbed quantities correspond to the stationary
shock. The term responsible for the coupling is the first integral on the left-hand side of Eq. (32).

Let us assume now that the Alfvén wave, which transfers only the perturbations dv,
and 6B,, is incident on the II — III shock. In this case there is one outgoing Alfvén
wave, whose amplitude is the unknown parameter that should be determined from Egs. (31)
and (32). Because the perturbation ép enters into Eq. (32), when v, # 0, the latter becomes
an additional equation for the amplitudes of outgoing magnetosonic and entropy waves which
may be generated by the incident Alfvén wave. The perturbation §p inside the transition layer
depends on the amplitudes of the waves outside it and on the stationary shock structure. Since
6p should be determined from Eq. (32), the term with §p cannot be much smaller than all
other terms. Estimating the first terms on the left- and right-hand sides of Eq (32), we obtain
in the order of magnitude

WUz pAT ~ pUs0AdV;, (33)

where the subscript 0'indicates some characteristic values.

In general, Abv, ~ dv,o. In addition, the unperturbed quantities and the discontinuity
thickness do not depend on the frequency of the perturbation. Consequently, for the
perturbation with small enough w the quantity 6o /po is arbitrarily large compared to §v,9/v.o.
However, this result is valid for any nonevolutionary shock; namely, as discussed in Sec. 1,
infinitesimal incident perturbation (év, in the present case) causes a finite variation of the flow
(6p). Therefore, since the coupling of the modes is weak, the contradiction inherent in the
IT — III shock is not resolved even in the absence of the separation of the boundary conditions.

In connection with the nonunique shock structure, Wu [20] argued that the shocks of
the remaining types become evolutionary if the free parameters characterizing their structure
are added to the total number of perturbations of the shock. However, the additional free
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parameters on their own also do not resolve the contradiction. In the presence of dissipation
such parameters are provided, in particular, by the amplitudes of purely dissipative waves,
which are absent in the ideal medium [25]. The problem is that the boundary conditions, that
follow from the conservation laws at the shock, are incompatible. Therefore, a free parameter
contributes to the evolutionarity only if it enters into the conservation laws. For example, purely
dissipative waves damp within the length of the order of the shock thickness. Consequently,
their amplitudes do not enter into the boundary conditions, and they should be disregarded when
solving the problem of evolutionarity of a shock wave, unless it is of switch-off or switch-on
type [25]. At the same time, it can be shown that in the case of dissipative discontinuities
inside inviscid shock waves the additional dissipative waves affect the evolutionarity condition.
Apparently, the structure variations are also confined within the transition layer.

4. TIME EVOLUTION OF NONEVOLUTIONARY DISCONTINUITIES

Let us now turn to the time evolution of the TASWs. For an illustration we first consider
the case in which the ratio B, /B, is not small. To the first order in Ap/p we can then reduce
the expressions for the jumps of the MHD properties at the TASW as follows [12]:

A0Q; = AaQ; + Ag;Aop. (34

Here Q = (p, p, v, vy, By) is the vector of state, i.e., the set of MHD properties, Ay; are
the known coefficients, and A4 are the jumps at the Alfvén discontinuity given by Eq. (14).
In the present case the jump A|B,| is small compared to |B,|, hence, the inequality (10) is
satisfied, and the TASW is of the II — III type.

The jumps at the fast and slow shock (or rarefaction) waves coincide with those at
the corresponding small-amplitude waves. As a result, the equations that determine the
disintegration configuration take the form

Z Aijdip + AaQ; = Agjhop + AaQ;, (35)

where the subscript 4 indicates the type of the discontinuity, and A;; are known quantities.
The solution of these algebraic equations

Aip = aiMp (36)

expresses the amplitudes of secondary waves in terms of the amplitude of the initial TASW.
The explicit expressions for the quantities a; are given in Ref. [12].

Thus, the initial nonevolutionary shock may disintegrate into a contact discontinuity,
magnetosonic waves, and an Alfvén discontinuity. At the same time, as shown by Roikhvarger
and Syrovatskii [25], the Alfvén and the contact discontinuities are also nonevolutionary in
the presence of an arbitrarily small but nonzero dissipation and heat conduction. This stems
from the fact that the flow velocity in this case is equal to the phase velocity of the Alfvén and
the entropy wave, respectively. As a result, the wavelength of the small perturbation with a
fixed frequency tends to zero. This makes it necessary to account for the dissipation and, as
a consequence, leads to the occurrence of additional outgoing (dissipative) waves that damp
within the length much larger than the discontinuity thickness.
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However, the nonevolutionarity does not lead to the disintegration of the discontinuity
if it cannot be represented as a set of several discontinuities. This is the case for a contact
discontinuity. Indeed, under the condition that B, is not small the jumps Av, and AB, at a
TASW or at an Alfvén discontinuity are much larger than all other jumps. To provide no field
reversal in sum, the disintegration configuration must contain two discontinuities at which B,
and v, change sign or it must not contain them at all. In the latter case the equations for
the jumps have only the trivial solution. It can be readily verified, with the help of Egs. (14)
and (35), that in the former case Av, and AB, cannot be compensated simultaneously, since Av,
depends on the direction of propagation, while AB, does not. Hence, the contact discontinuity
is structurally stable. In contrast, the Alfvén discontinuity is unstable, and it may disintegrate.

On this basis we suggest a new scenario for evolution of the configurations with the magnetic
field reversal, oscillatory disintegration. Under the action of an infinitesimal perturbation the
TASW disintegrate into a system of waves including the Alfvén discontinuity. In this process
the integrals (28) and (30) over the nonplanar profile of the initial wave are conserved and are
equal to the integrals over the profile of the Alfvén discontinuity, while the flow in the remaining
secondary waves is plane. In contrast with a shock wave, the out-of-plane structure of an Alfvén
discontinuity is not related to the boundary states due to their degeneration. Therefore, such
a disintegration configuration can always be adjusted to the initial discontinuity. The Alfvén
discontinuity, in turn, also disintegrates, producing the TASW with an amplitude equal to that
of the initial wave, which is unambiguously determined by the quantity fixing the structure.

The amplitudes of the remaining waves satisfy Eq. (35), in which Agp is replaced on the
right-hand side. Therefore, they are given by Eq. (36), in which a; is replaced by —a;; i.e., shock
waves instead of rarefaction waves occur and vise versa, compared to the case of disintegration
of the TASW. After that the process is repeated. The waves of different types may catch
up with and outrun each other during their propagation. Since the waves are structurally
stable, their types are not changed in this process. If the characteristic time between the
disintegrations is not small, the waves of the same types catch up with each other at infinite time.
In the approximation of small amplitudes the secondary waves do not interact with each other.
This means that the feedback effect of the disintegration on the nonevolutionary discontinuity
manifests itself in higher orders.

It should be mentioned that the contradiction associated with the nonevolutionarity of the
Alfvén discontinuity is also resolved if it has a time-dependent thickness. ‘To some extent,
the situation is similar to that for the corrugationally unstable shocks in the nonmagnetic
hydrodynamics [27, 28]. As is known [29, 30], such shock transitions can always be represented
as a combination of several discontinuities. This makes it possible to assume that the unstable
shocks may disintegrate rather than undergo the growing undulation [30]. However, as well
as in the present case, the physical mechanism that distinguishes whether the discontinuity
maintains itself during the evolution or transforms to another configuration remains unclear.

Let us return to the almost parallel shocks. In this case the equations that determine the
disintegration configuration are not linear equations, in contrast with Eq. (35). Nevertheless,
to the lowest order, the amplitudes of waves occurring after the disintegration of the Alfvén
discontinuity and the TASW are also equal in absolute value and have opposite signs. This can
be shown by indicating that the expressions for the variations of the MHD properties A at the
rarefaction waves coincide with those for shock waves. In the approximation of small B, the
equations describing the rarefaction waves (see, e.g., Ref. [31]) take the form
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p% =B’ —d4mpV} + (IBi —dmpVl| + %) , 37
j—i =V2. (40)

We thus obtain to the lowest order Eqgs. (6)-(9), (12), and (13) for the differences A of the
downstream to the upstream values.

In the case of small B, the difference between the velocity of the fast shock and rarefaction
waves is small. Therefore, if the disintegration takes place at finite intervals, these waves may
catch up with each other at a finite time. Moreover, under the condition V, < V,,, the
feedback effect of the disintegration on the initial wave is of the same order of magnitude as
its amplitude. A disintegration scheme in this case is presented in Fig. 3. In this figure the
lowest-order waves only are shown, U = S+ C + S, and the TASW are denoted by TA. As
can be seen from Fig. 3, after the fast rarefaction R3; catches up with the fast shock F the
configuration U, that moves toward T A3 remains there. Since the TASW are nonevolutionary
and structurally unstable, their interaction results in disintegration.

After the complete cycle of the oscillatory disintegration the system comes to the state
shown in Fig. 4. The quantities s3 and s, are

2
V2 V2
sp=s+ 1Aty Tde ) @1
2 2
4 I/s P Ayl
TA, U, Uy U~ AgtF
‘ S
U A B 4
} [} | S
03 Us TA3 R Fp 5 5
S T W 4
T U TA Ts 5
i | ]
L U U A K 0 UL WL Yt x
Puc. 3 Puc. 4

Fig. 3. Scheme of oscillatory disintegration of the initial trans-Alfvénic shock (denoted by 7"A)

into the Alfvén discontinuity (A), the fast shock (F') and rarefaction (R) waves, and the structure

U=S+C+S. The vertical arrows show the time evolution and the horizontal arrows indicate
the velocity with respect to the nonevolutionary discontinuity

Fig. 4. Entropy profile in the state of the system after the complete cycle of the disintegration. T}
and T, are the moments of time at which the disintegration takes place
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Vi A V3
s4 =8+ Ayl %p (1+ Az . (42)

2 2
Vs VAyl

This state resembles the state shown in Fig. 2, except for the configurations U; and Us that
compensate each other. Thus, the nonevolutionary shock emits the discontinuities S + C + .5
in the process of its evolution.

5. CONCLUSIONS

We have examined the disintegration of small-amplitude nonevolutionary shock waves.
We have shown that in case of almost parallel propagation to the magnetic field the shock
is structurally unstable in the second order in its amplitude. Such a shock transition can be
represented as a set of several discontinuities moving with respect to each other. As a result,
the shock structure is ambiguous not only because of the boundary states are connected by a
nonunique integral curve, but also because of the shock transition can be realized through the
single shock and through the configuration that consists of more than one discontinuity.

However, the disintegration configuration necessarily includes an Alfvén discontinuity that
is also nonevolutionary. The contradiction can be resolved if the further time evolution has the
form of oscillatory disintegration, i.e., reversible transformation to the Alfvén discontinuity. In
this process shock and rarefaction waves, as well as contact discontinuities, which move with
respect to each other, are emitted.

Such a process is similar to spontaneous emission of small-amplitude waves by a shock wave
without a magnetic field. This phenomenon was observed in the laboratory experiments [32, 33].
It appears in the special case of corrugational instability of the shock when its small perturbation
does not grow with time, but propagates away from the discontinuity surface in the form of
nondamping waves, whose energy is supplied from the whole moving medium. The similarity is
natural, because in this case the reflection and refraction coefficients at the discontinuity surface
tend to infinity in the presence of incident waves (see, e.g., Ref. [34]). Consequently, such a
shock is nonevolutionary, since the problem of small perturbation does not have a solution [24].

At the same time, the oscillatory disintegration has two significant distinctions. First, the
amplitudes of the emitted waves, i.e, those occurring after the disintegration, are comparable
with the amplitude of the initial wave. Second, the emission is associated with the transition
from one type of the discontinuity to the other, rather than with the oscillation of the
discontinuity surface.

Thus, the scenario of time evolution of a trans-Alfvénic shock wave suggested by us is
in agreement with the viewpoint according to which the shock cannot exist as a stationary
configuration.
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