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SUPERFLUIDITY OF *He IN AEROGEL AT T =0 IN A MAGNETIC FIELD
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The transition of liquid *He to the superfluid B phase in aerogel at T' = 0 is considered. It
is shown that in a magnetic field, the quantum phase transition with respect to pressure is split in
two. The amount of splitting § P is estimated. The components of the superfluid density tensor
are calculated near the critical pressures. .

1. The behavior of superfluid *He in a silica aerogel environment is a subject of recent
experimental investigations [1-4]. The scattering of quasiparticles on a random network of SiO,
strands affects superfluid correlations, thus considerably modifying the phase diagram of liquid
3He in the millikelvin temperature range. Interesting observations [4] were made concerning
the behavior of *He at T ~ 0 where, in contrast to bulk liquid *He, superfluidity shows up
only above some critical density p. (at pressures P > P.). '

The situation at T' = 0 for *He in aerogel was recently considered theoretically [5]. Ttis
shown that according to a simple model with scattering effects characterized by the quasiparticle
mean free path [ = vpT, the critical pressure P, is given by the equation

Too(P) = vg /7T, Inyg =C ~ 0.577, (1)

where T.o(P) is the P-dependent critical temperature of the transition of bulk 3He to the
superfluid state. Near P, the gap function (the order parameter) is

2= 305 o TeolP)
AY(P) = S0P~ P)In 750,

(2

The investigation carried out in Ref. 5 is based on the assumption that the superfluid
state at P > P, is of the B-phase type. It should be remembered that the appearance of a
B-phase-like state in aerogel at low pressures is expected when the magnetic contribution to
quasiparticle scattering events is suppressed by “He layers covering the silica strands [3]. In
what follows we extend the results of Ref. 5 to the B phase in a magnetic field. Our obvious
motivation is to explore an expected magnetic splitting of quantum phase transition at 7" = 0.
The behavior of magnetically distorted 3He-B in aerogel at T' ~ T has been considered by us
in Ref. 6.

2.. In what follows we use quasiclassical Green’s functions (the ¢-integrated Gorkov
functions) in the Matsubara representation:

P B A <,
dul = o~ [ Guk o) = 9.1+ w0,

fuo =1 [ Auode = i+ Lovid,, )
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where the unit vector k specifies the locatlon on the normal state Fermi sphere.
In an external magnetic field H = Hyh, the functions § g and fw satisfy a set of equatlons
(wo = woh, wy = vHo):

Guds + gl + W, — %wo f. =0,
' ; ()]
gwAs + gwAt + wfw - Ewofw = 0

Here spin-singlet and spin-triplet order parameters A, and A, respectlvely, are the
components of the matrix

AR = (8,1 +adYid,, )
which is found according to the self-consistency equation

A(R)=wTZ<v<ﬁ,ﬁ'>fw(lé’)>, B ©6)

where V(ﬁ, K ) is the Cooper pairing interaction and angle brackets denote averaging across the
Fermi surface.
The set of equations (4) should be supplemented by the «boundary» conditions

G+

: 7
98w t ful, = 0.
The structure of Egs. (4) and (7) implies that
fw = 0ww, f.= A 9w, 8 = —a,3,0u, (8)
and the solution is easily obtained:
- signw
9o Vi+al/1+a2’ ©
“ 1 2iA, + woa,, Q = 1 21A; + woa,,
w3 T Aa, ' Y 2 w-As,

This is our starting point when considering the properties of the magnetized B phase. In
order to take into account the quasiparticles scattering on aerogel spatial irregularities (1/7 # 0),
the «impurity»-induced renormalization of the frequencies w and wy and of the order parameter
A is to be performed according to a standard prescription:

w—w=w+iM, » ,
wy — @y = wy — 2hM, (10)
A®) — &g = A(k) + g, |
where the «impurity»-generated self-energies are given by
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) (11
My = (my1+ m,6)ic, = ;<fw(f()>.

Before proceeding, an‘important comment should be made. Since we are going to consider
a superfluid state with p-wave Cooper pairing for which V (k,k’) = 3g(kk’), from Eq. (6) it is °
certainly clear that A, = 0 and A, satisfies the equation

A®) = grT Z<3Rﬁ'r&(ﬁ')>. | (12)

This does not mean, however, that in our starting expressions for a,, and a,, we have to forget
about the presence of A;. The point is that when considering the «impurity» renormalization -
m,,, the contribution stemming from the spin-singlet part m, must be taken into account.
This involves the calculation of the superfluid density tensor pﬁ’), which is a response of the

system to the superfluid velocity field v, and is contained in the cxpresion for the supercurrent
js = 2mkFNFTZ<|2gQ;i,,(R)>. : (13)

Here v, is absorbed in q(f() =kp (lA(vs) and N denotes the quasiparticle density of states
at the Fermi level. As we noted in Ref. 6, to first order in g, the spin-singlet part mg+;q is
proportional to (1/7)wyg and contnbutes to p“) in the magnetized B phase in the aerogel
environment.

3. Now we tum to the calculation of equilibrium properties of magnetized 3He Bin a
quasiparticle scattering medium. Noticing that in the absence of superflow (¢ = 0) A(k) is not
renormalized in nonmagnetic scattering, and addressing Egs. (9), it can be shown that to lowest
order in the magnetic field strength,

2 ~2
fg(ﬁ)=—l——[A—l<Al,f§ | A) “s ] (14)

. ~ 2 ~ 2
1/Q2+A2(k) 4 202+ A D+ A

In this expression the longitudinal component of A=A + A, is given by

Ay (k) = (hA(k)h = A (P, T)(kh, (15)

where the magnetic-field induced orbital anisotropy axis 1 is defined as l;- = ﬁ“Rm- with R,;
being the components of an orthogonal matrix of 3D relative spin-orbit rotations. We note
also that ’

A(k) = Af(P, T)(ik)? + A% (P, T)(l x k)2, (16)

and in zero magnetic field A| = A = A.
Using Egs. (12) and (14), and taking into account that

- 1 ~ ,
& =w = 5-(9®) (17)

756



XIT®D, 1999, 115, euin. 2 Superfluidity of *He in aerogel. . .

with
- 2
PR R P - R (18)
YT VoAl 82+ A2+ A7)
equations for amplitudes A (P, T') and A 1 (P, T) can be readily derived.
Let us consider first the planar phase (A = 0). Near the transition to the normal state

for Ay (k) we obtain

(2) R R -
[+ (3+w) - (3)] avlly = 3 VOU2E0) G Geyea, ) +

T.o 2 4 QnT)?
(©)] R '
+Y %—fz—@@i)mk), (9

where w(T') = 1/4xT'7. After simple averaging we obtain an equation for A, (P, T):

To, (1 1 1 (1 w oo (1. \] (ALY
Lt =) | =tw])+|= —tw | +— ~+ — = Q.
‘Ai{m T w<2> 1/’<2 “’) n[s'/’ ) YT\ |\ 0. (20)

In the limit T — 0 (w — 00), it is found that fbr the planar phase
AL (P)= —AZ(P) | @1)

where A%(P) is given by the Mineev solution (at wy = 0), Eq. (2). The coefficient 15/16 in
Eq. (21) is due to the averaging at Aj.= 0 (which gives an answer analogous to the A phase).

. As will be seen below, the solution (21) extends up to the pressure P = B where A first
appears. The new critical pressure P“ is given by

wo(P
Ta() = 4 , (22)

In
Teo(P) 9

To show this we turn back to Egs. (12) and (14) and, after simple calculations, a set of
equations for'A; and A is obtained (again in the limit 7" = 0):

1
Ay [Ai + B(A?L —Aﬁ) —Az] =0,

2 3 3
A [Aﬁ + 5] —al) - a4t Ewé] =0.
The solution of Egs. (23) for Ay #0, A, #0is (P > P))
4 3 T.o(P)
2 AZ 2 - - c0
A”(P) 3 7_2 n TCO(P”) 9 (24)

5
AL(P) = Aj(P) + Juwy.

It can be verified that A (P) matches the solution (21).
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Finally -we conclude that at P < P, the normal state is realized; in the pressure range -
P. < P < Pj the planar phase is stabilized; and at P > P, a magnetically distorted B phase
appears. :

At P a discontinuity of the magnetic susceptibility takes place (similar to a discontinuity
of the compressibility at P,). In order to demonstrate this property the superfluid contribution
®g to the thermodynamic potential density is to be constructed. In the Ginzburg—ILandau
region (which we consider)

2 TCO(P) 2 1 TcO(P) 1 2 2
by = = -1 - = - = +
s 3NF{ T B T3 M Ty T 2 A
+ r At 4 lat g —1—(A2 — A%)? (25)
6 |t 270 s TR '

It is easely verified that the solutions of Egs. (23) realize the minima of ®g.
At zero magnetic field (wy = 0) Ay = A = A, and in this case (see Ref. 5)
T,

Teo(P) \ ,
Tco(Pc)A +?A]. o (26)

¢5=¢50=NF[—IH

It can be shown that in equilibrium the magnetic field contribution ®gp = &g — dgy is

9 Teo(P)
—In’ == . <P<P,
L | 1" Ty FesPsh
(equ) — \
o el @
c0 2 2
- - = P > Py.
5 [ln Tl 9(wov') ](on) ) > P

This expression is certainly continuous at P = P. On the other hand,

62q>(;?‘;) _ 0, P=F, )
OH; —gvaF(wor)% P=Pp,

which signals the discontinuity of magnetic susceptibility at Pj.
Now we shall estimate the value of 6P = P|| — P, which characterizes the magnetic
splitting of the superfluid phase transition of *He in aerogel at T = 0. According to Eq. (22),

1 6T'c(] 4 2
T.o(P.) ( 9P )Pc 6P ~ 9(w0T) ) | (29)
so that P = o H?, where
_(2e\'  (y/ks)
. @ ( 3n ) T.o(P.)0T./0P)p," (30)

Using experimental data on To(P), we find that at P, = 7 bar the coefficient a =~ 21072
bar/(kG)? and increases gradually to o ~ 2.8 - 102 bar/(kG)? at P, = 10 bar.
4. Now we turn to the calculation of the superfluid density tensor
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= P"”l i+ o065 — L)) (31)

For this purpose Eq. (13) is ‘to be used and ga+iq Should be constructed. Returning to Eqgs.
(9) and performing «impurity» renormalizations according to Egs. (10), it can be shown that -

o [ Agrioamdy 3 @ 5 oA,
Go+ig = o \3/2 2 (2+A2)5/? T 42+ A2 14-
@+ 4H (w )

L~ ~2 A2 ~ . A2 .
_2 ‘—.i%" [A“mg)_é _”_(Anlg))} —— wo (1__3_ A° ) (M)mg)} . (32

4 (w2+A2)5/2 2 2+A2 (w2+A2)3/2 2 O24A2
As will be seen shortly, m'” and m ) are proportional to v,.
The renormalized frequencws @ and w, obey
_ o 1 3 oA
=w+— + = .
v 2r<@2 A2 B (@t A 33)

2
4+ W A”
ozt z<m>—/> 9

In order to construct equations for mo and mg) we have to address the expressions for
fo+iq and f5454. In the lowest order in wy and A,

4 wwo(hA) — 2iw?A, ,

~2 2
W, __ @ mywlf,_3_4 rad
fu ( 2 +A2)3/2 {m o [(1 2 02 + A2 (hA)L:)

i (foa_ 5 (BA)AMS)
~ 5(m¢ 25555 - | 9

Now, according to Eq. (11) and using Eq. (33) for the renormalized frequency @, we
easily obtain the following equations for mg):

@ Al M _
W o @i )™

=1 @o? [z @2 hm + (I_E_L)Q], (37

21 (@* +A2)32[2 2+ A? 207+ A2

where Q = ((i(A)q) = EkFA"ivs.
(1)

A little more algebra is needed to construct an equation for m_’:
(.Um(l) z —————-(A'n(l))A =
27 (&2 + A%)3/2
 ong 3 & i0Q  1: )
= —_ + - — +
{ <(w2 + A2)3/2> 4 (UJ2 + A2)3/2 [(QZ + A2 3hm h

“
2r
(hm(l))A + (Am(l))h (M)z(zwq + Am«g))A l +
< WY > 2< (@ + A% >]

W()w ([) '
2 @+ Az)s/z h} (38)
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It is evident that ﬁmf;f’ , which appearsin Eq. (37), must be calculated at wg = 0. Addressing
Eq. (38), we readily find that in this case hmg) is given by

-~ 2 . -~ 2 )
(w “—JL—JmW— Q. (39)

21 (&* + A2)3/2 27 (2 + A%)3/?

Since in what follows we consider the Ginzburg—Landau region (near 7. or near P, at
T = 0), a set of equations is to be used:

) o D0 (/Dhm) +Q/d

© T O 21|w| +A2)0?

. 3iQ /@

h L, 7 ey
Mo = o] + a2

(40)
In the denominators of these expressions the term A2/&? is retained. When considering the
vicinity of T, it is to be dropped as a higher-order correction. On the other hand, at T = 0
this term must be preserved, as we shall see shortly, in order to avoid unphysical divergences
stemming from the vicinity of w = 0.

The appearance of m(” # 0 is due to a mixing of states with S, = 0 of spin-singlet (S = 0)
and spin-triplet (S = 1) conﬁguratxons in the presence of three factors: quasiparticle scattermg
(1/7 # 0), magnetic field (wy # 0), and supercurrent (Q # O)

According to the definition of @), the spin-singlet part m ) is absent from the planar phase
(A = 0). We begin our consideration of p(s) with just thlS simple case, for which in the
Ginzburg—Landau regime, :

gg’:—l—F[A_Lq+1wA_Lm ] (41)
J/
wo i _3AigaL

Aym; .
+ T 6r|w| +AZ a2

42)

Now, using Eq. ‘(13) for the supercurrent, it can be easily shown that for the planar phase

(s)

P” _ 2A2L
- ZSW, \

(s) 2

P _ Al [4 1 ]
TS S|t —————

p gw[s 67l + 47 /27

w1th w=w+(1/27)signw. :
Considering the limit T = 0, we convert the w-summation to mtegratlon and, using the
frequency renormalization equation

1__1_<.___1__>=£ (44)
w2+ AL ]2/ @

pass to a new variable z(w) = 27w(w). Fore; =274, < 1,
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1 € '
2'rwzz-l+-§;% , (45)
sothatat T =0
T 26}
T3 yege [ a-3S, (46)
l-—ez /3

Now, from Egs. (43) it is readily obtained that at T'= 0 and P, < P < P}

ALl
p 5

47
fi}.~22 1+élni @
p'—SGJ' 6 €

The case with A; # 0 and A # 0 needs much more effort. Here both mg) and mg)
contribute to the supercurrent. Starting from the general expression (13), linearizing with
respect to ¢ and using Eq. (32), after quite lengthy calculations the following answers for p (‘)

and pff) are obtained at T' = @ near the critical pressure Py (¢ = 274y):

(s)
(s} '
P”_l22 3, L, 3 1,4 Il‘*’u
P —'2'(5 _L+5€“ +’3'€"1n§+66nA2 '—'—( —In3)A2 A2 (49)

The last term in p( is a contribution of the spin-singlet correlations described by m“)
In zero magnetic field (wy = 0), from Eqs. (48) and (49) we immediately obtain that

(s) (s)

p
L -ﬂi—=152(1+3m3). (50)
p p 2

As a final remark we point out that the results found in Ref. 5 can be readily transcribed
to the case of T = 0 properties of nonmagnetic impurity-containing HTSC. In this situation,
the transition temperature to the superconducting state T, for a pure sample depends on the
level of the hole doping x so that the critical concentration of holes z. at which a quantum
phase transition should occur at 7 = 0 is given by Eq. (1) with the pressure P being substituted
_ by the hole concentration z. The superconducting order parameter A(z) near z. is given by

TCO(Z.) {G(.'L' - .Z’c), (aTCO/ax)z, > 01

AXz) ~ % In (51)

Teofzc) (z. — %), (aTCO/az)xc < 0.

Here we have used a simple d-wave pairing model,v where in the weak coupling
approximation the coefficient @ = 6/5. The two possibilities in Eq. (51) take into account that
in general T,o(z) is a nonmonotonic function of z. For instance, in La,_.Sr.CuQs, T.o(z) is
bell-shaped with a maximum at an optimal doping x,p:.
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