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PHASE SEPARATION IN SYSTEMSWITH CHARGE ORDERINGM. Yu. Kagan a*, K. I. Kugel b, D. I. Khomskii 
a Kapitza Institute for Physi
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es117334, Mos
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trodynami
s, Russian A
ademy of S
ien
es127412, Mos
ow, Russia
 Laboratory of Applied and Solid State Physi
s, Materials S
ien
e Center,University of Groningen9747AG, Groningen, the NetherlandsSubmitted 25 De
ember 2000A simple model of 
harge ordering is 
onsidered. It is expli
itly shown that at any deviation from half-�lling(n 6= 1=2), the system is unstable with respe
t to the phase separation into the 
harge-ordered regions withn = 1=2 and metalli
 regions with a smaller ele
tron or hole density. A possible stru
ture of this phase-separatedstate (metalli
 droplets in a 
harge-ordered matrix) is dis
ussed. The model is extended to a

ount for the strongHund-rule onsite 
oupling and the weaker intersite antiferromagneti
 ex
hange. The analysis of this extendedmodel allows us to determine the magneti
 stru
ture of the phase-separated state and to reveal the 
hara
teristi
features of the manganites and other substan
es with 
harge ordering.PACS: 71.45.Lr, 75.10.-b, 75.30.Mb, 75.30.Kz1. INTRODUCTIONThe problem of 
harge ordering in magneti
 oxidesattra
ts attention of theorists sin
e the dis
overy of theVerwey transition in magnetite in the end of the thir-ties [1℄. An early theoreti
al des
ription of this phe-nomenon was given, e.g., in [2℄. This problem was re-
ently reexamined in a number of papers in 
onne
tionwith the 
olossal magnetoresistan
e in manganites, see,e.g., [3�5℄. The me
hanisms stabilizing the 
harge-or-dered state 
an be di�erent: the Coulomb repulsion of
harge 
arriers (the energy minimization requires kee-ping the 
arriers as far away as possible, similarly to theWigner 
rystallization) or the ele
tron�latti
e intera
-tion leading to the e�e
tive repulsion of ele
trons atthe nearest-neighbor sites. In all 
ases, 
harge ordering
an arise in mixed-valen
e systems if the ele
tron band-width is su�
iently small for the large ele
tron kineti
energy to stabilize the homogeneous metalli
 state. Inreal materials, in 
ontrast to the Wigner 
rystallization,*E-mail: kagan�kapitza.ras.ru

the underlying latti
e periodi
ity determines the prefe-red types of 
harge ordering. Thus, in the simplest bi-partite latti
e, whi
h o

urs in the 
olossal magnetore-sistan
e manganites of the type R1�xAxMnO3 (whereR = La, Pr and A = Ca, Sr) or layered manganitesR2�xAxMnO4, R2�2xA1+2xMn2O7, the optimum 
on-ditions for the formation of the 
harge-ordered stateexist for the doping x = 1=2. At this value of x,the 
on
entrations of Mn3+ and Mn4+ are equal andthe simple 
he
kerboard arrangement is possible. Themost remarkable experimental fa
t here is that even atx 6= 1=2 (in the underdoped manganites with x < 1=2),only the simplest version of 
harge ordering is exper-imentally observed with the alternating 
he
kerboardstru
ture of the o

upied and empty sites in the basalplane [6℄. In other words, this stru
ture 
orresponds tothe doubling of the unit 
ell, whereas more 
ompli
atedstru
tures with a longer period (or even in
ommensu-rate stru
tures) do not a
tually appear in this 
ase.A natural question then arises as to how the extraor missing ele
trons 
an be redistributed for an arbi-trary doping level su
h that the superstru
ture remains470
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harge orderingthe same as for x = 1=2? To answer this question,the experimentalists introdu
ed the 
on
ept of the in-
ipient 
harge-ordered state 
orresponding to the dis-tortion of a long-range 
harge ordering by mi
ros
opi
metalli
 
lusters [7℄. In fa
t, the existen
e of this stateimplies a 
ertain phase separation. We note that thephase separation s
enario in manganites is very popularpresently [8�15℄. There is a growing eviden
e suggest-ing that an interplay between the 
harge ordering andthe tenden
y toward phase separation plays an essen-tial role in the physi
s of materials with the 
olossalmagnetoresistan
e.In this paper, we 
onsider a simple model allowingus to 
larify the situation at an arbitrary doping. Themodel in
ludes both the Coulomb repulsion of ele
tronson the neighboring sites and the magneti
 intera
tionsresponsible for the magneti
 ordering in manganites.After demonstrating the instability of the system to-ward phase separation in 
ertain doping ranges, we 
on-sider the simplest form of the phase separation � theformation of metalli
 droplets in the insulating matrix.We estimate parameters of su
h droplets and 
onstru
tthe phase diagram illustrating the interplay between
harge ordering, magneti
 ordering, and phase separa-tion.We note that the 
harge ordering me
hanism 
on-sidered below (the Coulomb repulsion) is not the onlyone. The ele
tron�latti
e intera
tion 
an also play animportant role, see, e.g., [16℄. In appli
ation to man-ganites, one must also take the orbital and magneti
intera
tions into a

ount [4, 16, 17℄. These may be im-portant, in parti
ular, in explaining the fa
t that the
harge ordering in half-doped perovskite manganites isa 
he
kerboard one only in the basal plane, but it is�in-phase� along the 
-dire
tion. However, the natureof this 
harge ordering is not 
lear yet and presentsa separate problem: it is not evident that the domi-nant me
hanism is indeed given by the magneti
 in-tera
tions responsible for this sta
king of ab-planes in[16℄. We also emphasize that the 
harge ordering isoften observed in manganites at higher temperaturesthan the magneti
 ordering, and one must seek a modelthat does not heavily rely on magneti
 intera
tions. In
ontrast to magneti
 intera
tions, the Coulomb inter-a
tion is one of the important fa
tors that is alwayspresent in the systems under 
onsideration. Moreover,it has a universal nature and does not 
riti
ally de-pend on spe
i�
 features of a parti
ular system. Con-sequently, our treatment 
an also be applied to othersystems with 
harge ordering su
h as magnetite Fe3O4[1℄, 
obaltites [18℄, ni
kelates [19℄, et
.

2. THE SIMPLEST MODEL FOR CHARGEORDERINGWe 
onsider a simple latti
e model for 
harge or-dering,Ĥ = �tXhi;ji 
+i 
j + V Xhi;ji ninj � �Xi ni; (1)where t is the hopping integral, V is the nearest-neigh-bor Coulomb intera
tion (a similar nn repulsion 
analso be obtained via the intera
tion with the breathing-type opti
al phonons), � is the 
hemi
al potential, and
+i and 
j are one-ele
tron 
reation and annihilation op-erators, ni = 
+i 
i. The symbol hi; ji denotes the sum-mation over the nearest-neighbor sites. Here, we omitspin and orbital indi
es for simpli
ity. As mentioned inthe Introdu
tion, the spin and orbital e�e
ts play animportant role in the formation of the real stru
ture inspe
i�
 
ompounds; in this se
tion, however, we em-phasize the most robust e�e
ts related to the nearest-neighbor Coulomb repulsion. The magneti
 e�e
ts aredis
ussed in Se
. 5. We also assume that the doubleo

upan
y does not o

ur in this model be
ause of thestrong onsite repulsion between ele
trons.Hamiltonian (1) expli
itly a

ounts for the 
orre-lation e�e
t that is most important for the formationof 
harge ordering, namely, the ele
tron repulsion onneighboring sites. The long-range part of the Coulombintera
tion only leads to the renormalization of thebandwidth W and does not signi�
antly a�e
t theproperties of the uniform 
harge-ordered state. How-ever, it 
an produ
e a qualitative e�e
t on the stru
tureof the phase-separated state (see the dis
ussion in thebeginning of Se
. 4).The models of type (1) with the nn repulsion re-sponsible for the 
harge ordering are the most pop-ular ones in des
ribing this phenomenon, see, e.g.,[2, 3, 5, 20℄ and referen
es therein. Hamiltonian (1)
aptures the main physi
al e�e
ts; if ne
essary, one 
anadd some extra terms to it, whi
h we do in Se
. 5.In the main part of this paper, we always speakabout ele
trons. However, in appli
ation to real man-ganites, we mostly have in mind less than half-doped(underdoped) systems of the type R1�xAxMnO3 withx < 1=2. For a real system, one must therefore substi-tute holes for our ele
trons. All the theoreti
al treat-ment de�nitely remains the same (from the very begin-ning, we 
ould de�ne the 
 and 
+ operators in (1) asthe operators of holes); we hope that this does not leadto any misunderstanding.In what follows, we 
onsider the simplest 
ase ofsquare (2D) or 
ubi
 (3D) latti
es, where the simple471
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e ordering o

urs for x = 1=2. As men-tioned in the Introdu
tion, this is the 
ase in layeredmanganites, whereas in 3D perovskite manganites, thisordering o

urs only in the basal plane (the ordering is�in-phase� along the 
 dire
tion). A more 
ompli
atedmodel is apparently needed to a

ount for this behav-ior.For n = 1=2, model (1) was analyzed in many pa-pers; we follow the treatment in Ref. [2℄. As mentionedabove, the Coulomb repulsion (the se
ond term in (1))stabilizes the 
harge ordering in the form of a 
he
ker-board arrangement of the o

upied and empty sites,whereas the �rst term (band energy) opposes this ten-den
y. At arbitrary values of the ele
tron density n,we �rst 
onsider a homogeneous 
harge-ordered solu-tion and use the same ansatz as in [2℄, namelyni = n[1 + (�1)i� ℄: (2)This expression implies the doubling of the latti
e pe-riodi
ity, with the lo
al densitiesn1 = n(1 + �); n2 = n(1� �)at the neighboring sites. We note that at n = 1=2 for ageneral form of the ele
tron dispersion without nesting,the 
harge-ordered state exists only for a su�
ientlystrong repulsion V > 2t [2℄. The order parameter is� < 1 for �nite V=2t, and the ordering is not 
ompletein general, i.e., an average ele
tron density ni di�ersfrom zero or one even at T = 0.We use the 
oupled Green's fun
tion approa
h asin [2℄, whi
h yields8><>: (E + �)G1 � tkG2 � zV n(1� �)G1 = 12� ;(E + �)G2 � tkG1 � zV n(1 + �)G2 = 0; (3)where G1 and G2 are the Fourier transforms of the nor-mal latti
e Green's fun
tionsGil = hh
i
+l iifor the respe
tive sites i and l belonging to the samesublatti
e or to di�erent sublatti
es, z is the numberof nearest neighbors, and tk is the Fourier transform ofthe hopping matrix element. In deriving (3), we per-formed a mean-�eld de
oupling and repla
ed the aver-ages h
+i 
ii by the onsite densities ni in Eq. (2). Thesolution of Eqs. (3) leads to the following spe
trum:E + � = V nz �q(V n�z)2 + t2k = V nz � !k: (4)The spe
trum de�ned by (4) resembles the super-
ondu
tor spe
trum, and hen
e, the �rst term under

the square root is analogous to the super
ondu
tinggap squared. In other words, we 
an introdu
e the
harge-ordering gap by the formula� = V n�z:It depends on the density not only expli
itly, but alsovia the density dependen
e of � .We thus obtain!k =q�2 + t2k: (5)We note a substantial di�eren
e between the spe
trumof 
harge-ordered state (5) and the super
ondu
tingstate: here, the 
hemi
al potential does not enter underthe square root in (5) for n 6= 1=2, whi
h is in 
ontrastto the super
ondu
tor spe
trum, where!k =p(tk � �)2 +�2:We 
an then �nd the Green's fun
tions8>>>>>>>>>>>>><>>>>>>>>>>>>>:
G1 = AkE + �� V nz � !k + i0++ BkE + �� V nz + !k + i0 ;G2 = tk2!k 12� � 1E + �� V nz � !k + i0�� 1E + �� V nz + !k + i0� ; (6)

whereAk = 14� �1� �!k� ; Bk = 14� �1 + �!k� : (7)After the standard Wi
k transformationE + i0! iEin the expression for G1, we �nd the densitiesn1 = n(1 + �) == Z ��1� �!k� fF (!k � �+ V nz)++ �1 + �!k� fF (�!k � �+ V nz)� dk2
BZ ;n2 = n(1� �) == Z ��1 + �!k� fF (!k � �+ V nz)++ �1� �!k� fF (�!k � �+ V nz)� dk2
BZ ;
(8)

472
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harge orderingwhere fF (y) = 1ey=T + 1is the Fermi distribution fun
tion and 
BZ is the vol-ume of the �rst Brillouin zone.Adding and subtra
ting the two equations for n1and n2, we obtain the resulting system of equations forn and �:1 = V z Z 1!k [fF (�!k � �+ V nz) �� fF (!k � �+ V nz)℄ dk2
BZ ;n = Z [fF (�!k � �+ V nz)++ fF (!k � �+ V nz)℄ dk2
BZ : (9)
For low temperatures (T ! 0) and n � 1=2, it is rea-sonable to assume that ��V nz is negative. Therefore,fF (!k � �+ V nz) = 0;fF (�!k � �+ V nz) = �(�!k � �+ V nz)is the step fun
tion.It is easy to see that for n = 1=2, the system ofequations (9) yields identi
al results for all�� � �� V nz � �:From this standpoint, n = 1=2 is the indi�erent equi-librium point. For in�nitely small deviations fromn = 1=2, that is, for densities n = 1=2�0, the 
hemi
alpotential must be de�ned as� = ��+ V z2 = V z2 (1� �):If we 
onsider the strong 
oupling 
ase V � 2t andassume a 
onstant density of states inside the band, wehave � = 1� 2W 23V 2z2 ;for a simple 
ubi
 latti
e and therefore,� = W 23V z ; (10)whereW = 2zt is the bandwidth. We note that for thedensity n = 1=2, the 
harge-ordering gap � appears foran arbitrary intera
tion strength V . This is due to theexisten
e of nesting in our simple model. In the weak
oupling 
ase V � 2t and with the perfe
t nesting, wehave � /W exp��WV z�

and � is exponentially small. For V z �W or, a

ord-ingly, for V � 2t, it follows that � � V z=2 and � ! 1.As mentioned above, for a general form of the ele
trondispersion without nesting, the 
harge ordering existsonly if the intera
tion strength V ex
eeds a 
ertain 
rit-i
al value of the order of the bandwidth W [2℄. In whatfollows, we restri
t ourselves to the physi
ally more in-stru
tive strong-
oupling 
ase V � 2t.For the 
onstant density of states (�at band), theintegrals in (9) 
an be taken expli
itly and the systemof equations (9) 
an be easily solved for arbitrary n. Wenote, however, that in the strong-
oupling 
ase V � 2tand for small density deviations from 1/2 (Æ � 1), theresults are not very sensitive to the form of the ele
-tron dispersion. That is why we do not need to solvethe system of equations (9) exa
tly.We now 
onsider the 
ase where n = 1=2� Æ, withÆ � 1 being the density deviation from 1=2. In this
ase, � = �(Æ; �) and we have two 
oupled equationsfor � and � . As a result,�(Æ) � V nz(1� �)� 4W 2V z Æ2 �� W 23V z + 4W 23V z Æ +O(Æ2): (11)The energy of the 
harge-ordered state is thereforegiven byECO(Æ) = ECO(0)� W 23V z Æ � 2W 23V z Æ2 +O(Æ3); (12)where ECO(0) = �W 26V zis the energy pre
isely 
orresponding to the densityn = 1=2 and jECO(0)j � W . At the same time, the
harge-ordering gap � is given by� � V z2 �1� 2Æ � 2W 23V 2z2 (1 + 4Æ)� : (13)The dependen
e of the 
hemi
al potential � and the to-tal energy E on Æ in Eqs. (11) and (12) a
tually stemsfrom this linear de
rease of the energy gap � with thedeviation from half-�lling.For n > 1=2, the energy of the 
harge-ordered statestarts to in
rease rapidly due to a large 
ontributionof the Coulomb repulsion (the upper Verwey band ispartially �lled for n > 1=2). For n > 1=2, 
ontraryto the 
ase where n < 1=2, ea
h extra ele
tron putinto the 
he
kerboard 
harge-ordered state ne
essarilyhas o

upied nearest-neighbor sites, in
reasing the to-473



M. Yu. Kagan, K. I. Kugel, D. I. Khomskii ÆÝÒÔ, òîì 120, âûï. 2 (8), 2001tal energy by V zjÆj. For jÆj = n � 1=2 > 0, we thenhaveECO(Æ) = ECO(0) ++�V z � W 23V z� jÆj � 2W 23V z Æ2 +O(Æ3): (14)A

ordingly, the 
hemi
al potential is given by�(Æ) = V z � W 23V z � 4W 23V z jÆj+O(Æ2): (15)It undergoes a jump equal to V z as � ! 1. We notethat the gap � is symmetri
 for n > 1=2 and is givenby � � V z2 �1� 2jÆj � 2W 23V 2z2 (1 + 4jÆj)� :We 
ould make the entire pi
ture symmetri
 with re-spe
t to n = 1=2 by shifting all the one-ele
tron energylevels and the 
hemi
al potential by V z=2, i.e., de�ning�0 = �� V z=2:In terms of �0, Eqs. (11) and (15) 
an be written as�0 = �V z2 + W 23V z + 4W 23V z Æ; n < 12 ;�0 = V z2 � W 23V z � 4W 23V z jÆj; n > 12 :Similarly to the situation in semi
ondu
tors, wehave �0 = 0 pre
isely at the point n = 1=2, whi
hmeans that the 
hemi
al potential lies in the middle ofthe band gap (see Fig. 1). At densities n = 1=2 � 0,the 
hemi
al potential �0 = �V z=2 
oin
ides with theupper edge of the �lled Verwey band.3. PHASE SEPARATIONWe now 
he
k the stability of the 
harge-orderedstate. At the densities 
lose to n = 1=2, the dependen
eof energy on the 
harge density has the form illustratedin Fig. 2. This �gure 
learly indi
ates a possible insta-bility of the 
harge-ordered state. Indeed, the mostremarkable impli
ation of Eqs. (11)�(15) is that the
ompressibility � of the homogeneous 
harge-orderedsystem is negative for the densities di�erent from 1=2,1� / d�dn = �d�dÆ = d2EdÆ2 = �4W 23V z < 0; (16)where Æ = 1=2� n. This is a manifestation of the ten-den
y toward the phase separation 
hara
teristi
 of the
harge-ordered system with Æ 6= 0. The presen
e of a

2� = V z�0 = 0
Fig. 1. Band stru
ture of model (1) at n = 1=2. Thelower Verwey band is 
ompletely �lled. The upper Ver-wey band is empty. Chemi
al potential �0 = 0 lies inthe middle of the band gap with the width 2�E 1/2 n
Fig. 2. Energy of the 
harge-ordered state versus
harge density as n! 1=2kink in ECO(Æ) (
f. Eqs. (12) and (14)) implies thatone of the states into whi
h the system might sepa-rate would 
orrespond to the 
he
kerboard 
harge-or-dered state with n = 1=2, whereas the other wouldhave a 
ertain density n0 smaller or larger than 1/2.This 
on
lusion resembles that in [4℄ (see also [10, 14℄),although the detailed physi
al me
hanism is di�erent.The possibility of a phase separation in model (1) awayfrom half-�lling was also reported earlier in [12℄ for thein�nite-dimensional 
ase. In what follows, we fo
usour attention on the situation with n < 1=2 (under-doped manganites); the 
ase where n > 1=2 apparentlyhas 
ertain spe
ial properties � the existen
e of stripephases et
. [13℄, the detailed origin of whi
h is not yet
lear.474
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harge orderingIt is easy to understand the physi
s of the phase sep-aration in our 
ase. As follows from (13), the 
harge-or-dered gap de
reases linearly with the deviation fromthe half-�lling. Correspondingly, the energy of the ho-mogeneous 
harge-ordered state rapidly in
reases, andit is more favorable to �extra
t� extra holes from the
harge-ordered state, putting them into one part of thesample, while 
reating the �pure� 
he
kerboard 
hargeordering state in the other part. The energy loss due tothis redistribution of holes is over
ompensated by thegain provided by a better 
harge ordering.However, the hole-ri
h regions would not be 
om-pletely �empty�, similarly to pores (
lusters of va
an-
ies) in 
rystals: we 
an gain an extra energy by �dis-solving� a 
ertain amount of ele
trons there. In doingthis, we de
rease the band energy of the ele
trons dueto their delo
alization. Thus, this se
ond phase wouldbe a metalli
 one. The simplest state of this kind isa homogeneous metal with the ele
tron 
on
entrationnm. This 
on
entration, as well as the relative vol-ume of the metalli
 and 
harge-ordered phases, 
an beeasily 
al
ulated by minimizing the total energy of thesystem. The energy of the metalli
 part of the sampleEm is given byEm = �tznm + 
t(nm)5=3 + V (nm)2; (17)where 
 is a 
onstant.Minimizing (17) with respe
t to nm, we �nd theequilibrium ele
tron density in the metalli
 phase. Forthe strong 
oupling 
ase V > zt, we obtain (negle
tinga relatively small 
orre
tion provided by the term with(nm)5=3) nm0 � tz=2V: (18)In a

ordan
e with this simple treatment, the sys-tem with nm0 < n < 1=2 would therefore undergo thephase separation into the 
harge-ordered phase withn = 1=2 and the metalli
 phase with n = nm0. Forarbitrary n, the relative volumes vm and vCO of thesephases 
an be found from the Maxwell 
onstru
tion,vmvCO = 1=2� nn� nm0 ; (19)whi
h implies that the metalli
 phase o

upies the partvm of the total volume v given byvmv = 1=2� n1=2� nm0 : (20)The metalli
 phase o

upies the entire sample when thetotal ele
tron density n is less than nm0.

4. AN EXAMPLE: THE PHASE SEPARATEDSTATE WITH METALLIC DROPLETSAs argued above, the system with a short-range re-pulsion des
ribed by Eq. (1) is unstable with respe
t tothe phase separation for n 
lose to but di�erent from1/2. The long-range Coulomb for
es, however, preventthe full phase separation into large regions 
ontainingall extra holes and the pure n = 1=2 
harge-orderedregion. We 
an avoid this energy loss by forming, in-stead of one big metalli
 phase with many ele
trons,�nite metalli
 
lusters with fewer ele
trons. The limit-ing 
ase would be a set of spheri
al droplets, ea
h 
on-taining one ele
tron. This state is similar to magneti
polarons (�ferrons�) 
onsidered in the phase separationproblem for doped magneti
 insulators [8, 14, 11℄.We now estimate the 
hara
teristi
 parameters ofthese droplets. The main purpose of this treatment isto demonstrate that the energy of the state 
onstru
tedin this way is lower than the energy of the homogeneousstate, even if we treat these droplets rather 
rudely anddo not optimize all their properties. In parti
ular, wemake the simplest assumption that the droplets havesharp boundaries and that the 
harge-ordered stateexisting outside these droplets is not modi�ed in theirvi
inity. This state 
an be treated as a variational one:optimizing the stru
ture of the droplet boundary 
anonly de
rease its energy.The energy (per unit volume) of the droplet statewith the 
on
entration of droplets nd 
an be writtenin total analogy with the ferron energy in the double-ex
hange model (see [14, 11℄). This yieldsEdroplet = �tnd�z � �2a2R2 ��� W 26V z "1� nd 43��Ra �3# ; (21)where a is the latti
e 
onstant and R is the dropletradius. The �rst term in (21) 
orresponds to the ki-neti
 energy gain of the ele
tron delo
alization insidethe metalli
 droplets and the se
ond term des
ribes the
harge ordering energy in the remaining insulating partof the sample.Minimization of the energy in (21) with respe
t toR gives Ra � �2Vt �1=5 : (22)The 
riti
al 
on
entration nd
 
orresponds to the
on�guration where metalli
 droplets start to overlap,475
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harge-ordered phase (these
ond term in (21)) tends to zero. Hen
e,nd
 = 34� � aR�3 / � tV �3=5 : (23)A
tually, one should in
lude the surfa
e energy 
on-tribution to the total energy of the droplet. The sur-fa
e energy must be of the order W 2R2=V . For largedroplets, this 
ontribution is small 
ompared to theterm / R3 in (21); it would also be redu
ed for a �soft�droplet boundary. It is easy to show that even in theworst 
ase of a small droplet (of the order of severallatti
e 
onstants) with a sharp boundary, R=a a
quiresthe fa
tor 1 � 0:2(t=2V )1=5 related to the surfa
e 
on-tribution. Thus, the 
orre
tions related to the surfa
ewould not ex
eed about 20% of the bulk value. Thatis why we ignore this term below.Comparing (12) with (21) and (22), we see that forthe deviations from half-�lling su
h that0 < Æ � Æ
 = 1=2� nd
;the energy of the phase-separated state is always lowerthan the energy of the homogeneous 
harge-orderedstate. The energy of the droplet state (21) withthe radius given by (22) is also lower than the en-ergy of the fully phase-separated state obtained by theMaxwell 
onstru
tion from homogeneous metalli
 state(17). Correspondingly, the 
riti
al 
on
entration nd
 inEq. (23) is larger than nm0 in Eq. (18). There is no
ontradi
tion here: in the droplet state that we 
on-stru
ted, the ele
trons are 
on�ned to spheres of theradius R, and even when these droplets start to over-lap at n = nd
, o

upying the entire sample, the ele
-trons, by 
onstru
tion, are still 
on�ned within theirown spheres and avoid ea
h other. In other words,a 
ertain degree of 
harge-ordering 
orrelations is stillpresent in our droplet state, de
reasing the repulsionand hen
e the total energy.Thus, the energy of the phase-separated state withthe droplets 
orresponds to the global minima of theenergy for all 0 < Æ � Æ
. This justi�es our 
on
lu-sion about the phase separation into the 
harge-orderedstate with n = 1=2 and a metalli
 state with smallspheri
al droplets.The situation en
ountered here resembles that ofa partially �lled strongly intera
ting Hubbard model,with the 
harge-ordered state 
orresponding to the an-tiferromagneti
 state of the latter and with the nearest-neighbor intera
tion V playing the role of Hubbard'sU . In both 
ases, the kineti
 energy of doped 
arrierstends to destroy this �antiferro� or 
harge ordering,

by �rst �spoiling� it in their vi
inity and eventuallyleading to the formation of the metalli
 state (Nagaokaferromagnetism). In the Hubbard model, we also fa
ethe situation with the phase separation at a su�
ientlysmall doping [21℄.We also note that for n > 1=2, the 
ompressibilityof the 
harge-ordered state is again negative,1� = d2EdÆ2 = �4W 23V z < 0;and has the same value as for n < 1=2. As a result, it isagain more favorable to 
reate a phase-separated statefor these densities. However, as already mentioned, thenature of the se
ond phase with n > 1=2 is not quite
lear at present, and therefore, we do not 
onsider this
ase here. 5. AN EXTENDED MODELWe 
an now extend the model dis
ussed in the pre-vious se
tions by taking the essential magneti
 intera
-tions into a

ount. In manganites, in addition to the
ondu
tion ele
trons in the eg bands, there also existpra
ti
ally lo
alized t2g ele
trons, whi
h we now in
ludein our 
onsideration. The 
orresponding Hamiltonianis given byĤ = �t Xhi;ji;� 
+i�
j� + V Xhi;jininj � JHXi Si�i ++ JXhi;jiSiSj � �Xi ni: (24)In 
omparison to (1), the additional terms here 
or-respond to the strong Hund-rule onsite 
oupling JHbetween the lo
alized spins S and the spins of 
ondu
-tion ele
trons �, and a relatively weak Heisenberg anti-ferromagneti
 (AFM) ex
hange J between neighboringlo
al spins. In real manganites, the AFM ordering ofthe zigzag (CE) type in the 
harge-ordered phase isdetermined not only by the ex
hange of the lo
alizedt2g ele
trons but to a large extent, by the 
harge- andorbitally-ordered eg ele
trons themselves. For simpli
-ity, we ignore this fa
tor and assume the superex
hangeintera
tion to be the same in the 
harge-ordered and inthe metalli
 phases.It is physi
ally reasonable to 
onsider this model inthe limit JHS > V > W > JS2:In the absen
e of the Coulomb term, this is exa
tly the
onventional double-ex
hange model (see, e.g., [8, 14℄).476
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harge orderingAs it is usually assumed in the theory of the doubleex
hange (that is, in the theory where JH � W ), themain role of the itinerant ele
trons is to form a parallelarrangement of lo
al spins. The ex
hange-
orrelatione�e
ts of the itinerant ele
trons themselves are not veryimportant here and 
an be in
luded in the renormal-ization of the e�e
tive bandwidth.We note that the absen
e of doubly o

upied sitesin (24) is guaranteed by the large Hund's term. It alsofavors the metalli
ity in the system, be
ause the e�e
-tive bandwidth depends on the magneti
 order in ourproblem. The estimate for the 
riti
al 
on
entrationis therefore di�erent from the one in (23). Similarlyto [14℄, the metalli
 droplets are ferromagneti
 (FM)be
ause of the double ex
hange. The energy of onesu
h droplet is given byE = �t�z � �2a2R2 �� W 26V z "1� 43��Ra �3#++ zJS2 43��Ra �3 � zJS2 "1� 43��Ra �3# : (25)The last two terms in (25) des
ribe the loss of theHeisenberg AFM ex
hange energy inside the FM metal-li
 droplets and the gain of this energy in the AFMinsulating part of the sample, respe
tively. The mini-mization with respe
t to the droplet radius (as in (21))yields Ra / � tV + JS2t ��1=5 : (26)We note that at t=V � JS2=t, Eq. (26) gives thesame estimate for the radius of a FM metalli
 dropletRa � � tJS2�1=5as in [8, 14℄.In the opposite limit where t=V � JS2=t, we re-produ
e the same resultRa � �Vt �1=5as in (22). Finally, the 
riti
al 
on
entration n
 is esti-mated as n
 / � tV + JS2t �3=5 : (27)As a result, also taking the tenden
y to the phaseseparation at very small values of n into a

ount

[8�11; 14℄, we arrive at the following phase diagram forthe extended model (
f. [11℄):1. At 0 < n < �JS2=t�3=5, it 
orresponds to thephase separation into a FM metal with n = n0 > 0embedded into the AFM insulating matrix (n = 0).To minimize the Coulomb energy, it may again be fa-vorable to split this metalli
 region into droplets withthe 
on
entration n0 and the average radius given byEq. (26) with t=V = 0, ea
h 
ontaining one ele
tronand kept apart from one another.2. At �JS2=t�3=5 < n < �t=V + JS2=t�3=5 < 1=2,the system is a FM metal. Of 
ourse, we need a win-dow of parameters to satisfy the inequality in the right-hand side. In a
tual manganites, where t=V � 1=2�1/3 and JS2=t � 0:1, these 
onditions imposed on nare not ne
essarily satis�ed. Experiments suggest thatthis window is present for La1�xCaxMnO3, but it isde�nitely absent for Pr1�xCaxMnO3 [11℄.3. Finally, at �t=V + JS2=t�3=5 < n < 1=2, wehave the phase separation in the form of FM metalli
droplets inside the AFM 
harge-ordered matrix.This phase diagram is in a good qualitative agree-ment with many available experimental results for realmanganites [22�25℄, in parti
ular with the observationof the small-s
ale phase separation 
lose to the dop-ing 0.5 [26℄. We also note that our phase diagram has
ertain similarities with the phase diagram obtainedin [27; 28℄ for the problem of spontaneous ferromag-netism in doped ex
itoni
 insulators.6. CONCLUSIONSSummarizing, we have shown that the narrow-bandsystem that has the 
he
kerboard 
harge ordering atn = 1=2 (
orresponding to the doping x = 0:5) is un-stable toward phase separation away from half-�lling(n 6= 1=2). The system separates into regions with theideal 
harge ordering (n = 1=2) and other regions whereextra ele
trons or holes are trapped. The simplest formof these metalli
 regions 
ould be spheri
al metalli
droplets embedded into the 
harge-ordered insulatingmatrix. Simple 
onsiderations allow estimating the sizeof these droplets and the 
riti
al 
on
entration, or do-ping x
 = 1=2�Æ
, at whi
h the metalli
 phase o

upiesthe entire sample and the 
harge-ordered phase disap-pears. The a

ount of the magneti
 intera
tions doesnot 
hange these 
on
lusions but somewhat modi�esthe 
hara
teristi
 parameters of the metalli
 droplets.The long-range Coulomb intera
tion may also mod-ify the results, but we do not expe
t any qualitative
hanges. For realisti
 values of the parameters, the size477
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 droplets is still mi
ros
opi
 (about 10Å) andthe ex
ess 
harge 
ontained in them is rather small.The obtained pi
ture 
orresponds rather well tothe known properties of 3D and layered manganites
lose to (less than) half doping, x � 1=2. The per
o-lation pi
ture of transport properties emerging fromthis treatment is 
on�rmed by the results reportedin [7; 15; 22; 24�26℄; moreover, the 
oexisten
e of fer-romagneti
 re�e
tions and those of the CE type mag-neti
 stru
ture typi
al of the 
harge-ordered state atx = 0:5 were observed by the neutron s
attering [29℄.Thus, the general behavior of the underdoped mangan-ites (x � 0:5) is in a good qualitative agreement withour results.Our treatment also leads to the same tenden
yto the phase separation (instability of the homoge-neous 
harge-ordered phase) for the overdoped regimex > 0:5. It is still not 
lear what would be the se
ondphase in this 
ase. Therefore, we did not 
on
entrateour attention on this 
ase.Our treatment is also appli
able to other systemswith the 
harge ordering, su
h as 
obaltites [18℄ andni
kelates [19℄. It would be interesting to study themfor 
harge 
arrier 
on
entrations di�erent from the
ommensurate �
he
kerboard� one.A number of important problems still remainunresolved (the origin of the �in-phase� orderingalong the 
-dire
tion in perovskite manganites, thedetailed des
ription of inhomogeneous states in theoverdoped regime x > 1=2, and the behavior at�nite temperatures). Nevertheless, in spite of theintrodu
ed simpli�
ations, our model seems to 
apturethe essential physi
s underlying the interplay betweenphase separation and 
harge ordering in transitionmetal oxides.We are grateful to N. M. Plakida and M. S. Ma-r'enko for stimulating dis
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