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BOUND FERROMAGNETIC AND PARAMAGNETIC POLARONS ASAN ORIGIN OF THE RESISTIVITY PEAK IN FERROMAGNETICSEMICONDUCTORS AND MANGANITESE. L. Nagaev*Institute for High Pressure Physi
s142092, Troitsk, Mos
ow Region, RussiaSubmitted 16 June 1999A theory of resistivity is developed for ferromagneti
 semi
ondu
tors, in
luding possibly manganites. It is basedon the intera
tion of the free and bound 
harge 
arriers with the magnetization of the 
rystal. The temperaturedependen
e of free energy for nonionized donors and free ele
trons is 
al
ulated for the spin-wave and param-agneti
 regions. In addition to the trapping by the ferromagneti
 �u
tuations (the ferromagneti
 polarons), theele
tron trapping by the random magnetization �u
tuations as T !1 is taken into a

ount (the paramagneti
polarons). For the nondegenerate semi
ondu
tors, the theory makes it possible to explain a nonmonotoni
temperature dependen
e of the a
tivation energy, with T = 0 value lower than its value for T !1. For degen-erate semi
ondu
tors, the theory explains a metal�insulator transition that o

urs in samples with relatively low
harge 
arrier density with in
reasing temperature. If the density is larger, a reentrant metal�insulator transitionshould take pla
e, so that the 
rystal is highly 
ondu
tive as T !1.PACS: 75.50.Pp, 75.70.Pa1. INTRODUCTIONThe present paper deals with ferromagneti
 semi-
ondu
tors, both degenerate and nondegenerate. Allthese semi
ondu
tors display a resistivity peak in thevi
inity of the Curie point TC . The heavily dopedsemi
ondu
tors displaying the metalli
 
ondu
tivity atT = 0 
an remain in the insulating state up to veryhigh temperatures after passing this peak; i.e., themetal�insulator transition takes pla
e with in
reasingtemperature. Still more heavily doped semi
ondu
torsreturn to a highly 
ondu
tive state after passing thepeak, i.e., the metal�insulator transition is reentrantin them. The nondegenerate semi
ondu
tors have atemperature-dependent a
tivation energy for the 
on-du
tivity. This energy passes a maximum in the vi
in-ity of the Curie point. The high-temperature a
ti-vation energy ex
eeds its low-temperature value. Allthese materials display a 
olossal negative magnetore-sistan
e [1℄.In what follows, we talk about the donors and 
on-du
tion ele
trons, although all the results obtained be-low remain in for
e for the holes and a

eptors. Asemiqualitative explanation of the properties of non-*E-mail: tsir�el
h.
hem.msu.ru

degenerate ferromagneti
 semi
ondu
tors was given inRefs. 1�3. The point is that the ele
tron levels de-
rease with in
reasing magnetization. But the lo
almagnetization in the vi
inity of a nonionized donor ishigher than the average magnetization in the 
rystal,whi
h was �rst pointed out in Refs. 4 and 5. In fa
t,sin
e the indire
t ex
hange via free 
harge 
arriers isexponentially small in nondegenerate semi
ondu
tors,the average ferromagneti
 ordering is supported onlyby the superex
hange. In 
ontrast, the magnetizationnear the donor is supported also by the indire
t ex-
hange via the donor ele
tron. Hen
e, at �nite tem-peratures, the donor magnetization is destroyed to alesser degree than the average magnetization.The donor overmagnetization means that with in-
reasing temperature, the donor level depth �rst in-
reases, sin
e the 
ondu
tion band bottom rises mu
hmore rapidly than the donor level. But, with furtherin
rease in temperature, the lo
al ordering begins todisappear. The level depth will then de
rease with in-
reasing temperature. As a result, the 
harge 
arrierdensity is minimal and the resistivity is maximal at a
ertain temperature (to avoid a misunderstanding, themagnetization dependen
e of the donor level depth andof the free 
harge 
arrier density was not investigated207
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al
ulation [1�3℄ was 
arried outunder the assumption that the ele
tron dwells only atthe magneti
 atoms nearest to the donor atom, whi
hwas also assumed in Refs. 4 and 5. On the other hand,the orbital radius must depend on the magnetizationfor the same reason as in the antiferromagneti
 semi-
ondu
tors [6℄: at �nite temperatures, the overmagne-tized region 
lose to the donor is a potential well forthe donor ele
tron. Hen
e, the ele
tron is attra
tedto the donor not only by the Coulomb potential, butalso by the magneti
 potential well. As a result, theorbital radius must be magnetization-dependent andshould be found by a self-
onsistent 
al
ulation similarto that 
arried out for the antiferromagneti
 semi
on-du
tors in Ref. 6. In 
omplete analogy with the donorsin the antiferromagneti
 semi
ondu
tors, where mag-netized regions arise 
lose to the nonionized impurities,one 
an use the term �the bound magneti
 polaron�,or �the bound ferron� for the overmagnetized donors.Cal
ulations of the bound ferrons in the spin-waveregion will be 
arried out below. In this 
ase the over-magnetized region is determined by enhan
ed ferro-magneti
 
orrelations in the vi
inity of the nonionizeddonor. The bound ferron radius and free energy are de-termined. This allows us to �nd the free 
harge 
arrierdensity and its a
tivation energy as fun
tions of tem-perature. In essen
e, this part of the paper developsideas set forth for antiferromagneti
 semi
ondu
tors inRefs. 1 and 2, although it requires a quite di�erent
al
ulation pro
edure.In addition to the already known low-temperaturebound ferron, a new type of bound ferron will be 
on-sidered. It exists in the limit T ! 1 and 
an be
alled the paramagneti
 bound polaron (ferron). Whilethe ferrons investigated so far are related to a self-
onsistent enhan
ement of the ferromagneti
 
orrela-tions in the region of the ele
tron lo
alization, the 
or-relations are absent here, and only the �u
tuating mag-netization of the region in
reases with de
reasing size;it is of the order of 1=N1=2I , where NI is the numberof magneti
 atoms over whi
h the donor ele
tron isspread.Although the mean lo
al magnetization remainszero, the ele
tron spin adjusts to the �u
tuating mag-netization, �u
tuating jointly with it and thus ensuringthe gain in the ex
hange energy between the ele
tronand the magneti
 atoms. This means that the ten-den
y arises for the ele
tron to be 
on
entrated insidea region as small as possible in size. This tenden
y
ompetes with the Coulomb intera
tion and kineti
 en-ergy in determining the equilibrium orbital radius. Theshrinking of the ele
tron orbit 
aused by the magneti-zation �u
tuations 
an lead to a 
onsiderable lowering

of the donor level as 
ompared with its depth at T = 0.Hen
e, the low-temperature a
tivation energy for theresistivity is less than the high-temperature a
tivationenergy. The un
orrelated �u
tuations possibly also 
antrap the free 
harge 
arriers, but the binding energy ofthe free �u
tuation polarons, if it is nonzero, should bevery small.Cal
ulations 
arried out for nondegenerate ferro-magneti
 semi
ondu
tors are generalized for the de-generate semi
ondu
tors in the following way. The freeenergy of the impurity metal 
onsisting of the ionizeddonors and ele
trons is 
al
ulated and 
ompared withthe free energy of separate donors. If the former atT = 0 is lower than the latter, then an in
rease inT 
an 
ause a 
rossover, whi
h means that there is atransition to the insulating state. As for the reversetransition at elevated temperatures, it 
an o

ur onlyfor those systems in whi
h the donor density markedlyex
eeds the density of the metal�insulator transition atT = 0. If this is not the 
ase, the reverse transition isprohibited due to the paramagneti
 ferrons. This re-sult agrees with the experimental data on degenerateferromagneti
 semi
ondu
tors presented in Ref. 1.It should be pointed out that earlier explanationof the temperature-indu
ed metal�insulator transitionin degenerate ferromagneti
 semi
ondu
tors was givenin terms of a modi�ed Mott theory, in whi
h only thestability of the metalli
 state was investigated [1; 7℄.But this approa
h seems to be less fruitful than thatused here. In parti
ular, it does not lead to the in-sulating state as T ! 1, i.e., it does not allow toexplain some essential features of the degenerate ferro-magneti
 semi
ondu
tors. In addition, it 
an be usedif only the donor density is very 
lose to the densityat whi
h the Mott transition takes pla
e at T = 0.The approa
h used here is more general, allowing toover
ome these limitations and to prove the similarityof the physi
al me
hanisms leading to the resistivitypeak in the nondegenerate ferromagneti
 semi
ondu
-tors and to the metal�insulator transitions in degener-ate ferromagneti
 semi
ondu
tors. But some problemstreated in Refs. 1 and 7 remain beyond the s
ope ofour paper (e.g., the 
harge 
arrier mobility). Thus, thepresent approa
h and that adopted in Refs. 1 and 7 are
omplementary.2. INDIRECT EXCHANGE HAMILTONIANFOR A NONIONIZED DONORTo analyze the magneti
 properties of the nonion-ized donors, it is advisible to begin with 
onstru
tionof the magneti
 Hamiltonian des
ribing the indire
t ex-
hange via the donor ele
tron. It must di�er stronglyfrom the RKKY indire
t Hamiltonian sin
e the latter208
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 and paramagneti
 polarons : : :assumes that the 
ondu
tion ele
trons are 
ompletelyspin-depolarized to the zero approximation. Certainly,the situation with a sole donor ele
tron is quite oppo-site.As usual, the s-d model is used. The Hamiltonianof the system in the 
oordinate representation is givenby H = Hs(r) +Hsd(r) +Hdd;Hs = � �2m � e2"r ;Hsd = �AXg (Sgs)D(r� g); (1)Hdd = �I2Xg;�(SgSg+�);where Sg is the d-spin of the atom g, s is the 
ondu
-tion ele
tron spin, D(r � g) is equal to unity insidethe unit 
ell g and zero outside it, m is the ele
trone�e
tive mass, " is the diele
tri
 
onstant, � is theve
tor 
onne
ting the nearest neighbors, ~ = 1. Thes-d ex
hange integral A is assumed to be positive.In what follows, the inequality AS �W is assumedto be met where S is the d-spin magnitude, W is the
ondu
tion band width. This inequality is 
ertainlymet in rare-earth semi
ondu
tors (EuO, EuS, and oth-ers) [1℄ and 
an also be satis�ed in transition metal
ompounds. In parti
ular, it 
an possibly be met in
olossal magnetoresistan
e manganites, although theexperimental situation is not 
lear about them yet.Many investigators believe that the holes in them movenot over the Mn ions but over the oxygen ions [8�10℄.In this 
ase the s-d ex
hange is relatively weak and theband width is relatively large, in 
ontrast with to thedouble-ex
hange 
ase where holes move over the Mnions.As usual, in the theory of the indire
t ex
hange,the adiabati
 approximation is used when, in dealingwith the s-ele
tron, the d-spins are 
onsidered as the
lassi
al ve
tors. In the �rst approximation in AS=W ,the wave fun
tion of the system 
an be separated intothe orbital part and the spin part:	(r; fSzg; �) =  (r)�(fSzg; �); (2)where the normalized magneti
 wave fun
tion � of theset of the d-spin variables fSzg and s-ele
tron spinvariable � will be spe
i�ed below as a fun
tional ofthe donor ground-state orbital wave fun
tion  . After
onstru
ting the wave equation with the Hamiltonian(1) and wave fun
tion (2), multiplying it by  (r) from

the left side, and integrating over r, we obtain the waveequation for the magneti
 subsystemHav� = (E �EI)�; EI = Z d3r Hs ;Hav = �AXw(g)(Sgs); w(g) =  2(g)a3; (3)where EI is the energy of the s-ele
tron bound to theimpurity, and a is the latti
e 
onstant.The eigenfun
tion of Hav is represented in the form�(fSzg; �) = �(fSzg)Æ(�; 1=2) + �(fSzg)Æ(�;�1=2);(4)where Æ(�;�1=2) is the s-ele
tron spin wave fun
tionwith Æ(x; y) = 1 for x = y and Æ(x; y) = 0 for x 6= y,(�; �) is the two-
omponent wave fun
tion of the d-sys-tem.Using Eqs. (3) and (4), we 
an represent the waveequation in the form (EI is omitted)AL+2 �+�E � ALz2 �� = 0;AL�2 �+�E + ALz2 �� = 0; (5)L =Xw(g)Sg ; L� = Lx � iLy:In the parti
ular 
ase of w(g) = 1=NI , the systemof equations (5) 
an be solved exa
tly. A

ordingly,we use the following relations, whi
h are valid for anyfun
tion f(Sz) of Sz:S�f(Sz) = f(Sz+1)S�; L�L+ = L2�Lz(Lz+1):They follow from the de�nition of the S� operator andfrom the 
ommutation rules for the spin operators. Theexa
t result for w(g) = 
onst � 1=NI is�E + A2NI�2 � = � A2NI�2�L2 + 14��;whi
h 
orresponds to the e�e
tive magneti
 Hamilto-nian HmI = A2NI  12 �rL2 + 14 ! : (6)The double sign in Eq. (6) 
orresponds to two pos-sible spin proje
tions of the 
ondu
tion ele
tron ontothe total moment L of the d-spins. As should be the
ase, the exa
t eigenvalues of the Hamiltonian (6) are(�AL=2) and A(L+ 1)=2.For an arbitrary w(g), the system of equations (5)
an be solved with a

ura
y of 1=2SNI , where NIis the number of magneti
 atoms over whi
h the lo-
alized ele
tron is spread. The terms of this orderomitted below arise as a result of 
ommuting L� and14 ÆÝÒÔ, âûï. 1 209
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lusion of � from the se
ondequation in (5). In this 
ase, one obtains the followingrelation with the a

ura
y pointed out above:HmI = �A2sXg;f w(g)w(f)(SgSf ): (7)In 
ontrast with the RKKY Hamiltonian, theHamiltonians (6) and (7) are linear and not quadrati
in A. More importantly, they des
ribe not only thebilinear ex
hange but also the multispin ex
hange inwhi
h up to NI(NI�1) spins take part simultaneously.The Hamiltonian (7) 
ontains also the biquadrati
terms and terms of higher orders in the s
alar produ
tof the spins, as well as terms of still more 
ompli
atedstru
ture. This is seen from Eq. (7), if one separates thediagonal terms with g = f and then expands Eq. (7) interms of the nondiagonal terms with g 6= f .The strength of the indire
t ex
hange between thespins does not depend on the distan
e between them,but depends on the distan
e of ea
h d-spin from thedonor atom. Obviously, the Hamiltonians (6) and(7) are isotropi
, and there is no gap in the spe
-trum for the uniform spin rotation, as should be the
ase. At T = 0, the Hamiltonians (6) and (7) 
or-re
tly reprodu
e the s-d ex
hange energy for the 
om-plete ferromagneti
 ordering (the latter with a

ura
yof 1=2SNI).3. DONOR STATES AND THE RESISTIVITYPEAK IN NONDEGENERATEFERROMAGNETIC SEMICONDUCTORS(SPIN-WAVE REGION)In this se
tion our �rst task is to 
al
ulate the freeenergy for a ferromagneti
 system 
ontaining nonion-ized donors. This 
al
ulation is inappli
able to themanganites sin
e the undoped manganites are antifer-romagneti
, and only the heavily doped manganites areferromagneti
. The problem 
an be solved by using avariational pro
edure for the free energy under 
ondi-tion that the donor ele
tron is in the ground state withthe wave fun
tion (r) =s x3�a3B exp�� xraB� ; aB = "me2 ; (8)where x is the variational parameter.In addition to the ele
troni
 energy, the total freeenergy in
ludes 
ontribution from the magnons, whosefrequen
ies are renormalized as a result of their inter-a
tion with the donor ele
tron, realizing the indire
tex
hange between the d-spins in the vi
inity of thedonor atom. The state of the magnon subsystem is

determined from the spin-wave Hamiltonian, in
ludingthe dire
t d-d ex
hange from Eq. (1) and indire
t ex-
hange (7). It is obtained from these equations afterthe Holstein�Primako� transformationSzg = S � b�gb�g; S+g = p2Sbg; S�g = p2Sb�g; (9)where the ele
tron distribution w(g) 
orresponds toEq. (8):Hmg = ISXg;�(b�gbg � b�gbg+�) ++ A2 Xg;f w(g)w(f)(b�gbg � b�gbf ): (10)The last term � b�gbf in Eq. (10) is basi
ally impor-tant to ensure the absen
e of the gap in the magnonspe
trum. But it does not in�uen
e the bulk of themagnon frequen
ies. For example, if w(g) = 1=NI ,only the q = 0 magnon has the zero frequen
y. In theabsen
e of the d-d ex
hange,NI�1magnons with otherwave ve
tors have the same frequen
y A=2NI . Hen
e,in 
al
ulating the free energy we 
an use the followingHamiltonian for the magnon frequen
ies:Hmg = ISXg;�(b�gbg � b�gbg+�) +H(g)b�gbg;H(g) = A 2(g)a32 : (11)But the Hamiltonian (11), written with allowan
e forEq. (8), is still too 
ompli
ated to be diagonalized ex-a
tly. The perturbation theory also 
annot be usedhere. To 
arry out an approximate 
al
ulation, wemust repla
e the magnon potential hump H(g) of a
ompi
ated shape in Eq. (11) by a re
tangular poten-tial hump with the height h and radius � equal to themean height of the hump (11) and the mean radius ofthe ele
tron wave fun
tion:h =XH(g) 2(g) = Ax316�b3 ;� =X g 2(g) = 3aB2x ; b = aBa : (12)This means that the magnon frequen
y in the region
lose to a nonionized donor is given by!Iq(x) = 
q + h; (13)
q = J(1� 
q); J = zIS; 
q = 1zX� exp(iq�);where z is the 
oordination number.To 
al
ulate the density of the 
ondu
tion ele
tronsin a nondegenerate semi
ondu
tor, it is ne
essary to210
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 and paramagneti
 polarons : : :write the spin-wave Hamiltonian with allowan
e forthe 
ondu
tion ele
trons. The relative number of thedonors � is assumed to be small.This makes it possible to disregard the intera
tionbetween s-ele
trons. We 
an divide all regular mag-neti
 atoms into those whi
h enter spheres of radius �surrounding donors and those whi
h are outside thesespheres (the number of the latter greatly ex
eeds thetotal number of the former). Using the expressionfor the 
ondu
tion-ele
tron-magnon Hamiltonian Hmg(11), (13), we 
an represent the total ele
tron-magnonHamiltonian in the formH =XnI;i �EI +X!Iqmq;i�++X (1� nI;i) 
qmq;i +XEknk ++XBqnkmq +X
qmq � �X (nI;i + nk) ; (14)where mq;i and mq are the magnon operators for thei-th sphere and outside the spheres that surroundsdonors, respe
tively. Sin
e the magnon number oper-ators for di�erent donor regions and outside them are
onstru
ted of magnon operators b�g and bg with di�er-ent g, all the operators mq;i and mq are independent.Further, nI;i and nk are the operators for an ele
-tron in the lo
alized state at the donor i and for the de-lo
alized ele
trons with the quasimomentum k, respe
-tively, The spin index is absent from the ele
tron oper-ators sin
e the ele
trons are 
ompletely spin-polarizedin the spin-wave region. For the same reason, the s-dex
hange energy (�AS=2) is the same for all the ele
-troni
 states 
onsidered and therefore 
an be omittedas an additive 
onstant. The quantity � is the 
hemi
alpotential.The energy EI of an ele
tron at the donor is givenby Eqs. (3) and (8). At low temperatures we 
anset x =1 in Eq. (8), so that EI = �EB = �e2=2"aB.The quantity Bq, whi
h des
ribes the s-d intera
tion ofthe delo
alized ele
trons with magnons when the ele
-tron quasimomenta are small 
ompared to the magnonquasimomenta, has the form [1; 11℄Bq = Aq22N(p2 + q2) ; p2 = 2mAS; (15)where m is the s-ele
tron e�e
tive mass, and N is thetotal number of atoms.With allowan
e for mutual independen
e of mq;iand mq, the mean number of ele
trons at a donor isgiven by the expression (the index of the donor is omit-

ted)hnIi =Xm exp[�(EI � �)=T �Xq !Iqmq=T ℄�� Xm ( exp[�(EI � �)=T �� Xq !Iqmq=T ℄ + exp[�Xq 
qmq=T ℄)!�1 : (16)In Eq. (16) the summation over m denotes summa-tion over mq. Carrying out the summation, we �ndhnI i == (1 + exp�EI � �T � Qq[1� exp(�!Iq=T )℄Qq[1� exp(�
q=T )℄)�1 == �1 + exp�EI + ÆFmI � �T ���1 ; (17)ÆFmI = FmI � F 0mI = NI(fI � f0);where FmI and F 0mI are the magnon free energies fora region of radius � 
ontaining the nonionized and ion-ized donor, respe
tively,fI = T a3(2�)3 Z d3q ln"1� exp �!IqT !# ;f0 = T a3(2�)3 Z d3q ln �1� exp��
qT �� ;NI = 4��33a3 : (18)A similar 
al
ulation is 
arried out for the meannumber hnki of ele
trons with the quasimomentum k:hnki = (1 + exp�Ek � �T ���Qq[1� exp(�
q=T �Bq=T )℄Qq[1� exp(�
q=T )℄ )�1 == �1 + exp�Ek + ÆFmC � �T ���1 ; (19)ÆFmC = FmC � F 0mC = N(fC � f0);fC = T a3(2�)3 Z d3q ln �1� exp��
qT � BqT �� : (20)Keeping in mind the fa
t that Bq � 1=N , we 
an writeÆFmC = Aa32(2�)3 Z d3q q2p2 + q2 1[exp(
q=T )� 1℄ : (21)Equating the number of ionized donors with thetotal number of the 
ondu
tion ele
trons, we �nd211 14*
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harge 
arrier density n

 forEk = k2=2m:n

 = pnneff exp(�EB + ÆFm=2T );neff = (mT )3=22p2� ÆFm = ÆFmI � ÆFmC ; (22)where neff is the e�e
tive density of states in the 
on-du
tion band, and n = �=a3 is the donor density.It 
an be as
ertained that the a
tivation energy inEq. (22) in
reases with temperature in the spin-wa-ve region. It is su�
ient to 
onsider the 
ase ofJ � h; p2 � 1. Using Eqs. (17)�(22), we �ndÆFm = � 7Aa332(2�)3 Z d3q 1[exp(
q=T )� 1℄ : (23)In other words, ÆFm is negative, and its absolute valuein
reases with temperature. This 
on
lusion is 
on-�rmed by numeri
al 
al
ulations. For example, forA = 2, I = 0:02 (in the EB units), ÆFm = �0:022at T = 0:01, but ÆFm = �0:214 at T = 0:03. Thefa
t that the a
tivation energy in
reases with temper-ature in the spin-wave region suggests that the resis-tivity peak at elevated temperatures is 
aused by aminimum in the 
harge 
arrier density.4. TEMPERATURE-INDUCEDMETAL�INSULATOR TRANSITION(SPIN-WAVE REGION)In this se
tion we investigate the transition of adegenerate ferromagneti
 semi
ondu
tor into the insu-lating state, whi
h o

urs with in
reasing temperature.We will 
ompare the free energy of the highly 
ondu
-tive state with that of the insulating state. First, usingEqs. (1), (8), (12), and (13), we will write the total freeenergy of a separated nonionized donor in the EB units:FI(x) = (x2 � 2x) + ÆFmI (x): (24)If one 
onsiders the term ÆFmI (x) in Eq. (24) as a smallperturbation, the optimal value of x isx = 1� 12 dÆFmIdx (1) (25)and, to a �rst approximation, the optimal free energyis F optI = �1 + ÆFmI (1): (26)Sin
e ÆFmI(x) [Eqs. (17) and (18)℄ de
reases with de-
reasing x and, hen
e, the last term in Eq. (25) isnegative, the parameter x in
reases with temperature,and, a

ordingly, the ele
troni
 radius de
reases. Thisis a manifestation of the ferroni
 e�e
t: the ele
tron

is dragged in by the region of the enhan
ed magne-tization and simultaneously supports it, realizing theindire
t ex
hange inside it. Temperature-indu
ed de-
rease in the ele
tron radius points to the tenden
yof the temperature-indu
ed transition from the metal-li
 to the insulating state if at T = 0 the system ismetalli
. In fa
t, if at T = 0 the orbit overlapping ofneighboring atoms is su�
ient for metallization, at �-nite temperatures this overlapping is insu�
ient, andthe transition to the insulating state should take pla
e.To prove the possibility of su
h a transition, one should
ompare the free energy of separated nonionized donorsand that of the impurity metal whi
h 
onsists of ionizeddonors and delo
alized ele
trons.Under typi
al 
onditions for degenerate ferromag-neti
 semi
ondu
tors, due to a relatively small ele
trondensity in them, the 
ondition � < AS is met (here �is the Fermi energy [1℄). In other words, the ele
trongas is 
ompletely spin-polarized in the spin-wave re-gion. Using expressions for the energy of the ele
trongas from Refs. 12 and 13, we �nd the following expres-sion for the donor metal energy per donor atom (unlikethe �magneti
� index m, the index M denotes metal):EFM = E(k = 0) + 3(6�2n)2=310m + Eex(n); (27)where E(k = 0) is the ele
tron energy at the 
ondu
-tion band bottom, Eex is the ex
hange energy between
ondu
tion ele
trons, and n is the ele
tron (or donor)density. Under 
ondition of the 
omplete spin polariza-tion, Eex(n) 
an be easily obtained by generalization ofthe 
orresponding Blo
h expression for the 
ompletelyspin-depolarized ele
tron gas, e. g., in Ref. 12:Eex(n) = �34 �6n� �1=3 e2" : (28)To 
al
ulate the energy E(k = 0), we will usethe Wigner�Seitz pro
edure (see, e. g., Ref. 13).Ea
h ionized donor is surrounded by a sphere of radiusL = (3=4�n)1=3. Inside of ea
h Wigner�Seitz shell,the ele
tron wave fun
tion � 
orresponding to k = 0,satis�es the wave equation�� �2m � e2"r �E(k = 0)��(r) = 0 (29)with the boundary 
onditiond�dr (L) = 0: (30)As is well known from the theory of metal adhesion,the wave fun
tion � should be almost 
onstant withthe boundary 
ondition (30). A spe
ial analysis showsthat for relative densities � between 0.001 and 0.1 the212
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 and paramagneti
 polarons : : :� = 
onst approximation ensures an a

ura
y in en-ergy higher than 1%. With su�
ient a

ura
y, we 
antherefore setE(k = 0) = �3�4�n3 �1=3EB : (31)With allowan
e for Eqs. (28) and (31), the energy (27)in the EB units takes the formEFM = 35(6�2�)2=3b2 � (36��)1=3 � 32 �6�� �1=3 b; (32)where � = na3, and b = aB=a.At �nite temperatures, the free energy of the donormetal with the volume V is given by the expressionGF (n) = nV EFM (n) +NfM ;fM = T a3(2�)3 Z d3q ln"1� exp �!MqT !# ; (33)where, with allowan
e for the non-RKKY indire
t ex-
hange in our 
ase (sin
e � < AS), the magnon fre-quen
ies are given by the expression [1; 11℄, see alsoEq. (15)!Mq = 
q + Aq2�p2 + q2 ; p2 = 2mAS: (34)Equating the energy EFM (n) (32) with the donor en-ergy EI = �EB , we �nd that the density n0, at whi
hthe ele
tron delo
alization takes pla
e at T = 0, obeysthe relation n1=30 aB = C, where C = 0:208, whi
h isslightly lower than the value of 0.25 found by Mott.To �nd the transition temperature from the thehighly 
ondu
tive state to the insulating state for amaterial with n ex
eeding n0, one should equate themetal free energy GF (33) with the free energy of thelo
alized state found with the use of Eqs. (26) and (17):F I = �N(EI +NIfI) +Nf0(1� �NI):For n su�
iently 
lose to n0, we then obtain the follow-ing impli
it expression for the transition temperature:(� � �0)d(nEFM )dn = �NI (fI � f0) + (f0 � fM ) (35)�0 = n0a3:Numeri
al 
al
ulations based on Eq. (32) show thatthe quantity d(nEFM )=dn is negative for � < 0:2. Thisdoes not mean that the system is unstable sin
e thisderivative is not the ele
tron Fermi energy. It doesmean that the energy of the donor metal 
hanges as aresult of the 
hange in the number of the donor atomsby unity. The expression on the right-hand side of Eq.

(35) is also negative for x 
lose to unity, whi
h is seenfrom numeri
al 
al
ulations. The proof of this state-ment is espe
ially simple in the 
ase S � 1 if one 
on-siders the region TC=S � T � TC and uses Eqs. (12),(13), (15), (18), and (33) (TC is the Curie point). Thismeans that the equality (35) 
an be met for � that ex-
eeds �0 only moderately, and the transition from themetalli
 state to the insulating state should take pla
ewith in
reasing temperature. But for large densities,� > 0:2, this transition is prohibited at least in thespin-wave region whi
h agrees with the experimentaldata 
ited in the Introdu
tion.5. FLUCTUATION TRAPPING IN THEPARAMAGNETIC REGION ANDRESISTIVITY OF NONDEGENERATESEMICONDUCTORSCal
ulations 
arried out in this se
tion and in thenext possibly are also appli
able to the manganites.First, the expression (7) will be analyzed in the limitT !1. Although the 
orrelations between the d-spinsare absent, the s-d ex
hange energy remains nonzero inthe �rst order in AS=W . We see from Eq. (6) that inthis 
ase EmI = �A2sS(S + 1)NI : (36)The physi
al meaning of result (36) is 
lear if we re
allthat, a

ording to the mathemati
al statisti
s, a sys-tem of N nonintera
ting spins should possess the totalmoment on the order of N�1=2 of their maximal mo-ment NS. The dire
tion of this moment is not �xedbut �u
tuates freely, so that its mean value should van-ish. But the spin of the s-ele
tron adjusts to the dire
-tion of the �u
tuating moment and �u
tuates jointlywith it, providing the maximum gain in the s-d ex-
hange energy for the energeti
ally favored dire
tion ofthe s-ele
tron spin relative to the total spin of its lo
al-ization region. This gain should be on the order of thetotal moment per atom, i.e., � AS=N1=2, as is the 
asefor Eq. (36). The term of order AS=W is essential onlyfor orbital radii that are su�
iently small. For largerradii, the terms of the next order in AS=W should betaken into a

ount.Let us now 
onsider the bound ferron at T � TC ,taking into a

ount the �u
tuation lowering of the en-ergy dis
ussed above. When the 
orrelations betweenthe d-spins are weak, the donor magneti
 Hamiltonian(7), jointly with the dire
t d-d ex
hange Hamiltonian213
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an be represented in the Heisenbergian formHmP = �A2pP +HH ;HH = �12Xg 6=f ItI (g; f)(SgSf );ItI(g; f ) = A2pP w(g)w(f) + I(g� f );P = S(S + 1)Xw2(g): (37)
The free energy of the system is obtained by the high-temperature expansion to the �rst order in 1=T :FPI = EI � A2pP + FmP ;FmP = �T lnTr exp��HHT � == �NT ln(2S + 1)� S2(S + 1)212T X I2tI(g; f ):(38)Cal
ulating the ele
tron energy EI using the Hamilto-nian Hs (1) and the trial wave fun
tion (8), and keep-ing in mind that the dire
t ex
hange integral I(g � f)is nonzero only in the nearest-neighbor approximation,we 
an write the x-dependent portion of the free energy(38) in the form (for z = 6)FPI(x) = (x2 � 2x)EB � Lx3=2 � Q(x)T ; (39)where L = A2rS(S + 1)8� b�3=2; b = aBa ;Q(x) = L2x312 ++AIS3=2(S+1)3=2rx3b332� �1 + 2xb+ 4x2b23 �e�2xb:In writing Eq. (39), we 
al
ulate the integralXw(g)w(g +�)in Q(x) in ellipti
 
oordinates. The entropy term�NT ln(2S + 1) is omitted from the free energy hereand below.Minimizing the free energy (39) with respe
t to x,we obtain its optimal value and inverse orbital radiusin the limit T !1 (in the EB and 1=aB units, respe
-tively)F1 = �83 l3[l+p1 + l2℄� 83 lp1 + l2 � 4l2 � 1; (40)

x1 = [l +p1 + l2℄2; l = 3L8EB � AS(We2="a)1=2 :(41)If one sets aB = a, then for AS=EB varying from 1 to 5,the energy F1 varies from �1:104 to �1:659, and theradius x1 from 1.077 to 1.1445. Hen
e, the ele
tronintera
tion with random (un
orrelated) magnetization�u
tuations leads to a marked de
rease in the donorionization energy and in the orbital radius; this ap-plies to any type of magneti
 ordering at T = 0 . The
orresponding ele
tron state 
an be 
alled the boundparamagneti
 �u
tuation polaron (ferron).Formally, random �u
tuations 
ould 
ause the trap-ping of a 
harge 
arrier in the absense of the impuritypotential (the free paramagneti
 ferron). In 
ontrastwith the ferron self-trapping, whi
h o

urs in the re-gion of the enhan
ed magnetization, no ferromagneti

orrelations between d-spins appear in the region of theele
tron lo
alization. Mathemati
ally, jointly with thesolution x = 0 
orresponding to a free ele
tron, solu-tion of Eq. (39) with x = 4l2 exists. The 
orrespondingfree energy of the trapped ele
tron isFt = �16l43 � AS�ASW �3 : (42)A

ording to Eq. (42), the depth of the levels 
orre-sponding to these trapped states is very small: it isbeyond the a

ura
y in AS=W adopted here. For thisreason, the free �u
tuation ferrons will not be 
onsid-ered in what follows. In the limit T !1, we then ob-tain the following equation for the 
harge 
arrier den-sity similar to Eq. (22):n

 = pnneffexp�F12T � : (43)We see from 
omparison of Eqs. (43) and (22) that thehigh-temperature a
tivation energy of the 
ondu
tiv-ity (�F1=2) ex
eeds the low-temperature a
tivationenergy. 6. TEMPERATURE-INDUCEDMETAL�INSULATOR TRANSITION IN THEPARAMAGNETIC REGIONAt �nite temperatures, from Eqs. (38) and (39) weobtain the total free energy of a system of N magneti
atoms and nV donors,F (T ) = nF1 � nV Q(x1) +NS2(S + 1)2I2=2T ��NT ln(2S + 1); (44)and for the donor orbital radius we havex(T ) = x1 + 12T (1� lx�1=21 ) dQdx (x1); (45)214
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 polarons : : :where x1 is given by Eq (41). We 
an prove that these
ond term on the right-hand side of Eq. (45) is pos-itive if the parameter
 =p32�S(S + 1)b3 IAis in the range between �1 and 40. With I > 0, forany a
tual parameter values, the inequality 
 < 40 isguaranteed. On the other hand, it 
an be satis�ed evenif I < 0 but dominates the indire
t ex
hange, ensur-ing the total ferromagneti
 ordering at T = 0. In fa
t,the intensity of the indire
t ex
hange is proportionalto A2S2�1=3=W , whi
h 
an ex
eed the intensity of thed-d ex
hange, zIS2, if the latter quantity is small 
om-pared with A2S2=W . The fa
t that the se
ond termin Eq. (45) is positive means that the radius of thedonor orbital state de
reases with de
reasing temper-ature. This points to the tenden
y for the ele
tronlo
alization at lower temperatures if the ele
trons aredelo
alized in the limit T !1.Let us now investigate in more detail thetemperature-indu
ed transition from the metalli
to the insulating state, whi
h 
an o

ur with de
reas-ing temperature. In the high-temperature limit, thetotal free energy of the donor metal is given byGPM = nV EPMM + ÆGPM : (46)The energy of a nonmagnetized 
rystal per donor atom,instead of Eq. (32), is given by the following expression,whi
h in
ludes the 
orrelation 
ontribution [12℄:EPMM = 35(3�2�)2=3b2 � (36��)1=3b�� 32 �3�� �1=3 b� 0:113�1=3b0:1216+ �1=3b ; (47)where � = na3 and b = aB=a.In 
omplete analogy with Eq. (38), the magneti
free energy is given byÆGPM = �NT ln(2S + 1)� S2(S + 1)2P I2tM (q)12T ;(48)ItM (q) = I(q) + Iin(q); I(q) = I
q:The stru
ture of the indire
t ex
hange integral Iin(q)
orresponds to the RKKY theory whi
h 
an be usedbe
ause ele
tron gas is fully spin-depolarized in theparamagneti
 region:Iin(q) = 3nA2a38� �1 + 4k2F � q24kF q ln 2kF + qj2kF � qj� ; (49)� = (3�2n)2=32m ; kF =p2m�:

First, it will be proved that a sample whi
h wasin the highly 
ondu
tive state at T = 0 
an be
omeinsulating at an elevated temperature and remain non-metalli
 up to arbitrarily high temperatures. Thisstems from the fa
t that the �u
tuations lower thedonor level strongly, and, for delo
alized ele
trons, su
hlowering is absent. As a result, a

ording to Eq. (32 ),at T = 0 the delo
alization of the donor ele
trons o
-
urs at the density n0 whi
h 
orresponds to the Mott-like equality n1=30 aB = 0:208. But, equating the energy(47) to the energy F1 (40), we �nd that the delo
aliza-tion density n1 as T !1 ex
eeds the T = 0 value n0if the ratio AS=EB ex
eeds 1.27. Normally, this ratiois essentially larger, and for AS=EB = 5 the Mott-likerelation takes the form n1=31 aB = 0:378. Hen
e, nor-mally, n1 ex
eeds n0 
onsiderably.This fa
t results in a nontrivial temperature de-penden
e of the ele
tri
 properties of a degenerate fer-romagneti
 semi
ondu
tor. For the donor density nin the range between n0 and n1 at low temperaturesthe system behaves like a metal, but remains insulat-ing up to arbitrarily high temperatures after its transi-tion from the metalli
 state to the insulating state. Ifthe density n ex
eeds n1, then the reentrant metal�insulator transition takes pla
e with in
reasing temper-ature. This suggests a high resistivity peak at elevatedtemperatures of the order of the Curie point. UsingEqs. (44), (46), and (48), we �nd the following expres-sion for the temperature at whi
h the temperature-indu
ed metal�insulator transition o

urs when thedonor density n ex
eeds n1:1T = � (� � �1)�Q�R d(nEPMM )dn ;R = S2(S + 1)212(2�)3 Z d3qI2in(q): (50)In writing Eq. (50) we took into a

ount thatd(nEPMM )=dn is negative. This fa
t was establishedby numeri
al 
al
ulations, whi
h show that at least to� = 0:2 this derivative is about �2 in the EB units.Numeri
al 
al
ulations show also that at I = 0 and� = �1 the denominator in Eq. (50) for 1=T is positive,whi
h a

ounts for the positive transition temperatureTtr. It de
reases with in
reasing density � and dependson the dire
t ex
hange integral I . For example, forAS=EB = 5, the di�eren
e �Q�R is equal to 0.008 forI = 0.02, to 0.005 for I = 0, and to 0.001 for I = �0:02(a negative I value 
orresponds to initially antiferro-magneti
 systems su
h as the manganites whi
h meansthat in them the transition from the metalli
 state tothe insulating state is also possible).215



E. L. Nagaev ÆÝÒÔ, òîì 117, âûï. 1, 20007. DISCUSSION OF THE RESULTSThe main results of the present treatment 
an beformulated as follows. For the nondegenerate semi
on-du
tors it is established that the a
tivation energy ofthe 
ondu
tivity in the spin-wave region is determinednot only by the depth of the donor level, but also by thedi�eren
e in the magnon free energies for a delo
alizedele
tron and for a lo
alized ele
tron. As this di�eren
ein
reases with temperature, the a
tivation energy EAalso in
reases. In the paramagneti
 region the a
tiva-tion energy de
reases with temperature. Qualitatively,the a
tivation energy behaves like the di�eren
e be-tween the lo
al magnetization in the vi
inity of a non-ionized donor and the mean magnetization over the
rystal: with in
reasing temperature, it �rst in
reasesand then de
reases, passing through a maximum at atemperature 
omparable with the Curie point. The re-sistivity peak for the nondegenerate semi
ondu
tors islo
ated at the temperature at whi
h dEA(T )=dT = 0.A very important result is the fa
t that the high-temperature a
tivation energy ex
eeds its low-tempe-rature value. This is a 
onsequen
e of the �u
tuationlowering of the donor level whi
h is 
aused by the fa
tthat the moment of a region in whi
h the lo
alizedele
tron dwells remains �nite even when T !1. Thedire
tion of this moment �u
tuates in spa
e so thatits mean value vanishes. But the s-ele
tron spin ad-justs to the dire
tion of the moment of the region and�u
tuates jointly with the moment. The gain in thes-d ex
hange energy therefore remains �nite for the lo-
alized ele
tron, although it diminishes with in
reasingsize of the region. For a delo
alized ele
tron su
h a �u
-tuation lowering is absent. Obviously, the trapping byrandom �u
tuations is possible not only in ferromag-neti
 semi
ondu
tors but also in all magneti
 semi
on-du
tors independently of their ground-state magneti
ordering.Let us now dis
uss in greater detail the more heav-ily doped ferromagneti
 semi
ondu
tors whi
h are inthe metalli
 state at T = 0. The same reason as fornondegenerate semi
ondu
tors�in
rease in the stabil-ity of the lo
alized states as 
ompared with the delo
al-ized states�leads to their transition from the metalli
state to the insulating state with in
reasing tempera-ture. The high-temperature �u
tuation lowering of thedonor levels again plays an important part. Be
ause ofthis 
ir
umstan
e, the low-temperature ele
tron delo-
alization density n0 turns out to be less than than thehigh-temperature delo
alization density n1.There are two possible s
enarios of thetemperature-indu
ed metal�insulator transition.The �rst 
orresponds to the 
ase where the donordensity ex
eeds n0 but is less than n1. Then, with

in
rease in temperature, the system undergoes a tran-sition from the metalli
 state to the insulating stateand remains in the latter state as the temperatureis raised arbitrarily high. The se
ond s
enario 
orre-sponds to the 
ase where the donor density ex
eedsboth n0 and n1. Then, with in
rease in temperature,�rst, the transition from the highly 
ondu
tive stateto the insulating state takes pla
e and then the reversetransition o

urs. Obviously, the temperature rangeof the insulating state should de
rease with in
reasingdensity. Then the reentrant metal�insulator transitionshould manifest itself as a resistivity peak, whoseheight de
reases with in
reasing density [14℄.The following remark is likely to be appropriatehere. Many investigators use the terms �insulating�or �semi
ondu
ting� to denote the high-temperaturestate of heavily doped ferromagneti
 semi
ondu
tors,sin
e the resistivity � de
reases with in
reasing tem-perature. In doing so, they ignore the fa
t that theresistivity ex
eeds the typi
al values for nondegener-ate semi
ondu
tors by many orders of magnitude; itis on the of order the resistivity typi
al of degener-ate semi
ondu
tors. If one a

epts this terminology,the state of a nondegenerate semi
ondu
tor in the por-tion of the resistivity peak where d�=dT > 0 shouldbe 
alled metalli
, despite its giant value. Hen
e, thisterminology is misleading.Stri
tly speaking, these results 
orrespond to thematerials whi
h are ferromagneti
 when undoped. Asituation is more 
ompli
ated in the 
ase where theundoped 
rystal is antiferromagneti
 and be
omes fer-romagneti
 as a result of doping (e.g., the manganites).The di�
ulty in �nding n0 is attributed to the forma-tion of bound magneti
 polarons (ferrons) in the vi
in-ity of the donors when ele
trons are lo
alized, and tothe ferromagneti
�antiferromagneti
 phase separationin the delo
alized state of the ele
trons whi
h o

ursat T = 0. It is still more di�
ult to investigate thetemperature dependen
e of the 
riti
al density at lowtemperatures.A dire
t analysis of su
h materials is therefore 
ar-ried out here only in the high-temperature limit. It isestablished on the basis of Eq. (50) that as the tem-perature is lowered, su
h materials 
an undergo a tran-sition from the metalli
 state to the insulating state.The fa
t that the ele
tron delo
alizes at T = 0, issu�
ient to 
on
lude that the resistivity peak shouldexist at intermediate temperatures in these materials.Moreover, one 
an state that in the materials with theinitial antiferromagneti
 ordering the resistivity peakshould be very 
lose to TC , in 
ontrast with the ma-terials with the initial ferromagneti
 ordering, wherethey 
an be well separated. In fa
t, in the former thelo
alization of 
harge 
arriers leads to disappearan
e216
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 and paramagneti
 polarons : : :of the indire
t ex
hange produ
ing the ferromagneti
long-range order. Thus, after the 
harge 
arrier lo-
alization in the initially ferromagneti
 materials theferromagneti
 order is supported by the d-d ex
hange,and it is destroyed only due to the thermal �u
tuationsof the magnetization. In the initially antiferromagneti
materials the ferromagneti
 ex
hange disappears simul-taneously.These theoreti
al results whi
h disregard the po-laroni
 e�e
ts and whi
h are based only on the s-dmodel make it possible to explain ele
tri
 propertiesof degenerate ferromagneti
 semi
ondu
tors presentedin Ref. 1, in
luding doped manganites. Many inves-tigators believe that one should take into a

ount theJahn�Teller (JT) and latti
e polarization e�e
ts to de-s
ribe properties of the manganites adequately. As forthe former, it should pointed out that the resistivitypeak in the vi
inity of TC and 
ollossal magnetoresis-tan
e are observed in several tens of the non-JT sys-tems [1℄, so that the JT e�e
t 
annot be the origin ofthe spe
i�
 features of ferromagneti
 semi
ondu
tors.The same me
hanisms as in other ferromagneti
 semi-
ondu
tors fun
tion in the manganites, leading to thesame spe
i�
 features.Sear
h for additional me
hanisms in the mangan-ites would be justi�ed, if the the resistivity peaks in thevi
inity of TC in them had been 
onsiderably higherthan in other ferromagneti
 semi
ondu
tors. Theresistivity peak height in the manganites, however, ismany orders of magnitude lower than in su
h ferro-magneti
 semi
ondu
tors as EuO, EuS, and others.Formally, therefore, one should 
on
lude that the JTand polaroni
 e�e
ts rather hinder the manifestationof the parti
ular properties of these materials. I donot insist on this 
on
lusion but am 
ertain that thespe
i�
 features of the ferromagneti
 semi
ondu
torsare not related to the latti
e e�e
ts. The role of thepolaroni
 e�e
ts in manganites is dis
ussed in moredetail in Ref. 15.This investigation was supported in part by theGrant No. 98-02-16148 of the Russian Foundation forBasi
 Resear
h.
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