ZKI3T®, 2001, rom 120, Boim. 2 (8), crp. 340-352

ELECTRODYNAMICS AND DISPERSION PROPERTIES
OF A MAGNETOPLASMA CONTAINING ELONGATED
AND ROTATING DUST GRAINS

b**
’

D. D. Tskhakaya®, P. K. Shukla’, N. L. Tsintsadze®

@ Institute of Physics, Georgian Academy of Sciences
3800717, Tbilisi, Georgia

b Institut fiir Theoretische Physik IV, Fakultit fir Physik und Astronomie,
Ruhr-Universitit Bochum
D-44780, Bochum, Germany

Submitted 28 November 2000

The electrodynamics and dispersion properties of a magnetized dusty plasma containing elongated and rotating
charged dust grains are examined. Starting from an appropriate Lagrangian for dust grains, a kinetic equation
for the dust grain and the corresponding equations of motion are derived. The expressions for the dust charge
and dust current densities are obtained with the finite size (the dipole moment) of elongated and rotating
dust grains taken into account. These charge and current densities are combined with the Maxwell-Vlasov
system of equations to derive dispersion relations for the electromagnetic and electrostatic waves in a dusty
magnetoplasma. The dispersion relations are analyzed to demonstrate that the dust grain rotation introduces
new classes of instabilities involving various low-frequency waves in a dusty magnetoplasma. Examples of var-
ious unstable low-frequency waves include the electron whistler, dust whistler, dust cyclotron waves, Alfvén
waves, electromagnetic ion-cyclotron waves, as well as lower-hybrid, electrostatic ion cyclotron, modified dust
ion-acoustic waves, etc. Also found is a new type of unstable waves whose frequency is close to the dust grain
rotation frequency. The present results should be useful in understanding the properties of low-frequency waves
in cosmic and laboratory plasmas that are embedded in an external magnetic field and contain elongated and
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rotating charged dust grains.

PACS: 52.25.Zb, 52.25.Vy, 52.35.Fp
1. INTRODUCTION

About a decade ago, Shukla and collaborators [1, 2]
introduced the idea of considering the dynamics of
charged dust grains, which formed the foundation for
the dust acoustic waves (DAWs) [1]. In the latter, the
restoring force comes from the pressures of the inertia-
less electrons and ions, while the dust mass provides the
inertia to maintain the wave. The phase velocity (the
frequency) of DAWs is much smaller than the electron
and ion thermal velocities (the dust plasma frequency).
On the other hand, when the wave frequency is much
larger (smaller) than the dust (ion) plasma frequency,
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we have the dust ion-acoustic waves (DIAWs) [3] whose
phase velocity is much smaller (larger) than the elec-
tron (ion) thermal velocity. In DIAWS, the restoring
force comes from the pressure of the inertialess elec-
trons, while the ion mass provides the inertia because
the massive dust grains remain immobile at the time
scale of the DIAWs. Both the dust acoustic and dust
ion-acoustic waves are spectacularly verified in several
laboratory experiments [4-8]. We note that the previ-
ous theories of DAWs and DTAWs and the correspond-
ing laboratory experiments have dealt with spherical
dust grains. Comprehensive reviews of waves and insta-
bilities in a weakly coupled unmagnetized dusty plasma
with spherical dust grains were given in Refs. [9, 10].
However, elongated charged dust grains are ubiq-
uitous in cosmic and laboratory plasmas [11-14]. The
formation of elongated charged dust grains is attributed



MKIT®, Tom 120, Bbim. 2 (8), 2001

Electrodynamics and dispersion properties . ..

to the coagulation of particulates in partially or fully
ionized gases due to some attractive forces. Elongated
charged grains can acquire a rotational motion due
to their interaction with photons and particles of the
surrounding gas or due to the presence of an oscillat-
ing electric field in a plasma [11,15]. In astrophysical
objects, the angular frequency of the dust grain ro-
tation can reach a rather large value, viz. between
tens of kHz to mega Hertz for thermal dust grains
and hundreds and thousands of MHz for super thermal
grains [11, 12, 16]. There is an orientation of a different
kind involving preferred direction (relative to the galac-
tic disk) of the dust grain angular momentum vector.

In general, elongated charged dust grains have a
nonzero dipole moment due to a finite grain size. Ac-
cordingly, Mahmoodi et al. [17] investigated the disper-
sion properties of an unmagnetized dusty plasma in the
presence of rotating and elongated dust grains. It was
found that the dust rotational energy can be coupled
to both the electromagnetic and electrostatic waves.
However, cosmic and laboratory plasmas are usually
embedded in an external magnetic field that can have
substantial effects on the dusty plasma wave spectra
when elongated and rotating dust grains are present in
a dusty plasma system.

In this paper, we present the electrodynamics and
dispersion properties of a dusty magnetoplasma whose
constituents are electrons, ions, and finite-size elon-
gated dust grains. In Sec. 2, we find expressions for the
charge and current densities of dust grains by including
the effect of the dust dipole moment and the dust grain
rotation. The forces acting on the dust grains as well as
the corresponding dust kinetic equation and the equa-
tions of motion are presented in Sec. 3. In Sec. 4, we
derive dispersion relations for both the electromagnetic
and electrostatic waves. Specific instability results are
discussed in Sec. 5. Finally, Sec. 6 contains a brief sum-
mary and possible applications of our work to cosmic
and laboratory plasmas.

2. DERIVATION OF THE CHARGE AND
CURRENT DENSITIES FOR DUST GRAINS

We consider a multi-component dusty plasma in the
external magnetic field zBg, where Z is the unit vec-
tor along the z axis and By is the strength of the ex-
ternal magnetic field. The dusty plasma constituents
are electrons, ions, and negatively charged nonspher-
ical rotating dust grains. The dust sizes are much
smaller than the characteristic scale sizes of the inho-
mogeneities (viz. wavelength of disturbances in our
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system). To construct the electrodynamics of charged
dust grains in a magnetized dusty plasma, we must ob-
tain appropriate expressions for the charge and current
densities of dust grains through the dust grain distri-
bution function, taking the size of the dust grain into
account. On the other hand, expressions for the charge
and current densities of electrons and ions assume the
standard form.

For our purposes, we assume that the charged dust
grains are a system of discrete parts [18]. The charge
microdensity of the grains is represented as

P =Y qu(rj)5(r —1;)

i

(1)

where the summation over i is taken over different
grains and the one over j is taken over different parts
of the i-th grain. Here, dg;(r;) is the charge of the
Jj-th part of the i-th grain and é(r —r;) is the standard
Dirac function. If there is a continuous charge distri-
bution onto the grain, the summation over j can be
replaced with the integral over the grain volume, and
the charge density onto the grain can be introduced.
Hence, we have

pm=2_

i Vi(Rs)

pi(r' = Ri, Ri)o(r —1'),  (2)

where R; is the radius vector of the centre of mass of
the grain and the integral is taken over the grain vo-
lume V;(R;). In (2), we introduced the density of the
charge distribution onto the grain

dgi(r) = dz(rr)

dr = p; (I‘ - R;, R,)dl‘ (3)

For a point grain charge, we have

pi(r — Ri,R;) = qid(r — Ry), (4)
which leads to the usual expression for the charge mic-
rodensity of the grain

Pm = Z Qié(r - Rz)v (5)

where ¢; is the total charge of the i-th grain.

For the statistical description of a dust grain gas,
we must introduce the probability density D for the
grain gas state [19, 20]. If all grains are identical, we
have

D= D(R17v11917011¢11¢1;

Ry, vo, 0,05, 00, 00;... 1), (6)
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where v; is the velocity of the centre of mass, €; is the
angular velocity of the i-th grain, and 6;, v;, and ¢;
(the Euler angles) describe the orientation of elongated
grains. For the averaged charge density of the grain,
we can then write

p(r,t) = /dTl,dFQ,... ,dUNDpp, (7)

where N is the total number of grains and

Introducing the one-particle distribution function for
the dust grain

fa(Ry,vi, Q1,01,901,01,1)

= N/dF2dF3,... ,dCxD, (8)

we can write the charge density of grains as
p(r,t) = /dI‘l /p_l(r")é(r -R;—1r'") x
Vi

Xfd(Rlvvl-,Qlaelvlplvﬂplvt)dr”' (9)

In what follows, we omit the subscript 1 and consider
the one-dimensional grain rotation such that the an-
gular velocity is oriented along the external magnetic
field direction, © = (0,0,). Equation (9) can then be
written as

p(I'.,t) :/dFﬁ(r—R,go)fd(R,v,Q,go,t), (10)

where the integrand

pr—Rug) = [ di'p(t)o(x —R—1'),
/

(11)

describing the charge distribution onto a single grain,
depends on the shape of the grain and the azimuthal
orientation of the grain elongation axis. Outside the
grain volume, we have p = 0. For identical grains,
we can partly determine the dependence of p on the
azimuthal angle ¢. Every given direction of the grain
elongation axis, determined by the angle ¢, can be con-
sidered as the final position of the axis (and simulta-
neously the entire grain) rotation from the direction
where ¢ = 0. This allows us to write

pr =R, p) = 4[F ()(x — R),0]
= J[F (¢)(r —R)], (12)
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where f‘) () is the rotation matrix for the angle ¢,

(=0 =)

In the dipole approximation, when the dust grain
size a is much smaller than the scale length of the
plasma inhomogeneity A,

<~

COS
F=Fy (o) v

—sing

(13)

sing  cosy

a< A, (14)

we insert (12) in (10) and expand the distribution func-
tion fyz around the point r. This gives the grain charge
density

pate.) = [(a=d-V)jaev. 2 p0dn, (13
where dA = dvdQdyp,
0= [ deptr (16)
is the total charge of the dust grain, and
<—)—1
=¥ (o) [ dregte) (17)
——1
is the dipole moment of the grain. Here, F  is the

>
inverse matrix of F ().
Similar calculations lead to the following expression
for the dust current density:

Jd(r,t)=/dA[v(q—d-V)+Q><d]><

X fa(r,v,Q @, t). (18)

The first term in the right-hand side of (18) describes
the transfer of charge (15) and the second term de-
scribes the current arising from the dust grain rotation.
In the next section, we show that Eq. (15) and (18) are
related to the continuity equation.

3. FORCES ACTING ON GRAINS AND THE
GRAIN KINETIC EQUATION

To construct the kinetic equation for dust grains,
we must completely know the forces that act on dust
grains in the presence of electromagnetic fields. As-
suming that charged dust grains constitute a discrete
system of particles [18], we have the Lagrangian

Amzuf 1
L= ZT + EZAqi[vi-A(r,t)] -

- Z Agip(r,t), (19)
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where Am; and Ag; are the mass and the charge of the
i-th part of the grain, respectively, r; and u; are its co-
ordinate and velocity, A and ¢ are the vector and scalar
potentials, respectively, and ¢ is the speed of light in
vacuum. Separating the center-of-mass motion and the
rotation around the center of mass, we can write
u,=v+QxAr; and r; =r+ Ar,,

where v and r are the velocity and the position of the
center of mass, Ar; is the coordinate of the i-th part
of the grain relative to the center of mass, and € is
the angular velocity of the dust grain. Assuming that
the inhomogeneity scale A of the electromagnetic field
is much larger than the grain size a, we can use dipole
approximation (14) up to the third order in the small
parameter a/\ and expand the potentials as

A(r;,t) = A(r,t) + (Ar; - V)A(r, t) +
+ %(Ari “V)2A(r,t) 4+ ..., (20)
and
¢(ri, 1) = o(r, ) + (Ari - V)o(r,t) +
+ %(Ari V)2o(rt) +... (21)

Accordingly, Lagrangian (19) becomes

2
1
L= mdQ" +§Ia50aﬂg+%v CA(r, £)—qo(r, 1)+
1
A"
X (E+Z ><B), (22)
where

ma=Y Ami g=Y Ag
i i
are the total mass and charge of the grain,

Ing = Z Am;[(Ar;)?bap — (Ary)a - (Ar;)g]

is the inertia moment tensor,

is the dipole moment of the elongated grain, and

m = (1/2¢) Z Agi(Ar x Uy)
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(with U; = Q X Ar; being the rotation velocity) is
the magnetic moment of the grain. The electric and
magnetic fields are

E=-V¢—c'9A(r,t), B=V xA(r,1t),

respectively. In deriving (22), we used the relation
dd/dt = Q x d.

In the presence of the gravity field g, we must add the
term mgg - r to the right-hand side of (22). In what fol-
lows, we neglect the second term in the square bracket
in the right-hand side of (22), which is associated with
the multidipole effect.

The equations of motion for the charged dust grains
can be readily deduced from (22) as

dp 1
%—(Q'l‘d V)<E+CV><B>+
+1(Q><d)><B+(m><V)><B (23)
c
and
M, 1 dB;
= 3% |+ ) +

+ [dx (E+%va)L+(mxB)a, (24)

where p = mgv is the momentum,

Sag =c! Z Agi [(Ari)*0ap — (Ar;)a(Ari)s]

and M, = 1,393 is the angular momentum of the
grain. If we choose the principal axis of the moment of

inertia, then
M, =1,Q,, My, =1,Q,, M,=1.0Q..

The kinetic equation for the dust grains can now be
written as

dfq Ofa Ofa dp Ofa

ot Vo T T o T
diM 0fs
om0 ()

where the respective forces dp/dt and dM/dt are de-
fined by Eqgs. (23) and (24). Kinetic equation (25)
and definitions (15) and (18) imply that the dust grain
charge and the current densities satisfy the continuity
equation

0J 4

9pa , 9da
or

ot =0

(26)
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Using the expressions for pg and J4, we can construct
the kinetics and electrodynamics of a dusty plasma
with elongated and rotating dust grains. In what fol-
lows, we consider the wave dynamics of such a magne-
tized dusty plasma.

4. DIELECTRIC PERMITTIVITY

We assume that the dust grain size is much smaller
than the grain gyroradius and that the dust grain ther-
mal velocity is smaller than the characteristic velocity
of our problem. Under these conditions taken together
with (14), equations of motion (23) and (24) can be
simplified. For simplicity, we furthermore consider the
one-dimensional case of the dust grain rotation; we then
have M = (0,0, M), where M = I and I is the z com-
ponent of the principal moment of inertia. The kinetic
equation for the dust grain (25) then assumes the form

Ofa Ofa Ofa dfa
o Vo T, TAXEL G
+q<E+1va0> ~%=0. (27)
c op

For electrons and ions, we have the well-known kinetic
equation

Ofa . Ofa
ot Ve T
1 Ofa
+€a|:E+EVX(B0+B):|%:O, (28)

where a equals e for electrons and i for ions, and e, is
the charge of the species a.

Assuming that the wave electric and magnetic field
perturbations are small, we can express the perturbed

distribution function as
0fa = fa— fao < fao and 6fa = fo = fao < fa.

The equilibrium distribution functions are [21]

f o ndo 1 %
O S (2rmaTy)3/% (21 1T,/
2 2
P (M — Mp)
— — 29
xexp[ deTd QITd ’ ( )
and
fao = __Ned _yp— v’ (30)
o0 (27m T, )3/2 P 2maTn )’

where ngg and Tz (8 = e,i,d) are the unperturbed
number density and the temperature of the species 3.
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We assumed that the dust grains rotate with a pre-
ferred angular velocity g, and therefore, My = 1Qy.
The components of the dust dipole moment are

dy =dcosp, d, =dsingp. (31)

Thus, the perturbed dust grain distribution function is
represented as

0fa="Y_ Ofnexpling),

(32)
and therefore, Eqs. (27) and (28) give [22]
A6 fn fn . 96 fn
5 +v o + Qo fr, — Wed a0
_ dfao i Ofao
=—4E Jp (n) 2 OM
Xd[(Ey—iEy)A(n—1)—(Ey+iE,)A(n+1)] (33)
and
8(5fa 85fa 85fa _ afon
ot + v ar Wea 81/) = o ap ) (34)
where

Wed = qBo/de-, Wea = eaBO/maC

are the cyclotron frequencies of the dust grain and the
species a, respectively. Furthermore, A(n) equals 1 for
n =0 and 0 for n # 0. The symbol ¥ is the azimuthal
angle in the momentum space [22],

Pz = D1 COSY, py =pyLsini.

In accordance with (31), only n = 0,+1 give a contri-
bution to the summation in (32).

Assuming that the perturbed quantities are propor-
tional to exp(—iwt + ik - r), where w and k are the fre-
quency and the wave vector, respectively, we obtain [22]
the following solutions of Eqs. (33) and (34):

P
far

o0

qE
Wed

9 fao
op

dfo = X

Y

con o]

d},

w—k-v(®")
Wed

¥
J

+o0

}dw” . (35)

iy = 4L METIE)

2 Wed

;afdo
oM

X

wFQ-—k-v(@")
Wed

:| d¢l! ,
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E ; 0
5fa:ea /dwl faOX
Wea op
+oo
; w—k-v@")
X exp —i/ [wi} dy" (37)

,l/)/
Inserting Eqs. (35) and (36) in (18) and also inserting
(37) in the expression for the electron and ion current
densities

Jo = ea/dpvfa., (38)
we obtain the total current density
Ji = {g;j (wk) + > ol (w,k)} Ej, (39)
B=e,i,d

where the first term in the right-hand side is related
to the rotational motion of the dust grain and the sec-
ond term represents the contributions of the electrons
and ions including the center-of-mass motion of the
grains. The various components [25] of o7; and the
dielectric permittivity are given in the Appendix. For
k2 V2 < w?; and |w £ Q| > KV, the dust grains
are assumed to be cold and the rotational part of the
dielectric tensor (cf. Eq. (A.15) in the Appendix) is
given by

el igh 0
Egj = —igr 61 0 , (40)
0 0 O
where
02 02
ro_ _ T _ r 41
€L (W—QO)Q (W+Qo)2 ( )
and
0?2 02
r — r _ T . 42
T -2 W+ Q)2 (42)

We note that this involves a new characteristic fre-
quency

Q, = (4drnged?®/4I)'/?
for dust grains that have a non-zero dipole moment.
This frequency is of the same order as the dust plasma
frequency wpq.

5. DISPERSION PROPERTIES

The general analysis of the dispersion relation
2

]{2252']‘ — kzk] — 02_26“ (w,k) =0 (43)
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for waves in a magnetized dusty plasma is rather com-
plicated, because the number of wave branches is large.
Here, we present the dispersion properties of some most,
interesting modes and describe the underlying approx-
imations required for the existence of these modes. We
first consider waves that are propagating along zBy.
For waves in a cold dusty plasma with

kiVia < Weas ‘kz“/;ioz L w

(44)
and |w £ nwea| > k2| Via,
we have
€pp = €yy = €L =
w2 02 02
=1= B _ T _ T , 45
%uﬂ —wl  (w—Q)%  (w+Qo)? (45)
. Z wgﬁwtﬁﬁ
€ = —€ =19 = —1 R
o v 3 w(w? — w?g)
02 02
+1 = —1i L , (46
(w—Q)? (w+ Q)2 (46)
2
EZZ=6|‘=1—ZL2B, (47)
B
and
€py = €xp = €y = €4y = 0. (48)

The electric field components are determined by the set
of equations

2 2

<k§ - UCJ—QEJ_> E, - io:_ggEy —kik:E. =0, (49)
w? §
C—QgEx + <k2 - 6—26L> Ey =0, (50)
w2
—k kB, + (ki — c—2e|> E. =0. (51)

We note that for k; = 0 (i.e., for k = zk,), we have
€| = 0if E, # 0, which shows that the dust grain rota-
tion does not affect the longitudinal waves. Obviously,
the dust grain rotation can act on the waves when the
electric field is in the rotation plane. The energy ex-
change between the dust grain rotation and such a wave
is most efficient when the rotation frequency is close to
the wave frequency.
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For the circularly polarized electromagnetic waves,
we have

k22

20?2
T Z (w+ Q)%
where + in the denominators corresponds to the
left /right-hand circularly polarized waves. By replac-
ing Q¢ with —Qg, we can make the dust grain rotation
direction coincide with the wave polarization direction.
Dispersion relation (52) can be written as

52
o (52)

k?c? 202
e e(w) — [CISER (53)
where
-5 4
€(w) gw(w—l—wcg) (54)

Introducing a small frequency shift A around g, we

set w = Qo + A, where A <« Qq, and express (53) as
]{52 2 a k2 2 292
—Z_ { P) _6(90)}:_ x
Q5 0 | O A2

We now assume that g is far from the characteristic

frequency wp of the magnetized dusty plasma, which
satisfies

€(Q0) + A (55)

]{52 2
H(wpy) = - €(wp) = 0. (56)
The condition
H(Q) A
> —, 57
Qo (dH()/d%) |~ % (57)

is then satisfied (this case is referred to as the non-
resonance case) and we obtain

92
A =i f t [1 t e (Qo)} , (58)
where we also assumed that QF < k%c?. Equation

(58) describes a new type of unstable transversal waves
whose frequency is close to the rotation frequency .
In the resonance case, when inequality (57) is reversed,
Qg is close to some characteristic frequency of the mag-
netized dusty plasma,

H(Qg) =0, (59)
and we obtain the frequency shift
2 1/3
PO R
Q30H (Q0) /00
1
x Q 60
| 1+£i3 (60)
2
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Equation (60) exhibits an unstable root with a substan-
tial growth rate that is proportional to Q$/3. This was
expected because dispersion relation (53) is formally
similar to the dispersion relation for a two-stream in-
stability discussed in [23].

We now present several examples of the magne-
tized dusty plasma wave spectra for the resonance
case. Because Qg is small in most of the astrophys-
ical and terrestrial environments, we consider low-
frequency regimes of the plasma oscillations.

For |wed|, wei € w K |wee|, we have

E2c? w2
H = LA, 61
@ =T~ o (61)
Setting
w = Qqy +i7,
where
Qo ~ wg = k202\wce\/w§e

(the electron whistler waves), we obtain the growth rate

QZ

]1/3

(62)

In the frequency regime where |weq| € w K we, we
have

— . 63
w|Wed (63)

In deriving (63), we used the dusty plasma quasi-neut-
rality condition at equilibrium

e[neo + [gnao = einio. (64)
Setting
w = Qqy +i7,
where
Qo ~wy = k2c2|wcd\/w§d

(the dust whistler wave [2,24-26]), we obtain the

growth rate

2\ 1/3
v ( k222> Q. (65)
On the other hand, for w ~ w.q, we have
2.2 w2
O e
In this case, setting
w = Qqy +1i7,
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where
Qo = wo = |wed| (1 — wzd/k2c2)

(the electromagnetic dust cyclotron wave), we obtain
the growth rate
1/3
> |wcd\.

7%(2

For the frequency range w & w,; (ion cyclotron waves),
the growth rate is given by
1/3
> Wei .

7%(2

We now take the thermal motion of the electrons into
account assuming that

2 2
Qr wiﬂd

k2c2 k2c?

(67)

2 2
Qr wpi

k2c2 k2¢?

(68)

w

<L Ve
£ |

Via, Vie < (69)
We restrict ourself to the wavelengths longer than the
Larmor radii

KiVia,  [k[Vie, < wly.
From (A.9)-(A.11), we then obtain the dielectric per-
mittivity tensor components

2 w?

& d
Gzzzeyy:].'i'v_z_wz _pwgd
c
2 2
- QT - QT 9 (70)
(w—Qo)2 (W+QO)2
2
. w w
Coy = TEyz T TV piﬂ Wed *
— Wed e
2 92
i
(w—Q)? (w+ Qo)? (T)
w2, w? w?
€, =1— 2 “pd ®, (72)
ST e
€xz = €zp = €yz = €y = 0, (73)

where we used (64) and set
By
AV 47rmmi0 '

We also ignored the Landau damping on electrons. Dis-
persion relation (43) separates into two equations:

Va =

€22 (w, k) =0, (74)
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which is not influenced by the rotation of the grain,
and

2

k22 ¢

w? _V_f Wed(wWEweq)

2 2
Wy 3 207

(wFQ)*

H(w) = (75)

We now assume that w < |weq|. Setting

w = Qg + 17,
where
Qo =kVy
(Alfvén waves), and using (58), we obtain the growth
rate
02 \1/°
v <k202> kva. (76)

We next consider the longitudinal waves for which the
dispersion relation assumes the form

2
z
+ 75 €2z

)+ 13
where the components €., and €. for the cold plasma

are defined by Eqs. (70) and (72). Inserting the latter
equation in (77), we obtain

w,k (w,k)=0 (77)

k3 wWps k2 23
R w2 — w2, k2w
cB
k2 0?2 02
== - 1. (78)
k (w — Qo) (w + Qo)

Tt follows from (78) that the dust grain rotation con-
tributes only for waves with k; # 0, because the elec-
tric field of the longitudinal waves then has a compo-
nent that lies in the dust grain rotation plane.

To obtain the growth rates for longitudinal waves,
we use the same procedure as was used to deduce
Eqs. (58) and (60).

We now consider the lower hybrid waves with
V2| Vie, [k2|Viiy wei € w <K |wee|. Setting

w = Qg + 17,
where
Qo = wy = _ Wpilee ) (79)
\/Whe + w2,
we find the growth rate
1@ 1/3
v = (50‘)_12)2) Qo. (80)
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Next, we consider the frequency regime where

|kz|V;5d7 ‘kz“/;fz w<KL ‘kz“/;fe-

The dielectric permittivity components in Eq. (77) are
now defined by Eqs. (72) and (78). Using these expres-
sions, we obtain the dispersion relation

L M Wpi “pa \ K2 wni _
Ery, k2 \w?-w? w?-w?, k2 w?
k> 02 02
= L r + r . (81)
2 e T )

This equation can be analyzed in two limiting cases.
First, we consider the ion-cyclotron waves with w.q <
L w=xQyand k, <€ k1. Setting

w R Wy + 17,

1/3
> QOa

is the ion acoustic speed.

Second, we consider the modified dust ion-acoustic
waves (MDIAWS) characterized by wpg, weag K w < We;-
In this case, Eq. (81) gives

we then obtain the growth rate
=

Qo = wo = (W& + k3 D)2,

2 74 4
Q7 kc

2. Ol
2wy, Qg

(82)

where

niOTe

NeoMMyg

2 2 2 2 kg@i
1+ k" rp, + k1 p; — R
02 02
— k,2 2 T T 83
1Tpe (W_Q(])2 (w+90)2 ’ ( )
where e _ co
Ps Wei B Wei .

Equation (83) admits an instability of the MDIAWSs
with the frequency

k.cs

(L k2%, + K )72
and the growth rate is

1/3
7% ( ) QO.

Finally, we consider coupled dust acoustic-dust cy-
clotron waves in a dust-electron plasma (without ions)

Qq

=wg =

k2 Q2
2k2 an’

(84)
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with positive dust grains [27]. For kViy € w < k.V}e,
we then have

1+ LI ﬁ wlz’d _ k_§ w_12’d _
k3, R w?—w?, k? w?
2 92 92
= kY r r (85)
2 e T )

For w < |wed|, Eq. (85) admits an instability of short
wavelength DIWs when

krDewpd

(1 + k2T2De + k‘ipgd)

Qo =wo = 72

where
Psd = )\Dewpd/wcd~

The growth rate of this instability is

1/3
7% ( ) QO.

On the other hand, for w ~ |we|, ki > k,, and
k*r%, < 1, an instability of the dust cyclotron waves
occurs when

1k Q2
2 k2 w2y

(86)

2 2.2 2 \1/2
Qo = wo = (weg + k" pewpq) /2,

The growth rate of the instability is
2
Q?« “pd

. 1/3
vy | zkirh, s 2 Q.
(2 Libeq2 Q%)

It is interesting to note that a dust-electron plasma
with positively charged grains can occur in the Earth’s
polar mesosphere [28, 29], where the grains are irradi-
ated by the sun light, in which case the grains act as
a source of electrons and collect ions from the ambient
plasma to become positively charged. There also is the
prediction [30] that positively charged dust grains in
retrogate orbits are most likely to be observed by the
Cosmic Dust Analyzer aboard the Cassini Orbiter mis-
sion to Saturn. Furthermore, the dust electron plasma
can also be created in a laboratory discharge when the
dust grains are irradiated by ultraviolet (UV) radia-
tion [31, 32, 33, 34].

(87)

6. SUMMARY AND CONCLUSION

In this paper, we have developed the electro-
dynamics of a magnetized dusty plasma taking the
finite size of elongated and rotating charged dust
grains into account. Starting from an appropriate
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Lagrangian for charged dust grains, we have derived
the dust charge and dust current densities, as well
as a kinetic equation for charged dust grains and the
corresponding equations of motion in the external
magnetic field. The effects of the dipole moment
and the principal moment of inertia of the elongated
and rotating dust grains are self-consistently incor-
porated. The newly derived dust charge and dust
current densities, together with the corresponding
quantities for electrons and ions, are combined with
the Maxwell-Vlasov system of equations to obtain
dielectric response functions for a magnetized dusty
plasma. For a cold dust gas, we have obtained explicit
expressions for the permittivities associated with the
dust grain rotation and for those of the ambient plasma
species. The dispersion relations for transverse and
longitudinal waves were then derived. Our analytical
results exhibit instabilities of the electron whistler,
the dust whistler, the Alfvén waves, electromagnetic
ion and dust cyclotron waves, as well as lower-hybrid,
electrostatic ion-cyclotron, and coupled dust acoustic
and dust cyclotron waves. The instability arises due to
the resonance interaction between waves and elongated
rotating dust grains. The free energy stored in the dust
grain rotational motion is basically coupled to both the
electromagnetic and electrostatic waves, driving them
at nonthermal levels. The presence of nonthermal
fluctuations can be used for diagnostic purposes. For
example, coherent or incoherent scatterings of star
light and/or electromagnetic waves off nonthermal
fluctuations in cosmic plasmas may yield valuable
information regarding the light polarization, the dust
number density and the dust charge in situ, and other
plasma parameters including the external magnetic
field strength. We stress that the oscillating electric
fields of electromagnetic waves may produce dust grain
rotation, the energy of which is required for driving
waves at nonthermal levels. In conclusion, we empha-
size that the present investigation should be useful for
understanding waves and instabilities in astrophysical
and laboratory plasmas that contain elongated and
rotating charged dust grains. Finally, we suggest that
new laboratory experiments in a weakly coupled dusty
magnetoplasma must be designed to test the ideas
described in this paper. A recent experimental work
by Molotkov et al. [14] has conclusively demonstrated
the Coulomb crystallization of 300-um highly charged
elongated cylindrical grains (with |g| ~ 7.7 - 10° and
with the length-to-diameter ratio 20-40) of the mass
density 1.1 g/cm® and the diameters 15 and 7.5um
in a low pressure gas discharge plasma, where the
electron energy ranges between 1-10 eV. Thus, a

sheath electric field of the order 30 V/cm can levitate
the grain. Molotkov et al. [14] have discussed the
role of the induced dipole moment that can influence
the grain orientation. At small pressures (0.1 Torr),
they also observed oscillations with the wavelength
~ 1 mm and the frequency 20-50 Hz. The latter
can be associated with the dust acoustic waves that
are deduced from our Eq. (83). Furthermore, by
applying the external magnetic field 1-6 kGs and with
the plasma (nj ~ 10° em™ and ngy ~ 10® em™?)
and dust parameters similar to those in Molotkov et
al. [14], one should be able to observe the magnetiza-
tion of ions and the electrostatic ion-cyclotron wave
instability described by (81). Finally, we mention that
several authors [35-38] have experimentally observed
rotation of spherical dust grains by magnetic fields.
The rotation is attributed to the azimuthal E x Bg ion
drift, which also drags the dust grain along due to the
space charge electric field that is set up between ions
and grains.
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APPENDIX: VARIOUS COMPONENTS OF Ufj

T

The components of o;; are given by

Opz  Ogy O
oij(wk)=| —op, oy, (A.1)
0 0 0
where
ro_ e mapd® 1
A Ta VI ST
x> exp(—za)In(za) (B" +@%1), (A.2)
n=-—o<
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of = naod’ ’1 % where
Y 41 KV
o n2w2 A (Z )
_ n _ gn . o= 1— P n\=8) g A9
* 2 ez (B2 -2h), (A) G ZBJZ o)z ) (A9)
with
- kf KVig : <w + Qo — nwcd> N Eyy = €xa +
K? w4 Qy — nweq KV w225
(K w—nwea _ k2 Qo +2) > WA%(ZL%)J+(€7¢)-, (A.10)
K2 KV T K2 KV 5 on 0
w =+ Qg — Nweq
1 —||. (Ad
X [ + J+ < KVig >:| ( )
oy = —€yz =
Here, Vig = (Td/md)l/z n2w2 ,
is the grain thermal velocity, g on
FVE S mq
28 = o K=VEk>+r? k= T
oh €p: = €20 =
I,(z) is the Bessel function of an imaginary argument, nwyski A, (zp)
and the function = ; Z wwepk - 1—Ju ()], (A12)
s 2
T t
Ji(z) = — dtexp [ ——= | (z —t)7!
w0 = = [aew (-5 ) @0
e €y = —€zy =
has the asymptotic behavior w2k
L = —zzzwgﬁﬁk A (z5) [1= T4 (&)],  (A13)
Ji(zx) = 1+ -I- >+ \/Zacexp( 2%/2) (A.5)
for |x| > 1, |Rex| > |Imz|, and Imz < 0 and )
pﬁ — NWep
: SRR D) P
Ji () ~ —i 57 (A.6)
X An(2) [1 = J4+ ()], (A.14)
for |z| < 1.
For the tensor 06 (w, k), we have and
" - 4mi
5 e% , (0fs0 €;(w, k) = —o0j;(w, k). (A.15)
il =2 [apuiw) [ (G2)
op 450 Pi /oy Here,
¥
X exp { i / (=K v(¥") Jwegl d 3, (A7) An(2) = exp(=2)In(2), & = %;’6)
o z| VB
where eg is ¢ for § = d. 2
4
Straightforward calculations lead to the following Wpg = ZTepnso
expressions for the dielectric permittivity tensor [22]: ma
is the plasma frequency of the species [, and

€ij(w, k) = &5 (w, k) + €] (w, K), (A.8)
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k =

(kJ_ao-, kz)
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