МАГНИТНОЕ УПОРЯДОЧЕНИЕ И ФАЗОВЫЕ ПЕРЕХОДЫ В ПЛАНАРНЫХ АНТИФЕРРОМАГНИТНЫХ СИСТЕМАХ С РЕШЕТКОЙ КАГОМЕ

Р. С. Гехт*, И. Н. Бондаренко

Институт физики им. Л. В. Киренского Сибирского отделения Российской академии наук 660036, Красноярск, Россия

Поступила в редакцию 28 августа 1997

Изучен процесс магнитного упорядочения в планарных антиферромагнитных системах с решеткой Кагоме. Показано, что в таких системах при учете взаимодействия следующих за ближайшими спинов теплоемкость имеет особенность в температурной точке $T \neq 0$. На основе скейлингового анализа для конечных систем исследуется поведение термодинамических величин в окрестности фазового перехода. Установлено, что фазовый переход в критической точке обусловлен нарушением дискретной и непрерывной симметрий, при которых дальний киральный порядок и степенной трансляционный спиновый порядок возникают одновременно. Вычислены температуры перехода в различные (с тремя и девятью спинами на элементарную ячейку) упорядоченные состояния.

1. ВВЕДЕНИЕ

В последнее время фазовые переходы и низкотемпературные свойства соединений, имеющих решетку Кагоме, привлекают большое внимание. Вследствие особой геометрии решетки — треугольники в слое чередуются с шестиугольниками — спиновые системы сильно фрустрированы. С понижением температуры процесс упорядочения происходит в них гораздо медленнее по сравнению даже с обычными фрустрированными системами. Как известно [1,2], данное обстоятельство обусловлено тем фактом, что в системах с меньшим, чем, например, в треугольных антиферромагнетиках, координационным числом при больших S возможны не только состояния с нетривиальным глобальным вырождением, но и локально вырожденные состояния. В результате при взаимодействии между ближайшими спинами фазовый переход в магнитоупорядоченное состояние не реализуется ни при каких конечных значениях температуры. Дополнительные взаимодействия между следующими за ближайшими спинами частично снимают вырождение и могут привести к возникновению фазового перехода при отличных от нуля температурах [3]. Тем не менее, поскольку эффекты фрустраций все еще имеют место, процесс упорядочения и стабилизации структур в отличие от нефрустрированных систем замедлен.

Изинговские системы с решеткой Кагоме были предметом сравнительно недавних исследований. Подобно изинговским системам с треугольной решеткой в основном классическом состоянии энтропия на один спин отлична от нуля (взаимодействие ближайших соседей), однако спиновые корреляции при T = 0 убывают не по степенному,

^{*}E-mail: theor@iph.krasnoyarsk.su

а по экспоненциальному закону (суперфрустрированные системы [4, 5]). Гейзенберговские системы с решеткой Кагоме интенсивно исследовались в начале девяностых годов. Спектр возбуждений таких систем нулевой во всей магнитной зоне Бриллюэна [6]. Квантовые [7] и тепловые [2, 3] флуктуации снимают вырождение и отбирают состояния с планарной конфигурацией спинов. Меньше исследованы XY-системы. Известно, что при $T \rightarrow 0$ спины в этой системе становятся менее упорядоченными по сравнению с гейзенберговскими. При этом корреляционная функция XY-систем аналогична корреляционной функции трехуровневой модели Поттса [8] ($T \rightarrow 0$), в то время как корреляционная длина гейзенберговских систем расходится в пределе нулевых температур [2, 8].

В семействе соединений MFe₃(OH)₆(SO₄)₂ (M = H₃O, Na, K, Rb, Ag, NH₄, Tl, Pb, Hg) с минералогическим названием ярозиты, а также в их хромовом аналоге KFe₃(OH)₆(CrO₄)₂, магнитные ионы железа Fe³⁺ образуют решетку Кагоме в *с*-плос-кости [9–11]. Кристаллическая структура таких соединений гексагональная (пространственная группа $R\bar{3}m$). Согласно экспериментальным данным взаимодействия между ближайшими спинами внутри и между слоями антиферромагнитные [12]. Нейтронографические, мессбауэровские и другие измерения на ярозитах показывают, что в области низких температур возможно магнитное упорядочение с образованием треугольных структур в *с*-плоскости [11-13].

Задача данной работы — исследование фазовых переходов в соединениях типа ярозитов. Поскольку в подобных соединениях соседние слои с Fe^{3+} отделены немагнитными ионами S, O, K и OH, межплоскостной обмен значительно меньше внутриплоскостного J_1 . Кроме того, найдено, что в отдельных веществах, например при M = K, спины в слое при магнитном упорядочении перпендикулярны *с*-оси [12]. Ниже мы учтем взаимодействие между ближайшими и следующими за ближайшими спинами, расположенными на решетке Кагоме соответственно на расстоянии Δ_1 и Δ_2 ,

$$H = J_1 \sum_{i\Delta_1} \mathbf{S}_i \mathbf{S}_{i+\Delta_1} + J_2 \sum_{i\Delta_2} \mathbf{S}_i \mathbf{S}_{i+\Delta_2}, \tag{1}$$

и ограничимся изучением систем с XY-подобными спинами: $\mathbf{S}_i = S(\cos \theta_i, \sin \theta_i)$.

Что касается изинговских систем с решеткой Кагоме, то известно [14], что фазовые переходы возможны только при ферромагнитном взаимодействии вторых соседей $(J_2 < 0)$, однако конкретные примеры соединений с изинговскими спинами пока не найдены. В отличие от них XY-системы имеют непрерывную симметрию в плоскости. Кроме того, в отличие от гейзенберговских систем они имеют и дискретную симметрию, поскольку задаваемый на каждом элементарном треугольнике киральный параметр [15]

$$\mathbf{k} = \frac{2}{3\sqrt{3}} \left([\mathbf{S}_1 \mathbf{S}_2] + [\mathbf{S}_2 \mathbf{S}_3] + [\mathbf{S}_3 \mathbf{S}_1] \right)$$
(2)

(спины на узлах пронумерованы по часовой стрелке) принимает при T = 0 значение +1 или -1. Эта ситуация напоминает треугольные антиферромагнетики с планарными спинами [16, 17], но в отличие от них, во-первых, киральный параметр знакопостоянен, если $J_2 > 0$ и, во-вторых, элементарная ячейка на решетке Кагоме имеет не три, а девять спинов, если $J_2 < 0$. Мы покажем, что хотя при антиферромагнитном взаимодействии вторых соседей ($J_2 > 0$) процесс упорядочения замедлен по сравнению с ферромагнитным взаимодействием ($J_2 < 0$), тем не менее в обоих случаях существует отличная от нуля критическая температура, при которой трансляционный спиновый и киральный порядки возникают одновременно.

Рис. 1. Вырожденные основные состояния для j > 0 (a, b) и j < 0 (b, c); «+» и «-» — знаки параметра k на элементарных треугольниках. Жирной линией показаны элементарные магнитные ячейки структур с тремя (a) и девятью спинами (b)

2. ОБЛАСТЬ НИЗКИХ ТЕМПЕРАТУР

Основное состояние на решетке Кагоме существенно зависит от знака обменного взаимодействия J_2 между вторыми соседями. При антиферромагнитном обмене, $J_2 > 0$, оно имеет структуру из трех спинов на элементарную ячейку (рис. 1a), а при $J_2 < 0$ структуру из девяти спинов (рис. 1e). И в том, и в другом случаях спиновые конфигурации непрерывно вырождены относительно поворотов в плоскости и имеют двукратную симметрию. При $J_2 > 0$ дискретное вырождение характеризуется знакопостоянным k(рис. 1a, b), а при $J_2 < 0$ значение k меняет знак в соседних элементарных треугольниках (рис. 1e, c). Переход между двумя эквивалентными состояниями связан с преодолением энергетического барьера, пропорционального $|J_2|$. Мы ожидаем, что в области низких температур соответствующие возбуждения подавлены и систему можно описывать в гармоническом приближении. Рассмотрим свойства фаз при низких температурах для состояний из трех и девяти спинов на элементарную магнитную ячейку.

В состоянии с тремя спинами на элементарную ячейку, $J_2 > 0$, гамильтониан в квадратичном приближении по $\psi_k = (\psi_{k1}, \psi_{k2}, \psi_{k3}) (\psi_{k\alpha}$ — компоненты Фурье отклонения подрешетки α от равновесной структуры) представляется следующим образом:

$$H = -(J_1 + J_2)S^2N + \frac{1}{2}S^2\sum_k \psi_k M_k \psi_{-k},$$
(3)

где элементы 3 \times 3-матрицы M_k даются в виде

$$M_{11} = M_{22} = M_{33} = 2(J_1 + J_2),$$

10*

$$M_{12} = M_{21} = -J_1 \cos\left(\frac{k_x}{2} + \frac{\sqrt{3}}{2}k_y\right) - J_2 \cos\left(\frac{3}{2}k_x - \frac{\sqrt{3}}{2}k_y\right),$$
 (4)

$$M_{23} = M_{32} = -J_1 \cos\left(\frac{k_x}{2} - \frac{\sqrt{3}}{2}k_y\right) - J_2 \cos\left(\frac{3}{2}k_x + \frac{\sqrt{3}}{2}k_y\right),$$
$$M_{21} = M_{12} = -J_1 \cos k_y - J_2 \cos\sqrt{3}k_y$$

При малых k для наименьшего собственного значения матрицы M_k получаем

$$\lambda_1 = \frac{1}{2}(J_1 + 3J_2)k^2 \tag{5}$$

 $(\lambda_2 = \lambda_3 \simeq 3(J_1 + J_2))$. В низкотемпературной области для энергии $E = \langle H \rangle$, спиновой корреляционной функции и кирального параметра k(T) имеем

$$E = -(J_1 + J_2)S^2 N \left[1 - \frac{T}{2(J_1 + J_2)S^2} \right],$$
(6)

$$\langle \mathbf{S}_o \mathbf{S}_r \rangle = \exp\left[-\langle (\psi_o - \psi_r)^2 \rangle/2\right] \sim r^{-\eta(T)},$$
(7)

где о и r принадлежат одной и той же подрешетке,

$$\eta(T) = \frac{T}{\pi(J_1 + 3J_2)S^2},$$
(8)

$$k(T) = \frac{1}{N} \left\langle \sum_{R} k(R) \right\rangle = 1 - \frac{T}{2(J_1 + 3J_2)S^2}$$
(9)

(*R* — координаты точек дуальной решетки).

В состоянии с девятью спинами на элементарную ячейку, $J_2 < 0$, наименьшее собственное значение матрицы M_k , энергия, спиновая корреляционная функция и киральный параметр k(T) в области низких температур имеют тот же самый вид, что и в (5)–(9) при замене в них J_2 на $-2J_2$.

Процесс упорядочения планарных спинов на решетке Кагоме исследовался при произвольных T методом Монте-Карло. По сравнению с треугольной решеткой число спинов на решетке Кагоме на четверть меньше: $N = 3L^2/4$, где L в наших вычислениях менялось в интервале от 12 до 48. Теплоемкость и магнитная восприимчивость найдены в численных расчетах из флуктуаций соответственно энергии и намагниченности. Мы вычислили также средний квадрат подрешеточной намагниченности

$$m^2 = \frac{1}{N_{\alpha}} \left\langle \sum_{N_{\alpha}} M_{\alpha}^2 \right\rangle \tag{10}$$

 $(N_{\alpha} = 3 \text{ для } J_2 > 0$ и $N_{\alpha} = 9$ для $J_2 < 0$; M_{α} — подрешеточная намагниченность), параметр k(T) и соответствующую восприимчивость χ_k .

Рис. 2. Зависимости энергии, теплоемкости, намагниченности, кирального параметра и восприимчивостей χ и χ_k от нормированной температуры $t = T/J_1S^2$ при j = 0.5 (a) и j = -0.5 (б). Символы о, \Box , Δ , ∇ соответствуют L = 12, 24, 36, 48

Температурные зависимости термодинамических величин при $j = \pm 0.5$ ($j = J_2/J_1$) представлены на рис. 2. В области малых T поведение энергии хорошо описывается гармоническим приближением (6) для j = 0.5 и таким же выражением при замене J_2 на $-2J_2$ в (6) для j = -0.5. Отклонение от линейной зависимости возникает, если $T/J_1S^2 > 0.3$ на рис. 2a и если $T/J_1S^2 > 0.5$ на рис. 26. Аналогичным образом в соответствии с ожидаемыми соотношениями типа (9) ведет себя в линейной области

Рис. 3. Температурная зависимость η ; символами \circ и \bullet представлены графики соответственно для j = 0.5 и j = -0.5

Рис. 4. Максимум теплоемкости в зависимости от $\ln L$. Символы \circ и • соответствуют тем же значениям j, что и на рис. 3

параметр k(T).

Индекс $\eta(T)$ для спиновой корреляционной функции может быть определен из размерной зависимости

$$m^2 \sim L^{-\eta(T)}.\tag{11}$$

Мы вычислили параметр $\eta(T)$ из наклона асимптотических прямых для функции $-\ln m^2$ от $\ln L$. Результаты вычислений для разных T представлены на рис. 3. С ростом температуры отклонение от линейной зависимости возникает при тех же значениях T, что и для внутренней энергии.

3. ФАЗОВЫЙ ПЕРЕХОД

Заметное различие между антиферромагнитными системами с $J_2 = 0$ и $J_2 \neq 0$ проявляется в поведении теплоемкости и восприимчивостей (рис. 2). Так, при $J_2 \neq 0$ теплоемкость и киральная восприимчивость имеют пик, который с увеличением размера решетки растет и становится все более острым, а однородная восприимчивость χ имеет теперь широкий максимум в определенной температурной области. Размерная зависимость высоты пика теплоемкости представлена на рис. 4: логарифмическая расходимость связана, очевидно, с фазовым переходом по параметру k.

Мы ожидаем, что в пределе $N \to \infty$ поведение k описывается следующим образом

$$k^2 N = \left[k(N \to \infty)\right]^2 N + O(N).$$
⁽¹²⁾

Рис. 5. a, b — Размерная зависимость $k^2 N$ при различных температурах. Наклоны асимптотических прямых — пунктирных линий — дают значение k^2 для бесконечной системы. Прямые 1-5 соответствуют t = 0.36, 0.41, 0.46, 0.51, 0.53 при j = 0.5 (a) и t = 0.52, 0.57, 0.62, 0.67, 0.72 при j = -0.5 (b); e, c — экстраполированные на бесконечную систему параметры k в зависимости от нормированной температуры t (логарифмическая шкала) при j = 0.5 (e) и j = -0.5 (c). Символы \circ, \bullet, \Box соответствуют $t_c = 0.55, 0.54, 0.53$ при j = 0.5 (e) и $t_c = 0.74, 0.73, 0.72$ при j = -0.5 (г). Пунктирные линии имеют наклон $\beta = 0.12 \pm 0.01$

Размерная зависимость k^2N от N при $j = \pm 0.5$ представлена на рис. 5*a*, *b*. Значения k(T) для бесконечной системы вычислены из наклона асимптотических прямых (пунктирных линий). На основе этих данных на рис. 5*e*, *c* построены зависимости функций $-\ln k$ от $-\ln(t_c - t)$ при различных пробных значениях $t_c (= T_c/J_1S^2)$. Критическая температура t_c определена из предположения о степенной зависимости кирального параметра: $k(t) \sim (t_c - t)^{\beta}$. Из рисунков видно: при любом знаке *j* прямая линия с наклоном $\beta = 0.12 \pm 0.01$ возникает при $t_c = 0.54 \pm 0.01$, если j = 0.5 и при $t_c = 0.73 \pm 0.01$, если j = -0.5.

Мы провели также скейлинговый анализ для конечных систем, предполагая, что

$$kL^{\beta/\nu} = F_k \left(|t - t_c| L^{1/\nu} \right),$$
(13)

Рис. 6. a, δ — Графики скейлинговых функций для параметра k выше и ниже T_c (соответственно кривые 1 и 2) при j = 0.5 (a) и j = -0.5 (δ). Символы о, \Box , Δ , ∇ соответствуют L = 12, 24, 36, 48. Пунктирные линии имеют наклон $\nu - \beta = 7/8$ при $T > T_c$ и $-\beta = -1/8$ при $T < T_c$; e, e — температурные зависимости параметра k для конечных систем (логарифмическая шкала); $t_c = 0.535$ для j = 0.5 (e) и $t_c = 0.726$ для j = -0.5 (e). Символы о, \Box , Δ , ∇ соответствуют L = 12, 24, 36, 48. Пунктирные линии имеют наклон $\beta = 1/8$

где F_k — скейлинговая функция [18]. Ниже t_c (13) должно сводиться к соотношению $k \sim (t_c - t)^{\beta}$ в пределе $L \to \infty$, так что для F_k имеем

$$F_k \sim x^{\beta}$$
 (14)

при $x \to \infty$. В то же время выше t_c параметр k должен быть пропорциональным $1/\sqrt{N} \sim 1/L$, так что в этом случае

$$F_k(x) \sim x^{\beta - \nu} \tag{15}$$

при $x \to \infty$. Наилучшие значения t_c , β и ν , полученные из условий, что данные для различных размеров решетки лежат на одной кривой (рис. 6a, δ) и предельные соотношения (14) и (15) выполняются, выражаются следующим образом: $t_c = 0.535$ при j = 0.5 и $t_c = 0.726$ при j = -0.5, а $\beta = 1/8$ и $\nu = 1$ независимо от знака j. Как видно,

Рис. 7. Графики скейлинговых функций для киральной восприимчивости выше T_c при j = 0.5 (*a*) и j = -0.5 (*b*). Символы о, \Box , Δ , ∇ соответствуют L = 12, 24, 36, 48. Пунктирные прямые имеют наклон $-\gamma = -7/4$

вычисленные значения для температур перехода и критических индексов из рис. 6*a*, б хорошо согласуются с аналогичными значениями, вычисленными из рис. 5*в*, *г*.

Для найденных значений $t_c = 0.535$ (j = 0.5) и $t_c = 0.726$ (j = -0.5) мы представили также зависимость $-\ln k$ от $-\ln(t_c - t)$ при различных значениях L (рис. 6*e*, *e*). Вблизи температуры перехода данные численных вычислений отклоняются от прямой — пунктирной линии — из-за конечных L. В области, где данные для различных размеров решетки лежат на общей прямой, линии соответствуют, как и в предыдущих вычислениях, наклону $\beta = 1/8$.

Скейлинговый анализ киральной восприимчивости χ_k проведен выше T_c на основе соотношения

$$t\chi_k L^{-\gamma/\nu} = F_{\chi} \left(|t - t_c| L^{1/\nu} \right).$$
 (16)

Очевидно, что скейлинговая функция $F_{\chi}(x)$ при $x \to \infty$ дается в виде

$$F_{\chi}(x) \sim x^{-\gamma} \quad (t > t_c), \tag{17}$$

поскольку в термодинамическом пределе $L \to \infty$ должно быть $t\chi_k \sim |t - t_c|^{-\gamma}$. Значения γ и ν выбирались из условия, что численные данные для решеток с различными L лежат на одной и той же кривой, и что предельное соотношение (17) выполняется. Наилучшее совпадение при $t_c = 0.535$ для случая j = 0.5 и $t_c = 0.726$ для j = -0.5 получено при выборе $\nu = 1$ и $\gamma = 7/4$ (рис. 7*a*, *б*).

Таким образом, представленные выше результаты показывают, что независимо от знака *j* (а следовательно, и от количества спинов на элементарную ячейку) критиче-

Рис. 8. Пространственная зависимость корреляционной функции g(r) при L = 48. Символы Δ , •, \Box соответствуют t = 0.519, 0.542, 0.565 и наклону пунктирных линий $\eta_{xy} = 0.18, 1/4, 0.5$ (a) и t = 0.664, 0.733, 0.804 и $\eta_{xy} = 0.12, 1/4, 0.45$ (b)

Рис. 9. Фазовая диаграмма в плоскости $t_c - j$ для планарных антиферромагнитных систем с решеткой Кагоме

ское поведение при фазовом переходе описывается критическими индексами двумерных изинговских систем. Данное обстоятельство не является случайным и обусловлено симметрией систем относительно изменения знака k.

Для определения температуры фазового перехода Березинского-Костерлитца-Таулеса удобно изучать корреляционную функцию

$$g(r) = \langle \cos 3(\psi_0 - \psi_r) \rangle \sim r^{-9\eta_{xy}(T)},\tag{18}$$

позволяющую выделить вклад от непрерывных флуктуаций при T ниже температуры изинговского перехода и правильно определить фазовый переход, если он происходит при более высокой, чем переход по дискретным переменным, температуре. На рис. 8 представлен график степенного поведения g(r) для $j = \pm 0.5$ при различных температурах. Используя критерий Березинского-Костерлитца-Таулеса $\eta_{xy}(T_{BKT}) = 1/4$, мы нашли, что фазовый переход с нарушением непрерывной симметрии реализуется при $t_{BKT} = 0.542 \pm 0.003$ для j = 0.5 и $t_{BKT} = 0.733 \pm 0.003$ для j = -0.5, где

 $t_{BKT} = T_{BKT}/JS^2$. В пределах точности вычислений t_{BKT} совпадает с t_c , так что фазовый переход в системе реализуется в единственной температурной точке и независимо от знака $j (= \pm 0.5)$. Отметим, что такое же значение t_{BKT} в пределах точности вычислений дает поведение η в (8). В этом случае при $\eta = 1/4$ имеем $t_{BKT} = 0.537 \pm 0.002$ для j = 0.5 и $t_{BKT} = 0.729 \pm 0.003$ для j = -0.5. Аналогичные вычисления при других, не слишком близких к нулю, значений j также показывают, что оба перехода происходят одновременно. Фазовая диаграмма $t_c - j$ представлена на рис. 9. Окрестность точки j = 0, где можно ожидать два фазовых перехода, по-видимому, весьма мала и требует более точных вычислений и больших затрат компьютерного времени.

В КFe₃(OH)₆(SO₄)₂ магнитная восприимчивость χ имеет широкий максимум при $T_c = 60$ K [10]; обменные взаимодействия J_1 и J_2 — антиферромагнитные, причем известно, что J_2 на порядок меньше J_1 . При j = 0.1 следует, что $t_c = 0.22$. Таким образом, обменное взаимодействие между ближайшими ионами Fe³⁺ со спинами S = 5/2 можно ожидать равным 44 К.

4. ЗАКЛЮЧЕНИЕ

В работе исследованы магнитные свойства планарных антиферромагнитных систем с решеткой Кагоме. Показано, что с учетом обменных взаимодействий между следующими за ближайшими спинами в системе реализуется фазовый переход при отличных от нуля температурах. В низкотемпературной фазе по параметру k существует дальний порядок, а корреляционные функции убывают по степенному закону. Из скейлингового анализа для конечных систем найдено, что k обращается в нуль при той же температуре, при которой киральная восприимчивость χ_k расходится, а их поведение хорошо описывается критическими индексами двумерных изинговских систем. Показано, что температура перехода типа Березинского-Костерлитца-Таулесса и температура изинговского перехода в пределах точности вычислений совпадают. Мы ожидаем, что полученные результаты могут быть использованы при более детальных экспериментальных исследованиях соединений типа ярозитов. Отметим, что в реальных системах со слабым межплоскостным взаимодействием существует узкая, но конечная температурная область, где критическое поведение имеет трехмерный характер. Однако, как свидетельствуют многочисленные экспериментальные данные, например, для слоистого XY-ферромагнетика Rb₂CrCl₄ [19], изинговского антиферромагнетика K₂CoF₄ [20], треугольного антиферромагнетика VCl₂ [21] и других магнетиках [22], вне этой области поведение двумерное, хотя в системе и существует трехмерный дальний порядок.

В заключение отметим также, что в изингоподобных гейзенберговских антиферромагнетиках, где вследствие искажения 120-градусной структуры существует отличный от нуля магнитный момент на каждом элементарном треугольнике решетки Кагоме, с понижением температуры возможен фазовый переход с нарушением дискретной и непрерывной симметрий [23]. Поэтому мы ожидаем, что поведение таких систем будет во многом похоже на поведение рассмотренных здесь планарных (XY) антиферромагнитных систем.

Работа выполнена при финансовой поддержке Красноярского краевого фонда науки (проект 6F0061).

Литература

- 1. P. Chandra, P. Coleman, and I. Ritchey, J. de Phys. 33, 591 (1993).
- 2. J. T. Chalker, P. C. W. Holdsworth, and E. F. Shender, Phys. Rev. Lett. 68, 855 (1992).
- 3. A. B. Harris, C. Kallin, and A. J. Berlinsky, Phys. Rev. B 45, 2899 (1992).
- 4. A. Sütö, Z. Phys. B 44, 121 (1981).
- 5. R.S. Gekht and V.I. Ponomarev, Phase Transitions 20, 27 (1990).
- 6. C. Zeng and V. Elser, Phys. Rev. B 42, 8436 (1990).
- 7. A. Chubukov, Phys. Rev. Lett. 69, 832 (1992).
- 8. D. A. Huse and A. D. Rutenberg, Phys. Rev. B 45, 7536 (1992).
- 9. R. Wang, W. F. Bradley, and H. Steinfink, Acta Crystallogr. 18, 249 (1965).
- 10. A. Bonnin and A. Lecerf, C. R. Acad. Sci. Paris 262, 1782 (1966).
- 11. M. G. Townsend, G. Longworth, and E. Roudaut, Phys. Rev. B 33, 4919 (1986).
- 12. M. Takano, T. Shinjo, and T. Takada, J. Phys. Soc. Jap. 30, 1049 (1971).
- 13. A. Keren, K. Kojima, L. P. Lee, et al., Phys. Rev. B 53, 6451 (1996).
- 14. T. Takagi and M. Mekata, J. Phys. Soc. Jap. 62, 3943 (1993).
- 15. J. Villain, J. de Phys. 38, 385 (1977).
- 16. S. Miyashita and H. Shiba, J. Phys. Soc. Jap. 53, 1145 (1984).
- 17. D. H. Lee, J. D. Joannopoulos, and J. W. Negele, Phys. Rev. B 33, 450 (1986).
- Finite Size Scaling and Numerical Simulation of Statistical Systems, ed. by V. Privman, World Scientific, Singapore (1990).
- 19. S. T. Bramwell, P. C. W. Holdworth, and M. T. Hutchings, J. Phys. Soc. Jap. 64, 3066 (1995).
- 20. H. Ikeda and K. Hirakawa, Sol. State Commun. 14, 529 (1974).
- 21. H. Kadowaki, K. Ubukoshi, K. Hirakawa, et al., J. Phys. Soc. Jap. 56, 4027 (1987).
- 22. E. J. Samulesen, Phys. Rev. Lett. 31, 936 (1973).
- 23. A. Kuroda and S. Miyashita, J. Phys. Soc. Jap. 64, 4509 (1995).