ZKIT®, 2001, rom 120, Boim. 2 (8), crp. 227-241

© 2001

VECTOR BOSON IN THE CONSTANT
ELECTROMAGNETIC FIELD

A. I. Nikishov”

Tamm Department of Theoretical Physics,
Lebedev Physical Institute, Russian Academy of Sciences
117924, Moscow, Russia

Submitted 2 March 2001

The propagator and the complete sets of in- and out-solutions of the wave equation, together with the Bo-
goliubov coefficients relating these solutions are obtained for the vector W boson (with the gyromagnetic ratio
g = 2) in the constant electromagnetic field. When only the electric field is present, the Bogoliubov coefficients
are independent of the boson polarization and are the same as for the scalar boson. For the collinear electric and
magnetic fields, the Bogoliubov coefficients for states with the boson spin perpendicular to the field are again
the same as in the scalar case. For the W™ spin parallel (antiparallel) to the magnetic field, the Bogoliubov
coefficients and the one-loop contributions to the imaginary part of the Lagrange function are obtained from
the corresponding expressions for the scalar case by the substitution m? — m? 4+ 2eH (m? — m? —2eH). For
the gyromagnetic ratio g = 2, the vector boson interaction with the constant electromagnetic field is described
by the functions that can be expected by comparing the scalar and Dirac particle wave functions in the constant

electromagnetic field.
PACS: 03.65.Pm

1. INTRODUCTION

Vector bosons occupy an intermediate place be-
tween low-spin particles (with the spins 0 and 1/2) and
higher-spin particles. They can therefore share some
of the problems encountered in considering higher-
spin particle interactions with a strong electromagnetic
field. The most conspicuous feature of the vector bo-
son interaction in the case of g = 2 is the appearance of
tachyonic modes in the overcritical magnetic field. The
ways to deal with this problem in the framework of
non-abelian theories are analyzed in [1]. But are there
any others? According to [2], problems in treating the
pair production by the electric field by diagonalizing
the Hamiltonian precisely occur for ¢ = 2. This is
surprising in view of a successful calculation of the La-
grange function of the constant field in the one-loop
approximation [3]. We calculate the pair production
by the constant field using the Bogoliubov coefficients
(which contain all the information about this process);
as expected, the results obtained are in agreement with
those in [3] and [4].
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2. VECTOR BOSON IN THE CONSTANT
ELECTRIC FIELD

We assume 7, = diag(—1,1,1,1) and set e = |e|.
The wave function of the W~ boson (with ¢ = 2) in a
source-free space (where 9, F"" = 0) satisfies the equa-
tion [1, 5]

(=DyD° +m?*)tp, — 2ieF,,¢" =0 (1)
and the constraint
D" =0,

Dy, =0, +ieA,. 2)

With the vector potential chosen such that A3 = —FEt
and A; = Ay = Ag = 0, it follows from (1) that ¢! and
? satisfy the same equation as in scalar case,
(=D? + m*)p"? = 0. (3)
For ¢ and ¢°, it follows from (1) that
(=D? + m*)p® — 2ieEy° = 0, @
(=D?* + m*)y° — 2ieEy® = 0.

Introducing ¢+ = ¢° 4 9%, we rewrite Eqs. (4) as

(=D?* + m? F 2ieE)y* =0, (5)
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which can be obtained from (3) by the substitution
m? — m? F 2ieE. We see that the vector boson wave
function can be obtained from the corresponding scalar
boson wave function by simple rules.

We now do this. We let ;¢ denote the positive-
frequency in-solution for the (negatively charged)
scalar boson. The subscript p = (p1, p2, p3) is dropped
in what follows. Then [6]

+1/) 8 DV(T) exp(ip : X)v (6)

where D, (7) is the parabolic cylinder function [7] and

yor_ 1
T2 2’
T = —V2eFE exp (—2%) (t— 5—;), (7)
\ = m? + p; + p3
eE ’

For the vector boson, we obtain

wO
1
+¢ - 222 =
1/)3
C+D,,+1(T) + C_Dy—l(T)
D, .
IR R
C+Du+1(T) - C*DVfl(T)
were
1/)1 - +¢1-, 202 = +¢2-,
and

1
0 =4y = §(+¢+ +497),

1
P =yt = §(+¢+ —47), (9)
+0F =2¢4Dyyq exp(ip - x).

The function D,.q(7) is obtained from D,(r) in
Eqgs. (6) and (7) by the substitution

m? = m? F 2ieE.
Arbitrary coefficients ¢1,ca, and cx = ;cq determine
the polarization of the vector boson. They are not in-

dependent because of constraint (2),

ciprteapr+V2eEe™ [(14v) ey — e ] = 0. (10)

For the negative-frequency in-solution (for the scalar
boson), we have

—tp o [Dy(7)]" exp(ip - x) (11)

instead of (6). The star denotes the complex conjuga-
tion. Similarly to (8), the parabolic cylinder functions
entering _1)* are obtained from [D, (7)]* in (11) by the
substitution

m? — m2F2ieF,

and therefore,

=

4Dy 1 (T*) + - Dyrya (77)
ClDV*(T*) .
= exp(ip - x). (12
s Dy (+) p(ip-x). (12)

c+Dys 1 (1*) — Dy 1 (77)

(We have ¢y = _cq in Eq. (12) and similarly in other
cases.) The constraint takes the form

cipy + caps +V2eEe /4 ey +v c ] =0. (13)

Nothing prevents us from assuming that ¢; and ¢y in
(12) are the same as in ().

The negative-frequency out-solution is obtained
from the positive-frequency in-solution by changing the
sign of 7 in the parabolic cylinder functions in Eq. (8),

C+Dy+1 (—T) + C,D,,,l (—T)

,1/) — ClDy(_T) %
caDy(—7)
¢+ Dyy1(=7) —c-Dy—1(-T7)
xexp(ip - x), Tcx=—1cy, (14)

see (112a). The constraint is given by
c1pr + capy + V2eEe™4[Te. — (1+v)"cy] = 0. (15)

Similarly, the positive-frequency out-solution can be
found from _1) in Eq. (12) by changing the sign of 7*,

cyDye 1 (=7%) + ¢ Dysy1(—77)
Ty = c1Dye (=77) X
caDys (—7%)
¢+ Dys 1 (=7%) = c_Dpuyq (—7%)
x exp(ip - x). (16)
The corresponding constraint is

cp1 4 capa — V2eEe ™A yte_ 4+ e ] =0, (17)
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Vector boson in the constant electromagnetic field

For the scalar boson, the in- and out-solutions are
related by [6]

+Yn = Cln+1pn + can” Yn, (18)
_tPp = C;n+¢n + CIn_¢na

V2r ™ ‘
T((1 —22‘)\)/2) P [_Z(A N ’)] :

Con = €Xp [—g()\ + z)] ,

Cin =

|C1n|2 — ‘an‘Q = 1.

The subscript n indicates a set of quantum numbers;
here, n = p. By a straightforward calculation similar
to the one in the scalar case, we find that Eqs. (18) also
hold for the vector boson and that

teo = i+c, =—_c_= —ifc,, (19)
v v

+C+ = —'L(l + I/)+C+ = —_C+ = 'L(l + I/)_C+.
These relations guarantee that the wave functions L
and 1 are normalized in the same manner and that
any constraint can be obtained from any other using
Eqgs. (19).

As seen from (18), the Bogoliubov coefficients ¢y,
and ¢y, do not depend on the boson polarization in
the constant electric field. The imaginary part of the
Lagrange function is therefore given by 3Im Lgpine in
agreement with [3,4].

3. VECTOR BOSON IN THE CONSTANT
ELECTROMAGNETIC FIELD

We now add a collinear constant magnetic field to
the constant electric field. For As = Hzq, we obtain
from Eq. (1) that

(=D? + m®)py — 2ieHps =0,

(=D? + m*)ahy + 2ieHep; = 0. (20)
Introducing
by =y —ithy, o =1 + ity
1,- - i - (21)
P = 5(1/)1 +ih2), Y= 5(1/)1 — 1),
we rewrite Eqgs. (20) as
(=D? +m? + 2eH)y =0, (22

(=D? + m? — 2eH)y =0,

and therefore, 1/;1’2 can be obtained from the scalar bo-
son wave function by the substitutions

m? = m? + 2¢H.

We can therefore write

U1 o< 2¢1 D1 (C), 2 o< 2¢2Dns1(C),

C=\/26—H<x1+f—}21).

(23)

Instead of (8), we thus have

[c+Dyy1(7) + c-Dy—1(7)]Dn(C)
" _ [c1Dp-1(C) + c2Dpy1(¢)] Dy (1) %
+ % papan — .
i[c1 Dn—1(C) — caDpt1(C)]Du(7)
[c+Dyy1(1) = c-Dy—1(7)]Dn(C)
), (24)

x exp(i(p27a + p3r3

and similarly for the other v functions. Here,
ix o1 \ m? +eH(2n + 1)

v=—— =, = .
2 2 ek

(25)

The constraints can be obtained from the previous
ones by the substitution

c1p1 + capy = —ivV2eH[(1 4+ n)es — ¢4]. (26)

We note that D 9" is proportional to the scalar wave
function

Dy (¢)D, (1) expli(paza + p3r3)]

(which is dropped in the expressions similar to (10)
with modification (26), or in (116)). Equations (67)
and (98) were used to obtain the constraints. It fol-
lows from the derivation that the presence of ¢; in the
right-hand side of (26) is due to the assumption that
Dp—1(¢) is not zero in Eq. (24), i.e., n > 1.

Using (24) and (26), we can build three polarization
states (i, x), i = 1,2,3, see Sec. 7. For these states,
the respective minimum values of n in Eq. (25) are
—1,0,1. Thus the Bogoliubov coefficients depend on
all the four quantum numbers (n = ps, p3,n, 1) through
the minimum value of n.

Because

2ImL = > In(1+|c2n|?),

it is easy to show that in agreement with [4],
Im 2Lspin1 =2-3Im LspinO +

cdm 4o m? —eH
n xp | - 7T———— —
P T el

2
“In [1 +exp <—WM>} } CEHVT. (27)
eE T
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The factors outside the braces give the statistical
weight of the «correcting» states, see Eqs. (3.6) and
(3.7) in [6].

The Bogoliubov coefficients allow finding the transi-
tion probability from any initial to any final state (with
arbitrary occupation numbers) [6]. For example, if the
initial state is the vacuum, we have

lein| 2 {1+ wp + w2 +wd +---} =1,
(28)

_ |02n‘2

n — |Cln‘27

for the cell with the set of quantum numbers
n = pa,p3,n,i. The term |ci,| 2wk gives the prob-
ability for the production of k pairs, k¥ = 0,1,2,....
The events occurring in cells with different quantum
numbers are independent.

4. THE FREE VECTOR BOSON

PROPAGATOR

The wave functions of a free vector boson with the
momentum p* = (p°,0,0, p?) can be written as

wis
vii) = 2 expip - a),
V2P0 (29)
UW :diag(_1717171)7 M:07172537
0 0 D3
1 0 110
u(l) = , u 2) = , U 3) = —
=] | =1, ww=o|
0 0 PP

These solutions satisfy wave equation (1) and con-
straint (2) with the external field switched off. Sum-
ming * (i, x)y"* (i, 2") over polarizations, we find

1
VHE ) (i) = X
S0t 0 = g
2 0
b3 p3p
R
0 10 0 4 o
o el @-a) (0)
0 012
p3p (r°)
B 00 L]

If we use helicity states instead of linear polariza-
tion states (29) (cf. §16 in [8]), we obtain the same
result (30). In general, we must replace the matrix in
the right-hand side of (30) by n*¥ +p#p” /m?. This case
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differs from the scalar particle case only by the pres-
ence of this matrix in the expression for the propagator
(which is similar to (51)). The vector boson propagator
can therefore be obtained from the scalar one,

1
Gspino(x7xl) = (271_)4 /d

oo
ds
— exp
52

4 explip- (x — a')]
p? +m? —ic

by

i(z

{—ism2 + . (31)

(47)> )

considered as a unit matrix over discrete indices, by

acting on it with the differential operator

G" (x,2') =

(-

Because the scalar boson propagator satisfies the
equation

1 02

m? 0x,0z,

) Gspino(z,2'). (32)

(—0,0" + m?)Gpino (2, 2') = 6tz — 2", (33)

we have

(8,07 +m?)G" (z,2') =

(-2

e _ o2
m? 0,0z,
for the vector boson. We note that the right-hand side
is not simply given by §*(x — 2'). The complication
is due to the existence of constraints. This prevents
us from using the well-known methods of constructing
propagators of scalar and spinor particles in an exter-
nal field [9, 10]. An elegant way to circumvent this
difficulty was given by Vanyashin and Terentyev [3].

) Stz —2') (34)

5. THE VECTOR BOSON PROPAGATOR IN
THE CONSTANT MAGNETIC FIELD

To write the propagator, we need the complete set
of orthonormalized solutions. The orthonormalization
is performed by expressing the vector current as [5]

Ju = _i{¢u*(Du¢u - Du¢u) -
= (Db, = Dy )"},
D, =0, +ieA,.

(35)

We note that our expression for D, in Eq. (35) co-
incides with that in [5]; although our 7, has a different
sign, we also replace e — —e, using that e = |e| and
assuming that W~ is a particle by analogy with the
electron.
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Vector boson in the constant electromagnetic field

In the space without a field, the expression for .J,
can be written similarly to the scalar case up to di-
vergence terms, (see §15 in [8]). It is remarkable that
with constraint (2), the same is true in the presence of
a field. Indeed,

—0"" Dythy = =0, (V" Yu) + b D", (36)

The last term in the right-hand side vanishes because
of Eq. (2) for the boson with g = 2. Similarly,

(Dyh)” = 0u (" Yp,) — Y Dup” = 0, (P y), (37)
and therefore,
Ju = —i{"" Dyihy, —
= (Dpp)Y” = 0u[" y — Pyl (38)

To normalize the wave functions, we need only Jy.
Straightforward calculations show that the divergence
terms do not contribute to Jy for the fields considered
here. We then have

—Jo = i{"* Dotpy — (Dgiby)Y" }. (39)
For orthonormalization, we use the expression
JO(W' ) = i{d)""* Dothy — (D59 )"} (40)

Our vector potentials are such that Ag(2) = 0. It then
follows that Dy = 9/0t and

J0 =

JOW ) = i{g's B, v — 'O B, 00}, (41)

where the sum over £ runs from 1 to 3.
The positive-frequency solution of wave equation
(1) with A, (2) = 0,2 Hz, is given by

"D (C)
. _ | etDn=1(C) + 2Dy ()
PP ile Dy 1(C) = eaDpy1 (€)]
c3Dn(C)

x exp [i(p2x2 + pszs — p't)] . (42)

The elements of this column correspond to
§=01,23
= Ve (o1 + 7).

P’ = \/m2+p§+eH(2n+1).

The coefficients ¢ determining the boson polarization
satisfy the constraint

—ip°c® +ipzez + V2eH[(n + 1)ea —e1] = 0. (43)

For states with the polarizations ¢’ and ¢, Eqs. (41)
and (42) imply that

(¢ ¢) = 2p {20 ia1D
+ (C 3C3

L1 (Q+2d3e2 D2, (O)+
— DO} (44)

Integrating over 1, we find

oo
[ =
/ dzy J(Y',v) = 2p°n! og %
2
X {Eclfcl +2(n+1)c'"5ea + c'yes — c'O*co} ,  (45)
s

/ dxyD?(¢) = n! A
— 00

Using the orthonormalization conditions

/ day JO (46, ), 20 (jy2)) = = 63,
ij=12.3,

(46)

and constraint (43), we find the positive-frequency po-
larization states

(n +1)v2eHp" Dy (¢)
im3 Dn41(C)
miDnJrl (©)

(n+1)v2eHp3 D, (C)

- pot)] ) (47)

(1, z) = N(1)

X exp [i(p2x2 + P33
where

p=0,1,2,3, mi =m?+eH(2n+1),

P° = \/m? +p} +eH(2n + 1),

eH\'" 1
N(1) =n1No, No= <—> o
g V2[p°n! (48)
n = 1
L V2(n + 1)m? (m? + eHn)’
p3Dn(<)
0
’(,b(Q,SU) = TLQNO 0 X
pODn(C)
. . 1
x exp [i(paza + pszs —p°t)], np = = (49)
my
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¥(3,2) = n3Ny X
V2eHp" D, (€)
i[=(m* + eHn)Dp—1(C) + eH Dnt1(C)]
(m2 +eHn)Dy 1(¢) + eHDyp11(C)
V 26}1p3l)n(<)

x exp [i(p2zs + psas — p°t)]

v =\ s e (50)

We separate the scalar wave function normalization fac-
tor Ny from the normalization factors N (i), because we
concentrate our attention on the differences from the
scalar case. We also note that

N(3) & T~'/2(n),

which vanishes for n = 0. For the state (3, z), only
the values n = 1,2,3,... are therefore possible. The
same follows from the fact that constraint (43) cannot
be satisfied because it does not involve ¢; for n = 0.

We now construct the vector boson propagator. We
start from the expression (which is a special case of
a more general result derived in Sec. 6, see Eqs. (80)

and (81))

In what follows, we let E,, denote the previous quan-
tity p° and use the relations

o0
R R oy et N
2mi (p° — Ep, +ie)(p° + E,, — ie)

1 exp[—iBa(t—t)], t>t, (52)
B exp[iBn(t —t)], t<t,

=/@m¢mm—@]
0

to rewrite (51) as (with p° = —py)

/eH i /Oodpg OOdpg
T

-1

T dp® 1
X / @ /dsa’“’ (v,2')— x
2T
(mJ_ +p3 p0)+

+ i[pa (20 — wh) + pa(wg — a3) — p°(t —t')]] ,
m? =m? +eH(2n+1). (53)

G (x,2")

xexp[

We note that the lower line in the right-hand side of
(52) is obtained from the upper line by the substitution
t < t', which does not change anything, because the
right-hand side can be written as

(2E,) " exp[—iEn|t — ']].

The form of the left-hand side that is explicitly sym-
metric in ¢ and #' is

/ds exp[—isE2] / QL explisps —ip®(t —t')] =
™
0 —oo

177/4

2\/_

j_ exp [—13E2 —1 i :lst i . (54)

We first obtain the scalar particle propagator in the
proper-time representation [10]. We replace a"¥(z, ')
by Dy, (¢)D,(¢") in (53). Using the formula

Du(¢) = \/geCQ/‘* x

o0
n,—y?/2 _nm
X /dyy e cos (Cy 5 ), (55)
0

we then find

exp[—iT(2n+1)] = (2sin27) "1/ x

(=) ()
X exp [_ZZ-H 8tgT o SctgT }’

_ C oot (a4 22
r=eHs, (= 26H<x1+eH). (56)
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Vector boson in the constant electromagnetic field

Subsequent integration over p, gives

x exp[—iT(2n + 1) + ipaza] =

i\ / ﬁ(4 sin7) ™! x
T

=—i
eHzo(xy + )  eH(z] +22)
—1q i
2 dtgT

Zy =Ty — T

X exp [
1 (57)

Using

/

— o

o0
dp®
—ex
2T P

dps
2T

— o

[i(pszs — p°2°) —is(p3 — pg)] =

2
.23

_ .2
expli “0

4s

- 4rs

I, (58)

we find [6,9-11]

[

eHzo(zy + )
ol )
2

2
20

eH
(47)?

ds
- X
ssin(eHs)

} x
(21 + 23)eH
4tg(eHs)

Gspin[) ($, xl) =

xexp[

2
23 —
4s

X exp [—ism2 +i } - (59)

We now show how to obtain a"”(z,z') in Eq. (53)
and how to turn it into a differential matrix that gives
the vector boson propagator when inserted in the in-
tegrand in (59). As a preliminary step, we write two
formulas directly related to (56):

5 D fOP ) weptir(an 4 1) =
= exp(2i7) Z M exp[—iT(2n +1)], (60)
5 Dnl((nC)_Dln)!l(C ) exploir(2n + 1)) =
= exp(—2i7) Z Dn(C)nl!?n(C’) X
n=0
x exp[—iT(2n + 1)].  (61)

We see that the expressions in Eqgs. (60) and (61) differ
from the scalar case only by the factors e?'™ and e~ 2",
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We now return to a¥(z,z'). As seen from (51)

and (53),
3
a' (z,2'") o Zz/)“(i,x)zp”*(i,x'). (62)
i=1
Taking, e.g., a'l(z,z'), we see from (49) that
P1(2,2) = 0, ie., the term with i = 2 does not

contribute to a''(z,2'). In accordance with (47), the
contribution of the term with i =1 is

nim’ Dpny1(¢)Dnyr(¢'),
1
2(n+ 1)m?% (m? + eHn)’

> (63)

ny =

The term with ¢ = 3 gives

2
ng

[—(m* 4+ eHn)D,,1(¢) + eHDpy1 ()] %
X [=(m?* + eHn)D,,_1(¢") + eHD, 11 (¢)],
- 2m?(m? + eHn)’

We now have a'!(z, z') as the sum of Eqs. (63) and (64):

n (64)

11 N
a (1‘./1‘ ) - 2(m2 +eHn) x
2 H)?2
x (nn:-Ll (eml ”) Dry1(€)Dnyi(¢") +
n(m? + eHn) ,
+ TDn—l(ODn—l(c ) =

H

B %[DnH(C)Dn—l(C') + Dy1(O)Dn41(C']. (65)
Next, we note that

1 mi (eH)Qn _ 1 eH

m2+eHn<n+1 m? >_n+1+m’ o0

i.e., the undesirable factor 1/(m? + eHn) contained in
n? and n3 in Eqs. (63) and (64) disappears in the sum
in Eq. (65).

In what follows, we use the relations

<di4 - g) Dy(¢) =nDy1(Q),
<di< - g) Du(¢) = =Dns1(Q), (67)

see Egs. (8.2.15-16) in [7]. We also write the sum and
the difference of these expressions:
d

— Dy (¢) =nDp-1(¢) = Dny1(0), (68)
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It is then easy to verify that
Dn11(¢) Dt (<)
2(n+1)
n

+ 5 Dn-1(Q)Dnr () +
2¢eH 0?
m? 0¢oc’

The first term in the right-hand side of (69) is involved

all(x’ x/) —

_|_

Dn(¢)Dn(("). (69)

in Eq. (60) and the second term is used in (61); the
necessary factor n! comes from Ny, see Eq. (48). The
third term can be written as
1 0?
— ———D,(0)D,(¢"). 70
7 3.7 DO () (70)

In a similar manner, we find the other components
at’ (z,z") = a"** (2, ).

It is easy to verify that the differential operator
AW (z,2") corresponding to a¥(x,z') is given by

1

A,uu — Buu + Cuu7 C,uv — WH“(QL‘)HV* (xl)’
0
o,(z) = _26—“ +eA,(z), (71)
) .0
I (2') = U +eA,(a).
In our case,
0 e
Ay(x) =6ppHrr, M(2) = za—,
5 ! (72)
0%
o (2') = —z%
The nonzero components B*” are
BY = B??2 =cost, B* =-B'?2=sinr,
B33 _ _BOO = 1. (73)

The difference of B*” from n*" is due to the interaction
of the boson magnetic moment with the magnetic field.
We can say that B*” with pu,v = 1,2 are «dressed» by
the magnetic field.

Thus,

H oo
nv € / . 2 ARV
G (. ) 471')2 s sin( eHs exp(—ism’) %

0
[ ieH z5(xq —l—xl)}
X exp X
X exp ( —(z +22)eH ctg(eHs)
4s 4t ’

Zy =Ty — T

we (74)
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It is somewhat surprizing that this representation does
not coincide with the Vanyashin—Terentyev represen-
tation [3] with the electric field switched off. Possi-
bly, these are two different representations for the same
propagator, and it would be interesting to verify this
hypothesis.

6. THE VECTOR BOSON PROPAGATOR IN
THE CONSTANT ELECTRIC FIELD

We first give the generalization of Eq. (51) for the
case where the external field can create pairs [12, 6].
For this purpose, we write

G(xvxl)abs = i<00ut|T(‘IJ(x)‘IJT(xl))|0in> =

= (0out]0in)G(2, 2"), (75)

where T is the chronological ordering operator and

Z[anout ¢n
= Z[anzn +¢n x +b

As usual, a, and b,, are the particle and antiparticle de-
struction operators in a state with the quantum num-

+b:out wn( )]

bers n:
|0m Z +1pk ak zn >
(77)
< out‘\Il = out| Zanout ¢n
For t > ', it follows from (75) and (77) that
xx abs—zz wn +'¢k )
X <Oout|an outa}; zn‘02n>7 t> tl. (78)

In our case, the Bogoliubov transformations have the
form (cf. Eq. (18)) [6]
f

_ .
Apout = C1nyin +c2 nbnzn-,

(79)

— ot
bnout = Coyplyin + nbntn

The first equation in (79) implies that
aL out|Oin) = ¢ kaL inlOin)-

We insert al ; 0;,) obtained from here in (78) and use
the commutation relation

[ak out a; out] = On-
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We then obtain

. » 1
G (2.2 )abs = (Oout|0in)i Y Tthn () wnal) == >t
n 1n
Similarly, for ¢ < t', we find
) s 1
G(2,2")abs = (Oout|0in)i ; —n(2) wn(x,)cfrf t<t

If the external field does not create pairs, the expressions obtained become those in (51).
In terms of the states 19’ and 1 in (8), transition current (41) becomes

T, 1) = V2eBe™/ [er + dyes + 2i(4¢ yey — 1% el)],

where we used Eq. (8.2.11) in [7] (and its complex conjugate):

>
DV*+1(T*) % Du—l(T) =V QBEGXP <%> =
s s
= Dy () L Dyis(7) = Do ()i L D (1)
— v*—1\T dt v+1\T) = v \T dt v\T).

The constraint is given in (10). Using Eqgs. (82), (8), and (10), we find the ;¢ polarization states

poyf LD, 1 (7) ~ vD, 1 (7]

L(1,2) = N(1) 0 exp(ip-x), N(i) = n;No,
m? D, (1)
ek in/4
p2\) =€ Dy (7) + v Dy (7)]
1 T
N(1) = ni Ny, = Ny = (2eE)~1/4 _2

+¥(2,2) = N(2) exp(ip - x),

D,,+1(T) — (]. + I/)D,,,l(T)

o

23 2 2 2 2
ny = , m =m” + p7 +p;,
2mi 1 1 2
_ ol _
p1y/ 76”/4[17 +1(1) —vDy1(7)]
+0(3,2) = N(3) (m? +p1) Dy (7) exp(ip - ).

p1p2Du(T)
23 in/4
o\ S Do (1) + ¥Dy 1 (7]
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1
ng = —2
Vm?(m? + pi)
The *4) polarization states can be obtained from these ones using Eqs. (19) (see also (16)):
[eE .
(p2 767”’/4[(1 +I/)D,,*,1(—T*) +D,,*+1(—T*)]-‘
(1, x) = N(1) 0 exp(ip - x) (88)
) pitp )
mA Dy (—7%)
eE —im/4 * *
P2y G (U4 1) Dye 1 (=) = Dy (=7°)]
’ L1 -
i(1+v)[=Dys_1(—7%) + ;DV*+1(—T )]
+’¢(2,$) = N(Q) exp(ip ! X)7 (89)
. * 1 *
i1+ V)[=Dyr -1 (=77) = = Dyega (=77)]
el .
o[ SE e A1 4 0) Doy (<) 4 D (=)
*y(3,2) = N(3) (m* + p1) Dy (=) exp(ip - x). (90)

ppoDu* (_T*)

» \/?e”“/“[(l +)Dye 1 (=7%) = Dy (=7)]

In Eqs. (85)—(90), the states ¢(i,z) are characterized by p1, p2,p3, and i; v and \ are given in (7).

|
We note that the transition current JO(*¢', T))

expressed in terms of tc¢ has the same form as
JO(49', 11b) expressed in terms of ,c, see Eq. (82).
A similar statement is true for the negative-frequency

states. Because v+1 = —v* in accordance with Eq. (7),
it follows from (19) that
T *tey =, fep =
=" * "¢y =_c % _c,. (90a)
Therefore,

‘]O(er(i'/ l‘), +¢(]7$)) =

= JO(Foli, ), T (j2)) o biy,  (91)
and
(i x), (G, x) = TP (T, 2), "Y(,x)) =
= _JO(+¢(iax)a+¢(jax))' (91a)

Ag previously, we focus our attention on the dif-
ferences from the scalar case in expressions similar to
(53). The proper-time representation of the scalar par-
ticle propagator is given by [12]

236

16E(t+t’)23

E

eF
G(xax,)spino = W exp |:

2
[ ds o2 Lo o
X / Sh(cEs) exp [ ism +4s (z7+23) +
0
+%eE(z§ - zg)cth(eEs)} . (92)

This can be derived similarly to the magnetic case, but
with the role of Eq. (52) played by the relation [12, 6]

Td
\/5/ X
J v/sh 26

i (T +T")*
8 cthd

1
=T (1 —
(zz—}— 2) X

D_ise(172)(X)D—ise—12) (=X"),
D—i%—(1/2) (_X)D—m—(1/2) ("),

(T -1
thé

l)-

T>T,

T<T (93)

q
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where

(94)

Y = = 6iﬂ/4T, XI — 6i7r/4Tl./ =

The lower line in the right-hand side of (93) can be obtained from the upper line by the substitution T' <> T". As
seen from the left-hand side of (93), this does not change the value of (93), cf. the remark after Eq. (53).

By analogy with the magnetic case, we expect the appearance of the factors e*2? in the integrand of (93), cf.
Eqgs. (73) and (60), (61). To make the insertion possible, we must rotate the integration contour clockwise by a
certain angle. This is in line with the Vanyashin-Terentyev approach [3]. After the substitution s — > + i, it
then follows from (93) that

b @4 T?  (T-T)?]
\/EC/ p{ 2360 + 26 { + H

sh 26 8 cthé thé

D_; D_; -’ T>T/
_r (i% B 1) st (1/2) ) D iz 12 X,), > ; (95)
2 D_ir1)2)(=X)Diser 1y (X'), T <T".
Similarly, substituting s — > — ¢ in (93), we obtain
T odb , i [(T+T)  (T-T)
3 i — 26 — L -
f/ /h 28 eXp{ 226 =26 = 3 { cthf the
0
D,i%, D,i%, -x' ) T> Tla
T <i%+ §> (3/2)(X) (3/2)( X:) : (96)
2 D i3/ (=X)D i3/ (X'), T <T"

The integration over ps contained in the sum over n in Eqgs. (80) and (81) gives
T dps3 ) i 1 . eE ctho iz2eE  ieEz(t +1t')
/ 5 OXD {zp323—§(T+T')2th9} =3¢ /4 - ex]@){élzh(9 + 5 , 23 =x3— x5, (97)

\
where T' and T" are functions of p3, see (94). Further The other necessary relations are obtained from these
calculations leading to (92) are similar to those in the by the substitution 7/* — —7*.

magnetic case. Because
We now consider the differences from the scalar ‘
case. We first rewrite relations (67) and (68) between 1 = V2n exp {_ﬂ n 2_77}
the parabolic cylinder functions for the present case as " T(—ix+1/2) 2 4|’ (100)
d o . vz o B ]
<F + 7) DU* (T, ) =V DV*—](T, )’ cIn 0 ek 12 + 9 3
* (98)
< d . i) D *(T/*) - _D *+1(7'l*) we can write the propagator as
dr'* 2 v v '
p G (2, 0) = SR/
2FDV*(T’*) =v*Dye 1 (7"") = Dyeyr (777), (99) ’ 2v/reE
T
* * * * d3 .
P Doe (1) = 1* Dy 1 (7') + Do 1 (7). X /ﬁa’“’(m,x’)exp[zp~(x—x’)]. (101)
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The scalar particle propagator can be obtained from
the right-hand side of (101) if we replace a"”(x,z')
with expression (93). As an example, we now calcu-
late a®3(z,z'). For t > t', we have

3
a®(x,2') o Y T3 (i, @) p ¥ (i, 2). (102)

i=1

The first term in the sum is
ieE
(L) 1™ (1) o =
3

X Dy (=)' " Dyu (77" ——2—— (103
(=77 (T )mﬁ_(m2+p%)’ (103)

where we used the second equation in (99) and the one
obtained from it by the substitution 7'* — —7*. Simi-
larly,

+¢3 (37 x) +¢3*(3-, xl) X

ek
2

Pl
m2(m? + p})’

Adding Eqs. (103) and (104), we obtain

T*Dye (=7*)7"" D (7'7) (104)

e E « ,
— —ZZ T*Dy (—7)7" " Dy (7'7) %
2 2
P P1
% . (105
[mﬁ_(mQ—l—p%) m2(m2+p%)] (105)

The expression in the square brackets can be simplified

()

The undesirable factor (m? + p?)~! involved in (103)
and (104) disappears in sum (105). The first term in
the right-hand side of (106) gives the following contri-
bution to (105):

1
m? + p?

1
m?

1
-
m3

2
P1
m2

3

1
= (106)

el
— ——T7*D,«
2m?
*

X (pg — eEt)(p3 — eEt')Dys (=7*) Dy (7'7).

1
= — X

* 1% 1%
(=7)7" Dy (7) —

(107)

This already has the desired form. We now rewrite the
contribution of the second term in the right-hand side
of (106) to (105) in the initial form (i.e., before using
the second equation in (99)),

el

o S+ V)P Dyt (=7 Dy (777 +
€L

+(1+ ) Dy (=) Dyea (77 +
+ (1 + Z/)D,/*_l(—T*)Dy*+1(T,*) —

= Dyy1(=7*)Dyegr (7'7)] . (108)
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This expression still contains the undesirable factor
1/m?%. But we must take the contribution from the
term with ¢ = 2 in (102) into account:

el

2
2m4

T3(2,2) L2 (2,2 (1+v) x

X | = Dyt (=7 )Dyrga (17) =

1 . "
- ;DV*+1(_T )DV*+1(TI )_

—vDye 1 (=T ) Dy 1 (7'7) =

— Dy 1 (=7")Dye_1 (7). (109)

It is easy to see that in the sum of (108) and (109),
the undesirable terms are cancelled and the unpleasant
denominator

m? = —ieE(1 + 2v)

disappears:

(108) + (109) = % x

X |1+ v)Dye 1 (=7*)Dye 1 (7'")+

$2 Dy (~7) Dy ()| (110)
Thus, a3(x, 2') is given by the sum of expressions (107)
and (110). The first term in the right-hand side of (110)
is used in (96) and the second term in (95). In the same
manner, we find all the other a*”(x,z') components.
Similarly to the magnetic case, we have

/

ieE ,
X exp ng(t-l—t )| %

eFE
(4m)?

ds
A
ssh(eEs)

G" (x,2') = HY

. i
X exp {—zsm2 + 4_5(2% + 22)+
+4i(z§ - zg)eEcth(eEs)] . (111)
s

where AMY is given by (71), but the vector potential is
AM(JL‘) = —(SugEt.
The nonzero B*” components are

B =B2 =1, B%» =_B% = ch(2eEs),

112
B3° = —B% = sh(2¢FEs). (112)
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We see that the electric field dresses B*Y with  pected, it now follows from (93)-(96) that G*(x,z")
u,v =3,0. retains the same form (111) for ¢ < ¢'.
Proceeding to the case where t < t', we note that

in accordance with (19),
7. THE VECTOR BOSON PROPAGATOR IN

(112a) THE CONSTANT ELECTROMAGNETIC

—ex =—Teqr, Tep=—sen. FIELD

This implies that ¢ (7%)) is obtained from "¢ (1 1))
by changing the sign of the arguments in the parabolic
cylinder functions and the sign of ¥° and ¢3. The
overall change of sign of ¥(2,2) does not affect the
corresponding term in (102). In ¢(1,z) and 3(3,x),
changing the sign of ¢/° and ? and of the arguments Ay(z) = 6, Hay — 8,3 Et. (113)
7* and 7'* is equivalent to changing the sign of only

the D-function arguments 7% and 7'* if ¢/* and ¢® are  The transition current between the states ;' and L1
expressed through the left-hand sides of (99). As ex-  is

After we have considered the magnetic and electric
fields separately, the construction of the vector boson
propagator in both fields meets no new problems. We
take the vector potential in the form

nd i

* * *\ ¢ d * *\ ¢ d
PG 10) =28 [ D2 (O &7 e2D3 (1D ()i 5 Du(r)= |7 e Dye i (7°)i 2 Dug (1)+

+c " eoDyeyr (77)i ED,,_l(T) D2(¢) . (114)

Taking Eq. (84) into account and integrating over x;, we obtain

o
2B 1 * * . * *
/dx1J0(+¢',+¢) —n! %Qeﬂ%/Q {Ec'l c1+(14n)cy ea+i(c_"ey—c, e )| . (115)
The constraint is given by
V2eH[(1 4 n)es — e1] + V2eEe™ ™/ Lc_ — (14 v) yei ] = 0. (116)

Using (115) and (116), we find the ;¢ polarization states (in what follows, the factor exp[i(paxs + p3x3)] is
dropped for brevity):

(1+n)Ve2EHe'™ /4D, 1 (1) — vD, 1 (1)]Dn(C)

im? DV(T)Dn+1(O
1,z) = N(1 L 117
+¥(1,z) (1) 112 Do () Do (C) (117)
(1+ W@ EH™/A[Dy 11 (7) + vDy1 (7)) Da(C)
. H 1/4 6—71'%/4
N(Z) = niNO, NO = <27TE> m 3
1
ny = , 118
V2m2 (m2 + eHn)(1+n) (118)
[Du+1(T) + (1 + V)Dufl(T)]Dn(C)
2.2) = N(2 0 _ | <E 119
+1/)( ./l‘) - ( ) 0 ) na = Qmiv ( )

[Dy41(7) = (L+v)Dy 1 (7)1 Dn(C)
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VE2EH[Dy11(7) — vDy—1 (7)]Dn ()
~ ei’f/4D,,(T)[—(m2 +eHn)D,_1(¢) + eHD,11(()]
+¥(3,2) = N3) e ™/AD,(1)[(m? + eHn)Dpp_1(¢) + eHDps1 (Q)] | 120
Ve2EH[Dy11(7) +vDy—1(7)|Dn(C)

To obtain the polarization states of T4 (or of _1) and ~1), we again use Eq. (19) (cf. Egs. (88)-(90) and
(47)-(50)). We then obtain

(L+n)Ve2EHe ™*[(1+v)Dys—1(=7*) + Dy i1 (=7)] Du(C)
im? Dy ( ) Dn1(€)

Tp(l,x) = N(1) : (122)
mﬁ_Dy (=7*)Dny1(C)
(1+n)Ve2EHe ™/4[(1 + v)Dye_1(=7*) = Dye i1 (=7*)]Dn(C)
i(142) [~Dura(=7) 4 £Dsmsa(=77)| D100
Fu(2,7) = N(2) 0 : (123)
0
Li(l—l—y) |:_Dy*—1( ) - lD vt ( ] J
—iVeEH[-v*D,- 1(—=7*) + Dyey1(—7%)]Dn(C)
eim/4iD . m? +eHn e 1
601 = 8(3) || Do TN 4 D1 (©)+ D (O] o)
e~ Dy (=7)[(m* + eHn)Dyp—1(¢) + eH Dp11(Q)]
)

—iVEEH[-1*Dye_1(=7*) = Dyey1(=7)] D (C)

The first and the fourth lines in the right-hand sides of‘ This expression agrees with the calculations by Ri-

(122) and (124) can be written in a more compact form  tus [10, 11]. The overall phase factor e~"/2 is involved

using relations that can be obtained from (99) by the  in his formulas because of a different definition of the

substitution 7" — —7*. propagator. We also note that Eq. (125) is symmetric
Further calculations are quite similar to those in in t and ¢ and that

Secs. 5 and 6. The result was of course evident in ad-

vance: A" is now given by (71) with the vector poten- Gspino(r, 7', ) = Gspino(z', z, —e).

tial (113) and all the nonzero B*¥ are «dressed», see

Egs. (73) and (112). The scalar particle propagator is ~ Therefore,

given by

Gspino(x',xl) = X

oo
2EI:T
) GHv / AHY
eEH ds (=, 41)2 J sh( eEs )sin(eH s) 8
(4m)? | sh(eEs)sin(eHs) 0
0 i

; X exp {—zsm + = [(21 + 23)eH ctg(eH s)+
X exp {—z’sm2 + = [(21 + 23)eH ctg(eH s)+ 4
4 + (25 — 23)eE cth(eEs)] +
+ (25 — 23)eE cth(eEs)] + ;
; : , +3 [eEz3(t +t') — eHzo(71 + x'l)]} . (126)
+ 5[6E23(t—|—t)—eH22(x1 —|—x1)]}, (125)

_ o
ZH _‘TIJ $H.
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