МАГНИТОТРАНСПОРТ ЭКСИТОНОВ В ДВУМЕРНЫХ СИСТЕМАХ: ЭФФЕКТЫ СЛАБОЙ ЛОКАЛИЗАЦИИ

П. И. Арсеев

Физический институт им. П. Н. Лебедева Российской академии наук 117924, Москва, Россия

А. Б. Дзюбенко*

Институт общей физики Российской академии наук 117942, Москва, Россия

Поступила в редакцию 30 октября 1997 г.

Рассмотрено влияние магнитного поля *B* на транспорт нейтральных композитных частиц — экситонов — в двумерных (2*D*) системах со слабым беспорядком. Показано, что для классического транспорта (когда интерференция между различными путями не учитывается) магнитное поле подавляет транспорт экситонов: статический коэффициент диффузии *D*(*B*) монотонно убывает с ростом *B*. С учетом квантовых слаболокализационных поправок *D*(*B*) становится немонотонной функцией поля *B*. В слабых магнитных полях (когда магнитная длина много больше боровского радиуса экситона $\ell_B = (\hbar c/eB)^{1/2} \gg a_B = \varepsilon \hbar^2/\mu e^2$) предсказан положительный магнитодиффузионный эффект: возрастание подвижности экситонов с ростом *B*.

1. ВВЕДЕНИЕ

В двумерных (2D) системах все состояния являются локализованными — независимо от того, насколько слабым является беспорядок [1-3]. Это явление универсально для всех процессов распространения волн и связано с конструктивной интерференцией траекторий, которые обращены во времени. Для массивных частиц этот эффект является квантовым и не может быть описан в рамках классической механики. Квантовая статистика частиц при этом не играет решающей роли (см., например, работы по слабой локализации фононов [4] и света [5]). Если в рамках одночастичного подхода явление локализации изучено достаточно хорошо, то в проблеме взаимного влияния кулоновских и локализационных эффектов еще остается много вопросов. Большое количество различных ситуаций требует применения разнообразных подходов, описывающих свой класс явлений. Так, в рамках теории слабой локализации было показано, что электрон-электронное взаимодействие разрушает интерференционные эффекты и приводит к увеличению проводимости (см., например, обзор [3]). Численный расчет для двух взаимодействующих электронов в случайном потенциале также дает увеличение длины скоррелированного распространения обеих частиц по сравнению с длиной локализации каждой частицы в отдельности [6]. Вопрос, которому посвящена настоящая статья, о распространении в магнитном поле и в случайном потенциале экситона — взаимодействующих электрона и дырки — также является одним из аспектов

^{*}E-mail: dzyub@gpi.ac.ru

этой общей проблемы. Слабая локализация экситонов в отсутствие магнитного поля рассматривалась ранее в [7].

Магнитное поле В приводит к новым чертам в физической картине слабой локализации электронов. С формальной точки зрения, В нарушает симметрию по отношению к обращению времени. Физически это ведет к отрицательному магнитосопротивлению в электронных системах [8,9]. Природа этого эффекта состоит в том, что в магнитном поле заряженные частицы приобретают различные фазы, обходя замкнутые траектории по разным направлениям [10]. Это приводит к тому, что поле В разрушает конструктивную интерференцию обращенных во времени траекторий и тем самым подавляет слабую локализацию электронов. С учетом спина электрона возможны четыре различных канала интерференции двух электронных волн: один синглетный (S = 0) и три триплетных ($S = 1, S_z = \pm 1, 0$) канала. Интерференция в триплетных (синглетном) каналах дает положительный (отрицательный) вклад в проводимость [9, 11]. Быстрая спиновая релаксация может существенно изменить соотношение между вкладами интерференции в триплетных и синглетном каналах, приводя как к отрицательному, так и к положительному магнитосопротивлению. Связанный с этим учет различных механизмов спин-орбитального взаимодействия, важный для электронов в квазидвумерных полупроводниковых квантовых ямах и гетероструктурах, проведен в работах [12]. Заметим также, что в системах с сильнолокализованными электронными состояниями (режим прыжковой проводимости) свойство магнитного поля изменять фазовые соотношения между различными амплитудами переходов может приводить как к отрицательному, так и к положительному магнитосопротивлению [13, 14].

Для экситонов (которые являются составными и в целом электронейтральными частицами) важным является вопрос, нарушается ли для e^{-h} -пары в магнитном поле B симметрия по отношению к обращению времени. Можно ожидать, что поскольку для e и h по отдельности $t \rightarrow -t$ -симметрия в магнитном поле всегда нарушена, то так будет и для e^{-h} -пары. В общем случае это действительно так. Существует, однако, некоторое исключение. Рассмотрим гамильтониан

$$H = \frac{1}{2m_e} \left(-i\hbar\nabla_e + \frac{e}{c}\mathbf{A}_e \right)^2 + \frac{1}{2m_h} \left(-i\hbar\nabla_h - \frac{e}{c}\mathbf{A}_h \right)^2 + U_{eh}(\mathbf{r}_e - \mathbf{r}_h) + V_e(\mathbf{r}_e) + V_h(\mathbf{r}_h),$$
(1)

который отвечает движению e-h-пары в однородном магнитном поле B и во внешних (случайных) потенциалах V_e , V_h . Когда массы частиц равны, $m_e = m_h$, и рассеивающие потенциалы тождественны, $V_e \equiv V_h$, e- и h-компоненты переходят друг в друга при операции обращения времени¹⁾. В этом случае гамильтониан (1) коммутирует с оператором обращения времени:

$$[H, \hat{T}] = 0.$$
 (2)

Это означает, что $t \rightarrow -t$ -симметрия не нарушена и 2*D*-экситоны должны остаться локализованными, несмотря на присутствие магнитного поля.

¹⁾ Здесь и в дальнейшем предполагается, что валентная зона не вырождена и дырки имеют спин 1/2. Мы не будем рассматривать эффекты, связанные с различными спиновыми состояниями экситона, что необходимо при быстрой релаксации между ними. Для полупроводниковых структур типа A₃B₅ это требует учета сложной структуры валентной зоны (см., например, [15]) и выходит за рамки настоящей работы.

В общем случае необходим анализ того, как магнитное поле *В* подавляет слабую локализацию электронейтральных в целом экситонов и каким именно образом проявляется их внутренняя структура. Движение центра масс и относительное *e*-*h*-движение в магнитном поле связаны. Именно это обстоятельство приводит к тому, что рассеяние экситона как целого зависит от магнитного поля *B* и внутренних *e*-*h*-взаимодействий.

В последнее время транспорт квазидвумерных экситонов в квантовых ямах в магнитном поле вызывает достаточно большой экспериментальный интерес (см. [16-18] и цитируемую там литературу). В работе [17] сообщается об интересных низкотемпературных аномалиях в магнитотранспорте экситонов. В частности, было обнаружено, что коэффициент диффузии D экситонов оказывается немонотонной функцией поля В с заметным возрастанием в промежуточных полях $B \simeq 6$ Тл. Это было интерпретировано как свидетельство бозе-эйнштейновской конденсации и проявление сверхтекучести экситонов. Интересно установить, не приводят ли в нормальной фазе эффекты локализации экситонов к особенностям в зависимости D(B). В настоящей работе мы теоретически рассмотрим магнитотранспорт 2D-экситонов при слабом беспорядке в предельном случае, когда магнитная длина оказывается много больше боровского радиуса экситона: $\ell_B = (\hbar c/eB)^{1/2} \gg a_B = \varepsilon \hbar^2/\mu e^2$. Поля, удовлетворяющие этому условию, будем называть слабыми. Совместно с результатами, полученными для классического [19] и квантового [20, 21] транспортов в противоположном пределе $\ell_B \ll a_B$, это позволит нам предложить качественную картину зависимости коэффициента диффузии D от магнитного поля B во всех полях, включая и промежуточную область с $\ell_B \sim a_B$. Краткое сообщение о части полученных результатов было сделано в [21, 22].

2. ТРАНСПОРТ ЭКСИТОНОВ В МАГНИТНОМ ПОЛЕ В

2.1. Постановка задачи

Режим слабой локализации соответствует ситуации, когда взаимодействие с отдельным дефектом не приводит к образованию связанного состояния и локализация возможна лишь на больших пространственных масштабах и возникает благодаря интерференции рассеянных волн. Такой режим реализуется в случае слабого рассеяния, когда

$$\gamma_0(p) \ll \epsilon(p),$$
 (3)

где γ_0 — коэффициент затухания (обратное время релаксации импульса) экситона с энергией $\epsilon(p)$. Источником рассеяния для экситона являются случайные потенциалы $V_e(\mathbf{r})$ и $V_h(\mathbf{r})$ из (1), действующие по отдельности на электрон и дырку. Это могут быть, например, потенциалы заряженных примесей, эффективные потенциалы, отвечающие неровностям границ раздела в квантовой яме, и т. п. При низких температурах доминирующим механизмом рассеяния в квантовых ямах является неровность границ раздела; именно этот механизм мы будем в основном рассматривать в настоящей работе. Для 2D-экситонов в квантовой яме ширины d в присутствии неоднородности границ раздела с характерной высотой Δ и корреляционной длиной Λ (см. [19] и цитируемую там

Рис. 1. Диаграммное представление уравнения (5): Γ — неприводимая вершина, отвечающая рассеянию на случайном поле; линии, обозначенные A и R, представляют усредненные по беспорядку опережающие и запаздывающие пропагаторы G^A , G^R экситонов в магнитном поле. Токовые вершины на диаграмме отвечают скорости центра масс экситонов $V(\mathbf{p})$

литературу) появляется следующая характерная величина импульса экситонов²:

$$p_{min} \sim \frac{1}{a_B} \left(\frac{\Delta \Lambda a_B}{d^3} \right), \quad \ell_B \gg a_B.$$
 (4)

Для длинноволновых экситонов с импульсами $p < p_{min}$ имеем $\gamma_0 \ge \epsilon$, и такие экситоны являются сильнолокализованными. Рассмотрение сильной локализации композитных частиц в магнитном поле находится вне рамок настоящей работы. Однако, если параметр $\Delta \Lambda a_B/d^3 \ll 1$ достаточно мал, область сильной локализации экситонов оказывается узкой по сравнению с характерными импульсами задачи a_B^{-1} (ℓ_B^{-1} в сильных полях *B*), и развитая здесь теория имеет область применимости.

Существенно, что рассеяние двухчастичных e-h-состояний может быть описано на диаграммном языке в терминах эффективно одночастичного (экситонного) рассеяния (это показано в Приложении А). Используемое приближение позволяет обращаться с экситонами при низких плотностях как с бозе-частицами. Их внутренняя структура проявляется в том, что магнитное поле *B* приводит к изменениям эффективных потенциалов рассеяния $V_{p,p'}$ и закона дисперсии $\epsilon(p)$ (см. разд. 2.2). Потенциалы $V_e(\mathbf{r})$ и $V_h(\mathbf{r})$ могут быть статистически независимыми — как, например, для пространственно разделенных e и h (см. [19]) — или полностью коррелированными — как для частиц в одной пространственной области. Мы считаем, что случайные поля обладают гауссовой статистикой и используем стандартные диаграммные методы [23], в которых фигурируют двухчастичные (запаздывающие, R, и опережающие, A) пропагаторы экситонов в магнитных полях, усредненные по беспорядку: $G_{\omega}^{R(A)}(p) = [\omega - \epsilon(p) \pm i\gamma_0(p)]^{-1}$ (см., например, [20]).

Для упругого рассеяния можно ввести коэффициент диффузии экситонов $D(\omega, \epsilon)$ с данной энергией ϵ на частоте ω , который может быть получен из выражения для обобщенной «проводимости» (рис. 1) $\sigma(\omega, \epsilon) = D(\omega, \epsilon)\mathcal{N}(\epsilon)$:

$$\sigma(\omega,\epsilon) = \frac{1}{2\pi} \int d\mathbf{p} \int d\mathbf{p}' \left\langle \! \left\langle V_x(\mathbf{p}) \, G^R(\mathbf{p},\mathbf{p}',\epsilon+\omega) G^A(\mathbf{p}',\mathbf{p},\epsilon) \, V_x(\mathbf{p}') \right\rangle \! \right\rangle, \tag{5}$$

где V(**p**) — скорость центра масс экситона, $\mathscr{N}(\epsilon)$ — плотность экситонных состояний, $\langle\!\langle \ldots \rangle\!\rangle$ — усреднение по беспорядку. Отметим, что коэффициент диффузии $D(\omega, \epsilon)$ является величиной, которая входит в «диффузионный» полюс корреляционной функции экситонов «плотность-плотность» и определяет поэтому длинноволновые характеристики распространения частиц с данной энергией ϵ . Локализация квантовых состояний с

²⁾ Когда рассеяние экситонов происходит на заряженных примесях с 2*D*-концентрацией n_{imp} , имеем [19] $\gamma_0/\epsilon \simeq \nu_{imp}$, где $\nu_{imp} = 2\pi a_B^2 n_{imp} (\nu_{imp} = 2\pi \ell_B^2 n_{imp})$ — безразмерная концентрация примесей для предельных случаев $\ell_B \gg a_B (\ell_B \ll a_B)$. Для этого механизма рассеяния малость параметра ν_{imp} обеспечивает применимость приближения слабого рассеяния.

энергией ϵ означает, что коэффициент диффузии (как функция частоты, $D(\omega)$) обращается в нуль в статическом пределе $\omega \to 0$. Если учесть неупругие процессы рассеяния, то $D(\omega)$ оказывается конечным (см., например, обзор [3]). Статическое значение $D(\epsilon) = D(\epsilon, \omega = 0)$ определяется временем разрушения когерентности (потери фазы) τ_{ϕ} . Полный статический коэффициент диффузии D = D(T), отвечающий флуктуациям плотности экситонов со всеми возможными энергиями, может быть получен из микроскопических величин $D(\epsilon)$ с использованием обобщенного соотношения Эйнштейна:

$$D = \frac{\int d\epsilon \,\mathcal{N}(\epsilon) \left[-\partial f/\partial\epsilon\right] D(\epsilon)}{\left[d\epsilon \,\mathcal{N}(\epsilon) \left[-\partial f/\partial\epsilon\right]\right]},\tag{6}$$

где $f = f(\mu_X, T)$ — функция распределения, μ_X — химический потенциал экситонов.

2.2. Эффективный рассеивающий потенциал

Гамильтониан H_0 относительного движения e-h-пары в перпендикулярном поле B с импульсом центра масс $\hbar p$ (**p** — волновой вектор) имеет вид [24, 25]

$$H_0 = -\frac{\hbar^2}{2\mu} \nabla_{\mathbf{r}}^2 - \frac{i\hbar eB}{2c} \left(\frac{1}{m_h} - \frac{1}{m_e}\right) [\mathbf{r} \nabla_{\mathbf{r}}]_z + \frac{e^2 B^2}{8\mu c^2} r^2 + \frac{e\hbar}{Mc} \mathbf{B}[\mathbf{r}\mathbf{p}] - \frac{e^2}{\varepsilon |\mathbf{r}|}, \tag{7}$$

где $\mathbf{r} = \mathbf{r}_e - \mathbf{r}_h$ — относительная e-h-координата, $\mu^{-1} = m_e^{-1} + m_h^{-1}$. Здесь использовано существование точного интеграла движения — магнитного импульса центра масс [24] с оператором

$$\hbar \hat{\mathbf{p}} = -i\hbar \nabla_{\mathbf{R}} - \frac{e}{c} \mathbf{A}(\mathbf{r}),$$

где $\mathbf{R} = (m_e \mathbf{r}_e + m_h \mathbf{r}_h)/M$ — координата центра масс, $M = m_e + m_h$; вектор-потенциал берется в симметричной калибровке $\mathbf{A} = [\mathbf{Br}]/2$. Волновая функция экситона в магнитном поле *B* имеет вид

$$\Psi_{\mathbf{p}}(\mathbf{R},\mathbf{r}) = \exp\left\{i\mathbf{R}\left[\mathbf{p} + \frac{e}{c}\mathbf{A}(\mathbf{r})\right]\right\} \Phi_{\mathbf{p}}(\mathbf{r}).$$
(8)

Важно, что в магнитном поле волновая функция Φ_p относительного *e*-*h*-движения зависит от импульса центра масс **p** [24], т. е. движение центра масс и относительное движение оказываются связанными. Матричные элементы рассеяния между состояниями экситонов с импульсами центра масс **p** и **p**' во внешнем поле $\hat{V} = V_e(\mathbf{r}_e) + V_h(\mathbf{r}_h)$ имеют вид (см. Приложение A)

$$V_{\mathbf{p},\mathbf{p}'} = \langle \Psi_{\mathbf{p}} | \hat{V} | \Psi_{\mathbf{p}'} \rangle \,. \tag{9}$$

В настоящей работе мы будем использовать приближение, в котором не учитываются переходы в возбужденные состояния внутреннего движения (см. также [19, 20]). В пределе слабых полей, $\ell_B \gg a_B$, возможно аналитическое рассмотрение³⁾. Мы находим

³⁾ В сильном поле, $\ell_B \ll a_B$, член кулоновского взаимодействия в (7) рассматривается [19, 20] как возмущение; полученные в этом пределе волновые функции $\Phi_p(\mathbf{r})$ отвечают 2*D*-магнитоэкситонам [25].

волновую функцию основного состояния $\Phi_p(\mathbf{r})$ в магнитном поле, используя теорию возмущений по членам, содержащим магнитное поле в гамильтониане относительного движения *e*-*h*-пары (7), и затем получаем матричные элементы рассеяния $V_{\mathbf{p},\mathbf{p}'}$. Их можно записать в виде

$$V_{\mathbf{p},\mathbf{p}'} = F^{e}_{\mathbf{p},\mathbf{p}'} \tilde{V}_{e}(\Delta \mathbf{p}) + F^{h}_{\mathbf{p},\mathbf{p}'} \tilde{V}_{h}(\Delta \mathbf{p}), \qquad (10)$$

где $\tilde{V}_j(\mathbf{p})$ — двумерные фурье-образы потенциалов $V_j(\mathbf{r})$ (j = e, h), $\Delta \mathbf{p} = \mathbf{p}' - \mathbf{p}$ — переданный импульс,

$$F_{\mathbf{p},\mathbf{p}'}^{e(h)} = \int d\mathbf{r} \, \Phi_{\mathbf{p}}^{*}(\mathbf{r}) \Phi_{\mathbf{p}'}(\mathbf{r}) \exp\left\{\pm i \frac{m_{h(e)}}{M} (\mathbf{p}' - \mathbf{p}) \mathbf{r}\right\}$$
(11)

— формфакторы, связанные с волновой функцией внутреннего движения экситона. В пределе слабого поля B нам необходимо вычислить волновые функции вплоть до второго порядка по B, а затем включить их в (11), (10) (см. Приложение Б). Заметим, что когда $p, p' \ll a_B^{-1}$, в интеграле (11) экспонента может быть разложена по степеням своего аргумента и могут быть учтены лишь низшие члены разложения. Такое ограничение на импульсы необходимо, если мы не учитываем рассеяния в возбужденные состояния экситонов. Действительно, при $p, p' \sim a_B^{-1}$ кинетическая энергия экситона оказывается достаточной, чтобы вызвать переходы в возбужденные состояния внутреннего движения, которые мы не учитываем.

Используя вклады вплоть до второго порядка по B и самые низкие интересующие нас порядки по параметру pa_B , получаем

$$V_{\mathbf{p},\mathbf{p}'} = \bar{V}_{e}(\Delta \mathbf{p}) \left[1 + \beta_{e}(\Delta \mathbf{p})^{2} a_{B}^{2} \left(\frac{a_{B}}{\ell_{B}} \right)^{4} - i \alpha_{e} [\mathbf{p}\mathbf{p}']_{z} a_{B}^{2} \left(\frac{a_{B}}{\ell_{B}} \right)^{2} \right] + \bar{V}_{h}(\Delta \mathbf{p}) \left[1 + \beta_{h}(\Delta \mathbf{p})^{2} a_{B}^{2} \left(\frac{a_{B}}{\ell_{B}} \right)^{4} + i \alpha_{h} [\mathbf{p}\mathbf{p}']_{z} a_{B}^{2} \left(\frac{a_{B}}{\ell_{B}} \right)^{2} \right].$$
(12)

Здесь $\bar{V}_i(\Delta \mathbf{p}) = \tilde{V}_i(\Delta \mathbf{p})F^i_{\mathbf{p},\mathbf{p}'}(B=0),$

$$F_{\mathbf{p},\mathbf{p}'}^{e(h)}(B=0) = \left\{ 1 + \frac{1}{16} \left[\frac{m_{h(e)}(\mathbf{p} - \mathbf{p}')a_B}{M} \right]^2 \right\}^{-3/2}$$

— формфактор, отвечающий волновой функции основного состояния 2D-экситона при B = 0.

Важно подчеркнуть, что для такого эффективного потенциала рассеяния симметрия по отношению к обращению времени оказывается нарушенной:

$$V_{\mathbf{p},\mathbf{p}_1} \neq V_{-\mathbf{p}_1,-\mathbf{p}}, \tag{13}$$

исключение составляет случай, когда $V_e = V_h$ и $m_e = m_h$ (см. (2)). В (12) введены безразмерные постоянные

$$\beta_{e(h)} = -\frac{\mu^2}{2M^2} \frac{\hbar^4}{\mu^2 a_B^6} \sum_n' \frac{|\langle 0|x|n \rangle|^2}{(\epsilon_0 - \epsilon_n)^2} + \frac{m_{h(e)}^2}{8M^2} \frac{\hbar^2}{\mu a_B^6} \sum_n' \frac{|\langle 0|r^2|n \rangle|^2}{\epsilon_n - \epsilon_0}$$
(14)

И

$$\alpha_{e(h)} = -\frac{2m_{e(h)}}{M}\kappa, \quad \kappa = \frac{\hbar^2}{Ma_B^4} \sum_n \frac{\langle 0|x|n\rangle|^2}{\epsilon_0 - \epsilon_n}.$$
(15)

Здесь *n* обозначает возбужденные состояния экситонов. Безразмерные постоянные α , β и κ для 2*D*-экситона Ванье–Мотта точно вычислены в Приложении Б. Важно, что постоянные β_e , $\beta_h > 0$ оказываются положительными, поэтому при $\ell_B \gg a_B$ рассеяние экситонов с возрастанием поля *B* становится все более сильным.

Используя теорию возмущений, можно получить также плотность экситонных состояний в магнитном поле. Закон дисперсии экситонов имеет вид

$$\epsilon(p) = -\epsilon_0 \left[1 - \left(\frac{l_2}{\ell_B}\right)^4 \right] + \frac{\hbar^2 p^2}{2M} \left[1 - \kappa \left(\frac{a_B}{\ell_B}\right)^4 \right],\tag{16}$$

где коэффициент $l_2 = 3a_B/8$ определяет диамагнитный сдвиг. Для плотности состояний 2D-экситонов из второго члена в (16) имеем

$$\mathscr{N}(\epsilon) = \frac{2M/\hbar^2}{1 - \kappa \left(a_B/\ell_B\right)^4} \,. \tag{17}$$

С ростом магнитного поля B масса экситона и, следовательно, плотность состояний $\mathcal{N}(\epsilon)$ увеличиваются. Как будет видно, именно это, как правило, определяет изменение классического коэффициента диффузии в слабых полях.

2.3. Куперон: предел слабого поля В

Приближение, в котором полная вершина Г (рис. 1) заменяется суммой лестничных диаграмм (диффузон), соответствует описанию транспорта с использованием уравнения

Рис. 2. Сумма максимально перекрещивающихся диаграмм $U_{\epsilon,\omega}(\mathbf{p}, \mathbf{p}', \mathbf{q})$. Верхняя (нижняя) линия отвечает усредненному по беспорядку запаздывающему (опережающему) пропагатору экситона $G^{R(A)}$

Рис. 3. *а* — Простейшая примесная вершина $W(\mathbf{p}, \mathbf{p}', \mathbf{q})$ (19). *б* — Диаграмма низшего порядка для собственно-энергетической части пропагатора экситона. Штриховая линия отвечает корреляционной функции $W(\mathbf{p}, \mathbf{p}', \mathbf{0})$

Больцмана (см., например, [23, 26]). Это дает «классический» коэффициент диффузии: интерференция между различными траекториями не учитывается. Для слабого случайного потенциала все остальные диаграммы с пересекающимися примесными линиями малы по параметру $\gamma/\epsilon \ll 1$ [3]. Исключением является класс максимально перекрещивающихся диаграмм в канале электрон-дырка [2], который определяет квантовые слаболокализационные поправки к коэффициенту диффузии. Полная сумма таких диаграмм — куперон — показана на рис. 2. Выделенная роль этого класса диаграмм объясняется следующим фактом: когда суммарный импульс $\mathbf{p} + \mathbf{p}' - \mathbf{q} \simeq 0$, в силу условия сохранения импульса для максимально перекрещивающихся диаграмм функции Грина G^R и G^A всегда разбиваются на пары с близкими полюсами. В результате при интегрировании они дают «резонансный» вклад.

Коэффициент затухания для экситона с импульсом **р** определяется мнимой частью собственной энергии (рис. 36):

$$\gamma_0(p) = -\operatorname{Im} \int \frac{d\mathbf{p}'}{(2\pi)^2} \, \frac{W(\mathbf{p}, \mathbf{p}', 0)}{\epsilon - \epsilon(p') + i\gamma_0(p')}.$$
(18)

Здесь $\epsilon(p)$ — закон дисперсии (16) и введена корреляционная функция $W(\mathbf{p}, \mathbf{p}_1, \mathbf{q})$ рассеивающего потенциала (см. рис. 3*a*):

$$W(\mathbf{p}, \mathbf{p}_1, \mathbf{q}) \equiv \langle\!\langle V_{\mathbf{p}, \mathbf{p}_1} V_{\mathbf{p}_1 - \mathbf{q}, \mathbf{p} - \mathbf{q}} \rangle\!\rangle \,. \tag{19}$$

В рассматриваемом пределе слабого поля она имеет вид⁴⁾

$$W(\mathbf{p}, \mathbf{p}', 0) = B_{ee}(\Delta \mathbf{p}) \left[1 + \left(\frac{a_B}{\ell_B}\right)^4 \left(2\beta_e(\Delta \mathbf{p})^2 a_B^2 + \alpha_e^2 [\mathbf{p}\mathbf{p}']_z^2 a_B^4\right) \right] + B_{hh}(\Delta \mathbf{p}) \left[1 + \left(\frac{a_B}{\ell_B}\right)^4 \left(2\beta_h(\Delta \mathbf{p})^2 a_B^2 + \alpha_h^2 [\mathbf{p}\mathbf{p}']_z^2 a_B^4\right) \right] + B_{eh}(\Delta \mathbf{p}) \left[1 + \left(\frac{a_B}{\ell_B}\right)^4 \left((\beta_e + \beta_h)(\Delta \mathbf{p})^2 a_B^2 - \alpha_e \alpha_h [\mathbf{p}\mathbf{p}']_z^2 a_B^4\right) \right] + B_{he}(\Delta \mathbf{p}) \left[1 + \left(\frac{a_B}{\ell_B}\right)^4 \left((\beta_e + \beta_h)(\Delta \mathbf{p})^2 a_B^2 - \alpha_e \alpha_h [\mathbf{p}\mathbf{p}']_z^2 a_B^4\right) \right], \quad (20)$$

где $B_{ij}(\mathbf{p}) = \langle \langle \bar{V}_i(\mathbf{p}) \bar{V}_j(-\mathbf{p}) \rangle \rangle$. Как и обычно, когда $\gamma_0 \ll \epsilon$, имеем

$$\gamma_0(p) = \pi \mathscr{N}(\epsilon) \int \frac{d\phi_{p_1}}{2\pi} W(\mathbf{p}, \mathbf{p}_1, 0) , \qquad (21)$$

где $|\mathbf{p}_1|$ лежит на массовой поверхности $\epsilon(p_1) = \epsilon$, и в (18) остается только усреднение по углам. Качественная оценка влияния магнитного поля *B* на коэффициент затухания $\gamma_0(p)$ следующая (считаем, что все корреляторы случайных полей B_{ij} одного порядка):

⁴⁾ В принципе, в (20) могут присутствовать и линейные по магнитному полю B члены (см. (12)). Это требует, однако, довольно экзотического условия: чтобы в системе имелось какое-либо выделенное направление, тогда при вычислении корреляторов потенциалов $V_{e(h)}$ линейные по B члены не обратятся в нуль. Мы здесь не будем рассматривать такую возможность. Отметим, что выделенное направление в системе может быть определено, например, внешним электрическим полем.

$$\gamma_0(p) \approx \gamma_0 \frac{1 + 4(\beta_e + \beta_h)(pa_B)^2 (a_B/\ell_B)^4}{1 - \kappa (a_B/\ell_B)^4},$$
(22)

где γ_0 — коэффициент затухания в нулевом магнитном поле. Числитель в (22) содержит дополнительный малый параметр $(pa_B)^2 \ll 1$ по сравнению со знаменателем. Физически это означает, что в магнитном поле основной эффект связан с увеличением плотности экситонных состояний (увеличения массы экситона) при возрастании *B* (см. (16)), в то время как изменение матричных элементов рассеяния играет лишь второстепенную роль.

В рассматриваемом пределе слабого поля, как и в сильных полях B [20], диффузионный полюс в купероне отсутствует вследствие нарушения симметрии по отношению к обращению времени для эффективного потенциала (12). Покажем это. Как и обычно, удобно записать уравнение для куперона U в переменных **p**, **p'** и **K** = **p** + **p'** - **q**, где **K** — полный (сохраняющийся) импульс, **q** — импульс, отвечающий флуктуациям плотности. Для U обычным образом получаем уравнение Бете–Солпитера

$$U_{\epsilon,\omega}(\mathbf{p},\mathbf{p}',\mathbf{K}) = U^0_{\epsilon,\omega}(\mathbf{p},\mathbf{p}',\mathbf{K}) + \int \frac{d\mathbf{p}_1}{(2\pi)^2} \widetilde{W}(\mathbf{p},\mathbf{p}_1,\mathbf{K}) G^R_{\epsilon}(\mathbf{p}_1) G^A_{\epsilon-\omega}(\mathbf{K}-\mathbf{p}_1) U_{\epsilon,\omega}(\mathbf{p}_1,\mathbf{p}',\mathbf{K}) ,$$
(23)

где

$$U^{0}_{\epsilon,\omega}(\mathbf{p},\mathbf{p}',\mathbf{K}) = \int \frac{d\mathbf{p}_{1}}{(2\pi)^{2}} \widetilde{W}(\mathbf{p},\mathbf{p}_{1},\mathbf{K}) G^{R}_{\epsilon}(\mathbf{p}_{1}) G^{A}_{\epsilon-\omega}(\mathbf{K}-\mathbf{p}_{1}) \widetilde{W}(\mathbf{p}_{1},\mathbf{p}',\mathbf{K})$$
(24)

и введена корреляционная функция

$$W(\mathbf{p}, \mathbf{p}_1, \mathbf{K}) \equiv \langle\!\langle V_{\mathbf{p}, \mathbf{p}_1} V_{\mathbf{K} - \mathbf{p}, \mathbf{K} - \mathbf{p}_1} \rangle\!\rangle .$$
⁽²⁵⁾

Отличие рассматриваемого случая от обычной теории заключается в том, что имеются две различные корреляционные функции⁵: \widetilde{W} и W (20). Разница между корреляционными функциями возникает вследствие нарушения симметрии относительно обращения времени для эффективного потенциала рассеяния (13). Это приводит к тому, что в функции $\widetilde{W}(\mathbf{p}, \mathbf{p}_1, \mathbf{K} = 0)$ члены, содержащие векторное произведение $[\mathbf{pp}_1]_z$, имеют другой знак по сравнению с функцией $W(\mathbf{p}, \mathbf{p}_1, \mathbf{q} = 0)$.

В пределе слабого беспорядка имеем $G^R G^A \sim \delta(\epsilon(p) - \epsilon)$, так что в (23) остается только усреднение по углам. В обычном случае изотропная (по **p**, **p**') часть $U_{\epsilon,\omega}(\mathbf{p}, \mathbf{p}', \mathbf{K})$ расходится при **K**, $\omega \to 0$. Это происходит потому, что имеет место соотношение

$$\int \frac{d\mathbf{p}_1}{(2\pi)^2} W(\mathbf{p}, \mathbf{p}_1, 0) G_{\epsilon}^R(\mathbf{p}_1) G_{\epsilon}^A(-\mathbf{p}_1) = 1.$$
(26)

Тогда из (23) и (26) (если $\widetilde{W} = W$) следует, что $\int d\phi_{\mathbf{p}} \int d\phi_{\mathbf{p}_1} U_{\epsilon,\omega}(\mathbf{p}, \mathbf{p}_1, 0) \to \infty$. В рассматриваемом случае, однако, изотропная часть U остается конечной в пределе $\mathbf{K}, \omega \to 0$. Действительно, используя тождество $\widetilde{W} \equiv W + (\widetilde{W} - W)$, получаем

⁵⁾ В противном случае (как для экситонов в отсутствие магнитного поля [7]) мы просто имели бы обычную теорию слабой локализации в эффективном потенциале с конечным радиусом корреляции порядка размера экситона.

$$\int \frac{d\mathbf{p}_1}{(2\pi)^2} \widetilde{W}(\mathbf{p}, \mathbf{p}_1, 0) G_{\epsilon}^R(\mathbf{p}_1) G_{\epsilon}^A(-\mathbf{p}_1) = 1 - \frac{\gamma_B}{\gamma_0} , \qquad (27)$$

где $\gamma_B(p) = \gamma_0(p) - \tilde{\gamma}_0(p) \ge 0,$

$$\tilde{\gamma}_0(p) = \pi \mathscr{N}(\epsilon) \int \frac{d\phi_{\mathbf{p}_1}}{2\pi} \widetilde{W}(\mathbf{p}, \mathbf{p}_1, 0) .$$
(28)

Если, однако, $\gamma_B \ll \gamma_0$, то изотропная часть U по-прежнему является наиболее существенной. Решение уравнения (23) для интересующих нас низких частот ω и малых импульсов К может быть найдено как разложение по угловым моментам и подробно описано в [20] (см. также [27]). В итоге куперон получаем в виде

$$U(\mathbf{K},\omega) = \frac{2\tilde{\gamma}_0\gamma_0/\pi \mathscr{N}(\epsilon)}{D^c K^2 - i\omega + 2\gamma_B\gamma_0/\tilde{\gamma}_0} , \qquad (29)$$

где

$$D^{c} = p^{2}/4M^{2}\tilde{\gamma}_{tr}, \quad \tilde{\gamma}_{tr} = \gamma_{0} - \tilde{\gamma}_{1} \ge 0, \qquad (30)$$

$$\tilde{\gamma}_1 = 2 \int \frac{d\phi_{\mathbf{p}}}{2\pi} \int \frac{d\phi_{\mathbf{p}_1}}{2\pi} \left(\hat{\mathbf{p}}\hat{\mathbf{K}} \right) \widetilde{W}(\mathbf{p}, \mathbf{p}_1, 0) \left(\hat{\mathbf{p}}_1 \hat{\mathbf{K}} \right) , \qquad (31)$$

 $\hat{\mathbf{p}} = \mathbf{p}/|\mathbf{p}|$. Особенностью этого решения является то, что в магнитном поле *B* для нейтральной составной частицы возникает конечное время сбоя фазы γ_B^{-1} , которое устраняет сингулярность — диффузионный полюс. Формально это аналогично случаю рассеяния электрона на парамагнитных примесях (ср. [8,9, 11, 12]).

В слабых магнитных полях, используя явный вид W и \bar{W} , величину γ_B можно оценить как

$$\gamma_B(p) \simeq (pa_B)^4 \left(\frac{a_B}{\ell_B}\right)^4 \gamma_0(p) .$$
 (32)

Появление характерного времени сбоя фазы $\tau_B = \hbar/\gamma_B$ (32) можно качественно объяснить с помощью следующих рассуждений. Экситон в магнитном поле приобретает случайную фазу только при рассеянии на примеси. Когда экситон с импульсом **p** рассеивается на примеси, его кинетическая энергия $E_{kin} = \hbar^2 p^2/2M$ играет роль возмущения для внутреннего движения электрона и дырки с энергией $E_{ex} = \epsilon_0$. В результате появляются среднеквадратичные флуктуации расстояния между e и $h: \langle \langle \Delta r^2 \rangle \rangle \sim (E_{kin}/E_{ex})a_B^2$. Такое дополнительное разделение орбит электрона и дырки при рассеянии приводит к набору магнитного потока $\Delta \Phi \sim \langle \langle \Delta r^2 \rangle \rangle B$ «через» экситон, что отвечает (случайному) изменению фазы волновой функции $\Delta \phi \sim \langle \langle \Delta r^2 \rangle \rangle B/\Phi_0$ (где Φ_0 — квант магнитного потока). Поэтому в единичном акте рассеяния, который происходит за время $\tau = \hbar/\gamma$, случайный набор фазы $\sim (\Delta \Phi/\Phi_0) = (pa_B)^2(a_B/\ell_B)^2 \ll 1$. Поскольку изменения фазы волновой функции, и когерентность будет разрушена. Соответствующее характерное время $\tau_B \sim (\Phi_0/\Delta \Phi)^2 \tau \sim \tau(pa_B)^{-4}(\ell_B/a_B)^4$, что согласуется с (32).

2.4. Коэффициент диффузии

Чтобы получить квантовые поправки к коэффициенту диффузии, полученный результат (29) для куперона $U(\mathbf{K}, \omega)$ совместно с примесной вершиной первого порядка

Рис. 4. Диаграммное представление приближения для вершины Г, отвечающее учету квантовых поправок к коэффициенту диффузии

 $W(\mathbf{p}, \mathbf{p}', \mathbf{K})$ должны быть включены в лестничные диаграммы (см. рис. 4 и рис. 1) для эффективной проводимости [3]. В лестничном приближении для случайного поля с конечным радиусом корреляции вместо γ появляется транспортный коэффициент γ_{tr} . Технические подробности диаграммного рассмотрения для 2*D*-экситонов приведены в Приложении В. Коэффициент диффузии экситона с энергией ϵ принимает вид

$$D(\epsilon) = D_0(\epsilon) \left[1 + \frac{\tilde{\gamma}_0}{4\pi^2 \gamma_{tr} \mathscr{N}(\epsilon) D^c} \ln\left(\frac{D^c K_0^2 \tilde{\gamma}_0}{2\gamma_B \gamma_0}\right) \right]^{-1},$$
(33)

где $K_0 \simeq \gamma(p)/V(p)$ — импульс обрезания, $D_0 = p^2/4M^2\gamma_{tr}$ — обычный «классический» коэффициент диффузии экситона [19, 21].

Прежде чем обсуждать квантовые поправки (33), получим зависимость классического коэффициента диффузии D_0 от магнитного поля *B*. Используя общие выражения (22) и (16), получаем

$$D_0(\epsilon, B) \simeq D_0(\epsilon) \left[1 - 3\kappa \left(\frac{a_B}{\ell_B} \right)^4 \right] \equiv D_0 \left[1 - \left(\frac{B}{B_0} \right)^2 \right],$$
 (34)

где характерная величина магнитного поля B_0 определяется выражением $B_0 a_B^2 \simeq \Phi_0$, D_0 — коэффициент диффузии в нулевом поле B = 0 (см. [19]). С ростом магнитного поля B коэффициент диффузии $D_0(\epsilon, B)$ монотонно убывает степенным образом в соответствии с зависимостью (34).

Включение квантовых поправок существенно меняет зависимость D от B. Действительно, в пределе $B \to 0$ величина γ_B стремится к нулю, и в результате D обращается в нуль (см. (33)); это — слабая локализация экситонов в нулевом поле B (экситоны, как и обычные 2D-частицы, локализованы в случайном потенциале [7]). В этой ситуации возможно использование самосогласованного подхода [27]. Действительно, приближение для полной вершины Γ , когда включаются только лестничные диаграммы Γ_0 и максимально перекрещивающиеся диаграммы U, пригодно только для слабого рассеяния, когда результирующий коэффициент диффузии велик. Когда полная вершина отвечает сильному рассеянию, а коэффициент диффузии D мал, строго говоря, не существует выделенного класса диаграмм. Основная идея самосогласованного подхода [27] заключается в том, что при наличии симметрии по отношению к обращению времени существует связь между Γ_0 и U (максимально перекрещивающиеся диаграммы в e-h-канале являются лестничными диаграммами в e-e-канале). Эта связь приводит к тому, что диффузионный полюс, существующий в диффузоне на малом переданном импульсе, «передается» в куперон (где он существует на малом полном импульсе **К**).

Рис. 5. Зависимость статического коэффициента диффузии экситонов *D* от поля *B* для классического транспорта (верхняя кривая), с учетом квантовых поправок (нижняя кривая) и при наличии слабого неупругого рассеяния (средняя кривая)

Поскольку вершина Γ непосредственно связана с коррелятором «плотность-плотность», физически ясно, что именно коэффициент диффузии D должен входить в Γ и, следовательно, коэффициент D_0 в купероне также должен быть заменен на D. Подробно математическое обоснование такого подхода рассматривалось в работе [28].

В рассматриваемом случае симметрия по отношению к обращению времени нарушена и, строго говоря, нет дуальности между диффузоном и купероном. Однако мы можем воспользоваться самосогласованным приближением, чтобы получить лидирующие члены в разложении зависимости полного коэффициента диффузии от B. Дело в том, что в главных порядках по B поведение D_0 и D^c одинаково. Поэтому коэффициент ент диффузии D^c в купероне может быть заменен на полный коэффициент диффузии D, так что уравнение (33) позволяет вычислить зависимость D(B) самосогласованным образом. В случае $D(B) \ll D_0$ зависимость от магнитного поля имеет вид

$$D(\epsilon, B) = (pa_B)^4 \left(\frac{B}{B_0}\right)^2 D_0(\epsilon) \exp\left[\mathscr{N}(\epsilon)D_0(\epsilon)\right] \,. \tag{35}$$

где $B_0 a_B^2 \simeq \Phi_0$ (см. (34)). Таким образом, в нулевом поле B = 0 статический коэффициент диффузии равен нулю и возрастает как B^2 при малом B. Такое поведение Dотвечает разрушению слабой локализации экситонов в магнитном поле.

В пределе сильного поля, $\ell_B \ll a_B$, коэффициент диффузии экситонов D убывает как B^{-2} [20]. Поэтому ясно, что D при учете слаболокализационных эффектов оказывается немонотонной функцией B. Отметим, что классический коэффициент диффузии D_0 убывает монотонно с полем B как в пределе слабого поля, $\ell_B \gg a_B$, так и в пределе сильного поля, $\ell_B \ll a_B$. Эти результаты графически представлены на рис. 5. Слабые неупругие процессы, характеризующиеся временем сбоя фазы $\tau_{\phi} = \hbar/\gamma_{\phi}$, могут быть включены в рассмотрение феноменологическим образом. При конечном τ_{ϕ} коэффициент диффузии остается конечным и в пределе B = 0. Значение D(B = 0) определяется величиной γ_{ϕ} (которая должна быть аддитивно добавлена к γ_B в (33)). Появление γ_{ϕ} оказывает различное влияние на D_0 и D. Когда выполняется условие $\gamma_{\phi} \ll \gamma_0$, величина $D_0 \mathcal{N} \gg 1$, может выполняться соотношение $D(\mathcal{N}\gamma_{\phi} \ge \gamma_0)$, даже когда $\gamma_{\phi} \ll \gamma_0$. В этом случае слаболокализационные поправки несущественны, и мы имеем $D(B) \simeq D_0(B)$.

В промежуточных полях, $\ell_B \sim a_B$, аналитическая теория не может быть построена. Естественно предположить, что зависимость коэффициента диффузии (классического, D_0 , и учитывающего квантовые поправки, D) в этой области магнитных полей имеет вид, показанный на рис. 5 точками. Возрастание *D* с ростом поля *B* (положительный магнитодиффузионный эффект) отвечает разрушению слабой локализации экситонов в магнитном поле. Этот эффект для экситонов напоминает эффект отрицательного магнитосопротивления в 2*D*-электронных системах [8].

3. ВЫВОДЫ

Мы показали, что магнитное поле B устраняет расходимость максимально перекрещивающихся диаграмм в канале «экситон-антиэкситон» (экситонный аналог куперона); при этом в отличие от заряженных частиц экситон приобретает фазу в поле B не при свободном движении, а только при рассеянии на дефектах. В результате коэффициент диффузии 2D-экситонов в магнитном поле в пределе $\omega \to 0$ остается конечным (в предположении, что случайное поле является слабым). Статический коэффициент диффузии D(B) оказывается убывающей функцией B в сильных полях, $\ell_B \ll a_B$, в то время как в слабых полях, $\ell_B \gg a_B$ (а также, возможно, и промежуточных, $\ell_B \sim a_B$) D(B) является возрастающей функцией поля, т. е. для экситонов имеется положительный магнитодиффузионный эффект. Использование самосогласованного приближения дает в слабых полях зависимость $D \propto B^2$, что отвечает подавлению слабой локализации в поле В. Учет квантовых поправок оказывается важным также в сильном поле, $\ell_B \ll a_B$, и дает более быстрое степенное убывание коэффициента диффузии $D \propto B^{-2}$ [20] по сравнению с классическим коэффициентом диффузии $D_0 \propto B^{-1}$ [19,21]. Это связано с тем, что при $\ell_B \ll a_B$ характерный внутренний размер магнитоэкситона с ростом B уменьшается как $\ell_B \propto B^{-1/2}$, и его внутренняя структура проявляется при рассеянии все меньше: магнитоэкситон все более напоминает бесструктурный нейтральный бозон. Таким образом, для нейтральных е-h-систем в пределе сильного магнитного поля происходит переход к режиму слабой локализации экситонов (в отличие от электронных систем, где в режиме квантового эффекта Холла имеются делокализованные состояния).

Полученная теоретическая зависимость коэффициента диффузии D(B), хотя и является немонотонной функцией поля В, не воспроизводит деталей экспериментально полученных зависимостей D(B) [17]. Так, имеющееся [17] в сравнительно небольших магнитных полях подавление магнитотранспорта экситонов с ростом В согласуется с теоретическим поведением классического коэффициента диффузии (рис. 5). Однако, как показали наши теоретические результаты, рост D(B) в магнитных полях B > 6 Тл [17] не может быть объяснен эффектами подавления слабой локализации экситонов в магнитном поле. Заметим, что режим, реализующийся в экспериментально используемых [16–18] двойных квантовых ямах, соответствует скорее режиму сильной локализации экситонов (см. также [19]). Кроме того, мы не рассматривали эффектов бозе-эйнштейновской конденсации экситонов. Рассмотрение влияния магнитного поля на сильную локализацию экситонов, а также эффектов бозе-эйнштейновской конденсации на транспорт композитных нейтральных частиц (экситонов) представляет чрезвычайно интересную и еще не решенную задачу. Отметим также, что аналогично случаю электронов в квазидвумерных полупроводниковых структурах [12], для экситонов могут оказаться существенными эффекты, связанные с быстрой релаксацией различных спиновых состояний экситона.

Сделанное нами теоретическое предсказание о возрастании подвижности экситонов

с ростом поля *B* в режиме слабой локализации может быть экспериментально проверено при низких температурах (когда неупругие процессы подавлены и время сбоя фазы τ_{ϕ} велико) в магнитных полях, для которых $\ell_B \ge a_B$. Для этого необходимы квантовые ямы со слабым случайным потенциалом, например широкие квантовые ямы с совершенными границами раздела.

Мы признательны Г. Е. В. Бауэру (G. Е. W. Bauer), Л. В. Бутову, Е. Л. Ивченко, С. Ю. В. Назарову и С. Г. Тиходееву за полезные обсуждения. Настоящая работа была поддержана фондом Фольксваген (грант VW I/69 361), Голландским научным фондом (грант NWO 047-003-018), а также INTAS-RBRF (грант 95-675) и Российским фондом фундаментальных исследований.

ПРИЛОЖЕНИЕ А

Диаграммное описание рассеяния экситонов

Приближение, сводящее рассеяние экситонов к эффективно одночастичному процессу, насколько нам известно, не прослеживалось строго на диаграммном языке. Подход, аналогичный описанному в этом Приложении, может быть использован и для рассмотрения других задач — исследования роли переходов в возбужденные состояния, эффектов конечной плотности экситонов, а также сильной локализации в терминах эффективного рассеяния экситонов.

В электронно-дырочном представлении экситону Ванье–Мотта отвечает суммирование лестничных диаграмм, включающих кулоновское e-h-взаимодействие. Соответствующая двухчастичная функция Грина может быть разложена по собственным функциям экситонов $\Psi_{\lambda}(\mathbf{r}_{e}, \mathbf{r}_{h})$:

$$G_{2}(\mathbf{r}_{1},\mathbf{r}_{2},t;\mathbf{r}_{3},\mathbf{r}_{4},t') \equiv -i\langle T\hat{\Psi}_{e}(\mathbf{r}_{1},t)\hat{\Psi}_{h}(\mathbf{r}_{2},t)\hat{\Psi}_{h}^{\dagger}(\mathbf{r}_{4},t')\hat{\Psi}_{e}^{\dagger}(\mathbf{r}_{3},t')\rangle = = \int dE \sum_{\lambda} \frac{\Psi_{\lambda}^{*}(\mathbf{r}_{1},\mathbf{r}_{2})\Psi_{\lambda}(\mathbf{r}_{3},\mathbf{r}_{4})}{E-\epsilon_{\lambda}} \exp\left[-iE(t-t')\right], \quad (A.1)$$

где $\hat{\Psi}_{e}^{\dagger}(\mathbf{r},t)$, $\hat{\Psi}_{h}^{\dagger}(\mathbf{r},t)$ — операторы рождения электронов и дырок в представлении Гейзенберга. Для простоты мы рассмотрим в дальнейшем случай нулевого магнитного поля B = 0, когда ϵ_{λ} — обычные собственные энергии экситонов, $\epsilon_{\lambda} = \epsilon(p) + \epsilon_{n}$, ϵ_{n} отвечает (как дискретным, так и непрерывным) энергиям относительного движения, $\epsilon(p)$ кинетическая энергия движения центра масс, $\Psi_{\lambda}(\mathbf{r}_{1},\mathbf{r}_{2}) = \exp(i\mathbf{p}\mathbf{R})\Phi_{n}(\mathbf{r})$ — волновые функции экситона, $\mathbf{R} = (m_{e}\mathbf{r}_{1} + m_{h}\mathbf{r}_{2})/M$, $\mathbf{r} = \mathbf{r}_{1} - \mathbf{r}_{2}$. Наша цель — использовать вместо двухчастичной e-h-функции Грина эффективно «одночастичной» функции Грина экситона, которую мы введем с помощью соотношения

$$G(\mathbf{R}, t; \mathbf{R}', t') = -i\langle TB(\mathbf{R}, t)B^{\dagger}(\mathbf{R}', t')\rangle, \qquad (A.2)$$

где оператор рождения экситона определен как

$$B_{\lambda}^{\dagger}(\mathbf{R},t) = \int d\mathbf{r} \,\hat{\Psi}_{e}^{\dagger}\left(\mathbf{R} + \frac{m_{h}}{M}\mathbf{r},t\right) \hat{\Psi}_{h}^{\dagger}\left(\mathbf{R} - \frac{m_{e}}{M}\mathbf{r},t\right) \Psi_{\lambda}^{*}(\mathbf{R},\mathbf{r}). \tag{A.3}$$

Функция G₂ удовлетворяет следующему уравнению Бете-Солпитера:

$$G_{2}(\mathbf{r}_{1},\mathbf{r}_{2},t;\mathbf{r}_{3},\mathbf{r}_{4},t') = G_{e}(\mathbf{r}_{1},\mathbf{r}_{3},t-t')G_{h}(\mathbf{r}_{2},\mathbf{r}_{4},t-t') + \int d\mathbf{r}_{3}' d\mathbf{r}_{4}' dt_{1}' G_{e}(\mathbf{r}_{1},\mathbf{r}_{3}',t-t_{1}')G_{h}(\mathbf{r}_{2},\mathbf{r}_{4}',t-t_{1}')U(\mathbf{r}_{3}'-\mathbf{r}_{4}')G_{2}(\mathbf{r}_{3}',\mathbf{r}_{4}',t_{1}';\mathbf{r}_{3},\mathbf{r}_{4},t').$$
(A.4)

Действуя на обе части (А.4) оператором

$$[G_e(\mathbf{r}_1,t)G_h(\mathbf{r}_2,t)]^{-1} = i\frac{\partial}{\partial t} + \frac{\nabla_1^2}{2m_e} + \frac{\nabla_2^2}{2m_h},$$

получаем уравнение, имеющее вид уравнения Шредингера:

$$\left[i\frac{\partial}{\partial t} + \frac{\nabla_1^2}{2m_e} + \frac{\nabla_2^2}{2m_h} - U(\mathbf{r}_1 - \mathbf{r}_2)\right] G_2(\mathbf{r}_1, \mathbf{r}_2, t; \mathbf{r}_3, \mathbf{r}_4, t') = \delta(\mathbf{r}_1 - \mathbf{r}_3)\delta(\mathbf{r}_2 - \mathbf{r}_4)\delta(t - t') .$$
(A.5)

Рассмотрим теперь диаграмму с единственной примесной вершиной, отвечающей внешнему потенциалу V_e в электронной линии (рис. 6*a*).

Набор внешних координат ($\mathbf{r}_e, \mathbf{r}_h, t$) мы будем символически обозначать здесь как \bar{X}, \bar{X}' . Аналитическое выражение для $\tilde{G}_2(\bar{X}, \bar{X}')$ в случае диаграммы рис. 6*а* имеет вид

$$\tilde{G}_{2}(\bar{X},\bar{X}') = \int d\mathbf{r}_{0} d\mathbf{r}_{1} d\mathbf{r}_{2} d\mathbf{r}_{3} d\mathbf{r}_{4} dt dt_{0} dt' G_{2}(\bar{X};\mathbf{r}_{1},\mathbf{r}_{2},t) U(\mathbf{r}_{1}-\mathbf{r}_{2}) G_{e}(\mathbf{r}_{1}-\mathbf{r}_{0},t-t_{0}) \times V_{e}(\mathbf{r}_{0}) G_{e}(\mathbf{r}_{0}-\mathbf{r}_{3},t_{0}-t') G_{h}(\mathbf{r}_{2}-\mathbf{r}_{4},t-t') U(\mathbf{r}_{3}-\mathbf{r}_{4}) G_{2}(\mathbf{r}_{3},\mathbf{r}_{4},t';\bar{X}') .$$
(A.6)

Используя (А.5), функцию G_2U можно заменить дифференциальным оператором, действующим на G_e, G_h . С учетом того что

$$\left(i\frac{\partial}{\partial t}+\frac{\nabla^2}{2m_{e(h)}}\right)G_{e(h)}(\mathbf{r}-\mathbf{r}',t-t')=\delta(t-t')\delta(\mathbf{r}-\mathbf{r}'),$$

получаем следующее выражение для (А.6):

$$\begin{split} \tilde{G}_{2}(\bar{X},\bar{X}') &= \int d\mathbf{r}_{1} \, d\mathbf{r}_{2} \, d\mathbf{r}_{3} \, d\mathbf{r}_{4} \, dt \, dt' \, G_{2}(\bar{X};\mathbf{r}_{1},\mathbf{r}_{2},t) \times \\ &\times V_{e}(\mathbf{r}_{1})G_{e}(\mathbf{r}_{1}-\mathbf{r}_{3},t-t')G_{h}(\mathbf{r}_{2}-\mathbf{r}_{4},t-t')U(\mathbf{r}_{3}-\mathbf{r}_{4})G_{2}(\mathbf{r}_{3},\mathbf{r}_{4},t';\bar{X}') + \\ &+ \int d\mathbf{r}_{0} \, d\mathbf{r}_{1} \, d\mathbf{r}_{2} \, d\mathbf{r}_{3} \, dt \, dt_{0} \, G_{2}(\bar{X};\mathbf{r}_{1},\mathbf{r}_{2},t) \times \\ &\times G_{e}(\mathbf{r}_{1}-\mathbf{r}_{0},t-t_{0})V_{e}(\mathbf{r}_{0})G_{e}(\mathbf{r}_{0}-\mathbf{r}_{3},t_{0}-t)U(\mathbf{r}_{3}-\mathbf{r}_{2})G_{2}(\mathbf{r}_{3},\mathbf{r}_{2},t;\bar{X}') \,. \end{split}$$
(A.7)

Рис. 6. *а* — Примесная вершина в электронной линии двухчастичного *e*-*h*-пропагатора. Волнистые линии отвечают кулоновским *e*-*h*-взаимодействиям. *б* — Примесная вершина (10) в экситонном пропагаторе Заметим, что второй член содержит произведение $G_e(t)G_e(-t)$, которое дает вклад ~ $n_e(1 - n_e)$ и поэтому может быть отброшено в пределе низкой плотности. В результате в (А.7) остается только первый член. Учтем также, что разложение для G_2 начинается с члена нулевого порядка G_eG_h (отвечающего δ -функциям в правой части (А.5)), и добавим его в (А.6), (А.7). Тогда видно, что первый член в уравнении (А.7) содержит кулоновские лестничные диаграммы с обеих сторон от примесной вершины $V_e(\mathbf{r}_1)$. Кроме того, временные и пространственные координаты совпадают таким образом, что с использованием представлений (А.5) и (А.2), выражение (А.3) может быть представлено в виде диаграммы, отвечающей рассеянию экситона как целого (рис. 66). Добавляя аналогичный член для рассеяния дырки, мы видим, что в экситонном представлении эффективный потенциал рассеяния действительно определяется выражениями (9), (10).

ПРИЛОЖЕНИЕ Б

Вычисление рядов теории возмущений

При теоретическом анализе широко исследуемых в настоящее время систем с 2D-экситонами в магнитном поле в теории возмущений часто возникают суммы типа (14), (15). Поэтому нам представляется полезным провести точные вычисления этих сумм для двумерного водородоподобного экситона. При использовании операторного подхода (см. [29]) для этого оказывается достаточно явного вида волновой функции основного состояния. Мы будем полагать в промежуточных вычислениях $a_B = \hbar = 1$ и возвратимся к размерным величинам в окончательных результатах. Начнем с вычисления постоянной κ (15). Если удастся найти явный вид оператора \hat{b} , удовлетворяющего квантовому уравнению движения $\mu \partial \hat{b} / \partial t = i\mu [H_0, \hat{b}] = x$, где H_0 — гамильтониан 2D-атома водорода (7) в отсутствие поля B, то для матричных элементов имеем

$$i\mu(\epsilon_0 - \epsilon_n)\langle 0|b|n\rangle = \langle 0|x|n\rangle \tag{B.1}$$

(где $\epsilon_n = \epsilon_0/(n+1/2)^2$, $\epsilon_0 = -\mu e^4/2\epsilon^2\hbar^2$), и сумма в (15) сводится к диагональному матричному элементу

$$\kappa = i \frac{\mu}{M} \sum_{n}^{\prime} \langle 0|x|n \rangle \langle n|\hat{b}|0 \rangle = i \frac{\mu}{M} \langle 0|x\hat{b}|0 \rangle , \qquad (B.2)$$

где штрих означает, что состояние с n = 0 не включается в суммирование; мы использовали условие полноты состояний $\sum_n |n\rangle \langle n| = 1$, а также равенство $\langle 0|x|0\rangle = 0$. В координатном представлении обозначим $\hat{b}\phi_0(r) \equiv b(\mathbf{r})\phi_0(r)$, где $\phi_0(r) = \sqrt{8/\pi} \exp(-2r)$ волновая функция основного состояния. Используя явный вид гамильтониана, получаем дифференциальное уравнение для $b(\mathbf{r})$:

$$\frac{1}{2} \left[\nabla^2 b(\mathbf{r}) \right] \phi_0(r) + \left(\nabla b(\mathbf{r}) \cdot \nabla \phi_0(r) \right) = -ix\phi_0(r) , \qquad (B.3)$$

откуда видно, что $b(\mathbf{r}) = -ib(r) \cos \phi$, и для неизвестной функции b(r) имеем уравнение

$$b''(r) + b'(r)\left(\frac{1}{r} - 4\right) - \frac{b(r)}{r^2} - 2r = 0.$$
 (5.4)

Решая уравнение (Б.4), получаем

$$b(\mathbf{r}) = -i\left(\frac{1}{4}r^2 + \frac{3}{16}r\right)\cos\phi.$$
 (B.5)

Окончательно получаем явный вид матричного элемента (Б.2):

$$\kappa = \frac{\mu}{M} \int_{0}^{\infty} dr \left(\int_{0}^{2\pi} d\phi \, \frac{8}{\pi} \cos^2 \phi \right) \exp(-4r) \left(\frac{1}{4}r^2 + \frac{3}{16}r \right) r^2 = \frac{21}{16^2} \, \frac{\mu}{M} \,, \tag{B.6}$$

а коэффициент α в (15) определяется выражением

$$\alpha_{e(h)} = 2 \frac{21}{16^2} \, \frac{m_{e(h)} \mu}{M^2}.$$

Тот же самый оператор \hat{b} может быть использован для вычисления первой суммы в (14):

$$I_1 = \sum_n' \frac{|\langle 0|x|n\rangle|^2}{(\epsilon_0 - \epsilon_n)^2} \,. \tag{E.7}$$

С помощью (Б.1) I_1 также сводится к диагональному матричному элементу: $I_1 = \mu^2 \langle 0 | \hat{b} \hat{b} | 0 \rangle$. Совместно с явным видом (Б.5) для b(r) это дает

$$I_1 = \mu^2 \int_0^\infty dr \, |b(r)|^2 \phi_0^2(r) = \frac{159}{4^6} \mu^2 \,. \tag{5.8}$$

Для нахождения второй суммы в (14)

$$I_2 = \sum_n' \frac{|\langle 0|r^2|n\rangle|^2}{\epsilon_n - \epsilon_0}$$
(Б.9)

необходимо найти оператор \hat{b}_2 такой, что $i\mu[H_0, \hat{b}_2] = r^2$. Положим $\hat{b}_2\phi_0(r) = b_2(r)\phi_0(r)$. Тогда

$$b_2''(r) + b_2'(r)\left(\frac{1}{r} - 4\right) - 2ir^2 = 0.$$

Решением является функция

$$b_2(r) = -\frac{i}{2} \left(\frac{1}{3}r^3 + \frac{3}{8}r^2 + \frac{3}{8}r + \frac{3}{32}\ln r + c_1 \right) , \qquad (B.10)$$

в которой константа c_1 не определена. Особенностью сумм вида I_2 является то, что, используя полноту промежуточных состояний, мы должны исключить матричный элемент по основному состоянию n = 0 (который не равен нулю автоматически, как это было ранее для оператора координаты $\langle 0|x|0 \rangle = 0$). Поэтому теперь имеем (ср. с (Б.2))

$$I_2 = i\mu \left(\langle 0|\hat{b}_2 r^2|0\rangle - \langle 0|\hat{b}_2|0\rangle \langle 0|r^2|0\rangle \right) . \tag{B.11}$$

Мы видим, что в результате вычитания окончательный ответ не зависит от неопределенной константы c_1 в (Б.10). Это позволяет получить точное выражение $I_2 = 105 \mu/2^9$, и для β имеем

$$\beta_{e(h)} = \frac{1}{4^6 M^2} \left(105 m_{e(h)}^2 - \frac{159}{2} \mu^2 \right) . \tag{E.12}$$

Отметим, что коэффициенты $\beta_{e(h)} > 0$ всегда положительны (поскольку $\mu = m_e m_h / (m_e + m_h) < m_e, m_h$), однако малы численно: $\beta \le 0.02$.

ПРИЛОЖЕНИЕ В

Вычисление коэффициента диффузии D

Приведем детали вычислений коэффициента диффузии D. При вычислении $D(\epsilon)$ помимо диаграмм, показанных на рис. 4, должна быть также учтена диаграмма нулевого порядка $G^R G^A$. Поэтому коэффициент диффузии $D(\epsilon)$ определяется выражением

$$D(\epsilon) = \frac{1}{2\pi \mathscr{N}(\epsilon)} \int d\mathbf{p} \int d\mathbf{p}' \frac{\mathbf{p}\mathbf{p}'}{M^2} |G^R(\mathbf{p})|^2 \left[\delta(\mathbf{p} - \mathbf{p}') + \Gamma(\mathbf{p}, \mathbf{p}') |G^R(\mathbf{p}')|^2 \right] .$$
(B.1)

Если в неприводимую часть включается куперон, то полная вершина Γ удовлетворяет уравнению Бете-Солпитера, которое показано на рис. 4. Заметим, что куперон (как функция переменных **p**, **p**' при **q** = 0) может быть представлен приближенно как

$$U_{\epsilon,\omega}(\mathbf{p},\mathbf{p}';\mathbf{p}',\mathbf{p}) \simeq \int \frac{d\mathbf{K}}{(2\pi)^2} U(\mathbf{K},\omega) \delta(\mathbf{p}+\mathbf{p}') \equiv U\delta(\mathbf{p}+\mathbf{p}') \,. \tag{B.2}$$

Представление (В.2) возможно потому, что в задаче есть существенно различные масштабы импульсов. Действительно, в интегралах вида

$$\int d\mathbf{p} \int d\mathbf{p}' |G^{R}(\mathbf{p})|^{2} |G^{R}(\mathbf{p}')|^{2} U_{\epsilon,\omega}(\mathbf{p},\mathbf{p}';\mathbf{p}',\mathbf{p}) =$$
$$= \int d\mathbf{p} \int d\mathbf{K} |G^{R}(\mathbf{p})|^{2} |G^{R}(\mathbf{K}-\mathbf{p})|^{2} U_{\epsilon,\omega}(\mathbf{p},\mathbf{K}-\mathbf{p};\mathbf{K})$$
(B.3)

важны только небольшие значения K из-за присутствия диффузионного полюса в U. В этом случае мы можем приближенно считать $\mathbf{K} - \mathbf{p} \simeq -\mathbf{p}$ и проводить интегрирование по **p** и K независимо. Это приводит к результату (B.2) для куперона. Тогда уравнение для вершины $\Gamma(\mathbf{p}, \mathbf{p}')$, представленное на рис. 4, принимает вид

$$\Gamma(\mathbf{p}, \mathbf{p}') = W(\mathbf{p}, \mathbf{p}', 0) + U\delta(\mathbf{p} + \mathbf{p}') + \int \frac{d\mathbf{p}_1}{(2\pi)^2} \left[W(\mathbf{p}, \mathbf{p}_1, 0) + U\delta(\mathbf{p} + \mathbf{p}_1) \right] G^R(\mathbf{p}_1) G^A(\mathbf{p}_1) \Gamma(\mathbf{p}_1, \mathbf{p}') .$$
(B.4)

Величина, которая необходима для вычисления $D(\epsilon)$, имеет вид (см. (В.1))

$$\Gamma_1 = \int \frac{d\phi_{\mathbf{p}}}{2\pi} \int \frac{d\phi_{\mathbf{p}'}}{2\pi} \left(\hat{\mathbf{p}}\hat{\mathbf{p}}'\right) \Gamma(\mathbf{p},\mathbf{p}'),$$

где интегрирование проводится на массовой поверхности $\epsilon(\mathbf{p}) = \epsilon(\mathbf{p}') = \epsilon$. Для члена, соответствующего учету для Γ_1 первого углового момента, уравнение (B.4) дает

$$\Gamma_1 = \frac{\gamma_1}{\pi \mathscr{N}_{\epsilon}} - \frac{U}{2\pi \mathscr{N}_{\epsilon} \gamma_0} + \frac{\gamma_1}{\gamma_0} \Gamma_1 - \frac{U}{2\gamma_0^2} \Gamma_1, \qquad (B.5)$$

где

$$\gamma_1 = \int \frac{d\phi_{\mathbf{p}}}{2\pi} \int \frac{d\phi_{\mathbf{p}'}}{2\pi} \left(\hat{\mathbf{p}} \hat{\mathbf{p}'} \right) W(\mathbf{p}, \mathbf{p}', 0) \, .$$

Решение уравнения (В.5) имеет вид

$$\Gamma_1 = \frac{\gamma_0}{\pi \mathscr{N}_{\epsilon}} \frac{\gamma_1 - U/2\gamma_0}{\gamma_{tr} + U/2\gamma_0}, \qquad (B.6)$$

где, как обычно, $\gamma_{tr} = \gamma_0 - \gamma_1$. С использованием (B.6) из уравнения (B.1) получаем

$$D(\epsilon) = D_0 \left[1 + \frac{U}{2\gamma_{tr}\gamma_0} \right]^{-1} . \tag{B.7}$$

Это позволяет провести последний шаг вычислений: подставляя в (В.7) выражения (В.2) и (29) для U, получаем результат (ЗЗ).

Литература

- 1. E. P. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).
- 2. Л. П. Горьков, А. И. Ларкин, Д. Е. Хмельницкий, Письма в ЖЭТФ 30, 248 (1979).
- 3. P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).
- 4. S. John and M. J. Stephen, Phys. Rev. B 28, 6358 (1983).
- М. Р. Van Albada and A. Langedijk, Phys. Rev. Lett. 55, 2692 (1985); Е. Л. Ивченко, Г. Е. Пикус, Б. С. Разбирин, А. И. Старухин, ЖЭТФ 72, 2230 (1977).
- 6. D. L. Shepelyansky, Phys. Rev. Lett. 73, 2607 (1994); Y. Imry, Europhys. Lett. 30, 405 (1995).
- 7. Ж. С. Геворкян, Ю. Е. Лозовик, ФТТ 27, 1800 (1985).
- 8. B. L. Altshuler, D. E. Khmel'nitskii, A. I. Larkin, and P. A. Lee, Phys. Rev. B 22, 5142 (1980).
- 9. S. Hikami, A. I. Larkin, and Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980).
- 10. D. E. Khmel'nitskii, Physica B 126, 235 (1984).
- 11. Б. Л. Альтшулер, А. Г. Аронов, А. И. Ларкин, Д. Е. Хмельницкий, ЖЭТФ 81, 768 (1981).
- S. V. Iordanskii, Yu. B. Lyanda-Geller, G. E. Pikus, Письма в ЖЭТФ 60, 199 (1994); F. G. Pikus and G. E. Pikus, Phys. Rev. B 51, 16 928 (1995); W. Knap, C. Skierbiszewski, A. Zduniak et al., Phys. Rev. B 53, 3912 (1996).
- 13. В. Л. Нгуен, Б. З. Спивак, Б. И. Шкловский, ЖЭТФ 88, 1770 (1985).
- 14. U. Sivan, O. Entin-Wohlman, and Y. Imry, Phys. Rev. Lett. 60, 1566 (1988).
- 15. M. Z. Maialle, E. A. Andrada e Silva, and L. J. Sham, Phys. Rev. B 47, 15776 (1993).
- 16. L. V. Butov, A. Zrenner, G. Abstreiter, G. Böhm, and G. Weimann, Phys. Rev. Lett. 73, 304 (1994).
- 17. L. V. Butov, A. Zrenner, M. Hagn, G. Abstreiter, G. Böhm, and G. Weimann, Surf. Sci. 362, 243 (1996).
- 18. M. Hagn, A. Zrenner, and G. Weimann, Appl. Phys. Lett. 67, 232 (1995).
- 19. A. B. Dzyubenko and G. E. W. Bauer, Phys. Rev. B 51, 14524 (1995).
- 20. P. I. Arseyev and A. B. Dzyubenko, Phys. Rev. B 52, R2261 (1995).
- P. I. Arseyev, A. B. Dzyubenko, and G. E. W. Bauer, in *Proc. of the XIIth Int. Conf. «High Magnetic Fields in the Physics of Semiconductors II»*, ed. by G. Landwehr and W. Ossau, World Scientific, Singapore (1997), p. 729.

- A. B. Dzyubenko and P. I. Arseyev, in Proc. of the 23 Int. Conf. on Physics of Semiconductors, ed. by M. Scheffler and R. Zimmermann, World Scientific, Singapore (1996), p. 2063.
- А. А. Абрикосов, Л. П. Горьков, И. Е. Дзялошинский, Методы квантовой теории поля в статистической физике, Физматгиз, Москва (1962).
- 24. Л. П. Горьков, И. Е. Дзялошинский, ЖЭТФ 53, 717 (1967).
- 25. И. В. Лернер, Ю. Е. Лозовик, ЖЭТФ 78, 1167 (1980).
- 26. G. D. Mahan, Many-Particle Physics, Plenum Press, New York (1990), ch. 7.
- 27. D. Vollhardt and P. Wölfle, Phys. Rev. B 22, 4666 (1980); Phys. Rev. Lett. 48, 699 (1982).
- 28. И. М. Суслов, ЖЭТФ 108, 1686 (1995).
- Л. Д. Ландау, Е. М. Лифшиц, Квантовая механика. Нерелятивистская теория, Наука, Москва (1989), с. 342.