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THE ROLE OF HELICITY IN TURBULENT MHD FLOWS
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We have studied the behavior of a helical homogeneous small-scale MHD turbulent flow
under the action of a weak inhomogeneous large-scale disturbance. We have shown that turbulent
energy redistribution in the presence of nonzero helicity occurs mainly over large scales. Helicity
increases correlation time, leading to the weakening of a direct cascade and to the formation
of steep spectra over small scales, with simultaneous turbulent energy growth over large scales.
Furthermore, an expression for the effective viscosity of the mean flow is derived. It is shown
that the magnetic field, in addition to the helicity, reduces the effective viscosity of the medium.
This may be important in the study of MHD flow around obstacles in the presence of an external
magnetic field.

1. INTRODUCTION

The problem of self-organization of a turbulent MHD flow with magnetic Reynolds number
Re,, < 1 in an external homogeneous magnetic field has long been under discussion (see,
for instance, [1-4], with references therein). Obviously, an external magnetic field causes a
rearrangement of the topological structure of a turbulent flow. Specifically, if the original
turbulence (in absence of a magnetic field) is isotropic, it becomes anisotropic in the presence
of a magnetic field. Furthermore, in presence of a magnetic field, the spectral and dynamical
properties of turbulence can change.

As demonstrated by numerous experiments (see, e.g., [4-6]), turbulence spectrum varies
with the magnetic field. It should be emphasized, however, that turbulence essentially always
remains three-dimensional, although there exists a tendency to quasi-two-dimerization. Over
small scales, the spectral dependence of the turbulent energy E; on wave number k is of the
form E; ~ k~%, where the exponent ¢ varies with increasing magnetic field from —5/3 (at
B = 0) to between —2 and —7/3 (at low B values) [1,4]. With growing magnetic field, c ranges
from —11/3 to —4, and the turbulence becomes highly intermittent [4].

It is noteworthy that such magnetic field-dependent behavior of the turbulence spectrum
is observed only in those experiments where turbulent flow is generated either by drawing a grid
through the medium [1] or in the presence of a honeycomb [4].
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For the entire subsequent analysis, it is important to note that turbulence becomes
helical in an external magnetic field. This means that the one-point correlation function
H = {v[Vv]) # 0, where v is the flow velocity. On the other hand, purely helical turbulence is
characterized by the quantity o« = —7/3 [7], which is in agreement with experimental results
[1,4]. In the general case, helicity, along with energy, is the most important feature of a
turbulent flow. Helicity, being the second invariant of Euler’s equation, just like energy [8],
exerts a significant influence on the evolution and stability of turbulent and laminar flows [9].
Helicity is probably one of the main sources of magnetic field generation and maintenance in
astrophysical objects [10]. In the absence of a magnetic field, helical turbulence is unstable
against large-scale disturbances [11]. This leads to energy redistribution between large-scale and
small-scale fluctuations. On the other hand, helicity leads to an efficient viscosity decrease in
the mean flow, i.e., to a decrease in Reynolds stresses [12].

The present paper deals with the behavior of small-scale helical turbulence in an external
homogeneous magnetic field and under a weak large-scale disturbance. We also examine the
effect of a magnetic field on the viscosity of such turbulence.

2. PRINCIPAL EQUATIONS

Let us write the system of MHD equations in dimensionless form for an incompressible
fluid:

Su 1 N
a7 (@V)u= VP + —Au R [[VB]B] +F, 1)
OB I,
- = + — 2
5 [V [uB]] Remv B, 2
Vu= VB =0,

where F is an external non-electromagnetic force and P is pressure. The problem is
characterized by three dimensionless numbers: the Reynolds number Re = U L /v, the magnetic
Reynolds number Re,, and the magnetic interaction parameter N = 0 B2L/pU (here p, v are
fluid density and viscosity, U and L are characteristic velocity and dimension).

We represent all fields as a sum of averaged and fluctuating values:

u={(u+u, B=By+h, P=(P)+P', F=(F)+F,

Bo>h, (v)=(h) = (P') = (F) =0,

where (...) denotes averaging over an ensemble.
Assuming first that (u) = 0 and Re,, < 1, one can easily derive an equation for u’ up to
the second order of h:

él}i + @V — ((u’V)ll') =_VP + LAu' + —ﬂ— [[Vh]Be] + F'
ot Re Re,, ’

Let us examine the stability of a small-scale turbulent flow under the magnetic field with
respect to weak large-scale non-uniform disturbances. In this case, we represent the turbulent
field as a sum of the initial turbulent field u® and its disturbance u‘V:
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v = u® + g,

where u® > u®.
We introduce the notation for the correlation functions:

QY (€,T) = <u£0)(x, t) ug-o)(x +&,t+ T)> ,

QIx,&,t,7) = <u§‘)(x, t) uPx+ €, + 7-)> ,

and, in the same manner, for correlators of higher order.
Assuming that the external force F' maintains the initial small-scale helical turbulence,
we can derive an equation for Q% = Q¥(¢,7):

QL 1 N
"4+ VQES = -V (POUP) + = aQ% + T(Viv:Q - Vi) + (Fuf),

where the magnetic term is obtained from the Eq.(2) with allowance for the above assumptions,
and By is directed along the third coordinate.
In a similar way, we can write an equation for Q} = Q1}(x,&,t,7):

QY 1
at] _ _AQ + vk(Q‘ij }c(i(_; — <P(l) (0)> + _(V VSQ QIO)

Eliminating the pressure from this equation, we obtain the final equation for Q;) :

60, 1 + 1, V 0 N cos?d 3
87_ - —RTCA m IC( mk] ka]) - - COS' Q‘L]’ ( )

where I1;,, = (6;m — ViV /A) is a projection operator, and the operator cos’§ = V3/A.
Similarly to Eq. (3), we obtain an equation for the third moments 12‘,1 =

= N1o .
- Qij(x> ésélv ta T, T,) .

(5‘?; - T{I—A + N cos’ 0) Qifn + Tim Vi (@mtin * Qimjn ~ QmiQfn — QmiQ3) = 0. (4)

To complete the system of Egs. (3) and (4), we use the results from [12], where a finitness
of a correlation time is taken into account through two-scale analogue of Orszag eddy damped
quasi normal markovian (EDQNM) approximation [13]. This approximation consists in the
replacement of the fourth order moment cumulant in equation for third moment on effective
damping term, proportional to a square-law combination of pair moments. This approach is
analogous to other traditional turbulent second order closures [14]. EDQNM approximation
for strong MHD turbulence was considered in detail in [15].

In this approximation, we obtain from Eq. (4)

100 — ~ 1000
i = ~THim Vi Qumipj»

where the three-point correlator

00 @, t,3,4,6,7m, ) = QU (et QU — €, =)+
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+QY, (@, 1, £, IQU(E, ) + QY (x, 1, €, T)QR(E, 7) )

and
1 -1
7= (——* +Nc0320> ,
T

and the correlation time 7* ~ L;,, /Etlﬁ (Ltyr and E,,, being the characteristic scale and
average energy of turbulent flow, respectively).

To substitute the expression (5) for the third moment into Eq. (3), we pass to the limit
&'— &, 7" — 7. Here (see Appendix) we take into account that Af;; = Q‘}?(O, 0) and Ce;jp =
= 8Q‘£(£ ,7)/0&p|e,r—0 depend on B (or N), i.e., on the magnetic field. This results in

o 1 - 2 10 z =
(_ _ (E + AT) A+ N cos 0) Qi]'(xa t,f,T) - TCHZIJO -

0
=7V [a—sz%ﬁ(x, t,0,0)Q% (€, 7) + %Q}:},(x, t,0,00V& QW (€, )+
£ QL 1,0, 0>vkq22<£,f>] , ©)

where A = A(N,0,0) and C = C(V,0,0) are scalar functions of N, H;; = ;5 VX
X Qll_?(xa t’ {a T)-

3. INSTABILITY OF THE SECOND MOMENTS

To study the stability of the system (6), we apply the operator &;,,,; V., and write resulting
system in the homogeneous form:

Vv, — iA —FAA+ Ncos’8 | Q% — 7CHY =0,
Re * *

Y
1
(VT — —A — 7AA+ N cos? 9) HY +7CAQY =
Re 7 )
An equation for Qig follows from (7):
((V+ —vgA+ N cos’6)* + 7°C*A) Qj3 =0, ®)

where the effective viscosity vy = 1/Re + TA. Passing into k-space in (8), we derive an
expression for the decay factor v = —iw:

v = —vgk? — N cos* 8 + 7|Ck|, 9)

where 6 denotes the angle between k and Bg. It follows from the form of Eq. (9) that helicity
increases relaxation time. In other words, helicity prolongs vortex life-time. However, helicity
influence is practically imperceptible in case of v k*+N cos? § >> 7|Ck|. Hence, at sufficiently
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weak magnetic fields the helicity effect is most essential over large scales, i.e. at low k values.
Under the condition « > 0, we obtain from Eqn. (9) the instability condition:

1 4N cos? 6\ /2 1 4N cos? 9\ V/?
2 _ (12l 2 £ 2080 10
ko (1 (1 o ) <k<szh |1 (1 o ) : (10)

where ko = 7|C|/vH.
Let us study two limiting cases. Let cosf = 0, i.e., consider modes for which k1 By. In
this case, (10) acquires the form of the purely hydrodynamic limit [11]:

0< k <k (11)
Here
e
" 1/Re+ Ar*’

and the dependence of the scale ky on the magnetic field is contained only in the coefficients
Aand C. As a rule, A7* > 1/Re, which results in ks = C/A. Consequently, k) dependence
on the magnetic field is determined by the ratio of helicity to turbulence intensity.

On the other hand, at cosf = 1, i.e., in modes for which k || By, we obtain the condition
(10) in the form

1 1/2 1/2
-<k0—<k§—ﬂ) )<k<1<k0+(kg—ﬂ) , 12)
2 vy 2 VH

7|C| . ™
T =

" 1/Re+ A7’ 1+ N7+

where
0

It is evident from (12) that at By = 0, this interval coincides with that of the modes with
k1 B,. With growing magnetic field, 7 decreases, i.e., the effective correlation time decreases.
Simultaneously, the instability interval is reduced and vanishes at the fields described by
4N /vy = k2.

It follows from the conditions (11) and (12) that at scales

1 4N\ 2
0<k<§<ko—<k§——l%) ) (13)

1 4N\ /2
—(laﬁ-(k&——ﬁ) ><k<ko,
2 vy

modes with k L B, are unstable against large-scale disturbances, whereas those with k || B, are
attenuated.

Thus, the energy of a large-scale disturbance is redistributed among the scales, so that
modes transverse to the magnetic field predominantly grow.
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4. TURBULENT VISCOSITY

To study the influence of the magnetic field on viscosity, we examine the variations
in hydrodynamic viscosity (in the absence of a magnetic field) in an external homogeneous
magnetic field.

We consider the case of (u) # 0 and (u) < u@. In this case, the equation for (u),

9 (u) 1 N

ot () (7 () = (V)W) = =V (p) + oA w) + o (IVBIB) +(F),  (14)

involves Reynolds stresses ((u'V)u') that depend only on Q”’ for homogeneous turbulence, as
shown in [12, 17]. On the other hand, additional terms appear on the right-hand side of Eq. (6)

for Q}3(¢, 7,x,1) :

[(2- - —I—A — 7AA + N cos? 0) o — fCEiszk] Qzl;')(ﬁ,‘f’ X, t) =

0t  Re
0
=_(UP>VPQ?2_ 0 (U,’) (;)z(_)j_ (up)ﬁsva(ix;-'_
P
. 9Qi(x,t,0,0) Q5 (x,1,0,0)
+TVP[ S + V60D + Qe L0, 0VLQY |, (19)

where u, = uy(X, t), Q?‘J’- = Q?g(é, T,N).
Taking into account that j is a dummy index in Eq. (15), which allows us to write this
equation in the vector form

Jy;
or

= Aijy; + fi,

its formal solution being of the form
t
50 = YOm0 + [Ya 5 e)s,enar,
0

with the matrix Y;; satisfying the homogeneous equation

aY;;

= A Yes 16
ot A‘LkYkJ) ( )

the solution of Eq. (14) has the form
Y;;(1) = exp (—(vgk* + N cos’ 0)) x

X [ch(ékf) (5,-j - %) kkff +isig o sh(Ck-r)] 17)

where C = 7C.
In this case, the expression for Q7 takes the form
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T - 2 397 .
2=/ exp(—(qu2+Ncos20r>>{[(—“—kAo 5 %) ch(CkD+

0

4rk? 6C 0 (u;) , 0{u;)
+ —— ——sh(C ——+ 1) -
A7 & (kAo ch(Chr) — KCosh(Ck 0 +QY) b dk dr + Zy; (18)
o ET( 0C T) — 08 T))( ij Q]‘l T i3
where it is taken into account that Q (k,T) = Qj (see Appendix), Z;; are terms unrelated
to the viscosity, and
- A
Ao = —_— —
{+ N2k2Re00820 + Ncos* 8
k*Re~%+ w?
Co= G (19)
14N 2k*Recos? § + Ncos* 0
k*Re—2 + w?

For the sake of clarity, we have applied the mean-value theorem when integrating over 6,
resulting in the appearance of cos?§. At N — 0, the expression (18) passes to the hydrodynamic
limit [12]. In this case, noting that Reynolds stress appears in the equation for (u) in the form

9 10 10
_ QY + QW
62:]-( 4 i)

we obtain the expression for the viscosity ;" in a magnetic field:

vn [1+8—f51 / (k“,«io(k,r)ch(ékr)—kséo(k,f)sh(ékf)) x

0
-1 o
X exp (—(VszT + Ncos? 0)r) dk dr] /exp (—(Vykzq- + Nm)T) X
0

8rk* BCO(k T)
15 o8k

y [(87rk F—. 87k? 8Ag(k, )

15 ok ) ch(Chr)-

h(ékr)] dkdr. (20)

It follows from (20) that in MHD flows with Re,, < 1, the turbulent viscosity decreases with
increasing magnetic field.

5. DISCUSSION

As demonstrated above, a magnetic field alters the properties of homogeneous turbulence
in a most significant manner. The existence of nonzero mean helicity results in instability of
turbulent MHD flow with respect to weak large-scale disturbances. However, the instability of
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Y
2 cos@ =0
kol s
2
k/4-N
%o Fig. 1. Dependence of v on k for two
I limiting values, cosf® = 0 and cosf = 1
1y cosf =1
I
0] k2 |\
_NA

helical MHD turbulence has distinctive features in comparison with the instability of helical
turbulent hydrodynamic flow in the absence of the magnetic field.
Figure 1 schematically shows the bahavior of the damping factor + for two limiting values
of cos? 0. The regions I, II, and III correspond to the conditions (10) and (13), respectively.
Let us examine the behavior of the components of the correlation tensor in these regions.
The incompressibility condition in k-space,

k:Qj) =0, (21)

leads to the following relation between the components:

5| 9L

Q1° ; (22)

EI

where for the sake of simplicity and without any loss of generality, we have assumed that k; Q 10 —
= k,Q}} = k1 Q1. On the other hand,

kik; = k*. (23)
Multiplying (23) by @, and assuming that Q; ~ @,, we find with the help of (22) that
Q¥ =v2tgh Q.. (24)
Taking into consideration the fact that the energy density at fixed k is
E(k)=2Q. +Qs, (25)
where Q3 = Q13, we finally obtain
E(k)cosf = (2cosf + V2 sin6)Q. . (26)

Thus, cos @ is a measure of energy distribution among components along and across the magnetic
field at specified k.

At cosf = 0 we obtain Q; = 0, and all the energy of the given mode is concentrated in
the component parallel to the magnetic field, i.e., E(k) = Q3. Here k? = 2’“1’ ie., in this
mode fluctuations are normal to the magnetic field.
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At cos@ = 1 we observe the opposite situation: all the energy of these modes with k? = k?
is concentrated in fluctuations normal to the field, i.e., E(k) = 2Q 1, which oscillate along the
magnetic field. .

If we take into account the form of E(k) = Q!{(k) and (8) for larger scales,

E(k,t) = E(k, t) exp(— Nt cos’ §)

then we obtain at some fixed time ¢

- cosf
= Eexp(—Ntcos? ) —— |
Q1 o )200s6+ V2 sinf @n
- V2 sin6
= Eexp(—Ntcos’ ) —~———
@ o )2cos0+\/§sin0

Figure 2 represents the behavior of @, / E and Qs/ E for Nt =1 as a function of angle.
One can easily see that modes with the same k behave differently, depending on cos6.

Returning to the instability of the second moments, we have the following. In regions II
and III, corresponding to the conditions (13), modes with cosd = 1 are attenuated, whereas
modes with cosd = 0 grow. Hence, energy must be transferred from modes with cosd = 0
to modes with cosf = 1. In region I, energy growth is observed in all modes (but at different
growth rates). In this case energy transfer between modes at a fixed k probably proceeds in such
a way that at # < 7 /4, energy is transferred from @ to @, , and conversely at § > /4, from
@1 to Q3. However, in these cases the fluctuation amplitude will grow in a different manner.
This is related to Joule dissipation, which is greatest at cosf = 1, and vanishes at cosf = 0.

If we analyze the role of helicity, it reduces to the following. By increasing vortices, lifetime
at large scales, helicity slows down a direct Obukhov cascade from larger to smaller scales. Thus,
it leads to incoming energy redistribution over large scales, i.e., an increase in vortex lifetime
increases the probability of vortex mergers. On the other hand, at high k values, helicity play
essentially no role, and at these scales turbulence is dissipated. The joint action of these two
processes results in the energy growth at large scales, and in an efficient «eating away» of smaller
scales that are weakly supplied with energy «from above» due to the presence of nonzero one-
point helicity in the system. Since helicity grows with magnetic field [18], at the same time, the
connection between large and small scales is disturbed more strongly. Experimentally [4], this
leads to the energy spectrum steepening over the small-scale range, up to o = 11/3-16/3 with
increasing magnetic field. Thus, the energy of a weak large-scale disturbance is redistributed
among modes with differing cos 8, the cascade along the spectrum being weak.
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In contrast, region I decreases with growing magnetic field, and fluctuation growth at
0 < k < ky is mainly connected with the growth of the energy of longitudinal fluctuations. Here,
however, one must bear in mind that turbulence remains three-dimensional, but the process of
energy transfer from one component to another at a given fixed k results from rapidly occurring
processes (instabilities). This leads to the generation of a quasi-two-dimensional fluctuation
pattern (symmetric about the magnetic field).

It should be noted that in the intermediate range of 0 < cosf < 1, there exist fluctuations
along all three components; for instance at § = 7 /4 the intensity of modes along and across
the magnetic field is the same, and they have the same instability growth rate. In the vicinity of
this point, namely at § = 7 /4, energy exchange between components with given k is probably
absent.

The authors are deeply grateful to Dr. A. Eidelman for useful comments on the results of
the present paper.

APPENDIX

The influence of an external uniform magnetic field on the behavior of correlations in a
turbulent medium has been studied in Ref. [2]. In a magnetic field, the second moment of the
velocity field acquires the form

Qj(k,w)

(kBo)? 2nvk* — 2w? + (kBo)*/up’
pp (kW) (W2kA + w?)

Qiik,w) = (A1)

1+

where QA; (K w) is a correlation function in the absence of the magnetic field, and 7, v, p are
magnetic and hydrodynamic viscosities and fluid density, respectively. Here we retain, for
convenience, the notation of Ref. [2]. Assuming that turbulence is helical and isotropic in the
absence of the magnetic field, we can write Q) ; (k, w) as follows (no matter whether H°(0,t) =0
or not):

kik;

Zj(k, w) = Ag(k,w) (51'3' - 72—) +iCo(k, w)esjsks. (A2)

When passing into z-space, Q% = [ Q;_,-(k,w)d%dw inthelimit{ = z—1' — 0,7 =t—t' — 0.
In case of Re,, < 1 we obtain from (A.1)

oo (K, w) _ (K, w)
Qi w) = 4 (B)® 2nvk® + (kB)/pp | | K*cos’d Bf 2qv + cos?0 B2 /upk?’
up kAWK + w?) o 2k4 + w2
or in dimensionless form

A Q. (k,w)
(K. w) = * . A3

@i;(k,w) |+ v 2FRecos’d + Ncos'§ (A-3)

k*Re=2+ w?

Consequently,

180



X3TD, 1998, 114, eun. 1(7) The role of helicity. . .

w

W

bij A{,jj(k)w)
2k*Recos’8 + N cos*d
k*Re—? + w?

ke QL (k, w) ,
2k*Recos’d + N cos*6
k*Re—? + w?

Clearly, both A(N,0,0) and C(V, 0,0) decrease with increasing N (or magnetic field).

&’k dw,

A(N,0,0) =%/

1+N

k dw.

OV,0,0) = — Feisn /

1+N
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