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The lowest order QED radiative corrections to the radiative large angle Bhabha scattering
process in the region where all kinematic invariants are large compared to the electron mass are
considered. We show that the leading logarithmic corrections do not factorize before the Born
cross section, contrary to the picture assumed in the renormalization group approach. The leading
and non leading contributions for typical kinematics of the hard process at the energy of the ®
factory are estimated.

1. INTRODUCTION

The large angle Bhabha scattering process (LABS) plays an important role in e*e~ colliding
beam physics [1]. First, it is traditionally used for calibration, because it has a large cross section
and can be recognized easily. Second, it might provide essential background information in a
study of quarkonia physics. The result obtained below can also be used to construct Monte
Carlo event generators for Bhabha scattering processes.

In our previous papers we considered the following contributions to the large angle Bhabha
cross section: pair production (virtual, soft [2], and hard [3]) and two hard photons [4]. This
paper is devoted to the calculation of radiative corrections to a single hard-photon emission
process. We consider the kinematics essentially of type 2 — 3, in which all possible scalar
products of 4-momenta of external particles are large compared to the electron mass squared.

Considering virtual corrections, we identify gauge invariant sets of Feynman diagrams.
Loop corrections associated with emission and absorption of virtual photons by the same °
fermionic line are called as Glass-type (G) corrections. The case in which a loop involves
exchange of two virtual photons between different fermionic lines is called Box-type (B)
Feynman diagrams. The third class includes the vertex function and vacuum polarization
contributions (I'TI-type). We see explicitly that all terms that contain'the square of large
logarithms In(s/m?), as well as those that contain the infrared singularity parameter (fictitious
photon mass \), cancel out in the total sum, where the emission of an additional soft photon
is also considered. ' ‘

We note here that the part of the general result associated with scattering-type diagrams (see
Fig..1 (1, 5)) was used to describe radiative deep inelastic scattering with radiative corrections

“taken into account in Ref. [5] (we labeled it the Compton tenser with heavy photon). A similar
set of Feynman diagrams can be used to describe the annihilation channel [3].
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Fig. 1. G- and B-type Feynman diagrams for radiative Bhabha scattering

The problem of virtual radiative corrections calculations at the one-loop level is
cumbersome for the process

e + e ) — @) + e @) + k). (1)

Specifically, if at the Born level we need to consider eight Feynman diagrams, then at the
one-loop level we have as many as 72. Furthermore, performing.loop momentum integration,
we introduce scalar, vector, and tensor integrals up to the third rank with 2, 3, 4, and 5
denominators (a set of relevant integrals is given in our preprint [6]). A high degree of symmetry
of Feynman diagrams for a cross section can be exploited to calculate the matrix element
squared. Using it, we can restrict ourselves to the consideration of interferences of the Born-
level amplitudes (Fig. 1 (I-4)) with those that contain one-loop integrals (Fig. 1 (5-16)). Our
calculation is simplified since we omit the electron mass m in evaluating the corresponding
traces due to the kinematic region under consideration:

s~ S~ =t~ —t~—u~—u~ X12 ~ X] g > mP,

s = Qplpz , t= —Zpép; , u= —2p1p'2, $1 = 211'11),2 ’

t1=-2pip|, w=-2pp\, X12=2kipr2, Xi2=2kipl, @
ststt+t tutu =0, s+tttu=y, '

s Ht+u = -y, t+xl=t1+X’l-
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We found that some kind of local factorization took place both for the G- and B-ty-
pe Feynman diagrams: the leading logarithmic contribution to the matrix element squared,
summed over spin states, arising from interference of one of the four Feynman diagrams at the
Born level (Fig. 1 (I-4)) with some one-loop-corrected Feynman diagrams (Fig. 1 (5-16)),
turns out to be proportional to the interference of the corresponding amplitudes at the Born
level. The latter has the form

_ 61 - . 1. .
By = (410)™ Y IMif = 7 2 Tr( 01 On) 3 TrGomr i) =
1

_ 8 S 81 ) Uu) )

O = (4ra) ™3 MM*=—( + + + x

b= (re) ™Y MM th\xix2 XiXa XiXa XX
x(u2+uf+sz+sf),

~ 4 4u1 x5

= -3 M= —(1+ 7)— 1 X2

Iy=(4ma)™> > M\(M5 + M;) = —(1 + Z) ts]{ . )
+ 4u(81 +t1)(8+t) _ 2

X2X1 X1X

[2suu; + (u + uy)(uu; + ss; — tt)] +
2

2
+ — [2tiuuy + (u + ug)(uuy + it — 331)]}»
X1X1

p' + I;:l P — icl ~ .
O = ’prlT’Yu TN e Ow = 0w (p « p),
1

where the Z -operator acts as follows:

p24-—>p’2 U — U
kj = -k tt >t t

Z=

It can be shown that the total matrix element squared, summed over spin states, can be
obtained using symmetry properties realized by means of the permutation operations:

S IMPE=@ray’F, F=(1+P+Q+Ro=

881(8 + 83) + t, (8 + 1) + wu (u? + u?) 5

=16
sslttl
t t)
X( : + ;91/_ 7 11+ u/+ UI/)’ “4)
X1X2  Xi1X2  X2X2  X1Xp  X1Xa2 X2Xy
& =FEg+ Oy — I.

The explicit form of the 13, Q, B operators is

L |-y se—s

P=|pe—-p te—t |,
ki — ki U, U] — U, U]

. Py — —pj s ey

Q=| pr—-n sie—t |, - (5
P,k — oLk uw, U —u,u
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Py — —p’2 s +— 1t
R=| p —p 8]+t
P ki—pk w,u o U,

The differential cross section at the Born level in the case of large angle kinematics (2) was
found in Ref. [7]:

o’ Fd’p’ld3p’2d3k1

59+ pr— 1, — gy — k 6
32em2 eTehor (Pt p2—p —py— k1), (6)

doo(p1, ;) =
where €, €,, and w; are the energies of the outgoing fermions and photon, respectively. The
collinear kinematic regions (real photon emitted in the direction of one of the charged particles)
corresponding to the case in which one of the invariants x;, x’ is of order m? yields the
main contribution to the total cross section. These require separate investigation, and will
be considered elsewhere. .

Our paper is organized as follows. In Sec. 2 we consider the contribution due to the
set of Feynman diagrams Fig. 1 (5-8) called glasses here (G-type diagrams). Using crossing
symmetry, we construct the whole G-type contribution from the gauge-invariant set of Feynman
diagrams in Fig. 1 (5). Moreover, only the set of Feynman diagrams depicted in Fig. 2 (d) can
be considered in practical calculations, due to an additional mirror symmetry in the diagrams
of Fig. 2 (d, e). We therefore start by checking the gauge invariance of the Compton tensor -
described by the Feynman diagrams of Fig. 2 (d, e) for all fermions and one of the photons
on the mass shell. In Sec. 3 we consider the contribution of amplitudes containing vertex
functions and the virtual photon polarization operator shown in Fig. 1 (13-16) and Fig. 2 (f,
2). In Sec. 4 we take into account the contribution of Feynman diagrams with virtual two-pho-
ton exchange, shown in Fig. 1 (9-12), called boxes here (B-type diagrams). Again, using the
. crossing symmetry of Feynman diagrams, we show how to use only the Feynman diagrams of
Fig. 1 (9) in calculations. We show that the terms containing infrared singularities, as well as
these containing large logarithms, can be written in simple form, related to certain contributions
to the radiative Bhabha cross section in the Born approximation (3). We also control terms
in the matrix element squared that do not contain large logarithms and are infrared-finite.
Thus our considerations permit us to calculate the cross section in the kinematic region (2),
in principle, to power-law accuracy, i.e., neglecting terms that are
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Fig. 2. Content of the notation for Fig. 1
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as compared to &(a /=) terms calculated in this paper. Note that the terms in (7) are less than
10~ for typical moderately high energy colliders (DA®NE, VEPP-2M, BEPS). Unfortunately,
the non leading terms are too complicated to be presented analytically, so we pave only estimated
them numerically. In Sec. 5 we consider emission of an additional soft photon in our radiated
Bhabha process. To conclude, we note that the expression for the total correction, taking into
account virtual and real soft photon emission in the leading logarithmic approximation, has a
very elegant and handy form, although it differs from what one might expect in the approach
based on renormalization group ideas. Besides analytic expressions, we also give numerical
values, along with the non leading terms for a few points under typical experimental conditions.

2. CONTRIBUTION OF G-TYPE DIAGRAMS

We begin by explicitly checking the gauge invariance of the tensor
@RS u@). ®)

This was done indirectly in Ref. [5], where the Compton tensor for a heavy photon was written '
in. terms of explicitly gauge invariant tensor structures. We use the expression

R7% = RX + RX: | 9

- &k [ 1@ — ke @B — ki — D@ = k), -
Rxl = A Gk + / — . A [ +
DR { —x 0@

+ B, — kYve (Br — by — k)y, (1 — E)y }

10
ODO@@ (19)

where
O=kK-X, Q=@ -k*-m’, 1O)=@ -k>-m’
— 2 2 — —
(q)—(pl —]Cl —k) -m-, ‘ Az"' ;(Lx, —5), LXI —lnm.

. The quantity RX' corresponds to the Feynman diagrams depicted in Fig. 2d, while RX:
corresponds to those in Fig. 2 (¢). The first term on the right-hand side of Eq. (10) corresponds
to the first two of Fig. 2d under conditions (2). The gauge invariance cOndition Rffl" k,.=0
is clearly satisfied. The gauge invariance condition regarding the heavy photon Lorentz index
provides some check of the loop momentum integrals, which can be found in Ref. [6]:

-2 L. —1
Lu=2 X (12)
X1 X1

The gauge invariance is thus satisfied due to the Lorentz condition for the on shell photon,
e(k1)k; = 0. Asstated above, the use of crossing symmetries of amplitudes permits us to consider
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only RX'. For interference of amplitudes at the Born level (see Fig. 1 (I-4) and Fig. 1 (5-8)),
we obtain in terms of the replacement operators

AIMP)g =Ba*r¥(1+ P+ Q + R)(1+ Z)[EX + 0% — I —IX], (13)
with '
o 1611
EY = 21 Tr(p\R ploll’)z Tr(D27,0770), ~
w161
03 = g, 7 TORNP17,) 3 Tr(fro52022),
4 1
Iy = s ZTr(lele1012p27ap27P)a
4.1
g = Ts 4Tr(le"'pwppz%szm'),
P+ ky P — ki .
Ow = - (14)
11 Yp X; V‘Yu Yu " Yo
—ph — ki —p+ ki
Ont = Y ——5—% — Vp——»
# X'z ? ? X2 #
ﬁl - kl —ﬁz + ii\ll
On=- LV
12 Tu X1 Yo — o Xz Yu
P+ k —ph—k
Oy =% 1 Y ¥t Yu 2 ] 1’7P‘
X1 X2

In the logarithmic approximation, the G-type amplitude contribution to the cross section has
the form

daG_@E(1+P+Q+R)q> -ng +§Lt +2L, In2 ,
F 27k 2T "m
(15)
Ly, ln—_—tf1
m

3. VACUUM POLARIZATION AI\.JD VERTEX INSERTION CONTRIBUTIONS

Let us examine a set of ['TI-type Feynman diagrams. The contribution of the Dirac form
factor of fermions and vacuum polarization (se¢ Fig. 1 (13-16)) can be parametrized as (1 +
It)/(1 — I1;), while the contribution of the Pauh form factor 1s proportxonal to the fermion
mass, and is omitted here. We obtain .

dom = % 221+ B+ O+ RY(T; + 1I,)0, . (16)

where .
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In realistic calculations, the vacuum polarization due to hadrons and muons can be taken into
account in a very simple fashion [8], just by adding it to IT,.

4. CONTRIBUTION OF THE B-TYPE SET OF FEYNMAN DIAGRAMS

A procedure resembling the one used in the previous section, applied to the B-type set
of Feynman diagrams (Fig. 1 (9-12a)), enables us to use only certain one-loop diagrams
in practical calculations, specifically three of those in the scattering channel with uncrossed
exchanged photon legs:

@AM = Pa*n? Re(1+ P +Q + R)(1 - Pu)I§ + (1 + Pp)I§ ~ I, (18)
whgre :
D2 — —p’2 S U

pPLe—Dn s = U |, (19
pllykl _’pllskl tatl _)t1t1

Py =

and

d'k 1 16 1
Xl — - ot A XA '
s / i Q@+ R —md) ¢ & O BPO)x

1 . R A o
X3 Tr (P2Yo (P2 — K)1AP27p),

d'k 1 - 16 1
5 = Y — =T AN RX15H
& /iﬂz O)g)((p2 + kP —m?) t, 4 (P18 pryp)

1 . . s
x 3 Tr(27s(=p2 = k)ap022), : (20)
d*k 1 41 A oA
= = ! T~ .5 BX $,0%H + +
1= [ o | o OB RO A+ B
r S P
t33 Tr(P20v2 p1BX' p1v,p2(A + B)) ¢
f= 2P - k)7 p=nEht k)
(p2+k)2_m2 ’ (_plz+k)2_m2'
Here
Bx = 7A.(131 — ky ~ kY, (b1 — iCl)’Yu + APy — Ky — ’;7)’7;;(131 — ke +
—x1(d) (a@)1)
+ 7#(171 + kl)'Y)\(ﬁl - k)7a
x1(1) ’ |
(@) = G-y +k)* =22, (d) = (;m—ki—k)*—m?, (1) = (pi—k)*-m?, (0) = kK*-).

(1)

Analytic evaluations divulge a lack of both double logarithmic (oc L2) and infrared logarithmic
(ox In(A/m)L) terms in the box contribution. In spite of the explicit proportionality of the
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individual contributions to the structures Ey, Oy, and I, the overall expression turns out to
be somewhat convoluted, despite it has a factorized form in each gauge-invariant subset of
diagrams. We parametrize the correction coming from the B-type Feynman diagrams as follows:

' 2 tt
dog = doo~LAp, Ap=2In-—l+ Z(@g+dg)ln—L. 22)
T uu; F 88]
The total virtual correction to the cross section has the form

- o
do¥" = dog+domtdog = da();

—L*+L, <%+4~ln —T);—L+AG+AT1'I+AB) W(l)] ,
(23)

so+am=L(onL +opint + oot +opm s
- feTAm TR tt, R s Q 881 P tt )’

where ®p = ]3<I>, Og = _C}(D, and &g = Ro.

5. CONTRIBUTION FROM ADDITIONAL SOFT PHOTON EMISSION

Consider now radiative Bhabha scattering accompanied by emission of an additional soft
photon in the center of mass reference frame. By soft we mean that its energy does not exceed
some small quantity Ae, compared to the energy ¢ of the initial beams. The corresponding
cross section has the form

do.soft = do.oé*saft,
5 )
P dra / dk; (_ P, PP P ) 24

wy ik, Pk mks Dbk,

wy<Ag

The soft photon'energy does not exceed Ae K €1 = g = € ~ €] ~ &) In order to
calculate the right-hand side of Eq.. (24), we use the master equation [9]:

dra [ d’k (g;)? a mAe 5 :
- — = e — — =\/ .+ 2
167"3/ w (g:k)? w 7rln e )Y K2+ A2, (25)
/.
dra [ dk  2q1 a m?(Ae)? 1
Brotal = 1 — + —- 2 —_—
o | 5 Gtk I R STy AR
1. ,(& 72 . , 0
_ SY_ 24 z
5 In (5_2) 3 Li, (cos Ik (26)

Here we used the notation
—q2 2 2 2
Ly=In—>, g =g=m’ -¢ = —(q1 — @2)* > m?,

2 (27)

q1,2 = (€1,2,41,2), 6= qq2,

where ¢, €;, and @ are the energies and angle between the 3-momenta q;, q,, respectively,
and X is the fictitious photon mass (all defined in the center of mass system).
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The contributions of each possible term on the right-hand side of Eq. (24) are

~

T
aémﬂ =—A) — A — A} - Alz +Apt Ay H A+ Ay — Ay — Ay, (28)
' mAe mAe mAe
A=A =In—— = ] =In
e ex E P
mAe m?
=2L,In — —L2 - —
EX 2 ’

(mAe)?
Apy = L lln ——
° €leh\2

3 .
1 E’ 7['2 0 ] Iv
L2 — -1 2L ) - L 4L 2 712
) 2le 5 n 5’2 3 iz | cos 3 ,
2 ' 2
Aw =Ly, In (mAE) L§ () - 4 (eos? ),
! € 3 2
_ (mAe)? s ' ,
AZ?’ =L, 1n<€_5'2A—2 + '2'Lt

(maAe)? S Y w2 (. 5,0
Yy = BT V4202 —om( ) -+ 2
Ay Lu| 11’1( 5511/\2 2Lu| 3 In - 3 Li, | sin > )

(mAe)? 1., 1 ,(e 2 5 0
;= —_— | + - —_— —_— - —+ —_
Ay =L, ln( seln? 2Lu 3 In 7 3 Li; { cos > )

S Lu=hZF, L@ = - [Zia-a),
m m x
0

where ¢}, €} are the center of mass energies of the scattered electron and positron, respectively;
0,/,8 are their scattering angles (measured from the initial electron momentum direction);
and 6,.» is the angle between the scattered electron and positron momenta.

Separating out large logarithms, we obtain

gooft = {4(L ™, In ﬁ+L n 1=z +ﬂ(1)},
Ae 2 (29

Cyrr = COS 01121

This can be written in another form, using experimentally measurable quantities, the relative
energies of the scattered leptons and the scattering angles (see Table):

! 1 +y—1 i
Y = i, ci=cosf,, =(l—-cpy)= TS 2
€ 2 Y2
t  l+te uw_ 1-c th_ 1-a
3 Y2 2 ) ; Y2 ) ) s "N D) 2\ ) (30)
81 U] 1+¢
_— + -1, —— = .
3 N Ty ’ s () 2
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Numerical estimates of Ay and A versus Y261,

N n 2 c 1)) AL A
1 0.36 0.89 ~0.70 | -0.10 1070 | —24.53
2 0.59 0.66 0.29 ~0.06 4.86 —11.41
3 0.67 0.67 0.50 0.30 5.82 —35.58
4 0.68 0.65 0.60 ~0.50 4.10 —10.45

6. CONCLUSIONS

The double logarithmic terms of type L? and those proportional to L, In(\/m) cancel in
the overall sum with the corresponding terms from the soft photon contribution (29). Omitting”
vacuum polarization, we obtain in the logarithmic approximation

: : A
ddsofﬁ-v"‘t = da'O‘i:' [Ls (4 In "55 + AL) + A(yh Y2, Clch)] y (31)
‘ A—c)l-c)  yi+m—1
Ap =3+In +1n +
L A+l +c) Y2
1 s2 82 2 t2
+ —|®ln—+®pln L +®yln - +dgln—| +
F[ M TP g T P Rnss;]

88] 2 ttl
+2In— + —=(¥g + Ogp)In —.
o F( Q _R) 881

The function A(yy, ¥2, €1, ¢;) is quite complicated. To compare it with Ay, we give their
numerical values (omitting vacuum polarization) for a certain set of points from physical
regions (32) and y; + y > 1, D > 0 (see Table). Considering the kinematics typical
of large angle inelastic Bhabha scattering, we show the lowest-order contribution previously
obtained [10] and the radiative corrections calculated in this work. _

After performing loop integration and shifting logarithms (L; = L, + L;;), one can
see that the terms containing infrared singularities and double logarithmic terms ~ Li, are
associated with a factor equal to the corresponding Born contribution. This is true of all types
of contributions.

The phase volume

_ Epid’pd’k,
elehwi

dr §p1 +pr - P — Py — k1)

can be transformed in various ways [10]. We introduce the variables (see Eq. (30))

Yi =

o |

, ci=cosfl, 6i=p,p;, O<yi<l, —l<ep<l, (32)

which parametrize the kinematics of the outgoing particles (these do not include a common
degree of freedom, a rotation about the beam axis). The phase volume then takes the form
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wsdy,dy,dcidc;

dlr = ——————_0(y; + v — 1)O(D(y1, ¥2, c1, C2)),
WD o) (y1 + y2 — 1DO(D(y1, y2,¢1,¢2)) |
D(y1,y2,¢1,¢2) = p* = ¢} — ¢ — 21z cicy, (33)
1- 1-
=201 61'2')( y1)(1 —y2) .
Y2

The allowed region of integration is a triangle in the y,,y, plane and the interior of the ellipse
D > 0 in the ¢y, c; plane. ’

We now discuss the relation of our result to the renormalization group approach. The
dependence on Ac /¢ in (31) disappears when one takes into account hard two-photon emission.
The leading contribution arises from the kinematics when the second hard photon is emitted
close to the direction of motion of one of the incoming or outgoing particles:

hard a 1+ ZZ [ !
dU = _Ls dUO(zp11p2v plva) + dUO(Ph zp21p1ap2) dz

2w 1-2

1+ 2 / 1+ 2 /
+ 21 da'() (PI,PL ﬂ#’;) dZ[ + ot dUO (plap%plla &) dZZ]a

1—21 21 1—22 22 (34)
z=1—-1x,, z,-=yig_fz2, gy =2

The fractional energy of the additional photon varies within the limits Ac/e < z, = wy/e < 1.
This formula agrees with the Drell—Yan form of radiative Bhabha scattering (with switched-off
vacuum polarization)

/ /
do(p1, p2, Py, P3) =/d931 dz, D(x1)D(z,) doo (xlpl,fczpz, Z—:, %) D(21)D(z2)dz1dzy, (35)

where the non-singlet structure functions & are [11]

) 2
D(2) = 6(1 - 2) + —LPV(z) + (iL) Lpogy+...
L ) 2

(36)
+ 2z

2
(l-z—-A)+6(1-2) (21nA+2>] .
z 2

Wy = tim |1
F0z) = lim [ 1=
In our calculations we see explicitly a factorization of the terms containing double
logarithmic contributions and infrared single logarithmic ones, which arise from G- and I'TI-type
Feynman diagrams. To be precise, the corresponding contributions to the cross section have
the structure of the Born cross section (6). But the above claim fails to be true for terms
containing single logarithms. Hence, the Drell—Yan form (35) is not valid in this case, and
the factorization theorem breaks down, because the mass singularities (large logarithms) do
not factorize before the Born structure. That is because of plenty of different type amplitudes
and kinematic variables, which describe our process. The reason for the violation of a naive
usage of factorization in the Drell—Yan form has presumably the same origin with that
found in Ref. [12], where the authors claimed that it is necessary to study independently the
renormalization group behavior of leading logarithms before different amplitudes of the same
process. Note that in the ey — ep~y reaction, which can easily be extracted from our results,
factorization does take place. We also see from (31) that factorization will take place if all
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the logarithmic terms become equal, i.e., In(s;/m?) = In(s/m?) = .... The source for the
violation of the factorization theorem, we found, might have a relation to some of those found
in other problems [13].

Numerical estimates (see Table) for the @ factory energy range (/s ~ 1 GeV) shows that
the contribution of the non leading terms coming from virtual and soft real photon emission
might reach 35%. Additional hard photon emission will also contribute to Ay, and A. To get
an explicit form of that correction, one has to take into account a definite experimental setup.

Obviously, an analogous phenomenon of the factorization theorem violation takes place
in QCD in processes like g¢ — qgg and q§ — qgv. A consistent investigation of the
latter processes, taking into account the phenomenon found, can give a certain correction to
predictions for large angle jet production and direct hard photon emission at preton—antiproton
colliders.

We are grateful to D. V. Shirkov for useful discussions and pointing Ref. [12] out to us.
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