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LOW-TEMPERATURE SPECIFIC HEAT STUDY OF SrCu2(BO3)2WITH AN EXACTLY SOLVABLE GROUND STATEH. Kageyama*, K. Onizuka, Y. UedaThe Institute for Solid State Physi
s, The University of TokyoTokyo 106-8666, JapanM. Nohara, H. Suzuki, H. TakagiGraduate S
hool of Frontier S
ien
e, The University of TokyoTokyo 113-8656, JapanSubmitted 22 July 1999The spe
i�
 heat of a two-dimensional spin gap system SrCu2(BO3)2 realizing the Shastry�Sutherland modelwas measured between 1.3 K and 25 K under various magneti
 �elds up to 12 T. The analysis based on an iso-lated dimer model in a low temperature region revealed that the value of the spin gap at zero �eld is � = 34:4 K.It turned out that � de
reases in proportion with H due to the Zeeman splitting of the ex
ited triplet levels.This simplest model, however, fails to reprodu
e the result in a high temperature region, suggesting ratherstrong spin�spin 
orrelation of the system.PACS: 75.40.-s; 75.40.Cx1. INTRODUCTIONExa
tly solvable models have been extensively stud-ied in the area of strongly 
orrelated ele
tron systemsfor the purpose of elu
idating various exoti
 physi-
al phenomena be
ause some rigorous results 
an bederived from them, sometimes providing us a 
ru-
ial key to solve underlying problems of the phenom-ena. Su
h models, even if being far from realisti
, 
anremain tantalizing theoreti
al subje
ts owing to thebeauty of the solutions. For example, Majumdar andGhosh �rst proved an exa
t dimer ground state for aone-dimensional spin 
hain imposed a stringent 
ondi-tion on the �rst and se
ond nearest neighbor intera
-tions [1℄. Stimulated by this dis
overy, a number of sys-tems with the identi
al exa
t wave fun
tion have beenexplored from the theoreti
al point of view for one-,two-, and three-dimensions (see, for example Ref. [2℄and referen
es therein). However, in spite of extensivee�orts by 
hemists to tailor experimental examples, nomaterial had been dis
overed for a long time.Re
ently, we reported the magneti
 properties ofan inorgani
 
ompound SrCu2(BO3)2 whi
h 
onsistsof a two-dimensional orthogonal dimer latti
e, 
on
lud-ing that this material veri�es the Shastry�Sutherland*E-mail: kage�issp.u-tokyo.a
.jp

model whi
h has the exa
t dimer ground state [3�5℄.Although an imaginary latti
e Shastry and Sutherland
onsidered, i.e., a two-dimensional square latti
e withsome additional diagonal bonds, di�ers from the realone of SrCu2(BO3)2, these two are equivalent from atopologi
al point of view. The value of the spin gap wasestimated by various measurements like the tempera-ture variation of the magneti
 sus
eptibility (34 K) [6℄,ele
tron spin resonan
e (ESR; 34.7 K) [7℄ and so on. Itwas also found that the spin system for SrCu2(BO3)2 isfairly frustrated, lo
ated very 
lose to the 
riti
al point(J 0=J)
 = 0:70 between the exa
t dimer state and theNéel-ordered state [3; 5℄: the ratio of intradimer andinterdimer intera
tions, respe
tively, J = 100 K andJ 0 = 68 K, is 0.68. Furthermore, several quantizedplateaux were observed in the magnetization [3; 6; 8℄,whi
h originates from the extremely lo
alized tripletex
itations [5℄.In the present paper, we performed the spe
i�
 heatmeasurement of SrCu2(BO3)2 under magneti
 �elds Hin order to obtain more su�
ient information on theex
hange intera
tions as well as the e�e
t of the spingapped behavior upon H . The data were analyzed interms of an isolated dimer model, and the spin gapin the absen
e of the �eld was evaluated to be 34.4 K.Furthermore, it was found that appli
ation of magneti
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auses the Zeeman splitting of the ex
ited tripletstates, leading to a H-linear de
rease in the value ofthe spin gap. 2. EXPERIMENTThe spe
i�
 heat measurement was performed by aheat-relaxation method [9℄ in a temperature range be-tween 1.3 K and 25 K under magneti
 �elds between0 and 12 T. A bulk single 
rystal of SrCu2(BO3)2 wasused, whi
h was grown by the travelling solvent �oat-ing zone (TSFZ) method with an image furna
e usinga solvent, LiBO2 under �owing O2 gas (PO2 = 1 atm,99.99%). For a detailed pro
edure of the 
rystalgrowth, see Ref. [10℄. A pie
e of the 
rystal with thedimensions of 2 � 2 � 1 mm3 was atta
hed to a sap-phire substrate by a small amount of ApiezonN grease.The magneti
 �elds were applied perpendi
ular to theab plane, i.e., the Shastry�Sutherland latti
e. The sub-strate was weakly 
oupled by tungsten wires to a 
op-per heat sink. A bare 
hip of Cernox resistan
e sensor(Lake Shore) was used as a thermometer to minimizethe addenda heat 
apa
ity. The magneti
 �eld depen-den
e of the thermometer was 
alibrated using a 
apa
-itan
e thermometer. The heat 
apa
ity of the samplewas obtained by subtra
ting the addenda heat 
apa
-ity, whi
h was determined in a separate run withoutthe sample. No appre
iable magneti
 �eld dependen
ewas observed for the addenda heat 
apa
ity. The res-olution of the measurement was about 0.5%, and theabsolute a

ura
y determined from the measurement ofa Cu standard was better than 5%. The measurementswere performed with in
reasing temperature.3. RESULTS AND DISCUSSIONA total spe
i�
 heat divided by T;C=T , measuredin the absen
e of a magneti
 �eld is plotted as a fun
-tion of T by 
losed 
ir
les in Fig. 1. With de
reasingT from 15K, C=T rises, rea
hes a round maximumat 7.5K, and then falls rapidly, approa
hing naught.These behaviors, that is to say, the so-
alled S
hot-tky anomalies are typi
al of spin�singlet system witha �nite spin gap to a lowest ex
ited state. A grad-ual in
rease in C=T with T above 15 K 
omes fromthe phonon term, whi
h is in general known to vary asC / �T 3. As also shown in Fig. 1, qualitatively similarfeatures des
ribed above appear even when magneti
�elds are applied, indi
ating that the system still hasa spin�gapped ground state at least for H < 12 T. Aprominent di�eren
e is that a peak of C=T shifts tolower temperature with rising H : the temperature atwhi
h C=T�T 
urve rea
hes a maximum (= Tmax) for

Fig. 1. C=T versus T measured at H = 0 (�),6 T (Æ), 9 T (N), and 12 T (M). Dotted 
urves arethe 
al
ulations based on the isolated dimer modelfor �(0) = 34:4K. Dot-dashed 
urve represents thephonon term, �T 3 (� = 0:460mJ/K4)H = 6; 9 and 12 T is, respe
tively, 7.3, 6.9 and 6.8 K,implying a redu
tion in the a
tual size of the spin gap�(H) with H . This is quantitatively dis
ussed below.Be
ause of a la
k of an appropriate theory forthe spe
i�
 heat from the standpoint of the Shastry�Sutherland model, we will analyze the experimentaldata utilizing the isolated dimer model, where J 0 is ne-gle
ted and only J is taken into 
onsideration. Let usde�ne the magneti
 spe
i�
 heat under a 
ertain mag-neti
 �eld H as C(H). Take the example of H = 0,C(0) is given by the following formula,C(0) = 3R (�(0)=T )2 exp (�(0)=T )[1 + 3 exp (�(0)=T )℄2 ; (1)where R is 8.30 J/K � mol (see, for example, Ref. [11℄).Likewise, C(H) for a �nite magneti
 �eld is easily 
al-
ulated. In the low temperature limit, the magneti
spe
i�
 heat for the isolated dimer model 
an be re-du
ed to the following expression as long as the systemis in a gapful state:C(H) / T�2 exp (��(H)=T ) : (2)Thus CT 2 is plotted against 1=T in a logarithmi
 s
aleas shown in Fig. 2. One 
an see all data roughly fol-lows a linear reversal-temperature dependen
y. Us-ing the redu
ed expression of Eq. (2), we obtained�(0) = 35:9 K, �(6 T) = 27:5 K, �(9 T) = 22:5 K146
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Fig. 2. Logarithmi
 plot of CT 2 as a fun
tion of 1=T .Solid lines denote the �t to Eq. (2). Inset shows themagneti
 �eld variation of �(H)and �(12 T) = 16:8 K. The deviation from the 
al
ula-tions (the solid lines in Fig. 2) in lower temperature re-gion, more prominent in 
ase of lower �eld, is for a mostpart due to the phonon 
ontribution whi
h is negle
tedhere and will be in
luded later. The obtained values of�(H) are plotted in the inset of Fig. 2 as a fun
tion ofH . It is 
lear that �(H) de
reases nearly in proportionto H . The origin of the de
rease should be the Zeemansplitting of the ex
ited states. Namely, a three-fold de-genera
y of the lowest ex
ited triplet states (S = 1) inthe absen
e of the magneti
 �eld is lifted up by appliedmagneti
 �eld. �(0) was estimated to be 35.0 K usingthe following relation: �(H) = �(0) � g�BH , whereg is the g-fa
tor of the Cu2+ ele
tron spin and �B isthe Bohr magneton. An isotropi
 g-value, i.e., g = 2:0was assumed. The obtained value of �(0) is 
onsis-tent with that obtained in other measurements usinga single 
rystalline SrCu2(BO3)2 su
h as the magneti
sus
eptibility (34 K) [6℄, ESR (34.7 K) [7℄ and Boronnu
lear magneti
 resonan
e (B-NMR; 36 K) [12℄, Cu-NMR (35 K) [12℄, and neutron s
attering (34 K) [13℄.Next, let us take a phonon term into 
onsideration.Then, the total spe
i�
 heat is given by the sum of themagneti
 and phonon terms, C = C(H)+�T 3. Dot-ted 
urves in Fig. 1 denote the results of the globalleast-square �t in the T range well below the spin�gap

Fig. 3. Magneti
 entropy of SrCu2(BO3)2 at H = 0(
ir
les). Solid 
urve represents the magneti
 entropyfor the isolated dimer model for �(0) = 34:4Ksize, namely, 2:6K<T<4:8K for 0T, 2:4K<T<4:1Kfor 6T, 2:1K<T<3:5K for 9T, and 1:5K<T<2:8Kfor 12T, from whi
h we obtained on
e again a rea-sonable value of �(0) = 34:4K together with � == 0:460mJ/K4� mol and g = 2:03. The phonon 
ontri-bution is independently shown by the dot-dashed 
urvein Fig. 1, whi
h also seems to reprodu
e the tempera-ture dependen
e of the experiment above 15K.As demonstrated above, it seems that the isolateddimer model ni
ely reprodu
es the experimental data,providing a 
onsistent value of �(0). In a higher tem-perature region, however, the deviation between theexperiment and the theory is appre
iable. One 
annoti
e from Fig. 1 that experimental Tmax is lower as
ompared with the theoreti
al one in any magneti
�eld, and above Tmax the value of experimental C=T ismu
h suppressed. In Fig. 3, we show the T variation ofthe magneti
 entropy of the system for H = 0, whi
hshould rea
h 2R ln 2 ideally in the high-T limit. For
omparison, a theoreti
al 
urve for the isolated dimermodel for�(0) = 34:4K is shown by the solid line. Theexperimental entropy starts to deviate largely from thetheoreti
al one at around 10K. For example, the mag-neti
 entropy at 25K is still about and 74% of that forthe isolated dimer model and 62% of the full entropy.This indi
ates that the spin system of SrCu2(BO3)2 ise�e
tively 
orrelated over mu
h higher temperatures,and thus 
onsistent with the estimation of ex
hange
onstants by Miyahara and Ueda; J = 100K andJ 0 = 68K [5℄. It is noteworthy that the value of J147 10*
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al with that of �(0) for the isolated dimermodel, and J = 35K(= �(0)) derived from the iso-lated dimer model is too mu
h smaller.To summarize, we have measured the spe
i�
 heatof SrCu2(BO3)2 under various magneti
 �elds. Fromthe �tting based on the isolated dimer model, the gapwas estimated to be 34.4K, whi
h is in good agreementwith the values determined from other physi
al mea-surements. With in
reasing H , the gap de
reases inproportion with H . The simple dimer model, however,
an not explain the data at all in higher-temperatureregion, suggesting rather stronger 
orrelation of thespin system. We are looking forward to a theory basedon the Shastry�Sutherland model with J and J 0 to re-produ
e our spe
i�
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