СКИРМИОНЫ В ЭЛЕКТРОННОМ ГАЗЕ С НЕЛОКАЛЬНЫМ ОБМЕНОМ В СИЛЬНОМ МАГНИТНОМ ПОЛЕ

С. В. Иорданский*, С. Г. Плясунов

Институт теоретической физики им. Л. Д. Ландау Российской академии наук 142432, Черноголовка, Московская обл. Россия

В. И. Фалько

School of Physics and Chemistry, Lancaster University LA1 44B UK Department de Physique, University J. Fourier, Grenoble 1 France

Поступила в редакцию 19 августа 1998 г.

Вычислены энергия и действие для скирмионов в двумерном электронном газе с нелокальной обменной энергией. Энергия положительно заряженных скирмионов существенно меньше, чем энергия отрицательно заряженных скирмионов, и не содержит обменного вклада. Вычислено действие с учетом нулевых коллективных мод скирмиона.

После пионерской работы [1] ряд публикаций был посвящен вычислению энергии специальной спиновой текстуры — скирмиона для нечетного заполнения уровней Ландау в 2*D*-электронной структуре [2–4]. Такие текстуры характеризуются вращением среднего спина с ненулевой степенью отображения двумерной плоскости на единичную сферу направлений спина. Было показано [1], что рождение пары скирмионов с противоположным зарядом выгоднее, чем образование спинового экситона.

Однако вычисления энергии отдельного скирмиона в последующих работах содержат внутренние несогласованности. Авторы, предполагая, что соответствующие текстуры могут быть получены путем вращения спина однородного состояния с помощью неоднородной матрицы поворота U (r), считают, однако, что электронные спиноры принадлежат состояниям из одного и того же уровня Ландау как до, так и после вращения. При этом используется некоторая редуцированная матрица поворота U_{red} (см. [4]), которая не является унитарной: $U_{red}^{\dagger}U_{red}\neq 1$. Кроме того, исходные нередуцированные матрицы поворота предполагались зависящими от двух углов Эйлера, что приводит к их обязательной сингулярности для нетривиальных степеней отображения, что также никак не учитывалось в эффективных формулах.

Эти несогласованности могут быть устранены при последовательном подходе, использующем гладкие матрицы поворота $U(\mathbf{r})$, зависящие от трех углов Эйлера (или другую эквивалентную параметризацию), и учитывающем полное представление электронных спиноров в терминах волновых функций уровней Ландау при использовании разложения по производным матрицы вращения $U(\mathbf{r})$ [5,6].

Недостатком этих работ является предположение об однородном обменном члене, справедливое только для короткодействующего потенциала взаимодействия. Кроме того, приведенные окончательные выражения для действия содержат ряд существенных

^{*}E-mail: iordansk@itp.ac.ru

неточностей. Настоящая работа посвящена устранению этих недостатков, что существенно для вычисления энергии отдельного скирмиона.

1. ВЫЧИСЛЕНИЕ ДЕЙСТВИЯ И ЭНЕРГИИ

Изложим вкратце процедуру вычисления действия [6]. Действие вычисляется в приближении Хартри—Фока, справедливом при полном заполнении одного уровня Ландау. Это приближение может быть также получено с использованием преобразования Хаббарда—Стратоновича. В этом случае член, описывающий взаимодействие в гамильтониане, может быть представлен в виде

$$-\int V\left(\mathbf{r}-\mathbf{r}'\right)\langle\psi_{\alpha}^{\dagger}(\mathbf{r})\psi_{\beta}(\mathbf{r}')\rangle\psi_{\beta}^{\dagger}(\mathbf{r}')\psi_{\alpha}\left(\mathbf{r}\right)d^{2}r\ d^{2}r'.$$

Здесь α , β — спиновые индексы, $X_{\alpha\beta}(\mathbf{r},\mathbf{r}')=\langle\psi^{\dagger}_{\alpha}(\mathbf{r})\psi_{\beta}(\mathbf{r}')\rangle$ — обменное поле Хаббарда— Стратоновича, соответствующее наиболее мягкой степени свободы — вращению спина в обменном приближении (угловые скобки означают квантовомеханическое среднее). Учет прямого взаимодействия может быть легко проведен с помощью известного выражения для средней плотности заряда [1–6]. В однородном случае (полное заполнение нижнего спинового состояния на нижнем уровне Ландау) среднее в угловых скобках имеет вид

$$X_{\alpha\beta}^{0}\left(\mathbf{r},\mathbf{r}'\right) = \sum \delta_{\alpha\beta}\delta_{\alpha0}\Phi_{p0}^{*}\left(\mathbf{r}\right)\Phi_{p0}\left(\mathbf{r}'\right). \tag{1}$$

Введем вместо $X_{\alpha\beta}^0$ повернутую матрицу

$$X_{\mu\nu}\left(\mathbf{r},\mathbf{r}_{1}\right)=U_{\alpha\mu}^{\dagger}\left(\mathbf{r}\right)U_{\nu\beta}\left(\mathbf{r}_{1}\right)X_{\alpha\beta}^{0}\left(\mathbf{r},\mathbf{r}_{1}\right),$$

где $U(\mathbf{r})$ — некоторая матрица поворота спиноров ($U^\dagger U=1$). Можно устранить действие поворота в члене взаимодействия, вводя новые спиноры χ и χ^\dagger с помощью унитарного преобразования: $\psi(\mathbf{r}) = U(\mathbf{r})\chi(\mathbf{r})$, так что член со взаимодействием примет исходный вид:

$$-\int V\left(\mathbf{r}-\mathbf{r}_{1}\right)X_{\alpha\beta}^{0}(\mathbf{r},\mathbf{r}_{1})\chi_{\beta}^{\dagger}(\mathbf{r}_{1})\chi_{\alpha}(\mathbf{r})d^{2}r\ d^{2}r_{1}$$

для новых спиноров, так как потенциальное взаимодействие не меняется при таком унитарном преобразовании. Однако для неоднородной матрицы поворота в выражении для энергии необходимо выполнить дифференцирование $U(\mathbf{r})$ в выражении для кинетической энергии в полном гамильтониане. В результате получим

$$H = \frac{1}{2m} \int \chi^{\dagger} \left(-i \nabla + \mathbf{A}_{0} + \mathbf{\Omega}^{l} \sigma_{l} \right)^{2} \chi d^{2}r + \int \chi^{\dagger} \Omega_{t}^{l} \sigma_{l} \chi d^{2}r - \frac{1}{2} \int V \left(\mathbf{r} - \mathbf{r}_{1} \right) \chi_{\alpha}^{\dagger} (\mathbf{r}) \chi_{\beta} (\mathbf{r}_{1}) \chi_{\beta}^{\dagger} (\mathbf{r}_{1}) \chi_{\alpha} (\mathbf{r}) d^{2}r d^{2}r_{1}.$$

Мы выписали полный гамильтониан вторичного квантования, где $\Omega^l_{\nu}\sigma_l=-iU^\dagger\partial_{\nu}U$, σ_l — матрицы Паули и A_0 — векторный потенциал внешнего магнитного поля. Использована система единиц, в которой $\hbar=1$, $l_H^2=c\hbar/eH=1$, H=1, так что обратная

электронная масса 1/m измеряется в единицах $\hbar\omega_c$. Величины Ω_{ν}^l , выраженные через эйлеровы углы, имеют вид

$$\begin{split} \Omega^{z}_{\nu} &= \frac{1}{2}(\partial_{\nu}\alpha + \cos\beta\partial_{\gamma}\gamma),\\ \Omega^{x}_{\nu} &= \frac{1}{2}(\sin\beta\cos\alpha\partial_{\nu}\gamma - \sin\alpha\partial_{\nu}\beta),\\ \Omega^{y}_{\nu} &= \frac{1}{2}(\sin\beta\sin\alpha\partial_{\nu}\gamma + \cos\alpha\partial_{\nu}\beta). \end{split}$$

Предполагаемая малость градиентов U позволяет развить теорию возмущений по Ω (градиентное разложение) при вычислении действия как функционала от U. Для этого мы разобьем гамильтониан на части:

$$H_{0} = \int d^{2}r \left\{ \frac{1}{2m} \chi^{\dagger} \left(-i \nabla + \mathbf{A}_{0} + \mathbf{\Omega}^{l} \sigma_{l} \right)^{2} \chi + \chi^{\dagger} \Omega_{t}^{l} \sigma_{l} \chi \right\} - \int V \left(\mathbf{r} - \mathbf{r}_{1} \right) X_{\beta\alpha}^{0} \left(\mathbf{r}_{1}, \mathbf{r} \right) \chi_{\alpha}^{\dagger} \left(\mathbf{r} \right) \chi_{\beta} \left(\mathbf{r}_{1} \right) d^{2}r d^{2}r_{1}$$
(2)

И

$$H' = -\frac{1}{2} \int V(\mathbf{r} - \mathbf{r}_1) \chi_{\alpha}^{\dagger}(\mathbf{r}) \chi_{\beta}(\mathbf{r}_1) \left[\chi_{\beta}^{\dagger}(\mathbf{r}) \chi_{\alpha}(\mathbf{r}_1) - 2X_{\beta\alpha}^{0}(\mathbf{r}_1, \mathbf{r}) \right] d^2r d^2r_1, \tag{3}$$

где $X^0_{\alpha\beta}$ — среднее по полностью заполненному уровню Пандау со спином вверх.

Соответствующее действие, зависящее от матрицы поворота U, может быть получено в приближении Хартри—Фока и представляется диаграммами рис. 1, где δG означает поправку к функции Грина заполненного уровня Ландау из-за наличия Ω_{ν} в гамильтониане H_0 . Величина S_0 соответствует действию, вычисляемому для гамильтониана H_0 :

$$S_0 = i \operatorname{Tr} \ln \frac{G}{G_0}, \quad G = G_0 + \delta G.$$

Линейные по δG поправки содержатся в S_0 . Вычисление S_0 в главном порядке по 1/m для однородного спинового обмена было проведено в [6], однако там была допущена алгебраическая неточность. В настоящей работе мы проведем соответствующие вычисления с точностью до членов нулевого порядка по 1/m, не предполагая в отличие от [6] однородности спинового обмена.

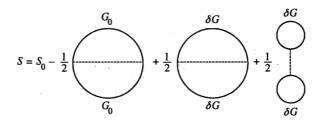


Рис. 1. Хартри-фоковские диаграммы для действия. Штриховой линией изображен потенциал взаимодействия

Гамильтониан H_0 может быть разбит на основную часть:

$$H_{00} = \frac{1}{2m} \int \chi^{\dagger} \left(-i\nabla + \mathbf{A}_{0}\right)^{2} \chi d^{2}r - \iint V\left(\mathbf{r} - \mathbf{r}_{1}\right) X_{\beta\alpha}^{0}\left(\mathbf{r}_{1}, \mathbf{r}\right) \chi_{\alpha}^{\dagger}\left(\mathbf{r}\right) \chi_{\beta}\left(\mathbf{r}_{1}\right) d^{2}r d^{2}r_{1},$$

малые члены первого порядка по Ω

$$H_1 = \int \Omega_t^l \sigma_l d^2 r + rac{1}{m} \int \chi^\dagger \Omega_\mu^l \sigma_l \left(-i \partial_\mu + A_{0\mu}
ight) \chi d^2 r$$

и второго порядка по Ω:

$$H_2 = rac{1}{2m} \int \chi^\dagger \left(\left(\Omega_\mu^l \sigma_l \right)^2 - i \partial_\mu \Omega_\mu^l \sigma_l \right) \chi d^2 r.$$

Как показано в работе [6], вклад от H_2 компенсируется вкладом от второго порядка по H_1 . Кроме того, вклад от $\Omega_t^l \sigma_l$ учитывается тривиально (см. [6]) и здесь рассматриваться не будет.

Функция Грина G_0 для гамильтониана H_{00} , соответствующая заполнению нижнего спинового подуровня
Ландау , находится элементарно и имеет вид

$$G_0\left(\mathbf{r},\mathbf{r}',\omega\right) = \sum_{p,s} \hat{g}_s\left(\omega\right) \Phi_{sp}\left(\mathbf{r}\right) \Phi_{sp}^*\left(\mathbf{r}'\right). \tag{4}$$

Здесь был проведен переход к частотному фурье-представлению; Φ_{sp} — волновые функции электрона на s-том уровне в калибровке Ландау . Для вычислений существенны s=0:

$$\hat{g}_0(\omega) = \frac{1 + \sigma_z}{2} \frac{1}{\omega + E_0/2 - i\delta} + \frac{1 - \sigma_z}{2} \frac{1}{\omega - E_0/2 + i\delta}, \quad \delta \to +0,$$
 (5)

и s = 1:

$$\hat{g}_1(\omega) = \frac{1+\sigma_z}{2} \frac{1}{\omega - 1/m + (E_1 - E_0/2) + i\delta} + \frac{1-\sigma_z}{2} \frac{1}{\omega - 1/m - E_0/2 + i\delta}.$$
 (6)

Более высокие номера s существенны только для вычислений выше второго порядка по Ω . Функция Грина вычислена для химического потенциала $\mu=1/2m-E_0/2$, что соответствует заполнению нижнего спинового подуровня. Обменные энергии легко вычисляются для заполненного уровня Ландау:

$$E_0 = \int \frac{d^2q}{\left(2\pi\right)^2} e^{-q^2/2} V\left(q\right), \quad E_1 = \int \frac{d^2q}{\left(2\pi\right)^2} \frac{q^2}{2} e^{-q^2/2} V\left(q\right).$$

где $V\left(q\right)$ — фурье-образ потенциала взаимодействия. Для кулоновского взаимодействия

$$E_1 = \frac{E_0}{2} = \sqrt{\frac{\pi}{2}} \frac{e^2}{2\kappa l_H},\tag{7}$$

где κ — диэлектрическая постоянная.

Разложение действия S_0 с точностью до второго порядка по H_1 имеет вид

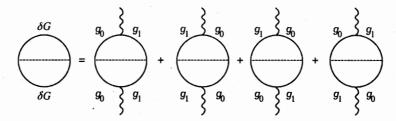


Рис. 2. Различные способы вставок поправок первого порядка по H_1 , изображенных волнистой линией, в обменную диаграмму

$$\delta S_0 = i \text{Tr} H_1 G_0 + \frac{i}{2} \text{Tr} H_1 G_0 H_1 G_0 + i \text{Tr} H_2 G_0.$$
 (8)

Процедура вычисления использует представление H_1 в виде

$$H_1 = \frac{1}{m} \int \chi^{\dagger} \left(\Omega_+^l \hat{\Pi}_- + \Omega_-^l \hat{\Pi}_+ \right) \sigma_l \chi d^2 r,$$

где $\Omega_{\pm}^l = \left(\Omega_y^l \mp i\Omega_x^l\right)/2$, а операторы $\hat{\Pi}_{\pm}$ повышают и понижают индекс уровня Ландау:

$$\hat{\Pi}_{-}\Phi_{sp} = \sqrt{2s}\Phi_{s-1p}, \quad \hat{\Pi}_{+}\Phi_{sp} = \sqrt{2(s+1)}\Phi_{s+1p}.$$
 (9)

Опуская члены, компенсирующиеся величиной H_2 , мы получаем в первом порядке [6]:

$$S_0^{(1)} = -\frac{1}{2m} \int \cot \mathbf{\Omega}^z \frac{d^2 r dt}{2\pi}.$$
 (10)

Члены второго порядка имеют вид [6]

$$S_0^{(2)} = -\frac{2}{m^2} \operatorname{Tr} \left\{ \sigma_l \frac{1 + \sigma_z}{2} \sigma_{l_1} \hat{g}_1 \left(-\frac{E_0}{2} \right) \right\} \int \Omega_-^l \Omega_+^{l_1} \frac{d^2 r dt}{2\pi}. \tag{11}$$

Проводя разложение $\hat{g}_1\left(-E_0/2\right)$ с точностью до членов второго порядка по m, мы получим после использования тождества $\operatorname{rot} \mathbf{\Omega}^z = (i/2)\operatorname{Tr}\left\{\sigma_z\sigma_{l'}\sigma_l\right\}\left(\Omega_x^l\Omega_y^{l'}-\Omega_y^l\Omega_x^{l'}\right)$:

$$\delta S_0 = \delta S_0^{(1)} + \delta S_0^{(2)} = -2E_0 \int \frac{d^2 r dt}{2\pi} \Omega_-^l \Omega_+^l + + 2E_1 \int \frac{d^2 r dt}{2\pi} \Omega_-^z \Omega_+^z - 2E_0 \operatorname{Tr} \frac{\sigma_{l'} \sigma_l \sigma_z}{2} \int \Omega_+^{l'} \Omega_-^l \frac{d^2 r dt}{2\pi}.$$
 (12)

В сумме $S_0^{(1)} + S_0^{(2)}$ происходит компенсация вкладов порядка 1/m (отличие от результатов вычисления [6] связано с тем, что знак перед первым членом в (12) был вычислен неверно).

Таким образом, вклад от среднего поля порядка 1/m (все спины локально смотрят вверх) (10) полностью уничтожается флуктуациями направления спина в действии второго порядка. Остаются только величины порядка обменной энергии $e^2/\kappa l_H$ и нет слагаемых порядка $\hbar\omega_c$. Для завершения вычисления действия во втором порядке по

градиентам матрицы поворота U необходимо вычислить вклад второй диаграммы на рис. 1. Эта диаграмма более подробно изображена на рис. 2, где указаны различные способы вставок частей функции Грина с нулевого и первого уровней Ландау. Вклад двух последних диаграмм равняется нулю ввиду изотропии V (r). Две первые диаграммы дают одинаковый вклад:

$$S_{HF} = \frac{(-2)}{m^2} 2 \operatorname{Tr} \left\{ \frac{1 + \sigma_z}{2} \sigma_l \hat{g}_1^2 \left(-\frac{E_0}{2} \right) \sigma_{l'} \right\} \times \\ \times \int \Omega_+^l \left(\frac{\mathbf{r} + \mathbf{r}'}{2} \right) \Phi_{0p} \left(\mathbf{r} \right) \Phi_{1p}^* \left(\mathbf{r}' \right) \Phi_{0p_1}^* \left(\mathbf{r} \right) \Phi_{1p_1} \left(\mathbf{r}' \right) \Omega_-^{l'} \left(\frac{\mathbf{r} + \mathbf{r}'}{2} \right) V \left(\mathbf{r} - \mathbf{r}' \right) d^2 r d^2 r'. \tag{13}$$

Пространственные интегралы легко вычисляются, и мы получим

$$S_{HF} = 2(E_0 - E_1) \int \Omega_-^z \Omega_+^z \frac{d^2 r dt}{2\pi} + 2(E_0 - E_1) \sum_{l \neq z} \int \Omega_-^l \Omega_+^l \frac{d^2 r dt}{2\pi} + 2(E_0 - E_1) \int \text{rot } \mathbf{\Omega}^z \frac{d^2 r dt}{2\pi}.$$
 (14)

В итоге мы получаем действие во втором порядке по градиентам $U\left(\mathbf{r},t\right)$:

$$\delta S = -\int \Omega_t^z \frac{d^2r dt}{2\pi} - 2E_1 \sum_{l \neq z} \int \Omega_-^l \Omega_+^l \frac{d^2r dt}{2\pi} - 2E_1 \operatorname{Tr} \frac{\sigma_{l_1} \sigma_{l} \sigma_z}{2} \int \Omega_+^{l_1} \Omega_-^l \frac{d^2r dt}{2\pi}.$$
 (15)

При использовании Ω^l , выраженных через углы Эйлера, действие для скирмиона может быть записано в виде

$$\delta S = -\int \Omega_t^z \frac{d^2 r dt}{2\pi} - \frac{E_1}{2} \int \frac{1}{4} \left(\frac{\partial n_i}{\partial x_k}\right)^2 \frac{d^2 r dt}{2\pi} - \frac{E_1}{2} \int \operatorname{rot} \mathbf{\Omega}^z \frac{d^2 r dt}{2\pi} + \\ + |g|\mu_B \int (\mathbf{H}\mathbf{n} - H) \frac{d^2 r dt}{2\pi} - \frac{1}{2} \int \frac{e^2}{|\mathbf{r} - \mathbf{r}'|} \operatorname{rot} \mathbf{\Omega}^z \left(r\right) \operatorname{rot} \mathbf{\Omega}^z \left(r'\right) \frac{d^2 r d^2 r'}{(2\pi)^2} dt, \tag{16}$$

где мы добавили малые зеемановскую и кулоновскую энергии и ввели единичный вектор направления среднего спина

$$\mathbf{n} = (\sin \beta \cos \alpha, \sin \beta \sin \alpha, \cos \beta).$$

При вычислении кулоновской энергии использовано выражение для плотности $\rho = (1 + \text{rot } \Omega^z)/2\pi$, полученное в [1,6].

Как было показано в [7], минимальная градиентная энергия выражается через топологический инвариант

$$Q = \frac{1}{2\pi} \int \operatorname{rot} \mathbf{\Omega}^z d^2 r,$$

соответствующий степени отображения 2D-плоскости на единичную сферу направлений спина, соотношением

$$\frac{1}{8\pi} \int \left(\frac{\partial n_i}{\partial x_k}\right)^2 d^2r = |Q|.$$

Таким образом, энергия скирмиона с зарядом Q:

$$E = \frac{E_1}{2} \left(Q + |Q| \right) + |g| \mu_B \int \left(\mathbf{H} \mathbf{n} - H \right) \frac{d^2 r}{2\pi} + \frac{1}{2} \int \frac{e^2}{|\mathbf{r} - \mathbf{r}'|} \operatorname{rot} \mathbf{\Omega}^z \left(\mathbf{r} \right) \operatorname{rot} \mathbf{\Omega}^z \left(\mathbf{r}' \right) \frac{d^2 r d^2 r'}{(2\pi)^2}.$$

$$(17)$$

Для скирмионов с Q<0 вклад обменной энергии равен нулю, так как градиентная энергия компенсируется топологически инвариантным членом и остаются только кулоновское и зеемановское слагаемые. Что же касается скирмионов с Q>0, то их энергия содержит обменный вклад.

Согласно [7] решение, минимизирующее энергию, убывает с расстоянием как $r^{-|Q|}$, в связи с чем зеемановская энергия имеет большой логарифмический множитель $\ln\left(|g|\mu_BH/E_1\right)$ при |Q|=1, в то время как энергия скирмиона с |Q|>1 такого множителя не содержит. Поэтому скирмион с Q=-2 более выгоден по энергии, чем с Q=-1. Однако более низкие Q (Q<-2), становятся менее выгодными из-за увеличения кулоновской энергии, которая возрастает в зависимости от |Q|. Этот факт был отмечен в работе [8]. Отметим, что полученное выражение дает классическую энергию скирмиона без квантовых поправок.

2. НУЛЕВЫЕ КОЛЛЕКТИВНЫЕ МОДЫ

Энергия скирмиона не зависит от угла поворота спиновой системы координат вокруг направления магнитного поля относительно орбитальной, так как прибавление любой постоянной γ к углу α не меняет энергии (13) (предполагается, что направление магнитного поля совпадает с осью z). Это вырождение может быть снято только спин-орбитальным взаимодействием. Таким образом, $\gamma = \text{const}$ соответствует нулевой коллективной моде [9]. Соответствующее движение должно иметь характер свободного вращения. Для его рассмотрения используем стандартный прием, применяемый при рассмотрении нулевых мод [9], состоящий во введении коллективной координаты $\gamma(t)$, и получим действие путем разложения по величине угловой скорости $\dot{\gamma}$.

Ограничиваясь членами, не имеющими вида полной производной, получим в линейном приближении

$$S_1 = -\int \Omega_t^z \frac{d^2r dt}{2\pi} = \frac{1}{2} \int \dot{\gamma} \beta_1 \sin \beta_0 \frac{d^2r dt}{2\pi},$$

где β_0 — минимизирующее стационарное решение [7], β_1 — малое отклонение от стационарного значения. Член, квадратичный по γ в действии, легко вычисляется из члена второго порядка $S_2=(i/2)\operatorname{Tr}\Omega_l^t\sigma_lG_0\Omega_t^k\sigma_kG_0$. В низшем порядке по m можно ограничиться рассмотрением низшего уровня Ландау, что дает

$$S_2 = \int \frac{I\dot{\gamma}^2}{2} dt,$$

где момент «инерции»

$$I = \frac{1}{2E_0} \int \sin^2 \beta_0 \frac{d^2 r}{2\pi},$$

при вычислении мы пренебрегли отклонением β от стационарного значения. Суммарное действие имеет вид

$$S = S(\alpha_1, \beta_1) + \int \frac{I\dot{\gamma}^2}{2}dt + \frac{1}{2}\int \dot{\gamma}\beta_1 \sin\beta_0 \frac{d^2rdt}{2\pi},$$

где первый член представляет собой действие как квадратичный функционал от отклонений α_1,β_1 от стационарных значений α_0,β_0 без учета нулевых мод. Это действие не зависит от угла γ и записано в смешанном представлении — гамильтоновом по α_1,β_1 и лагранжевом по γ . Переход к полностью гамильтонову представлению осуществляется введением сохраняющегося углового момента

$$M = I\dot{\gamma} + \frac{1}{2} \int \frac{\beta_1}{2\pi} \sin \beta_0 d^2 r,$$

что дает гамильтоново действие

$$S = S(\alpha_1, \beta_1) + \int M\dot{\gamma}dt - \frac{1}{2I} \int \left(M - \frac{1}{2} \int \beta_1 \sin \beta_0\right)^2 dt. \tag{18}$$

Последний член приводит к взаимодействию нулевой вращательной моды с ненулевыми коллективными модами.

При наличии спин-орбитального взаимодействия появляется зависимость действия от угла поворота между орбитальной и спиновой системами координат и вырождение снимается. Мы не будем выводить спин-орбитальный член в действии на основании микроскопической теории, а ограничимся феноменологическим подходом, позволяющим записать его в низшем порядке по градиентам:

$$S_{so} = -\lambda_{so} \int \mathbf{n} \boldsymbol{\nu} \operatorname{div} \mathbf{n} \frac{d^2 r dt}{2\pi}, \tag{19}$$

где п — среднее направление спина, ν — нормаль к 2D-плоскости. Предполагается некоторая асимметрия, выделяющая направление ν . Это выражение T-инвариантно и изотропно в 2D-плоскости. Можно показать, что постоянная λ_{so} связана с затравочной спин-орбитальной постоянной: $\lambda_{so} = \lambda_0 E_1/\hbar\omega_c$. Затравочная постоянная λ_0 входит в спин-орбитальный гамильтониан [10] $H_{so} = \lambda_0 \epsilon^{zkj} p_j \sigma_k$, где p_j — импульс электрона, ϵ^{zjk} — абсолютно антисимметричный тензор. Величина S_{so} может быть записана в терминах эйлеровых углов:

$$S_{so} = -\lambda_{so} \int \frac{d^2r dt}{2\pi} \sin^2\beta \left(\cos\alpha \partial_x \beta + \sin\alpha \partial_y \beta\right). \tag{20}$$

Из-за малости спин-орбитального взаимодействия можно в первом приближении подставить стационарное решение [7] $\beta=\beta_0({\bf r}),\ \alpha=Q\varphi+\gamma$ (где Q — целое число, φ — полярный угол) в выражение для спин-орбитальной энергии, что дает

$$E_{so} = \lambda_{so} \int \sin^2 \beta_0 \cos ((Q - 1)\varphi + \gamma) \frac{d^2 r}{2\pi}.$$

Для $Q \neq 1$ эта энергия равна нулю в результате интегрирования по углу и вырождение в первом порядке по λ_{so} остается. Мы рассмотрим случай Q=1, когда минимальная

энергия достигается при $\gamma=\pi$, если $\lambda_{so}d\beta_0/dr>0$, или при $\gamma=0$, если $\lambda_{so}d\beta_0/dr<0$. В этом случае возникает специфическая мода, в которой колеблется угол γ и меняется размер ядра скирмиона.

Для определения собственных частот такой радиально-угловой моды выпишем уравнения движения, получаемые вариацией действия, линеаризованные около минимального решения [7]:

$$-i\omega\alpha_1\sin\beta_0 + J\left(\Delta\beta_1 + \sin^2\beta_0\nabla\alpha_0\nabla\alpha_1 + \sin2\beta_0(\nabla\alpha_0)^2\beta_1\right) + \frac{\delta^2 E_{ZC}}{(\delta\beta)^2}\beta_1 = 0,$$
 (21)

$$i\omega\beta_1\sin\beta_0 + J\nabla\left(\sin^2\beta_0\nabla\alpha_1 + \beta_1\sin2\beta_0\nabla\alpha_0\right) + \lambda_{so}\sin^2\beta_0\frac{d\beta_0}{dr}\alpha_1 = 0.$$
 (22)

Величиной $\delta^2 E_{ZC}/(\delta\beta)^2$ обозначена вторая производная по β от суммы зеемановской и кулоновской энергий, взятая при стационарном значении. Эти уравнения содержат большую величину $J=E_1/4$, но операторы, пропорциональные J, имеют нетривиальные решения, обращающие их в нуль: $\alpha_1=\gamma={\rm const},\ \beta_1=r\partial_\tau\beta_0$. Поэтому низкочастотные колебания будут определяться решениями этого вида, причем нужно как обычно, рассмотреть проекции уравнений на соответствующие собственные функции. Первое уравнение следует умножить на единицу, второе — на $rd\beta_0/dr$ и каждое проинтегрировать по пространственным переменным. При этом члены, содержащие J, приравниваются нулю, и мы получаем систему линейных уравнений

$$i\omega c_1 \int \sin \beta_0 \left(r \frac{\partial \beta_0}{\partial r} \right) d^2 r = \lambda_{so} \gamma \int \sin^2 \beta_0 \frac{\partial \beta_0}{\partial r} d^2 r \tag{23}$$

И

$$-i\omega\gamma\int\sin\beta_0\left(r\frac{\partial\beta_0}{\partial r}\right)d^2r = c_1\int\left(r\frac{\partial\beta_0}{\partial r}\right)^2\frac{\delta^2E_{cZ}}{(\delta\beta)^2}d^2r. \tag{24}$$

Нули определителя этой системы уравнений дают собственную частоту:

$$\hbar^{2}\omega^{2} = \frac{|\lambda_{so}| \int \sin^{2}\beta_{0} \frac{\partial\beta_{0}}{\partial r} \frac{d^{2}r}{2\pi} \int \frac{d^{2}r}{2\pi} \left(r \frac{\partial\beta_{0}}{\partial r}\right)^{2} \frac{\delta^{2}E_{ZC}}{(\delta\beta)^{2}}}{\left(\int \sin\beta_{0}r \frac{\partial\beta_{0}}{\partial r} dr\right)^{2}} \sim \frac{|\lambda_{so}|g\mu_{B}H}{L_{c} \ln \frac{L^{*}}{L_{c}}}.$$
 (25)

Здесь $L^* = \sqrt{|g|\mu_B H/J}$ — расстояние, на котором сравниваются зеемановская и градиентная энергии в скирмионе, размер скирмиона

$$L_c = \left(\frac{|g|\mu_B H}{J} \ln \frac{L^*}{L_c}\right)^{1/3}$$

(см., например, [11]). (Длины измеряются в единицах l_H .) При этих колебаниях меняется одновременно и размер скирмиона L_c , и угол γ между спиновыми и орбитальными осями.

Существует также рассмотренная в работе [12] коллективная мода, соответствующая трансляциям скирмиона как целого, когда матрица вращения $U(\mathbf{r} - \mathbf{X})$ зависит от

положения центра скирмиона X(t). Аналогично нулевой вращательной моде в действии существует линейный по скорости X член, описывающий взаимодействие с другими коллективными колебаниями, так что действие имеет вид

$$\delta S = \int \mathbf{X}(\cos\beta_0 \nabla \alpha_1 - \beta_1 \sin\beta_0 \nabla \alpha_0) \frac{d^2 r dt}{2\pi} + \int \frac{m_s(\mathbf{X})^2}{2} dt + S(\alpha_1, \beta_1).$$

Масса скирмиона $m_s = |Q|\hbar^2/E_0l_H^2$) была определена ранее [12]. Из-за того что скирмион имеет заряд eQ, имеется дополнительный член в действии с вектор-потенциалом внешнего магнитного поля. Переходя к гамильтонову выражению для действия, аналогично выводу формулы (21) и с учетом других коллективных мод получим

$$S = \int M\gamma dt + \int \mathbf{P}\dot{\mathbf{X}}dt - \frac{1}{2I}\int (M-l)^2 dt - \frac{1}{2m_s}\int \left(\mathbf{P} - \frac{eQ}{c}\mathbf{A}_0 - \mathbf{a}\right)^2 dt + S(\alpha_1, \beta_1),$$

где

$$\begin{split} l &= \hbar \int \beta_1 \sin \beta_0 \frac{d^2 r}{2\pi l_H^2}, \\ \mathbf{a} &= \hbar \int (\cos \beta_0 \nabla \alpha_1 - \beta_1 \sin \beta_0 \nabla \alpha_0) \frac{d^2 r}{2\pi l_H^2}, \\ m_s &= |Q| \hbar / E_0 l_H^2, \quad I = \frac{\hbar^2}{2E_0} \int \sin^2 \beta_0 \frac{d^2 r}{2\pi l_H^2}. \end{split}$$

Настоящая работа выполнена при поддержке фонда USA CRDF (грант 452, RP1-273) и Российского фонда фундаментальных исследований (проект 98-02-16245) и РФФИ-INTAS (проект 95-0675).

Литература

- 1. S. Sondhi, A. Kahlrede, S. Kivelson, and E. Rezai, Phys. Rev. B 47, 16418 (1993).
- 2. H. Fertig, L. Brey, R. Cote, and A. MacDonald, Phys. Rev. B 50, 11018 (1994).
- 3. K. Moon, H. Mori, Kun Yang, S. Girvin, and A. MacDonald, Phys. Rev. B 51, 5138 (1995).
- 4. Yu. Bychkov, T. Maniv, and I. Vagner, Phys. Rev. B 53, 10148 (1995).
- С. Иорданский, С. Плясунов, Письма ЖЭТФ 65, 248 (1997).
- 6. С. Иорданский, С. Плясунов, ЖЭТФ 112, 1899, cond-mat/9706236 (1997).
- 7. А. А. Белавин, А. М. Поляков, Письма ЖЭТФ 22, 245 (1975).
- 8. Yu. Nazarov and A. Khaetski, Phys. Rev. Lett. 80, 576 (1998).
- 9. Р. Раджараман, Солитоны и инстантоны в квантовой теории поля, Мир, Москва (1985).
- 10. Ю. Бычков, Э. Рашба, Письма ЖЭТФ 39, 78 (1984).
- 11. S. Iordanski, J. Phys. Condens. Matt. 10, L247 (1998).
- 12. С. Иорданский, Письма ЖЭТФ 66, 459 (1997).