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A theory of resistivity is developed for ferromagnetic semiconductors, including possibly manganites. It is based
on the interaction of the free and bound charge carriers with the magnetization of the crystal. The temperature
dependence of free energy for nonionized donors and free electrons is calculated for the spin-wave and param-
agnetic regions. In addition to the trapping by the ferromagnetic fluctuations (the ferromagnetic polarons), the
electron trapping by the random magnetization fluctuations as T' — oc is taken into account (the paramagnetic

polarons).

For the nondegenerate semiconductors, the theory makes it possible to explain a nonmonotonic

temperature dependence of the activation energy, with T' = 0 value lower than its value for T — oco. For degen-
erate semiconductors, the theory explains a metal-insulator transition that occurs in samples with relatively low
charge carrier density with increasing temperature. If the density is larger, a reentrant metal—insulator transition
should take place, so that the crystal is highly conductive as T — oc.

PACS: 75.50.Pp, 75.70.Pa

1. INTRODUCTION

The present paper deals with ferromagnetic semi-
conductors, both degenerate and nondegenerate. All
these semiconductors display a resistivity peak in the
vicinity of the Curie point T¢. The heavily doped
semiconductors displaying the metallic conductivity at
T = 0 can remain in the insulating state up to very
high temperatures after passing this peak; i.e., the
metal-insulator transition takes place with increasing
temperature. Still more heavily doped semiconductors
return to a highly conductive state after passing the
peak, i.e., the metal-insulator transition is reentrant
in them. The nondegenerate semiconductors have a
temperature-dependent activation energy for the con-
ductivity. This energy passes a maximum in the vicin-
ity of the Curie point. The high-temperature acti-
vation energy exceeds its low-temperature value. All
these materials display a colossal negative magnetore-
sistance [1].

In what follows, we talk about the donors and con-
duction electrons, although all the results obtained be-
low remain in force for the holes and acceptors. A
semiqualitative explanation of the properties of non-
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degenerate ferromagnetic semiconductors was given in
Refs. 1-3. The point is that the electron levels de-
crease with increasing magnetization. But the local
magnetization in the vicinity of a nonionized donor is
higher than the average magnetization in the crystal,
which was first pointed out in Refs. 4 and 5. In fact,
since the indirect exchange via free charge carriers is
exponentially small in nondegenerate semiconductors,
the average ferromagnetic ordering is supported only
by the superexchange. In contrast, the magnetization
near the donor is supported also by the indirect ex-
change via the donor electron. Hence, at finite tem-
peratures, the donor magnetization is destroyed to a
lesser degree than the average magnetization.

The donor overmagnetization means that with in-
creasing temperature, the donor level depth first in-
creases, since the conduction band bottom rises much
more rapidly than the donor level. But, with further
increase in temperature, the local ordering begins to
disappear. The level depth will then decrease with in-
creasing temperature. As a result, the charge carrier
density is minimal and the resistivity is maximal at a
certain temperature (to avoid a misunderstanding, the
magnetization dependence of the donor level depth and
of the free charge carrier density was not investigated
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in Refs. 4 and 5).

Unfortunately, the calculation [1-3] was carried out
under the assumption that the electron dwells only at
the magnetic atoms nearest to the donor atom, which
was also assumed in Refs. 4 and 5. On the other hand,
the orbital radius must depend on the magnetization
for the same reason as in the antiferromagnetic semi-
conductors [6]: at finite temperatures, the overmagne-
tized region close to the donor is a potential well for
the donor electron. Hence, the electron is attracted
to the donor not only by the Coulomb potential, but
also by the magnetic potential well. As a result, the
orbital radius must be magnetization-dependent and
should be found by a self-consistent calculation similar
to that carried out for the antiferromagnetic semicon-
ductors in Ref. 6. In complete analogy with the donors
in the antiferromagnetic semiconductors, where mag-
netized regions arise close to the nonionized impurities,
one can use the term «the bound magnetic polarony,
or «the bound ferron» for the overmagnetized donors.

Calculations of the bound ferrons in the spin-wave
region will be carried out below. In this case the over-
magnetized region is determined by enhanced ferro-
magnetic correlations in the vicinity of the nonionized
donor. The bound ferron radius and free energy are de-
termined. This allows us to find the free charge carrier
density and its activation energy as functions of tem-
perature. In essence, this part of the paper develops
ideas set forth for antiferromagnetic semiconductors in
Refs. 1 and 2, although it requires a quite different
calculation procedure.

In addition to the already known low-temperature
bound ferron, a new type of bound ferron will be con-
sidered. It exists in the limit 7' — oo and can be
called the paramagnetic bound polaron (ferron). While
the ferrons investigated so far are related to a self-
consistent enhancement of the ferromagnetic correla-
tions in the region of the electron localization, the cor-
relations are absent here, and only the fluctuating mag-
netization of the region increases with decreasing size;
it is of the order of 1/N11/2., where Ny is the number
of magnetic atoms over which the donor electron is
spread.

Although the mean local magnetization remains
zero, the electron spin adjusts to the fluctuating mag-
netization, fluctuating jointly with it and thus ensuring
the gain in the exchange energy between the electron
and the magnetic atoms. This means that the ten-
dency arises for the electron to be concentrated inside
a region as small as possible in size. This tendency
competes with the Coulomb interaction and kinetic en-
ergy in determining the equilibrium orbital radius. The
shrinking of the electron orbit caused by the magneti-
zation fluctuations can lead to a considerable lowering
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of the donor level as compared with its depth at T' = 0.
Hence, the low-temperature activation energy for the
resistivity is less than the high-temperature activation
energy. The uncorrelated fluctuations possibly also can
trap the free charge carriers, but the binding energy of
the free fluctuation polarons, if it is nonzero, should be
very small.

Calculations carried out for nondegenerate ferro-
magnetic semiconductors are generalized for the de-
generate semiconductors in the following way. The free
energy of the impurity metal consisting of the ionized
donors and electrons is calculated and compared with
the free energy of separate donors. If the former at
T = 0 is lower than the latter, then an increase in
T can cause a crossover, which means that there is a
transition to the insulating state. As for the reverse
transition at elevated temperatures, it can occur only
for those systems in which the donor density markedly
exceeds the density of the metal-insulator transition at
T = 0. If this is not the case, the reverse transition is
prohibited due to the paramagnetic ferrons. This re-
sult agrees with the experimental data on degenerate
ferromagnetic semiconductors presented in Ref. 1.

It should be pointed out that earlier explanation
of the temperature-induced metal-insulator transition
in degenerate ferromagnetic semiconductors was given
in terms of a modified Mott theory, in which only the
stability of the metallic state was investigated [1,7].
But this approach seems to be less fruitful than that
used here. In particular, it does not lead to the in-
sulating state as T' — oo, i.e., it does not allow to
explain some essential features of the degenerate ferro-
magnetic semiconductors. In addition, it can be used
if only the donor density is very close to the density
at which the Mott transition takes place at T = 0.
The approach used here is more general, allowing to
overcome these limitations and to prove the similarity
of the physical mechanisms leading to the resistivity
peak in the nondegenerate ferromagnetic semiconduc-
tors and to the metal-insulator transitions in degener-
ate ferromagnetic semiconductors. But some problems
treated in Refs. 1 and 7 remain beyond the scope of
our paper (e.g., the charge carrier mobility). Thus, the
present approach and that adopted in Refs. 1 and 7 are
complementary.

2. INDIRECT EXCHANGE HAMILTONIAN
FOR A NONIONIZED DONOR

To analyze the magnetic properties of the nonion-
ized donors, it is advisible to begin with construction
of the magnetic Hamiltonian describing the indirect ex-
change via the donor electron. It must differ strongly
from the RKKY indirect Hamiltonian since the latter
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assumes that the conduction electrons are completely
spin-depolarized to the zero approximation. Certainly,
the situation with a sole donor electron is quite oppo-
site.

As usual, the s-d model is used. The Hamiltonian
of the system in the coordinate representation is given
by

H = HS(I') +Hsd(r) -I-Hdd,

g A e
2m  er
Hy =AY (Sgs)D(r —g), (1)
g

I
Hig = 5 > (SgSera);
g, A

where Sg is the d-spin of the atom g, s is the conduc-
tion electron spin, D(r — g) is equal to unity inside
the unit cell g and zero outside it, m is the electron
effective mass, ¢ is the dielectric constant, A is the
vector connecting the nearest neighbors, 4 = 1. The
s-d exchange integral A is assumed to be positive.

In what follows, the inequality AS < W is assumed
to be met where S is the d-spin magnitude, W is the
conduction band width. This inequality is certainly
met in rare-earth semiconductors (EuO, EuS, and oth-
ers) [1] and can also be satisfied in transition metal
compounds. In particular, it can possibly be met in
colossal magnetoresistance manganites, although the
experimental situation is not clear about them yet.
Many investigators believe that the holes in them move
not over the Mn ions but over the oxygen ions [8-10].
In this case the s-d exchange is relatively weak and the
band width is relatively large, in contrast with to the
double-exchange case where holes move over the Mn
ions.

As usual, in the theory of the indirect exchange,
the adiabatic approximation is used when, in dealing
with the s-electron, the d-spins are considered as the
classical vectors. In the first approximation in AS/W,
the wave function of the system can be separated into
the orbital part and the spin part:

U(r, {57}, 0) = d(e)n({57}, 0), (2)

where the normalized magnetic wave function 5 of the
set of the d-spin variables {S*} and s-electron spin
variable ¢ will be specified below as a functional of
the donor ground-state orbital wave function . After
constructing the wave equation with the Hamiltonian
(1) and wave function (2), multiplying it by ¢ (r) from
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the left side, and integrating over r, we obtain the wave
equation for the magnetic subsystem

Hoon = (E — Er)n, Er - / drgH o,

Hop = =AY w(g)(Sgs), w(g) =v*(g)d?,

where Ej is the energy of the s-electron bound to the
impurity, and a is the lattice constant.
The eigenfunction of H,, is represented in the form

H(5°),0) = 64D 1/2) (5"t 1 /2,
4
where 6(o,£1/2) is the s-electron spin wave function
with §(z,y) = 1 for z = y and é(z,y) = 0 for = # y,
(¢, x) is the two-component wave function of the d-sys-
tem.

Using Eqgs. (3) and (4), we can represent the wave
equation in the form (E; is omitted)

ALY AL?
- E — =
5 ¢+< 5 )x 0,
AL~ AL?
—x+<E+ 5 )¢=0, (5)
L=>) w(gSe L*=L"=+ilV.

In the particular case of w(g) = 1/Ny, the system
of equations (5) can be solved exactly. Accordingly,
we use the following relations, which are valid for any
function f(S*) of S*:
STF(S*) = f(S*+1)S™, L™L" = L>~L*(L* +1).
They follow from the definition of the S~ operator and
from the commutation rules for the spin operators. The
exact result for w(g) = const = 1/Nj is

AN AN (., 1
() o= () ()

which corresponds to the effective magnetic Hamilto-

nian
A 1 / 1
=— | == 24 2.
H,.r N, (2 L +4> (6)

The double sign in Eq. (6) corresponds to two pos-
sible spin projections of the conduction electron onto
the total moment L of the d-spins. As should be the
case, the exact eigenvalues of the Hamiltonian (6) are
(=AL/2) and A(L +1)/2.

For an arbitrary w(g), the system of equations (5)
can be solved with accuracy of 1/2SN;, where N;
is the number of magnetic atoms over which the lo-
calized electron is spread. The terms of this order
omitted below arise as a result of commuting L~ and
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(E — AL?/2)~! after exclusion of Y from the second
equation in (5). In this case, one obtains the following
relation with the accuracy pointed out above:

Hop =+ z

)(SgSk). (7)

In contrast with the RKKY Hamiltonian, the
Hamiltonians (6) and (7) are linear and not quadratic
in A. More importantly, they describe not only the
bilinear exchange but also the multispin exchange in
which up to Nj(N;—1) spins take part simultaneously.
The Hamiltonian (7) contains also the biquadratic
terms and terms of higher orders in the scalar product
of the spins, as well as terms of still more complicated
structure. This is seen from Eq. (7), if one separates the
diagonal terms with g = f and then expands Eq. (7) in
terms of the nondiagonal terms with g # f.

The strength of the indirect exchange between the
spins does not depend on the distance between them,
but depends on the distance of each d-spin from the
donor atom. Obviously, the Hamiltonians (6) and
(7) are isotropic, and there is no gap in the spec-
trum for the uniform spin rotation, as should be the
case. At T = 0, the Hamiltonians (6) and (7) cor-
rectly reproduce the s-d exchange energy for the com-
plete ferromagnetic ordering (the latter with accuracy
of ]./QSN[)

3. DONOR STATES AND THE RESISTIVITY
PEAK IN NONDEGENERATE
FERROMAGNETIC SEMICONDUCTORS
(SPIN-WAVE REGION)

In this section our first task is to calculate the free
energy for a ferromagnetic system containing nonion-
ized donors. This calculation is inapplicable to the
manganites since the undoped manganites are antifer-
romagnetic, and only the heavily doped manganites are
ferromagnetic. The problem can be solved by using a
variational procedure for the free energy under condi-
tion that the donor electron is in the ground state with
the wave function

3
v = e (<2). an=i ®

where z is the variational parameter.

In addition to the electronic energy, the total free
energy includes contribution from the magnons, whose
frequencies are renormalized as a result of their inter-
action with the donor electron, realizing the indirect
exchange between the d-spins in the vicinity of the
donor atom. The state of the magnon subsystem is

determined from the spin-wave Hamiltonian, including
the direct d-d exchange from Eq. (1) and indirect ex-
change (7). It is obtained from these equations after
the Holstein—Primakoff transformation

S§ =25y, S; = V25b%. (9)

where the electron distribution w(g) corresponds to
Eq. (8):

Hpg =18 " (bybg
g.A

+ 5 S w@u(6) (3bhs — bibe). (10)
g.f

Si=5—bib_g,

— bgbgia) +

The last term ~ bzbe in Eq. (10) is basically impor-
tant to ensure the absence of the gap in the magnon
spectrum. But it does not influence the bulk of the
magnon frequencies. For example, if w(g) = 1/Ny,
only the ¢ = 0 magnon has the zero frequency. In the
absence of the d-d exchange, Ny —1 magnons with other
wave vectors have the same frequency A/2N;. Hence,
in calculating the free energy we can use the following
Hamiltonian for the magnon frequencies:

Hpg =18 (bbg
g,A

Awé (g)a’®
—

— bgbg+a) + H(g)bgbg,
(11)
H(g) =

But the Hamiltonian (11), written with allowance for
Eq. (8), is still too complicated to be diagonalized ex-
actly. The perturbation theory also cannot be used
here. To carry out an approximate calculation, we
must replace the magnon potential hump H(g) of a
compicated shape in Eq. (11) by a rectangular poten-
tial hump with the height i and radius p equal to the
mean height of the hump (11) and the mean radius of
the electron wave function:

Az?
— 2 —
h=>Y H(g(g) = ol
3a a
p—E gv*( =2, b= 2.

This means that the magnon frequency in the region
close to a nonionized donor is given by

wy ()

Qq = J(1 —74q),

=Qq+h, (13)
1 .
J =218, 7q=-) expliad),
A
where z is the coordination number.

To calculate the density of the conduction electrons
in a nondegenerate semiconductor, it is necessary to
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write the spin-wave Hamiltonian with allowance for
the conduction electrons. The relative number of the
donors ( is assumed to be small.

This makes it possible to disregard the interaction
between s-electrons. We can divide all regular mag-
netic atoms into those which enter spheres of radius p
surrounding donors and those which are outside these
spheres (the number of the latter greatly exceeds the
total number of the former). Using the expression
for the conduction-electron-magnon Hamiltonian H,4
(11), (13), we can represent the total electron-magnon
Hamiltonian in the form

H= an,i (EI + Zwlmq,i) +
-I-Z n” qmq, -I-ZEknk-l-
+ Z Bynxmg + Z Qgmg — 1 Z (nr; +nk), (14)

where mq,; and mq are the magnon operators for the
i-th sphere and outside the spheres that surrounds
donors, respectively. Since the magnon number oper-
ators for different donor regions and outside them are
constructed of magnon operators bg and bg with differ-
ent g, all the operators mg,; and mq are independent.

Further, nr; and nx are the operators for an elec-
tron in the localized state at the donor ¢ and for the de-
localized electrons with the quasimomentum k, respec-
tively, The spin index is absent from the electron oper-
ators since the electrons are completely spin-polarized
in the spin-wave region. For the same reason, the s-d
exchange energy (—AS/2) is the same for all the elec-
tronic states considered and therefore can be omitted
as an additive constant. The quantity p is the chemical
potential.

The energy Ej of an electron at the donor is given
by Egs. (3) and (8). At low temperatures we can
set =1 in Eq. (8), so that Ef = —Ep = —e?/2cap.
The quantity B, which describes the s-d interaction of
the delocalized electrons with magnons when the elec-
tron quasimomenta are small compared to the magnon
quasimomenta, has the form [1, 11]

Aq?

Bg=——0
AN +¢?)

p? = 2mAS, (15)

where m is the s-electron effective mass, and N is the
total number of atoms.

With allowance for mutual independence of mq;
and mq, the mean number of electrons at a donor is
given by the expression (the index of the donor is omit-

ted)

= exp[-
Y (Z { expl—(Er — p)/T —

m

=Y wimg/T] +eXp[—Zquq/T]}> . (16)

In Eq. (16) the summation over m denotes summa-
tion over mq. Carrying out the summation, we find

(ng) =
_ By -\ Tglt —exp(-wl/T)
‘{”e’“)< T )Hq[l—exp(—ﬂq/T)]} -

-1
oo (B8]

= For — Fpp = Ni(f1 = fo),

where Fy,,; and F? , are the magnon free energies for
a region of radius p containing the nonionized and ion-
ized donor, respectively,

%/d%ln [1 — exp (Ju?é)] 7
fo= T%/d%ln [1 — exp G%)} )

4 p?
3a3

A similar calculation is carried out for the mean
number (ny) of electrons with the quasimomentum k:

(nie) = {1 +exp (E“T_“) x

(BEr = w)/T =Y whmq/T] %

6Fm]

fi=T

Ny =

gl -~ exp(-00/T - By/T)]| " _
[TalT = exp(—2/T)]
= [1+exp <—Ek+6§mo_u>}_ ; (19)
6FmC:FmC’_F£ﬂLC:N(fC_fO)7

fo= T% [ #amn {l—exp (—% - %)} - (20)

Keeping in mind the fact that Bq ~ 1/N, we can write

Aad® 7> 1
0F e = —— | d® . (21
¢ 2(27r>3/ TP @ ey -1 Y

Equating the number of ionized donors with the
total number of the conduction electrons, we find

14%*
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an expression for the charge carrier density n.. for
Ek = k2/2m:

Nee = \/MNeff eXp(—EB + 5Fm/2T),
(mT)3/2
2V/2m

where ness is the effective density of states in the con-
duction band, and n = (/a® is the donor density.

It can be ascertained that the activation energy in
Eq. (22) increases with temperature in the spin-wa-
ve region. It is sufficient to consider the case of
J > h,p*> < 1. Using Eqs. (17)—(22), we find

[ o

In other words, § F}, is negative, and its absolute value
increases with temperature. This conclusion is con-
firmed by numerical calculations. For example, for
A =21 = 0.02 (in the Ep units), 0F,, = —0.022
at T = 0.01, but §F,, = —0.214 at T = 0.03. The
fact that the activation energy increases with temper-
ature in the spin-wave region suggests that the resis-
tivity peak at elevated temperatures is caused by a
minimum in the charge carrier density.

(22)

Negf = §Fy = 6F s — 6Fme,

3 7TAad®
32(27)°

1

V= 00/ T) 1]

(23)

4. TEMPERATURE-INDUCED
METAL-INSULATOR TRANSITION
(SPIN-WAVE REGION)

In this section we investigate the transition of a
degenerate ferromagnetic semiconductor into the insu-
lating state, which occurs with increasing temperature.
We will compare the free energy of the highly conduc-
tive state with that of the insulating state. First, using
Egs. (1), (8), (12), and (13), we will write the total free
energy of a separated nonionized donor in the Ep units:

Fr(z) = (2* — 22) + 0Fpr(2). (24)
If one considers the term d F,,,; (z) in Eq. (24) as a small
perturbation, the optimal value of x is

(25)

and, to a first approximation, the optimal free energy
is

FPP' = —1 4 0Fn(1). (26)

Since 0Fpr(2) [Eqgs. (17) and (18)] decreases with de-
creasing x and, hence, the last term in Eq. (25) is
negative, the parameter x increases with temperature,
and, accordingly, the electronic radius decreases. This
is a manifestation of the ferronic effect: the electron
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is dragged in by the region of the enhanced magne-
tization and simultaneously supports it, realizing the
indirect exchange inside it. Temperature-induced de-
crease in the electron radius points to the tendency
of the temperature-induced transition from the metal-
lic to the insulating state if at 7' = 0 the system is
metallic. In fact, if at T' = 0 the orbit overlapping of
neighboring atoms is sufficient for metallization, at fi-
nite temperatures this overlapping is insufficient, and
the transition to the insulating state should take place.
To prove the possibility of such a transition, one should
compare the free energy of separated nonionized donors
and that of the impurity metal which consists of ionized
donors and delocalized electrons.

Under typical conditions for degenerate ferromag-
netic semiconductors, due to a relatively small electron
density in them, the condition u < AS is met (here p
is the Fermi energy [1]). In other words, the electron
gas is completely spin-polarized in the spin-wave re-
gion. Using expressions for the energy of the electron
gas from Refs. 12 and 13, we find the following expres-
sion for the donor metal energy per donor atom (unlike
the «magnetic» index m, the index M denotes metal):

(62 2/3
4 36" n)"”

E
Tom— + Fea(n);

(27)
where E(k = 0) is the electron energy at the conduc-
tion band bottom, E., is the exchange energy between
conduction electrons, and n is the electron (or donor)
density. Under condition of the complete spin polariza-
tion, E.;(n) can be easily obtained by generalization of
the corresponding Bloch expression for the completely
spin-depolarized electron gas, e. g., in Ref. 12:

%)

To calculate the energy E(k 0), we will use
the Wigner—Seitz procedure (see, e. g., Ref. 13).
Each ionized donor is surrounded by a sphere of radius
L = (3/47n)'/?. Inside of each Wigner—Seitz shell,
the electron wave function ® corresponding to k& = 0,
satisfies the wave equation

1/3
/62

3

3

4

6n

™

Eep(n) = (28)

A e?
———— —Ek= d(r) = 2
(- -S-pE=0)em =0 (9
with the boundary condition
dd®
2T =
o (L) (30)

As is well known from the theory of metal adhesion,
the wave function ® should be almost constant with
the boundary condition (30). A special analysis shows
that for relative densities ( between 0.001 and 0.1 the
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® = const approximation ensures an accuracy in en-
ergy higher than 1%. With sufficient accuracy, we can

therefore set
1/3
0)=-3 < > Eg.

With allowance for Eqs. (28) and (31), the energy (27)
in the Epg units takes the form
6¢ 1/3
= b, (32
(%) e
where ( = na®, and b = ag/a.
At finite temperatures, the free energy of the donor
metal with the volume V is given by the expression

4mn

E
(k 3

(31)

F

E%, 36m¢)/? — 3

_ 3 2232
= Z(67°0* — .

GT(n) =nVEL (n)+ N fu,

3
fm = T(;T)S /d3qln ll — exp (—

where, with allowance for the non-RKKY indirect ex-
change in our case (since u < AS), the magnon fre-

quencies are given by the expression [1,11], see also
Eq. (15)

(33)

OJM

T

Ag*¢
P> +q*

wM

q p? = 2mAS.

=Qq+ (34)
Equating the energy E¥ (n) (32) with the donor en-
ergy E; = —Epg, we find that the density ng, at which
the electron delocalization takes place at T' = 0, obeys
the relation n(l)/3aB = C, where C' = 0.208, which is
slightly lower than the value of 0.25 found by Mott.
To find the transition temperature from the the
highly conductive state to the insulating state for a
material with n exceeding ng, one should equate the
metal free energy G¥ (33) with the free energy of the
localized state found with the use of Eqs. (26) and (17):

F!'' = (N(E; + Nrfr) + Nfo(1 = (Ny).

For n sufficiently close to ng, we then obtain the follow-
ing implicit expression for the transition temperature:

d(nEY))

(¢ — <o) an

= (N1 (f1 = fo) + (fo — fum)

Co = noaS.

(35)

Numerical calculations based on Eq. (32) show that
the quantity d(nE%;)/dn is negative for ( < 0.2. This
does not mean that the system is unstable since this
derivative is not the electron Fermi energy. It does
mean that the energy of the donor metal changes as a
result of the change in the number of the donor atoms
by unity. The expression on the right-hand side of Eq.
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(35) is also negative for z close to unity, which is seen
from numerical calculations. The proof of this state-
ment is especially simple in the case S > 1 if one con-
siders the region T¢/S <« T < T and uses Eqs. (12),
(13), (15), (18), and (33) (T¢ is the Curie point). This
means that the equality (35) can be met for ¢ that ex-
ceeds (o only moderately, and the transition from the
metallic state to the insulating state should take place
with increasing temperature. But for large densities,
¢ > 0.2, this transition is prohibited at least in the
spin-wave region which agrees with the experimental
data cited in the Introduction.

5. FLUCTUATION TRAPPING IN THE
PARAMAGNETIC REGION AND
RESISTIVITY OF NONDEGENERATE
SEMICONDUCTORS

Calculations carried out in this section and in the
next possibly are also applicable to the manganites.
First, the expression (7) will be analyzed in the limit
T — oo. Although the correlations between the d-spins
are absent, the s-d exchange energy remains nonzero in
the first order in AS/W. We see from Eq. (6) that in
this case

B, =+4, /98D

5 N (36)

The physical meaning of result (36) is clear if we recall
that, according to the mathematical statistics, a sys-
tem of N noninteracting spins should possess the total
moment on the order of N~!/2 of their maximal mo-
ment NS. The direction of this moment is not fixed
but fluctuates freely, so that its mean value should van-
ish. But the spin of the s-electron adjusts to the direc-
tion of the fluctuating moment and fluctuates jointly
with it, providing the maximum gain in the s-d ex-
change energy for the energetically favored direction of
the s-electron spin relative to the total spin of its local-
ization region. This gain should be on the order of the
total moment per atom, i.e., ~ AS/N'/2, as is the case
for Eq. (36). The term of order AS/W is essential only
for orbital radii that are sufficiently small. For larger
radii, the terms of the next order in AS/W should be
taken into account.

Let us now consider the bound ferron at T > T¢,
taking into account the fluctuation lowering of the en-
ergy discussed above. When the correlations between
the d-spins are weak, the donor magnetic Hamiltonian
(7), jointly with the direct d-d exchange Hamiltonian
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(1), can be represented in the Heisenbergian form

A
Hpp = —Ex/z_uHH,

Hir = =53 (g, 1)(S4Se),
g#f (37)
L(g.f) = %u«g)w(f) L Ig - f),

P=S(S+1)) w’(g).

The free energy of the system is obtained by the high-
temperature expansion to the first order in 1/7":

A
FFl=F, — 5\/1_3+ Fup,

H
Fpnp = —-TInTrexp <_TH> = (38)

S2(S +1)2
= —NTIn(2S +1) — % > I(s.f).

Calculating the electron energy E using the Hamilto-
nian H, (1) and the trial wave function (8), and keep-
ing in mind that the direct exchange integral I(g — f)
is nonzero only in the nearest-neighbor approximation,
we can write the z-dependent portion of the free energy
(38) in the form (for z = 6)

FPl(z) = (2* — 22)Ep — La®/? — % (39)
where
L:é 7S(S+1)b73/2/ b:a—B/
2 8w a
L?33
Qz) = +

12
[2357 4P
+ AIS%/2(S41)%/? %(1+2xb+ ° )e*“”.
™

In writing Eq. (39), we calculate the integral

> w(gu(g +A)

in Q(z) in elliptic coordinates. The entropy term
—NTIn(2S + 1) is omitted from the free energy here
and below.

Minimizing the free energy (39) with respect to z,
we obtain its optimal value and inverse orbital radius
in the limit 7' — oo (in the Ep and 1/ap units, respec-
tively)

Fao= =SP4+ I+ )~ ST+ -4 -1, (40)

_ 32, 3L N AS
Too = [+ V14127 l 3ER (We2/sa)1/2'
(41)
If one sets ap = a, then for AS/Ep varying from 1 to 5,
the energy F, varies from —1.104 to —1.659, and the
radius 2o, from 1.077 to 1.1445. Hence, the electron
interaction with random (uncorrelated) magnetization
fluctuations leads to a marked decrease in the donor
ionization energy and in the orbital radius; this ap-
plies to any type of magnetic ordering at 7= 0 . The
corresponding electron state can be called the bound
paramagnetic fluctuation polaron (ferron).

Formally, random fluctuations could cause the trap-
ping of a charge carrier in the absense of the impurity
potential (the free paramagnetic ferron). In contrast
with the ferron self-trapping, which occurs in the re-
gion of the enhanced magnetization, no ferromagnetic
correlations between d-spins appear in the region of the
electron localization. Mathematically, jointly with the
solution z = 0 corresponding to a free electron, solu-
tion of Eq. (39) with 2 = 412 exists. The corresponding
free energy of the trapped electron is

4 3
F=-20 s <§> . (42)

w

According to Eq. (42), the depth of the levels corre-
sponding to these trapped states is very small: it is
beyond the accuracy in AS/W adopted here. For this
reason, the free fluctuation ferrons will not be consid-
ered in what follows. In the limit 7' — oo, we then ob-
tain the following equation for the charge carrier den-
sity similar to Eq. (22):

F
Nee = /MNefrexp <%> ) (43)

We see from comparison of Eqs. (43) and (22) that the
high-temperature activation energy of the conductiv-
ity (—Fs/2) exceeds the low-temperature activation
energy.

6. TEMPERATURE-INDUCED
METAL-INSULATOR TRANSITION IN THE
PARAMAGNETIC REGION

At finite temperatures, from Eqgs. (38) and (39) we
obtain the total free energy of a system of N magnetic
atoms and nV donors,

_ nVQ(rs) + NS%(S+1)*1%/2 3
T
— NTIn(25+1), (44)

and for the donor orbital radius we have

1 dQ
. —— ) 45
2T (1 — lzsd’?) ar ") )

F(T) = nFx

2(T) = oo +
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where 2 is given by Eq (41). We can prove that the
second term on the right-hand side of Eq. (45) is pos-
itive if the parameter

I
c=+/32rS(S + 1)b3z

is in the range between —1 and 40. With I > 0, for
any actual parameter values, the inequality ¢ < 40 is
guaranteed. On the other hand, it can be satisfied even
if I < 0 but dominates the indirect exchange, ensur-
ing the total ferromagnetic ordering at T'= 0. In fact,
the intensity of the indirect exchange is proportional
to A252¢"/3 /W, which can exceed the intensity of the
d-d exchange, 2152, if the latter quantity is small com-
pared with A25%/W. The fact that the second term
in Eq. (45) is positive means that the radius of the
donor orbital state decreases with decreasing temper-
ature. This points to the tendency for the electron
localization at lower temperatures if the electrons are
delocalized in the limit 7" — oo.

Let us now investigate in more detail the
temperature-induced transition from the metallic
to the insulating state, which can occur with decreas-
ing temperature. In the high-temperature limit, the

total free energy of the donor metal is given by
GPM = nVELM 4+ 6GPM, (46)

The energy of a nonmagnetized crystal per donor atom,
instead of Eq. (32), is given by the following expression,
which includes the correlation contribution [12]:

EPM = 2(371'2{)2/31)2 — (367¢)"/b —

<%>1/3b

™
where ( = na® and b = ag/a.
In complete analogy with Eq. (38), the magnetic
free energy is given by

0.113¢"/3b

3
2 ©0.1216 + (/3D

5 (47)

S2(S + 1)2 3 1%, (q)
12T ’
(48)

6GPM = _NTIn(25 4+ 1) —

ILinv(q) = I(a) + Iin(a), I(q) = Iq.

The structure of the indirect exchange integral I;,(q)
corresponds to the RKKY theory which can be used
because electron gas is fully spin-depolarized in the
paramagnetic region:

3nA2aq3 4k2 — ¢? 2kr +q
1. - 1 Il 1 49
=T <+ ikrq nsz—q>’( !
2,\2/3
P L) W ryr
2m
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First, it will be proved that a sample which was
in the highly conductive state at 7' = 0 can become
insulating at an elevated temperature and remain non-
metallic up to arbitrarily high temperatures. This
stems from the fact that the fluctuations lower the
donor level strongly, and, for delocalized electrons, such
lowering is absent. As a result, according to Eq. (32 ),
at T' = 0 the delocalization of the donor electrons oc-
curs at the density ng which corresponds to the Mott-
like equality n(l)/3aB = 0.208. But, equating the energy
(47) to the energy Fo, (40), we find that the delocaliza-
tion density no as T — oo exceeds the T' = 0 value ng
if the ratio AS/Ep exceeds 1.27. Normally, this ratio
is essentially larger, and for AS/Ep =5 the Mott-like
relation takes the form néé3a3 = 0.378. Hence, nor-
mally, no exceeds ng considerably.

This fact results in a nontrivial temperature de-
pendence of the electric properties of a degenerate fer-
romagnetic semiconductor. For the donor density n
in the range between ng and ns at low temperatures
the system behaves like a metal, but remains insulat-
ing up to arbitrarily high temperatures after its transi-
tion from the metallic state to the insulating state. If
the density n exceeds n.,, then the reentrant metal—
insulator transition takes place with increasing temper-
ature. This suggests a high resistivity peak at elevated
temperatures of the order of the Curie point. Using
Eqs. (44), (46), and (48), we find the following expres-
sion for the temperature at which the temperature-
induced metal-insulator transition occurs when the
donor density n exceeds ns:

l — _(C — Coo) d(nEﬂM)
T (Q—-R dn
(50)
S2(S +1)?
R = ﬁ/d%ﬁn(q).

In writing Eq. (50) we took into account that
d(nEYM)/dn is negative. This fact was established
by numerical calculations, which show that at least to
¢ = 0.2 this derivative is about —2 in the Eg units.

Numerical calculations show also that at I = 0 and
¢ = (x the denominator in Eq. (50) for 1/T is positive,
which accounts for the positive transition temperature
T, Tt decreases with increasing density ¢ and depends
on the direct exchange integral I. For example, for
AS/Ep = 5, the difference (@ — R is equal to 0.008 for
I =10.02,t0 0.005 for I = 0, and to 0.001 for I = —0.02
(a negative I value corresponds to initially antiferro-
magnetic systems such as the manganites which means
that in them the transition from the metallic state to
the insulating state is also possible).
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7. DISCUSSION OF THE RESULTS

The main results of the present treatment can be
formulated as follows. For the nondegenerate semicon-
ductors it is established that the activation energy of
the conductivity in the spin-wave region is determined
not only by the depth of the donor level, but also by the
difference in the magnon free energies for a delocalized
electron and for a localized electron. As this difference
increases with temperature, the activation energy E4
also increases. In the paramagnetic region the activa-
tion energy decreases with temperature. Qualitatively,
the activation energy behaves like the difference be-
tween the local magnetization in the vicinity of a non-
ionized donor and the mean magnetization over the
crystal: with increasing temperature, it first increases
and then decreases, passing through a maximum at a
temperature comparable with the Curie point. The re-
sistivity peak for the nondegenerate semiconductors is
located at the temperature at which dE4(T)/dT = 0.

A very important result is the fact that the high-
temperature activation energy exceeds its low-tempe-
rature value. This is a consequence of the fluctuation
lowering of the donor level which is caused by the fact
that the moment of a region in which the localized
electron dwells remains finite even when T' — oc. The
direction of this moment fluctuates in space so that
its mean value vanishes. But the s-electron spin ad-
justs to the direction of the moment of the region and
fluctuates jointly with the moment. The gain in the
s-d exchange energy therefore remains finite for the lo-
calized electron, although it diminishes with increasing
size of the region. For a delocalized electron such a fluc-
tuation lowering is absent. Obviously, the trapping by
random fluctuations is possible not only in ferromag-
netic semiconductors but also in all magnetic semicon-
ductors independently of their ground-state magnetic
ordering.

Let us now discuss in greater detail the more heav-
ily doped ferromagnetic semiconductors which are in
the metallic state at T = 0. The same reason as for
nondegenerate semiconductors—increase in the stabil-
ity of the localized states as compared with the delocal-
ized states—leads to their transition from the metallic
state to the insulating state with increasing tempera-
ture. The high-temperature fluctuation lowering of the
donor levels again plays an important part. Because of
this circumstance, the low-temperature electron delo-
calization density ng turns out to be less than than the
high-temperature delocalization density n4.

There are two possible scenarios of the
temperature-induced  metal-insulator  transition.
The first corresponds to the case where the donor
density exceeds ng but is less than n... Then, with
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increase in temperature, the system undergoes a tran-
sition from the metallic state to the insulating state
and remains in the latter state as the temperature
is raised arbitrarily high. The second scenario corre-
sponds to the case where the donor density exceeds
both ng and ns.. Then, with increase in temperature,
first, the transition from the highly conductive state
to the insulating state takes place and then the reverse
transition occurs. Obviously, the temperature range
of the insulating state should decrease with increasing
density. Then the reentrant metal-insulator transition
should manifest itself as a resistivity peak, whose
height decreases with increasing density [14].

The following remark is likely to be appropriate
here. Many investigators use the terms «insulating»
or «semiconducting» to denote the high-temperature
state of heavily doped ferromagnetic semiconductors,
since the resistivity p decreases with increasing tem-
perature. In doing so, they ignore the fact that the
resistivity exceeds the typical values for nondegener-
ate semiconductors by many orders of magnitude; it
is on the of order the resistivity typical of degener-
ate semiconductors. If one accepts this terminology,
the state of a nondegenerate semiconductor in the por-
tion of the resistivity peak where dp/dT > 0 should
be called metallic, despite its giant value. Hence, this
terminology is misleading.

Strictly speaking, these results correspond to the
materials which are ferromagnetic when undoped. A
situation is more complicated in the case where the
undoped crystal is antiferromagnetic and becomes fer-
romagnetic as a result of doping (e.g., the manganites).
The difficulty in finding ng is attributed to the forma-
tion of bound magnetic polarons (ferrons) in the vicin-
ity of the donors when electrons are localized, and to
the ferromagnetic—antiferromagnetic phase separation
in the delocalized state of the electrons which occurs
at T = 0. It is still more difficult to investigate the
temperature dependence of the critical density at low
temperatures.

A direct analysis of such materials is therefore car-
ried out here only in the high-temperature limit. It is
established on the basis of Eq. (50) that as the tem-
perature is lowered, such materials can undergo a tran-
sition from the metallic state to the insulating state.
The fact that the electron delocalizes at T = 0, is
sufficient to conclude that the resistivity peak should
exist at intermediate temperatures in these materials.
Moreover, one can state that in the materials with the
initial antiferromagnetic ordering the resistivity peak
should be very close to T¢, in contrast with the ma-
terials with the initial ferromagnetic ordering, where
they can be well separated. In fact, in the former the
localization of charge carriers leads to disappearance
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of the indirect exchange producing the ferromagnetic
long-range order. Thus, after the charge carrier lo-
calization in the initially ferromagnetic materials the
ferromagnetic order is supported by the d-d exchange,
and it is destroyed only due to the thermal fluctuations
of the magnetization. In the initially antiferromagnetic
materials the ferromagnetic exchange disappears simul-
taneously.

These theoretical results which disregard the po-
laronic effects and which are based only on the s-d
model make it possible to explain electric properties
of degenerate ferromagnetic semiconductors presented
in Ref. 1, including doped manganites. Many inves-
tigators believe that one should take into account the
Jahn—Teller (JT) and lattice polarization effects to de-
scribe properties of the manganites adequately. As for
the former, it should pointed out that the resistivity
peak in the vicinity of T¢ and collossal magnetoresis-
tance are observed in several tens of the non-JT sys-
tems [1], so that the JT effect cannot be the origin of
the specific features of ferromagnetic semiconductors.
The same mechanisms as in other ferromagnetic semi-
conductors function in the manganites, leading to the
same specific features.

Search for additional mechanisms in the mangan-
ites would be justified, if the the resistivity peaks in the
vicinity of T¢ in them had been considerably higher
than in other ferromagnetic semiconductors. The
resistivity peak height in the manganites, however, is
many orders of magnitude lower than in such ferro-
magnetic semiconductors as EuO, EuS, and others.
Formally, therefore, one should conclude that the JT
and polaronic effects rather hinder the manifestation
of the particular properties of these materials. I do
not insist on this conclusion but am certain that the
specific features of the ferromagnetic semiconductors
are not related to the lattice effects. The role of the
polaronic effects in manganites is discussed in more
detail in Ref. 15.

This investigation was supported in part by the
Grant No. 98-02-16148 of the Russian Foundation for
Basic Research.
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