КИНЕТИКА НЕПРЯМОЙ ФОТОЛЮМИНЕСЦЕНЦИИ В ДВОЙНЫХ КВАНТОВЫХ ЯМАХ GaAs/Al_xGa_{1-x}As С БОЛЬШОЙ АМПЛИТУДОЙ ХАОТИЧЕСКОГО ПОТЕНЦИАЛА

Л. В. Бутов^{*}, А. В. Минцев, А. И. Филин

Институт физики твердого тела Российской академии наук 142432, Черноголовка, Московская область, Россия

К. Эберл†

Max-Planck-Institut für Festkörperforschung 70569, Stuttgart, Deutschland

Поступила в редакцию 10 ноября 1998 г.

Исследована кинетика непрямой фотолюминесценции GaAs/Al_xGa_{1-x}As двойных квантовых ям, характеризующихся большой амплитудой хаотического потенциала (ширина линии непрямой фотолюминесценции сравнима с энергией связи непрямого экситона) в магнитных полях $B \le 12$ Тл при низких температурах $T \ge 1.3$ К. Найдено, что время непрямой рекомбинации увеличивается с ростом магнитного поля и уменьшается с ростом температуры. Показано, что кинетика непрямой фотолюминесценции соответствует одноэкситонной рекомбинации в присутствии хаотического потенциала в плоскости двойных квантовых ям. Изменение времени безызлучательной рекомбинации обсуждается в терминах изменения транспорта непрямых экситонов к центрам безызлучательной рекомбинации, а изменение времени излучательной рекомбинации — в терминах изменения заполнения оптически активных экситонных состояний и радиуса локализации непрямых экситонов. Кинетика фотолюминесценции непрямых экситонов, наблюдаемая в исследуемых GaAs/Al_xGa_{1-x}As-ямах с большой амплитудой хаотического потенциала, качественно отличается от кинетики фотолюминесценции непрямых экситонов в AlAs/GaAs-ямах и GaAs/Al_xGa_{1-x}As-ямах с малой амплитудой хаотического потенциала. Рассмотрена временная эволюция спектров фотолюминесценции в прямом и непрямом режимах. Показано, что эволюция спектров фотолюминесценции соответствует экситонной рекомбинации в хаотическом потенциале.

1. ВВЕДЕНИЕ

Нейтральная система пространственно-разделенных двумерных слоев электронов и дырок в двойных квантовых ямах широко исследуется в последние годы [1–12]. Интерес к данной системе связан, главным образом, с возможностью конструирования структур с требуемой архитектурой, а также с малой скоростью непрямой (межъямной) рекомбинации. Так как эффективная температура носителей определяется соотношением между временем релаксации и временем рекомбинации, малая скорость непрямой рекомбинации позволяет реализовать нейтральную электрон-дырочную систему большой плотности с малой эффективной температурой. В ряде теоретических работ было

^{*}E-mail: butov@issp.ac.ru

[†]K. Eberl.

показано, что при низких температурах в системе пространственно-разделенных слоев электронов и дырок в двойных квантовых ямах возможно наблюдение коллективных состояний, в том числе конденсата непрямых экситонов, аналогичного конденсату Бозе—Эйнштейна бозонов [13–20]. Интересным частным случаем является система пространственно-разделенных слоев электронов и дырок в сильном магнитном поле перпендикулярном плоскости ямы. Так, в ряде теоретических работ было показано, что критические условия для конденсации экситонов улучшаются в сильном магнитном поле вследствие полного квантования энергетического спектра электронов и дырок [15, 16], а также вследствие снятия спинового вырождения. Теоретически было предсказано, что при малом расстоянии между электронным и дырочным слоями, $d \leq l_B$ ($l_B = \sqrt{\hbar c/eB}$ — магнитная длина), основное состояние системы определяется электрон-дырочным взаимодействием и является экситонным конденсатом, тогда как при большом расстоянии, $d \geq l_B$, основное состояние определяется электрон-электронным и дырочно-дырочным взаимодействием и является несжимаемой ферми-жидкостью или вигнеровским кристаллом электронов и дырок [18, 19].

Неизбежным свойством полупроводниковых квантовых ям и двойных квантовых ям является существование хаотического потенциала в плоскости ямы, вызванного шероховатостями интерфейсов, флуктуациями состава, дефектами и примесями. Хаотический потенциал качественно влияет на свойства системы, в частности, сильный хаотический потенциал разрушает возможные коллективные состояния (см. [12] и ссылки в работе). Теория системы пространственно-разделенных слоев электронов и дырок в присутствии хаотического потенциала в настоящее время не развита; для параметризации величины потенциала мы будем использовать отношение энергии связи непрямого экситона к ширине линии непрямой люминесценции, определяемой амплитудой хаотического потенциала, E_I/Δ_{PL} . По соотношению параметров d, l_B, E_I и Δ_{PL} (в нулевом магнитном поле аналогом l_B является боровский радиус непрямого экситона) можно выделить четыре класса пространственно-разделенных электрон-дырочных систем в ямах. В1-класс: двойные квантовые ямы с малым эффективным расстоянием между слоями и малым беспорядком ($d \leq l_B, E_I \gg \Delta_{PL}$). Для этого класса ям, согласно теоретическим работам [13-20], основным состоянием системы при низких температурах должен быть экситонный конденсат, при этом критические условия для конденсации экситонов улучшаются в сильном магнитном поле [15, 16]. В2-класс: двойные квантовые ямы с малым расстоянием между слоями и большим беспорядком ($d \leq l_B$, $E_I \lesssim \Delta_{PL}$). А1-класс: двойные квантовые ямы с большим расстоянием между слоями и малым беспорядком ($d \gtrsim l_B, E_I \gg \Delta_{PL}$). Для этого класса ям, согласно теоретическим работам [18, 19], основным состоянием системы при низких температурах должны быть несжимаемая ферми-жидкость или вигнеровский кристалл электронов и дырок. А2-класс: двойные квантовые ямы с большим расстоянием между слоями и большим беспорядком ($d \gtrsim l_B, E_I \lesssim \Delta_{PL}$). Данную классификации следует дополнить плотностью носителей и температурой, определяющими фазовые границы. Переходы между классами, по-видимому, являются плавными. Так, переход между В1- и А1-, а также между В2- и А2-классами можно осуществить при увеличении магнитного поля, тогда как переход между В1- и В2-, а также между А1- и А2-классами можно проследить при рассмотрении двойных квантовых ям с разной величиной беспорядка.

При экспериментальном исследовании $\Gamma - X_z$ AlAs/GaAs-ям, характеризующихся малым расстоянием между электронным и дырочным слоями, $d \approx 3-4$ нм, $E_I \sim 10$ мэВ, Δ_{PL} от 3 до 6 мэВ, и относящимися поэтому к В1- и В2-классам, были обнаружены эф-

12*

фекты, свидетельствующие о конденсации непрямых экситонов в сильных магнитных полях при низких температурах: аномальное увеличение коэффициента диффузии и скорости излучательной рекомбинации экситонов, интерпретированные как появление сверхтекучести экситонов и суперлюминесценции экситонного конденсата [12], а также аномально большие флуктуации интегральной интенсивности фотолюминесценции экситонов, интерпретированные как критические флуктуации вблизи фазового перехода, связанные с нестабильностью конденсатных доменов [8]. При увеличении беспорядка в исследованных AlAs/GaAs-ямах указанные аномалии ослабевали и пропадали, что соответствовало переходу от В1- к В2-классу [12].

Кинетика фотолюминесценции в двойных квантовых ямах, относящихся к A1-классу, исследовалась к настоящему времени в нулевом магнитном поле. А именно, исследовались двойные квантовые GaAs/Al_uGa_{K*u}As-ямы с $d \approx 12$ нм, $E_I \sim 5$ мэВ и $\Delta_{PL} = 1.3$ мэВ [21]. Было обнаружено резкое увеличение интенсивности и сужение линии фотолюминесценции непрямых экситонов после выключения импульсного лазерного возбуждения при низких температурах и высоких плотностях экситонов. Эффект объяснялся резким увеличением заполнения оптически активных экситонных 2D-состояний [21].

В данной работе исследуются оптические свойства системы пространственно-разделенных слоев электронов и дырок в ямах, относящихся к A2-классу. А именно, исследуются GaAs/Al_uGa_{K*u}As-ямы с $d \sim 11$ нм и $E_I \sim \Delta_{PL} \sim 6$ мэВ. Экспериментальные данные сравниваются с аналогичными зависимостями для двойных квантовых ям B1-, B2- и A1-классов.

2. ОБРАЗЕЦ И ЭКСПЕРИМЕНТАЛЬНАЯ МЕТОДИКА

Гетероструктура $n^+ - i - n^+$ с одиночной GaAs/Al₄Ga_{K*4}As-ямой, перестраивающаяся при изменении напряжения на затворе, была выращена методом молекулярно-лучевой эпитаксии на n^+ -GaAs-подложке. Слой *i* состоит из двух квантовых GaAs-ям шириной 5 нм, разделенных Al_{0.35}Ga_{0.65}As-барьером толщиной 5.5 нм и окруженных Al_{0.35}Ga_{0.65}As-барьерами толщиной 55 нм. Зонная диаграмма слоя *i* структуры в непрямом режиме показана на рис. 1. Слои n^+ толщиной 1100 нм со стороны подложки и 110 нм со стороны поверхности легированы Si с концентрацией $N_{Si} = 5 \cdot 10^{K7}$ см^{*3}. Для улучшения электрического контакта в 10 нм от поверхности проведено δ -легирование с $N_{Si} = 10^{K3}$ см^{*2}. Вследствие высокой концентрации легирования слои n^+ имеют металлический характер, и приложенное между подложкой и поверхностью затворное напряжение, V_g , убывает в *i*-слое. Фронтальный затвор был выполнен в форме рамки вокруг мезы с окном 200 × 200 мкм².

Образец помещался в гелиевый криостат со сверхпроводящим соленоидом. Возбуждение и регистрация проводились через оптический световод диаметром 200 мкм, расположенный в 300 мкм от поверхности мезы. Носители возбуждались импульсным полупроводниковым лазером ($\hbar \omega = 1.85$ эВ). Импульс лазера имел приблизительно прямоутольную форму длительностью ~ 50 нс с фронтами ~ 1 нс. Временное разрешение системы регистрации составляло 0.5 нс. Для регистрации сигнала использовались двойной решеточный монохроматор, фотоумножитель и система счета фотонов с временным разрешением.

3. КИНЕТИКА ФОТОЛЮМИНЕСЦЕНЦИИ В НЕПРЯМОМ РЕЖИМЕ

Непрямой режим в $n^+ - i - n^+$ -структуре GaAs/Al_uGa_{K*u}As-ям реализуется при конечных V_g . Зависимость спектров и кинетик фотолюминесценции от V_g показана на рис. 1*a*, *e*. При $V_g \leq 0.3$ В энергия линии фотолюминесценции практически не зависит от V_g , а затухание последней характеризуется коротким временем жизни. Следовательно, основным состоянием системы при $V_g \leq 0.3$ В является прямой экситон. При $V_g \gtrsim 0.4$ В увеличение V_g приводит к приблизительно линейному энергетическому сдвигу основной линии фотолюминесценции и увеличению времени затухания последней. Следовательно, при $V_g \gtrsim 0.4$ В в основном состоянии системы электроны и дырки находятся в разных квантовых ямах, что соответствует непрямому режиму. Величина сдвига линии непрямой фотолюминесценции определяется электростатической энергией eFd, где e — заряд электрона, F — электрическое поле в *z*-направлении. Переход от прямого к непрямому режиму происходит в ненулевом электрическом поле F_{D*I} , что соответствует экситонной рекомбинации – энергиями прямого и непрямого экситонов $\mathscr{C}_D = E_g - E_D$ и $\mathscr{C}_I = E_g - E_I - eFd$, где E_g — энергетическая щель, включающая энергии квантования электрона и дырки в двойной квантовой яме, E_D и E_I —

Рис. 1. Интегральный по времени спектр фотолюминесценции (a, b) и кинетика фотолюминесценции, измеренная в максимуме основной линии (s, c), в зависимости от затворного напряжения (a, b) и магнитного поля (b, c) при T = 1.3 K и $W_{eIII} = 10$ BT/cm². Штриховая линия соответствует заднему фронту импульса лазерного возбуждения длительностью 50 нс. Спектры и кинетики смещены по вертикальной оси для ясности. Линии прямой и непрямой фотолюминесценций обозначены соответственно D и I. Зонная диаграмма GaAs/AlшGa[1шAs-ямы показана на вставке

энергии связи прямого и непрямого экситонов. При $F = F_{D*I}$ энергетическая разница между одночастичными прямым и непрямым парными состояниями равна разнице между энергиями связи прямого и непрямого экситонов: $eF_{D*I}d = E_D - E_I$ (см. [7,9] и ссылки в работах).

Ширина линии непрямого экитона определяется хаотическим потенциалом в плоскости двойной квантовой ямы. Можно выделить несколько типов беспорядка, дающих основной вклад в неоднородное уширение линии непрямой фотолюминесценции: (а) флуктуации интерфейсов, (б) флуктуации электрического поля в *z*-направлении, (в) заряженные примеси (существуют и другие типы беспорядка, такие как флуктуации состава, нейтральные примеси и дефекты, дающие, как правило, меньший вклад в беспорядок). Флуктуации электрического поля в *z*-направлении приводят к синфазным флуктуациям потенциала для электрона и для дырки, поэтому их можно рассматривать как флуктуации потенциала для центра масс экситона. Заряженные примеси приводят к противофазным флуктуациям потенциала для электрона и для дырки, сильные флуктуации, обусловленные заряженными примесями, могут привести к разрыву экситона и независимой локализации электрона и дырки в локальных минимумах хаотического потенциала [11]. Флуктуации интерфейсов приводят к синфазным флуктуациям потенциала для электрона и дырки в одиночных квантовых ямах; для непрямого экситона (электроно-дырочной пары) в GaAs/AluGak+uAs-ямах флуктуации интерфейсов создают независимые флуктуации потенциала для электрона и дырки. Флуктуации электрического поля в *z*-направлении определяются, главным образом, флуктуациями протяженности участка, на котором убывает затворное напряжение; для минимизации таких флуктуаций слои n^+ должны обладать хорошей проводимостью, а слой i должен быть хорошим диэлектриком: тогда область, в которой убывает затворное напряжение, четко определена и есть слой *i*. Так как флуктуации электрического поля в *z*-направлении являются специфическими для непрямых экситонов в двойных квантовых ямах, их относительный вклад в неоднородное уширение линии непрямой фотолюминесценции может быть оценен из сравнения ширин линий прямой и непрямой фотолюминесценций. В исследуемой GaAs/AluGa_{K*U}As-яме ширина линии непрямой фотолюминесценции (6.5 мэВ при $V_q = 0.8$ В) даже меньше, чем прямой (14.7 мэВ в прямом режиме при $V_{g} = 0$ и 9.4 мэВ в непрямом режиме при $V_{g} = 0.8$ В), что говорит о пренебрежимо малом вкладе флуктуаций электрического поля в уширение линии. Квантовые ямы в исследуемой структуре являются узкими, 5 нм соответствует 18 монослоям. В узких ямах основной вклад в неоднородное уширение линии дают флуктуации интерфейсов. Так, в исследуемой двойной квантовой яме флуктуация ширины ямы на 1 монослой с бесконечным размером террасы приводит к изменению энергии δ_m электрона на \sim 5 мэВ и энергии дырки на ~ 2 мэВ. Конечность размера террас приводит к квантованию энергии электронов и дырок в плоскости, что создает состояния во всем интервале энергий от 0 до δ_m . Наблюдаемая ширина линии непрямой фотолюминесценции соответствует δ_m (рис. 1*a*), что подтверждает доминирующий вклад флуктуаций интерфейсов в уширение линии. Таким образом, основной причиной большой величины хаотического потенциала в исследуемых GaAs/AluGa_{K*}uAs-ямах является малая ширина квантовых ям. Форма линии фотолюминесценции отражает энергетическое распределение экситонов по локальным энергетическим минимумам в хаотическом потенциале. В уширение линии прямой фотолюминесценции входит, по-видимому, и то, что ширины двух квантовых ям отличаются и линия прямой фотолюминесценции включает две спектрально неразрешающиеся линии от двух квантовых ям.

В исследуемой структуре в непрямом режиме в рекомбинацию непрямых экситонов вносят вклад как излучательная, так и безызлучательная рекомбинации. Наблюдаемое уменьшение скорости рекомбинации со временем задержки (см., например, рис. 1), характерно как для излучательной, так и для безызлучательной рекомбинации непрямых экситонов. Скорость излучательной рекомбинации экситона пропорциональна заполнению оптически активных экситонных 2D-состояний (с квазиимпульсами $k \leq k_0 = \mathscr{C}/\hbar c$, где c — скорость света в среде) и возрастает с увеличением размера волновой функции центра масс экситона в плоскости, называемой когерентной площадью экситона (при достижении когерентной длины обратного волнового вектора излучаемого света величина скорости излучательной рекомбинации выходит на уровень насыщения) [22-26]. Когерентная площадь определяется радиусом локализации и длиной рассеяния экситона [22-26]. Вследствие разброса радиуса локализации в хаотическом потенциале время излучательной рекомбинации экситонов неоднородно по плоскости квантовой ямы, что приводит к уменьшению скорости излучательной рекомбинации с увеличением времени задержки, так как в процессе затухания фотолюминесценции в первую очередь рекомбинируют экситоны с большим радиусом локализации. Кроме того, с увеличением времени задержки все больший вклад в интенсивность фотолюминесценции дают электроны и дырки независимо локализованные в локальных минимумах хаотического потенциала и имеющие вследствие пространственного разделения в плоскости (дополнительного к разделению в *z*-направлении для непрямых электрон-дырочных пар) малую скорость излучательной рекомбинации. Так как в процессе затухания фотолюминесценции в первую очередь рекомбинируют независимо локализованные электроны и дырки с меньшим разделением в плоскости, скорость излучательной рекомбинации независимо локализованных электронов и дырок также убывает с увеличением времени задержки [11]. В узких двойных квантовых ямах, характеризующихся малым коэффициентом диффузии непрямых экситонов, безызлучательная рекомбинация определяется транспортом экситонов, к центрам безызлучательной рекомбинации [12, 27-29]. Уменьшение скорости безызлучательной рекомбинации со временем задержки связано с монотонным уменьшением коэффициента диффузии экситонов, вследствие того что в спектре доминируют все более и более локализованные экситоны, не успевшие к этому времени достигнуть центров безызлучательной рекомбинации и прорекомбинировать.

Зависимости спектров и кинетик непрямой фотолюминесценции от магнитного поля и температуры показаны на рис. 1ю, е и 2. Зависимости спектров и кинетик непрямой фотолюминесценции от температуры в сильных магнитных полях, $B \le 12$ Тл, качественно не отличаются от аналогичных зависимостей при B = 0. Соответствующее время начального затухания фотолюминесценции, τ , а также интегральная интенсивность непрямой фотолюминесценции, I_{PL} , представлены на рис. 3. Время τ увеличивается с ростом магнитного поля (рис. 1*г*, 3*а*) и уменьшается с ростом температуры (рис. 2ю, 3ю, *в*).

Наблюдаемая кинетика фотолюминесценции в GaAs/Al_uGa_{K+u}As-ямах качественно отличается от кинетики в исследованных ямах B1-, B2- и A1-классов: в отличие от GaAs/Al_uGa_{K+u}As-ям с малым беспорядком (A1-класса) [21] в исследуемых GaAs/Al_uGa_{K+u}As-ямах не наблюдается резкого увеличения интенсивности фотолюминесценции после окончания действия импульса лазерного возбуждения; в отличие от AlAs/GaAs-ям (B1-класса) [8, 12] в исследуемых GaAs/Al_uGa_{K+u}As-ямах не наблюдается резкого уменьшения τ в сильных магнитных полях. Резкое увеличение интенсивности

Рис. 2. Интегральный по времени спектр фотолюминесценции (a) и кинетика непрямой фотолюминесценции, измеренная в максимуме непрямой линии (b), в зависимости от температуры при V_g = 0.8 В, W_{eIII} = 10 Вт/см² и B = 0. Спектры и кинетики смещены по вертикальной оси для ясности. Штриховая линия соответствует заднему фронту импульса лазерного возбуждения длительностью 50 нс. Линии прямой и непрямой фотолюминесценций обозначены соответственно D и I

фотолюминесценции после окончания импульса лазерного возбуждения не наблюдается в исследуемой яме с большим хаотическим потенциалом, потому что большой потенциал размывает границы между оптически активными (с $k \le k_0$) и пассивными $(k > k_0)$ экситонными состояниями [30], и, следовательно, возможное резкое увеличение заполнения оптически активных состояний не приводит к увеличению интенсивности фотолюминесценции. Отсутствие резкого уменьшения τ в сильных магнитных полях, наблюдаемого в AlAs/GaAs-ямах (B1-класса) и свидетельствующего о появлении сверхтекучести экситонов [12], указывает на отсутствие коллективных эффектов в исследуемых ямах с большим хаотическим потенциалом и малой энергией связи непрямого экситона (A2-класса), что соответствует ожидаемому (см. разд. 1).

Рис. 3. Зависимости измеренных времени непрямой рекомбинации τ (■) и интегральной интенсивности непрямой фотолюминесценции, а также выведенных времен излучательной и безызлучательной непрямой рекомбинаций, τ_r (◦) и τ_{nr} (Δ), от магнитного поля при V_q = 0.8 B, W_e_{III} = 10 BT/см²

Наблюдаемое монотонное увеличение времени жизни с ростом магнитного поля характерно как для излучательной, так и для безызлучательной одноэкситонной рекомбинации в хаотическом потенциале. Изменение излучательного времени жизни экситонов с увеличением магнитного поля определяется соотношением между увеличением силы осциллятора экситона вследствие уменьшения радиуса экситона [31] и уменьшением силы осциллятора экситона вследствие уменьшения радиуса локализации экситона [22-26] в магнитном поле, обусловленного увеличением массы магнитоэкситона [31, 32]. Увеличение безызлучательного времени жизни экситона (определяемого транспортом к центрам безызлучательной рекомбинации) с ростом поля обусловлено уменьшением коэффициента диффузии вследствие увеличения массы магнитоэкситона [33]. Уменьшение коэффициента диффузии с ростом магнитного поля наблюдалось также для непрямых экситонов в AlAs/GaAs-ямах в малых магнитных полях [12] и для прямых экситонов в одиночных GaAs/Al_{μ}Ga_{$K*\mu$}As-ямах [34]. Отметим, что монотонное увеличение излучательного и безызлучательного времен жизни с ростом магнитного поля характерно также и для независимо локализованных электронов и дырок и обусловлено уменьшением радиуса локализации носителей.

Для разделения излучательного и безызлучательного времен жизни использован метод, описанный в работе [12]. Излучательное время жизни τ_r может быть непосредственно выведено из измеряемых полного времени жизни τ и интегральной по времени интенсивности фотолюминесценции I_{PL} . В случае моноэкспоненциального затухания фотолюминесценции $\tau_r = (G/I_{PL})\tau$, где G — скорость генерации электрон-дырочных пар в двойных квантовых ямах (слабая неэкспоненциальность вносит незначительные количественные поправки [12]). Величина G неизвестна, для ее оценки квантовый выход при параметрах, соответствующих максимальной I_{PL} , принимался равным единице. Тогда $G = I_{max}$ и $\tau_r = (I_{max}/I_{PL})\tau$, где I_{max} — максимальная интегральная интенсивность фотолюминесценции, наблюдаемая в исследуемой двойной квантовой яме при $V_g = 0.3$ В (рис. 1*a*). По измеренному τ и определенному τ_r безызлучательное время жизни τ_{nr} находилось по формуле $\tau^{-1} = \tau_r^{-1} + \tau_{nr}^{-1}$. Определенные таким образом τ_r и τ_{nr} показаны на рис. 3.

Отметим, что определение зависимости τ_r от параметра указанным выше методом является верным, если G не зависит от данного параметра. Это условие выполнялось при исследованиях AlAs/GaAs-ям [12]. Однако это условие не выполняется в описываемых исследованиях GaAs/Al_xGa_{1-x}As-ям. Энергия фотона при фотовозбуждении всего на 100 мэВ ниже энергии Al_{0.35}Ga_{0.65}As-барьера, поэтому вследствие эффекта Франца— Келдыша, а также вследствие хвостов плотности состояний в $Al_xGa_{1-x}As$ поглощение в барьерных слоях было существенным. Концентрация носителей, генерируемых в барьерных слоях, в двойных квантовых ямах вносила заметный вклад в G, сравнимый с генерацией в слоях GaAs. Так, увеличение интегральной интенсивности фотолюминесценции при малом приложенном напряжении на затворе (рис. 1) связано с увеличением G вследствие дрейфа носителей, генерируемых в барьерных слоях (при фотовозбуждении с энергией фотона сильно меньшей ширины запрещенной зоны барьерных слоев этот эффект отсутствует). Дрейф носителей, генерируемых в барьерных слоях, в двойных квантовых ямах может зависеть от магнитного поля и температуры. Поэтому величина G не является независимой от параметров, и описанный выше метод определения зависимости au_r от магнитного поля и температуры из измеряемых au и I_{PL} не является вполне корректным для данного эксперимента. Кроме того, в определение абсолютной величины τ_r и τ_{nr} , а также зависимости τ_{nr} от магнитного поля и температуры войдет ошибка в оценке квантового выхода при параметрах, соответствующих максимальной I_{PL} . Тем не менее используемый метод позволяет проследить качественные изменения τ_r и τ_{nr} в зависимости от магнитного поля и температуры.

На рис. 3 видно, что τ_r слабо зависит от магнитного поля, а τ_{nr} монотонно увеличивается с ростом поля, что соответствует одноэкситонному поведению, описанному выше. С ростом температуры τ_r увеличивается, а τ_{nr} уменьшается, рис. 3 (противоположные изменения τ_r и τ_{nr} , возможно, приводят к слабой немонотонности изменения au от температуры, при этом возможный рост au при малых температурах не выходит за рамки экспериментальной погрешности, рис. 2, 3). Уменьшение τ_{nr} с ростом температуры характерно как для одноэкситонной рекомбинации, так и для рекомбинации независимо локализованных электронов и дырок, и связано с увеличением диффузии экситонов (электронов и дырок) к центрам безызлучательной рекомбинации вследствие их термической активации из локальных минимумов хаотического потенциала. Увеличение τ_r с ростом температуры характерно для экситонной рекомбинации вследствие уменьшения заполнения оптически активных экситонных состояний (для больцмановского распределения экситонов доля оптически активных экситонов с $k \leq k_0$ равна $1 - \exp(-E_0/k_BT)$, где $E_0 = \hbar^2 k_0^2/2m \sim 1$ K; при $T \gg E_0$ больцмановское распределение приводит к линейному увеличению излучательного времени жизни экситонов с ростом температуры) [22–26]. Однако наблюдаемое увеличение τ_r с ростом температуры противоречит модели рекомбинации независимо локализованных электронов и дырок, в рамках которой увеличение температуры должно приводить к увеличению перекрытия волновых функций электрона и дырки вследствие их делокализации. Из этого следует, что хаотический потенциал в рассматриваемой двойной квантовой яме недостаточно

Рис. 4. Интегральный по времени спектр фотолюминесценции, нормированный на плотность лазерного возбуждения (*a*), и кинетика непрямой фотолюминесценции, измеренная в максимуме непрямой линии (*b*), в зависимости от плотности лазерного возбуждения при $V_g = 0.8$ B, = 1.3 K, B = 0 и 12 Тл. Спектры и кинетики смещены по вертикальной оси для ясности. Штриховая линия соответствует заднему фронту импульса лазерного возбуждения длительностью 50 нс. Линии прямой и непрямой фотолюминесценций обозначены соответственно D и I

силен для разрыва экситонов, и доля независимо локализованных электронов и дырок мала. Отметим, что зависимости τ_r и τ_{nr} от магнитного поля и температуры в исследуемой GaAs/Al_uGa_{K*u}As-яме качественно соответствуют аналогичным зависимостям в AlAs/GaAs-ямах (B1-класса) в слабых магнитных полях [12]. В обоих случаях эти зависимости соответствуют одноэкситонной рекомбинации.

Спектры и кинетики фотолюминесценции непрямых экситонов слабо зависят от плотности экситонов, задаваемой плотностью лазерного возбуждения W_{ell} (рис. 4). При $W_{ell} = 10 \text{ Br/cm}^2$ оценка плотности непрямых экситонов с временем жизни $\tau = 100$ нс составляет несколько единиц $\times 10^{K0}$ см^{*2}. С увеличением W_{ell} наблюдается сдвиг линии непрямых экситонов в сторону больших энергий. Такое поведение соответствует теоретически предсказанному увеличению энергии непрямых экситонов с ростом плотности [18, 20] и объясняется отталкивательным диполь-дипольным взаимодействием между непрямыми экситонами для малых плотностей экситонов и энергетическим сдвигом, обусловленным электрон-дырочных плотностей. Кроме того, так как вырождение нульмерного экситонного состояния в локальном минимуме хаотического потенциала конечно (в пренебрежении экситон-экситонным взаимодействием кратность вырождения $\sim S/a_B^2$, где S — площадь локального минимума, a_B — боровский радиус непрямого экситонов. Этот эффект также должен вносить вклад в наблюдаемое увеличение энергии экситонов.

С увеличением W_{ell} наблюдается небольшое уменьшение времени рекомбинации непрямых экситонов (рис. 4 ∞). Такое поведение характерно для одноэкситонной рекомбинации в хаотическом потенциале: с ростом плотности экситонов увеличивается радиус локализации экситонов (так как при малой плотности экситоны сильно локализованы в глубоких локальных минимумах потенциала), что приводит к уменьшению как времени излучательной рекомбинации экситонов [22–26], так и времени безызлучательной рекомбинации экситонов к центрам безызлучательной рекомбинации.

4. ЭВОЛЮЦИЯ СПЕКТРОВ ФОТОЛЮМИНЕСЦЕНЦИИ В ПРЯМОМ И НЕПРЯМОМ РЕЖИМАХ

В данном разделе рассматривается временная эволюция спектров фотолюминесценции, представляющая эволюцию энергетического распределения экситонов (электрон-дырочных пар) с весом, пропорциональным вероятности излучательной рекомбинации. Зависимость спектров фотолюминесценции от времени задержки показана на рис. 5а, ю соответственно для прямого и непрямого режима. После окончания импульса лазерного возбуждения как линия прямой фотолюминесценции в прямом режиме, так и линия непрямой фотолюминесценции в непрямом режиме монотонно сдвигаются в сторону меньших энергий с увеличением времени задержки (рис. 5). Аналогичное поведение наблюдается и в сильных магнитных полях. Сдвиг линии фотолюминесценции с увеличением времени задержки характерен как для экситонной рекомбинации, так и для рекомбинации независимо локализованных электрон-дырочных пар, а также как для излучательной, так и для безызлучательной рекомбинаций. Во-первых, с увеличением времени задержки средняя энергия фотовозбужденных экситонов (электрон-дырочных пар) в хаотическом потенциале понижается вследствие энергетической релаксации носителей: экситоны (электроны и дырки) мигрируют в плоскости двойной квантовой ямы в поисках более низкоэнергетических локальных минимумов потенциала с испусканием акустических фононов. Такой механизм энергетической релаксации экситонов в хаотическом потенциале был теоретически рассмотрен в работе [35] и наблюдался для непрямых экситонов в двойной квантовой яме [10, 36]. Во-вторых, с увеличением времени задержки средняя энергия экситонов

Рис. 5. Зависимость спектра прямой фотолюминесценции в прямом режиме при $V_g = 0$ (a) и непрямой фотолюминесценции в непрямом режиме при $V_g = 0.8$ В (b) от времени задержки, T = 1.3 K, B = 0, $W_{e III} = 10$ BT/см². Спектры измерены во временных интервалах, показанных на рис. в и г. Интегральные по времени спектры показаны сверху. Все спектры приведены к близкой интенсивности. Зависимости кинетики фотолюминесценции от энергии приведены при тех же параметрах (e, c); энергии регистрировавшегося сигнала показаны на рис. а и б штриховыми линиями. Спектры и кинетики смещены по вертикальной оси для ясности. Штриховая линия на рис. e, c соответствует заднему фронту импульса лазерного возбуждения длительностью 50 нс. Линии прямой и непрямой фотолюминесценций обозначены соответственно D и I

(электрон-дырочных пар) в хаотическом потенциале понижается, вследствие того что более высокоэнергетичные экситоны (независимо локализованные электроны и дырки) имеют большую скорость излучательной и безызлучательной рекомбинации. С увеличением энергии экситонов в хаотическом потенциале увеличивается их радиус локализации [37], что приводит к увеличению как излучательной скорости рекомбинации [22–26], так и безызлучательной рекомбинации, обусловленной транспортом экситонов к центрам безызлучательной рекомбинации. Для независимо локализованных электрон-дырочных пар более высокоэнергетичные пары также имеют большую скорость рекомбинации вследствие их большего радиуса локализации и соответствующего большего перекрытия между электроном и дыркой в плоскости [11].

Другим аспектом зависимости спектров фотолюминесценции от времени задержки является зависимость ее кинетики от энергии, показанная на рис. 5*в*, *г*. С уменьшением энергии затухание фотолюминесценции становится все более медленным, что соответствует зависимости спектров от времени (рис. 5a, ω) и обсуждалось выше.

Вследствие неоднородного уширения линий прямой и непрямой фотолюминесцен-

Рис. 6. Зависимость кинетики фотолюминесценции от энергии в смешанном режиме, соответствующем перекрытию прямой и непрямой линий фотолюминесценции $(V_g = 0.4 \text{ B})$ при $T = 1.3 \text{ K}, B = 0, W_{ex} = 10 \text{ Вт/см}^2$ (б). Энергии регистрировавшегося сигнала показаны штриховыми линиями на рис. *a*, представляющем интегральный по времени спектр. Кинетики смещены по вертикальной оси для ясности. Штриховая линия на рис. *b* соответствует заднему фронту импульса лазерного возбуждения длительностью 50 нс

ций при соответствующих затворных напряжениях может быть реализован смешанный режим, в котором энергии прямой и непрямой фотолюминесценций перекрываются. Такой режим энергетического резонанса между прямым и непрямым экситоном рассматривался в работе [38] при изучении фотолюминесценции нульмерных экситонных состояний в локальных минимумах хаотического потенциала (природных квантовых точках). В исследуемой двойной квантовой яме смешанный режим реализуется при $V_g \sim 0.2-0.5$ В, что видно из зависимости спектров фотолюминесценции от V_g (рис. 1). В исследуемой двойной квантовой яме, характеризующейся большей шириной линии прямой фотолюминесценции, чем непрямой, в смешанном режиме наблюдается специфическая зависимость кинетики фотолюминесценции от энергии (рис. 6), отличающаяся от монотонного уменьшения скорости рекомбинации с понижением энергии, наблюдаемого в прямом и непрямом режимах. А именно, в смешанном режиме скорость рекомбинации на начальных временах затухания фотолюминесценции немонотонно зависит от энергии, достигая минимума в области энергий, соответствующих непрямой фотолюминесценции (426 на рис. 6ь). Большая скорость рекомбинации прямой фотолюминесценции при энергиях ниже энергии непрямой фотолюминесценции (8, 9 на рис. 6ь) указывает на то, что расстояние между электроном и дыркой в плоскости меньше расстояния в z-направлении. Так как последнее равно ~ 11 нм, расстояние между электроном и дыркой в плоскости не превышает радиуса прямого экситона (\approx 10 нм) и тем более непрямого экситона, имеющего больший радиус вследствие меньшей энергии связи (\approx 20 нм) [7]. Малое расстояние между электроном и дыркой в плоскости указывает на то, что экситонная рекомбинация доминирует над рекомбинацией независимо локализованных электронов и дырок.

5. ВЫВОДЫ

В работе исследована кинетика непрямой фотолюминесценции в двойных квантовых ямах GaAs/Al_uGa_{K*u}As, характеризующихся большой амплитудой хаотического потенциала (ширина линии фотолюминесценции сравнима с энергией связи непрямого экситона) и большим расстоянием между электронным и дырочным слоями ($d \sim 11$ нм, что превышает магнитную длину при $B \gtrsim 5.5$ Тл) в магнитных полях $B \le 12$ Тл при низких температурах $T \ge 1.3$ К. Найдено, что время непрямой рекомбинации τ увеличивается с ростом магнитного поля и уменьшается с ростом температуры. Из анализа изменения τ и интегральной интенсивности фотолюминесценции выведены времена излучательной и безызлучательной непрямой рекомбинации, τ_r и τ_{nr} . Найдено, что $\tau_{n\tau}$ увеличивается с ростом магнитного поля и уменьшается с ростом температуры, а τ_r слабо зависит от магнитного поля и увеличивается с ростом температуры. Показано, что кинетика непрямой фотолюминесценции соответствует одноэкситонной рекомбинации в присутствии хаотического потенциала в плоскости двойной квантовой ямы. Изменение времени безызлучательной рекомбинации обсуждается в терминах изменения транспорта непрямых экситонов к центрам безызлучательной рекомбинации, а изменение времени излучательной рекомбинации — в терминах изменения заполнения оптически активных экситонных состояний и радиуса локализации непрямых экситонов. Кинетика фотолюминесценции непрямых экситонов, наблюдаемая в исследуемых GaAs/Al_{μ}Ga_{$K*\mu$}As-ямах с большой амплитудой хаотического потенциала, качественно отличается от кинетики фотолюминесценции непрямых экситонов в AlAs/GaAs- и GaAs/AluGa_{к*и}As-ямах с малой амплитудой хаотического потенциала.

Рассмотрена временная эволюция спектров фотолюминесценции в прямом и непрямом режимах. Найдено, что после окончания импульса лазерного возбуждения как прямая линия фотолюминесценции в прямом режиме, так и непрямая линия фотолюминесценции в непрямом режиме монотонно сдвигаются в сторону меньших энергий с увеличением времени задержки. Показано, что эволюция спектров фотолюминесценции соответствует экситонной рекомбинации в хаотическом потенциале и определяется энергетической релаксацией экситонов и зависимостью скорости рекомбинации от энергии.

Авторы благодарят В. Д. Кулаковского и С. Г. Тиходеева за обсуждение результатов работы, Российский фонд фундаментальных исследований (проект 98-02-18371)

и программу «Физика твердотельных наноструктур» (проект 97-1067) за финансовую поддержку.

Литература

- 1. Y. J. Chen, Emil S. Koteles, B. S. Elman, and C. A. Armiento, Phys. Rev. B 36, 4562 (1987).
- M. N. Islam, R. L. Hillman, D. A. B. Miller, D. S. Chemla, A. C. Gossard, and J. H. English, Appl. Phys. Lett. 50, 1098 (1987).
- 3. S. R. Andrews, C. M. Murray, R. A. Davies, and T. M. Kerr, Phys. Rev. B 37, 8198 (1988).
- 4. S. Charbonneau, M. L. W. Thewalt, E. S. Koteles, and B. Elman, Phys. Rev. B 38, 6287 (1988).
- 5. C. C. Phillips, R. Eccleston, and S. R. Andrews, Phys. Rev. B 40, 9760 (1989).
- T. Fukuzawa, E. E. Mendez, and J. M. Hong, Phys. Rev. Lett. 64, 3066 (1990); A. Alexandrou, J. A. Kash, E. E. Mendez, M. Zachau, J. M. Hong, T. Fukuzawa, and Y. Hase, Phys. Rev. B 42, 9225 (1990); J. A. Kash, M. Zachau, E. E. Mendez, J. M. Hong, and T. Fukuzawa, Phys. Rev. Lett. 66, 2247 (1991).
- 7. M. M. Dignam and J. E. Sipe, Phys. Rev. B 43, 4084 (1991).
- 8. L. V. Butov, A. Zrenner, G. Abstreiter, G. Böhm, and G. Weimann, Phys. Rev. Lett. 73, 304 (1994).
- L. V. Butov, A. Zrenner, G. Abstreiter, A. V. Petinova, and K. Eberl, Phys. Rev. B 52, 12153 (1995);
 A. B. Dzyubenko and A. L. Yablonskii, Phys. Rev. B 53, 16355 (1996).
- 10. J. E. Golub, S. D. Baranovskii, and P. Thomas, Phys. Rev. Lett. 78, 4261 (1997).
- V. B. Timofeev, A. I. Filin, A. V. Larionov, J. Zeman, G. Martinez, J. M. Hvam, D. Birkedal, and C. B. Sorensen, Europhys. Lett. 41, 535 (1998); V. B. Timofeev, A. V. Larionov, A. S. Ioselevich, J. Zeman, G. Martinez, J. Hvam, and K. Soerensen, Письма в ЖЭТФ 67, 580 (1998).
- 12. L. V. Butov and A. I. Filin, Phys. Rev. B 58, 1980 (1998).
- 13. Ю. Е. Лозовик, В. И. Юдсон, ЖЭТФ 71, 738 (1976).
- 14. С. И. Шевченко, ФНТ 2, 505 (1976);
- И. В. Лернер, Ю. Е. Лозовик, Письма в ЖЭТФ 27, 497 (1978); І. V. Lerner and Yu. E. Lozovik, J. Low Temp. Phys. 38, 333 (1980); И. В. Лернер, Ю. Е. Лозовик, ЖЭТФ 80, 1488 (1981).
- 16. Y. Kuramoto and C. Horie, Solid State Commun. 25, 713 (1978)
- 17. T. Fukuzawa, S. S. Kano, T. K. Gustafson, and T. Ogawa, Surf. Sci. 228, 482 (1990).
- 18. D. Yoshioka and A. H. MacDonald, J. Phys. Soc. Jap. 59, 4211 (1990).
- 19. X. M. Chen and J. J. Quinn, Phys. Rev. Lett. 67, 895 (1991).
- 20. X. Zhu, P. B. Littlewood, M. S. Hybersten, and T. M. Rice, Phys. Rev. Lett. 74, 1633 (1995).
- L. V. Butov, A. Imamoglu, A. V. Mintsev, K. L. Campman, and A. C. Gossard, Phys. Rev. B 59, № 3 (1999).
- J. Feldmann, G. Peter, E. O. Göbel, P. Dawson, K. Moore, C. Foxon, and R. J. Elliott, Phys. Rev. Lett. 59, 2337 (1987).
- 23. E. Hanamura, Phys. Rev. B 38, 1228 (1988).
- 24. L. C. Andreani, F. Tassone, and F. Bassani, Solid State Commun. 77, 641 (1991).
- 25. B. Deveaud, F. Clerot, N. Roy, K. Satzke, B. Sermage, and D. S. Katzer, Phys. Rev. Lett. 67, 2355 (1991).
- 26. D. S. Citrin, Phys. Rev. B 47, 3832 (1993).
- 27. F. Minami, K. Hirata, K. Era, T. Yao, and Y. Masumoto, Phys. Rev. B 36, 2875 (1987).
- M. Maaref, F. F. Charfi, D. Scalbert, C. Benoit a la Guillaume, and R. Planel, Phys. Stat. Sol. (b) 170, 637 (1992).
- 29. G. D. Gilliland, A. Antonelli, D. J. Wolford, K. K. Bajaj, J. Klem, and J. A. Bradley, Phys. Rev. Lett. 71, 3717 (1993).
- 30. W. Zhao, P. Stenius, and A. Imamoglu, Phys. Rev. B 56, 5306 (1997).
- 31. И. В. Лернер, Ю. Е. Лозовик, ЖЭТФ 78, 1167 (1980).

- 32. Ю. Е. Лозовик, А. М. Рувинский, ЖЭТФ 112, 1791 (1997).
- 33. A. B. Dzyubenko and G. E. W. Bauer, Phys. Rev. B 51, 14524 (1995).
- 34. M. Jiang, H. Wang, R. Merlin, D. G. Steel, and M. Cardona, Phys. Rev. B 48, 15476 (1993).
- 35. T. Takagahara, Phys. Rev. B 31, 6552 (1985).
- 36. Л. В. Бутов, А. И. Филин, ЖЭТФ 114, 1115 (1998).
- 37. Ж. С. Геворкян, Ю. Е. Лозовик, ФТТ 27, 1800 (1985).
- 38. A. Zrenner, L. V. Butov, M. Hagn, G. Abstreiter, G. Böhm, and G. Weimann, Phys. Rev. Lett. 72, 3382 (1994).