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The transition оС liquid 3 Не t~ the superf1uid В phase in aerogel at Т = О is considered. It 
is shown that in а magnetic field, the quantum phase transition with respect to pressure is split in 
two. The amountoC splitting 6 Р is estimated. The components оС the superf1uid density tensor 
are ca1culated near the critical pressures. • 

1. The behavior of superfluid ЗНе in а silica aerogel environment is а subject of recent 
experimental investigations [1-4]. The scattering of quasiparticles оп а random network of Si02 

strands affects superfluid correlations, thus considerably modifying the phase diagram of liquid 
З Не in the millikelvin temperature range. Interesting observations [4] were rnade concerning 
the behavior of ЗНе at Т ~ О where, in contrast to bulk liquid ЗНе, superfluidity shows ир 
only аЬоуе some critical density Ре (at pressures Р > Ре)' 

The situation at Т = О for ЗНе in aerogel was recently considered theoretically [5]. lt is 
shown that according to а simple model with scattering effects characterized Ьу the quasiparticle 
mеап free path l = v р7, the critical pressure Ре is given Ьу the equation 

Тео{Ре ) = ТЕ/1Г7, InrE = С ~ 0.577, (1) 

where Тео{Р) is the P-dependent critical temperature of the transition of bulk ЗНе to the 
superfluid state. Near Ре the gap function (the order parameter) is 

2 _ 3 Тео{Р) 
Д (Р) - 72О{Р - Ре) ln Тео{Ре )' (2) 

The investigation carried out in Ref. 5 is based оп the assumption that the superfluid 
state at Р > Ре is of the В -phase type. lt should Ье remembered that the appearance of а 
B-phase-like state in aerogel at low pressures is expected when the rnagnetic contribution to 
quasiparticle scattering events is suppressed Ьу 4Не layers covering the silica strands [3]. lп 
what follows we extend the results of Ref. 5 to the В phase in а rnagnetic field. Our obvious 
motivation is to explore ап expected rnagnetic splitting of quantum phase transition at Т = О. 
The behavior ofmagnetically distorted ЗНе-В in aerogel at Т ~ Те has been considered Ьу us 
in Ref. 6. 

2.. In what follows we use quasiclassical Green's functions (the ~-integrated Gorkov 
functions) in the Matsubara representation: 

g,.,(k) = ~ Jc",{k,Od~ = g",i + &uu, 
Z1Г 

(3) 
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where the unit vector k specifies the location оп the normal state Fermi sphere. 
In an external magnetic field Н = НоЬ, the functions у", and !'" satisfy а set of equations 

("'о = l.A.Ioh, I.A.IO = ,но): 

z 
g",lit + &.,.:ls + I.A.IC", - '2",of", = о, 

i 
g",.:ls + &"lit + I.A.I f", - '2",0(., = о. 

(4) 

Here spin-singlet and spin-triplet order parameters .:ls and lit, respectively, are the 
components of the matrix 

(5) 

which is found according to the self-consistency equation 

.&(k) = 1I'Т L ( V(k,k')!", (k') ), 

'" 
(6) 

where V(k, k') is the Cooper pairing interaction and angle brackets denote averaging across the 
Fermi surface. 

The set of equations (4) should ~ supplemented Ьу the «boundary» conditions 

g2 + g2 + 12 + f 2= 1 
"" ~ JUJ UJ , 

g",&., + f",C", = о. 
(7) 

The structure of Eqs. (4) and (7) implies that 

f", = a",g"" С'" = a",g"" &., = -a",a",g"" (8) 

and the solution is easily obtained: 

signl.A.l 

(9) 

This is оur starting point when considering the properties of the magnetized В phase. In 
order to take into account the quasiparticles scattering оп aerogel spatial irregularities (1/ т тО), 
the «impurity»-induced renormalization ofthe frequencies I.A.I and l.A.Io and ofthe order parameter 
.& is to Ье performed according to а standard prescription: 

I.A.I -+ ,;; = I.A.I + iM.;" 

l.A.Io -+';;0 = I.A.IO - 2ЬМ.;" 

where the «impurity»-generated self-energies are given Ьу 
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МIA) = МIA) i + MlA)u = 2~ \ 91A)(k») , 

mlA) = (mlA) i + Щ"u)id'у = 2~ \ jlA)(k»). 
(11) 

Вefore proceeding, ап important comment should ье made. Since we are going to consider 
а superfluid state with p-wave Соорес pairing for which V(k,k') = 3g("'), from Eq. (6) it is 
certainly clear that L\s == О and At satisfies the equation 

L\t(k) = 97l"TL:\3"'C(k'»). 
'" 

(12) 

This does not теап, however, that in our starting expressions [or аlA) and аlA) we have to forget 
about the presence of L\s. The point is that when considering the «impurity» renormalization 
mlA)' the contribution stemrning from the spin-singlet part mlA) must ье taken into account. 
This invoIves the calculation of the superfluid densitytensor p~j), which is а response of the 
systt?m to the superfluid velocity field Vs and is contained in the expression for the supercurrent 

js = 27rikFN рТ L: \ k9W~iq(k»). 
IA) 

(13) 

Иеrе Vs is absorbed in q(k) = kF(kv~) and N F denotes the quasiparticle density of states 
at the Fermi level. As we noted in Ref. 6, to first order in Ч, the spin-singlet part mw+iq is 
proportional to (1/ r )woq and c~ntributes to p~s/ in the magnetized В phase in the aerogel 
environment. 

З. Now we tum to the calculation of equilibrium properties pf magnetized 3Не-В in а 
quasiparticle scattering medium. Noticing that in the absence of superflow (Ч = О) ~(k) is not 
renormalized in nonmagnetic scattering, and addressing Eqs. (9), it сап ье shown that to lowest 
order in the magnetic field strength, 

1 [L\- !(~II_ ~~~)~]. J (;;2 + ~2(k) 4 . 2 (;;2 + ~2 (;;2 + ~2 
(14) 

In this expression the longitudinal component of ~ = ~II +~.l is given Ьу 

(15) 

where the magnetic-field induced orbital anisotropy axis i is defined as [; = h!l-R!l-i with R!l-i 
being the components of ап orthogonal matrix of 3D relative spin-orbit rotations. We note 
also that 

(16) 

and in zero magnetic field L\II = L\.l = L\. 
Using Eqs. (12) and (14), and taking into account that 

1 А 
(;;=w- 2r(gw(k» (17) 
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with 

g - '" "'-
. (;; [1 + ~ (;;5~] 
у (;;2 + 1!!.2 8 (;;2 + 11,,2 (;;2 + I!!? ' 

equations for amplitudes .:111 (Р, Т) and,6,1- (Р, Т) сап ье readily derived. 

, 

(18) 

Let
A 

us consider first the planar phase (.:111 = О). Near the tranSition to the no~l state 

for .:11- (k) we obtain 

where w(T) = 1/47ГТТ. After simple averaging we obtain ап equation for .:11- (Р, Т): 

In the liinit Т -+ О (w -+ 00), it is found that for the planar phase 

(21) 

where .:12 (р) is given Ьу the Mineev solution (at t..IO = О), Eq. (2). The coefficient 15/16 in 
Eq. (21) is due to the averaging at .:111 = О (which gives ап answe~ analogous to the А phase). 

, As will Ье seen below, the solution (21) extends ир to the pressure Р = Fil where .:111 first 
appears. The new critical pressure Fil is given Ьу 

Tco(PII ) _ 4 2 

ln ТСО(Рс ) - 9(t..IOT) . (22) 

То show this we tum back to Eqs. (12) and (14) and, after simple calculations, а set of 
equations for;.:11- and .:111 is obtained (again in the limit Т = О): 

The solution of Eqs. (23) for .:111 =f О, .:11- =f О is (Р :::: P 11 ) 

2 _ 2 4 2 _ 3 Тсо(Р) 
.:1 11 (Р) -.:1 - -зt..1о - 2'ln т (р, ' 

т со 11) 

2 2 5 2 
.:11-(Р) = .:1 11 (Р) + '4t..1o' 

It сап Ье verified that .:1~,,<PII) matches the solution (21). 
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Finally 'we conclude that at Р < Ре the normal state is realized; in the pressure range 
Ре < Р < Р" the planar рЬме is stabilized; and at Р > Pj, а magnetically distorted В рЬме 
appears. 

At Pj, а discontinuity of the magnetic susceptibility takes place (similar to а discontinuity 
of the compressibility at Ре)' ln order to demonstrate this property the supertluid contribution 
Фs to the thermodynamic potential density is to Ье constructed. ln the Ginzburg-Landau 
region (which we consider) 

(25) 

It is easely verified that the solutions of Eqs. (23) realize the minima of Фs. 
At zero magnetic field (""О = О) t...L = t." = t., and in this сме (see Ref. 5) 

(26) 

It сап Ье shown that in equilibrium the magnetic field contribution Фsм = Фs - Фsо is 

(27) 

This expression is certainly continuous at Р = Р". Оп the other hand, . . 

(28) 

which signals the discontinuity of magnetic susceptibility at Р". 
Now we shall estimate the value of 8Р = Pj, - Ре, which characterizes the magnetic 

splitting of the supertluid phase transition of ЗНе in aerogel at Т = О. According to Eq. (22), 

(29) 

so that 8 Р = аНg, where 

(30) 

Using ехреriщепtаl data оп Тео(Р), we find that at Ре = 7 bar the coefficient а ~ 2·10-2 
barj(kG)2 and increases gradually to а == 2.8· 10-2 barj(kG)2 at Ре = 10 bar. 

4. Now we tum to the caIculation of the supertluid density tensor 
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(8) ~ (8) ~ ~ (8) ~ ~ 
Pij - PII 'i'j + P.L (Oij -lilj). (31) 

For this purpose Eq. (13) is to ье used and 9';"+iq should ье constructed. Returning to Eqs. 
(9) and performing «impurity» renormalizations according to Eqs. (10), it сап ье shown that 

(1) = _. {42q+i~(&I1~» ~ ~a (1 _ ~.~) 42 _ 
9';"+iq ~ (~2 + 42)3/2 2 (~2+42)5/2 4 ~2 + 42 Ilq 

3 i~~a [ (1) 5 4П (1) ] ~o (3 . 42 ) ~ (1)} 
- 4 (~2+42)5/2 411 m,;" -'2 ~2+42 (&11,;,,) - (~2+42)3/2 1- '2 ~2+42 (М)т,;" . (32) 

As wi1l Ье seen shortly, т~) and m~) are proportional to V 8 • 

ТЬе renormalized frequencies ~ and ~O оЬеу 

_ ~ 1 3 ""0"'11 -2 ... 2 ) 

"" = "" + 2т ( (~2 + 42)1/2 + '8 (~2 + ~2)5/2 ' 

_ _ + ""о 11 - ( 42 ) 
""о - ""о 2т (~2 + 42)3/2 . 

(33) 

(34) 

In order to construct equations for т~) and m~) we have to address the expressions for 
!';"+iq and f';"+iq' In the lowest order in ""о and 48 

I =!:. """"о(м') - 2i",,248 
J/.OJ 2 (",,2 + 42)3/2 ' 

(35) 

(1) ~ "" (1) + ""о ___ 4__ ~ !+ -2 { - [( 3 2) 
!,;" - (~2 + 42)3/2 т,;" ~ 1 2 ~2 + 42 (М) ~ 

+ !:. (b~ ~1) _ 3 (М) (&11,;" »)] ~ (1) } 

2 т", -2 2 . 
"" +4 

(36) 

Now, according to Eq. (11) and using Eq. (33) for the renormalized frequency ~, we 
easily obtain the following equations for т~): 

(37) 

(38) 
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It is evident that bт~), which appears in Eq. (37), must ье calculated at "-'о = О. Addressing 
Eq. (38), we readily find that in this сме bт~) is given Ьу 

. . 

(39) 

Since in what foIlows we consider tlle Gll1Zburg-Laпdаu region (near Те or near Ре at 
т = О), а set of equations is to Ье used: 

(40) 

In the denominators of these expressions the term t} /:;} is retained. When considering the 
vicinity of Те, it is to Ье dropped as а higher-order correction. Оп the other hand, at Т == О 
this term must Ье preserved, as we shaIl see shortly, in order to avoid unphysicaI divergences 
stemming from the vicinity of,,-, = О. 

Тhe appearance ofm~) =f О is due to а mixing ofstates with Sz = О ofspin-singlet (В = О) 
and spin-triplet (В = 1) configurations in the presence of three factors: quasiparticle scattering 
(1/т =f О), magnetic field ("-'о =f О), and supercurrent (Q =f О). ' 

According to the definition of Q, the spin-singlet part m~) is absent from the planar phase 
(.1п ::: О). We begin оис consideration of p~j) with just this simple сме, for which in the 
Ginzburg-Landau regime, 

(41) 

(42) 

Now, using Eq. (13) for the supercurrent, it сап Ье easily shown that for the planar phase 

p(s) 2 1:J.2 
11 - Т'"' J. r; - 1г L...- 51w1З', 

'" (43) 

..."L = 1ГТ'"' -:ь.. - + ---..,,--p(s) 1:J.2 [4 1 ] 
Р ~ IwJЗ 5 6т 1"-' 1 + l:J.i/(;;2 

with w = "-' + (1/2r)sign,,-,. 
Considering the Iimit Т = О, we convert the ,,-,-summation to integration and, using the 

frequency renormaIization equation 

(44) 

pass to а new уалаЫе z(,,-,) ::: 2т(;;(,,-,). Рос fJ. = 2т.11.: « 1, 
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so that at Т == О 

1 е2 
2т(.о) ~ z - 1 +"3 z~ + 

7ГТ 2)"') ::: 2~ j dz(l - ~ :\ }( ... ). 
w I-.~/з 

Now, fcom Eqs. (43) it is readily obtained that at Т = О апд Ре < Р < l'Il 
(s) 

PlIl 2 
- ~ -5 е J.' 
Р , 

p(~) 2 ( 5 3 ) 
: ::: '5 е3.. 1 + '6 ln е3.. . 

(45) 

(46) 

(47) 

ТЬе еше with AJ. =f О апд АII =f О needs тиеЬ тосе effort. Несе both т~) and т~) 
contribute 10 the supereurrent. Starting from the general expression (13), Iinearizing with 
respect 10 q and using Eq. (32), after quite lengthy ealcu1ations the following answers for p~) 
апд pjt) асе obtained а! Т = О near the eritieal pressure РII (ell = 2:АII): 

p~) 1 (4 2 1 2) 1 2 3 - = - -еJ. + -е" + -еJ.lп-, 
р 255· 3 €}. 

.(48) 

~ = ~ -е2J. + _ е21' + _e2"ln _ + -а, (.0)0 _ -(2 _ In З).J!. (.0)0. 
(s) (2' З) 1 3 1 2 3 А2 2 

р 2 5 5 3 е3.. 6 I А2 16 А2 А2 
(49) 

ТЬе last term in Pj,') is а cOn1ribution of the spin-singlet eorrelations described Ьу т~). 
In zero magnetic field «(.0)0 = О), fcom Eqs. (48) апд (49) we immediateIy obtain that 

_1_' = Р J. = _е2 1 + -ln':"- . 
p(s) (s) 1 ( 2 3 ) 

р р 2 3 е 2 
(50) 

As а final.remark we point out that the results found in Ref. 5 сап ье readily tmnscribed 
to the case о' Т = О properties of nonmagnetic impurity-containing HTSC. In this situation, 
the transition temperature to the superconducting state ТсО for а рисе sample дереnds оп the 
level of the hole doping х so that the critical concentration of holes хс at which а quantum 
phase transition should occur а! Т = О is given Ьу Eq. (1) with (Ье pressure Р being substituted 
Ьу the hole concentration х. ТЬе superconducting order parameter А(х) near хс is given Ьу 

(51) 

Here we Ьауе used а simple d-wave pairing model, where in the weak coupIing 
approximation the coefficient а = 6/5. ТЬе two possibilities in Eq. (51) take into account that 
in genera1 тсо(х) is а nonmonotortic funetion of х. For instance, in l..a2_",Sr",Cu04, тсо(х) is 
bell-shaped with а maximum at an optimal doping Xopt. 
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