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A simple model of charge ordering is considered. It is explicitly shown that at any deviation from half-filling
(n # 1/2), the system is unstable with respect to the phase separation into the charge-ordered regions with
n = 1/2 and metallic regions with a smaller electron or hole density. A possible structure of this phase-separated
state (metallic droplets in a charge-ordered matrix) is discussed. The model is extended to account for the strong
Hund-rule onsite coupling and the weaker intersite antiferromagnetic exchange. The analysis of this extended
model allows us to determine the magnetic structure of the phase-separated state and to reveal the characteristic
features of the manganites and other substances with charge ordering.
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1. INTRODUCTION

The problem of charge ordering in magnetic oxides
attracts attention of theorists since the discovery of the
Verwey transition in magnetite in the end of the thir-
ties [1]. An early theoretical description of this phe-
nomenon was given, e.g., in [2]. This problem was re-
cently reexamined in a number of papers in connection
with the colossal magnetoresistance in manganites, see,
e.g., [3-5]. The mechanisms stabilizing the charge-or-
dered state can be different: the Coulomb repulsion of
charge carriers (the energy minimization requires kee-
ping the carriers as far away as possible, similarly to the
Wigner crystallization) or the electron-lattice interac-
tion leading to the effective repulsion of electrons at
the nearest-neighbor sites. In all cases, charge ordering
can arise in mixed-valence systems if the electron band-
width is sufficiently small for the large electron kinetic
energy to stabilize the homogeneous metallic state. In
real materials, in contrast to the Wigner crystallization,
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the underlying lattice periodicity determines the prefe-
red types of charge ordering. Thus, in the simplest bi-
partite lattice, which occurs in the colossal magnetore-
sistance manganites of the type R;_,A,MnOj3 (where
R = La, Pr and A = Ca, Sr) or layered manganites
RQ_xAxMDO4, R2_2xA1+2an207, the optimum con-
ditions for the formation of the charge-ordered state
exist for the doping =z 1/2. At this value of z,
the concentrations of Mn?*t and Mn*t are equal and
the simple checkerboard arrangement is possible. The
most remarkable experimental fact here is that even at
x # 1/2 (in the underdoped manganites with z < 1/2),
only the simplest version of charge ordering is exper-
imentally observed with the alternating checkerboard
structure of the occupied and empty sites in the basal
plane [6]. In other words, this structure corresponds to
the doubling of the unit cell, whereas more complicated
structures with a longer period (or even incommensu-
rate structures) do not actually appear in this case.

A natural question then arises as to how the extra
or missing electrons can be redistributed for an arbi-
trary doping level such that the superstructure remains
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the same as for # = 1/2?7 To answer this question,
the experimentalists introduced the concept of the in-
cipient charge-ordered state corresponding to the dis-
tortion of a long-range charge ordering by microscopic
metallic clusters [7]. In fact, the existence of this state
implies a certain phase separation. We note that the
phase separation scenario in manganites is very popular
presently [8-15]. There is a growing evidence suggest-
ing that an interplay between the charge ordering and
the tendency toward phase separation plays an essen-
tial role in the physics of materials with the colossal
magnetoresistance.

In this paper, we consider a simple model allowing
us to clarify the situation at an arbitrary doping. The
model includes both the Coulomb repulsion of electrons
on the neighboring sites and the magnetic interactions
responsible for the magnetic ordering in manganites.
After demonstrating the instability of the system to-
ward phase separation in certain doping ranges, we con-
sider the simplest form of the phase separation — the
formation of metallic droplets in the insulating matrix.
We estimate parameters of such droplets and construct
the phase diagram illustrating the interplay between
charge ordering, magnetic ordering, and phase separa-
tion.

We note that the charge ordering mechanism con-
sidered below (the Coulomb repulsion) is not the only
one. The electron—lattice interaction can also play an
important role, see, e.g., [16]. In application to man-
ganites, one must also take the orbital and magnetic
interactions into account [4, 16, 17]. These may be im-
portant, in particular, in explaining the fact that the
charge ordering in half-doped perovskite manganites is
a checkerboard one only in the basal plane, but it is
«in-phase» along the c-direction. However, the nature
of this charge ordering is not clear yet and presents
a separate problem: it is not evident that the domi-
nant mechanism is indeed given by the magnetic in-
teractions responsible for this stacking of ab-planes in
[16]. We also emphasize that the charge ordering is
often observed in manganites at higher temperatures
than the magnetic ordering, and one must seek a model
that does not heavily rely on magnetic interactions. In
contrast to magnetic interactions, the Coulomb inter-
action is one of the important factors that is always
present in the systems under consideration. Moreover,
it has a universal nature and does not critically de-
pend on specific features of a particular system. Con-
sequently, our treatment can also be applied to other
systems with charge ordering such as magnetite FezO4
[1], cobaltites [18], nickelates [19], etc.
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2. THE SIMPLEST MODEL FOR CHARGE
ORDERING

We consider a simple lattice model for charge or-
dering,

H=-t)

c;Lcj+Vanj—,uZni., (1)
(i) (3.4) i

where t is the hopping integral, V' is the nearest-neigh-
bor Coulomb interaction (a similar nn repulsion can
also be obtained via the interaction with the breathing-
type optical phonons), p is the chemical potential, and
c; and ¢; are one-electron creation and annihilation op-
erators, n; = ¢ ¢;. The symbol (i, j) denotes the sum-
mation over the nearest-neighbor sites. Here, we omit
spin and orbital indices for simplicity. As mentioned in
the Introduction, the spin and orbital effects play an
important role in the formation of the real structure in
specific compounds; in this section, however, we em-
phasize the most robust effects related to the nearest-
neighbor Coulomb repulsion. The magnetic effects are
discussed in Sec. 5. We also assume that the double
occupancy does not occur in this model because of the
strong onsite repulsion between electrons.

Hamiltonian (1) explicitly accounts for the corre-
lation effect that is most important for the formation
of charge ordering, namely, the electron repulsion on
neighboring sites. The long-range part of the Coulomb
interaction only leads to the renormalization of the
bandwidth W and does not significantly affect the
properties of the uniform charge-ordered state. How-
ever, it can produce a qualitative effect on the structure
of the phase-separated state (see the discussion in the
beginning of Sec. 4).

The models of type (1) with the nn repulsion re-
sponsible for the charge ordering are the most pop-
ular ones in describing this phenomenon, see, e.g.,
[2, 3, 5, 20] and references therein. Hamiltonian (1)
captures the main physical effects; if necessary, one can
add some extra terms to it, which we do in Sec. 5.

In the main part of this paper, we always speak
about electrons. However, in application to real man-
ganites, we mostly have in mind less than half-doped
(underdoped) systems of the type Ry_,A,MnO3 with
x < 1/2. For a real system, one must therefore substi-
tute holes for our electrons. All the theoretical treat-
ment definitely remains the same (from the very begin-
ning, we could define the ¢ and ¢t operators in (1) as
the operators of holes); we hope that this does not lead
to any misunderstanding.

In what follows, we consider the simplest case of
square (2D) or cubic (3D) lattices, where the simple
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two-sublattice ordering occurs for z = 1/2. As men-
tioned in the Introduction, this is the case in layered
manganites, whereas in 3D perovskite manganites, this
ordering occurs only in the basal plane (the ordering is
«in-phase» along the ¢ direction). A more complicated
model is apparently needed to account for this behav-
ior.

For n = 1/2, model (1) was analyzed in many pa-
pers; we follow the treatment in Ref. [2]. As mentioned
above, the Coulomb repulsion (the second term in (1))
stabilizes the charge ordering in the form of a checker-
board arrangement of the occupied and empty sites,
whereas the first term (band energy) opposes this ten-
dency. At arbitrary values of the electron density n,
we first consider a homogeneous charge-ordered solu-
tion and use the same ansatz as in [2], namely

n; = n[l + (=1)'7]. (2)

This expression implies the doubling of the lattice pe-
riodicity, with the local densities

ni=n(l+7), na=n(l-r1)

at the neighboring sites. We note that at n = 1/2 for a
general form of the electron dispersion without nesting,
the charge-ordered state exists only for a sufficiently
strong repulsion V' > 2¢ [2]. The order parameter is
7 < 1 for finite V/2t, and the ordering is not complete
in general, i.e., an average electron density n; differs
from zero or one even at T = 0.

We use the coupled Green’s function approach as
in [2], which yields

(B + 1)Gr — G — 2Vn(l - 7)G = 5=,
(3)
(E + ,U)GQ —t.G1 — an(l + T)G2 =0,

where G1 and GG are the Fourier transforms of the nor-
mal lattice Green’s functions

Gi = ({cic))

for the respective sites i and [ belonging to the same
sublattice or to different sublattices, z is the number
of nearest neighbors, and ¢, is the Fourier transform of
the hopping matrix element. In deriving (3), we per-
formed a mean-field decoupling and replaced the aver-
ages (cj ¢;) by the onsite densities n; in Eq. (2). The
solution of Eqs. (3) leads to the following spectrum:
E+pu=Vnzt./(Vnrz)2+t =Vnztw,. (4)
The spectrum defined by (4) resembles the super-
conductor spectrum, and hence, the first term under
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the square root is analogous to the superconducting
gap squared. In other words, we can introduce the
charge-ordering gap by the formula

A=Vnrz.

It depends on the density not only explicitly, but also
via the density dependence of 7.
We thus obtain

wp =1/ A2+ 12, (5)

We note a substantial difference between the spectrum
of charge-ordered state (5) and the superconducting
state: here, the chemical potential does not enter under
the square root in (5) for n # 1/2, which is in contrast
to the superconductor spectrum, where

W = \/ (tk — ,u)2 + A2,

We can then find the Green’s functions

Ay
G =
! E+,L¢—Vnz—wk+i0+
+ B
E+p—Vnz+wp +140’
6
_ b 1 1 _ o
T 2w 21 |E4 i — Vnz — wg + 00
1
E+p—Vnz+w,+i0]’
where
1 A 1 A
Ay =—|1-— By=—1[14—]. 7
k 471'( wk>’ k 471'( +wk> ()

After the standard Wick transformation
E+i0—=1F
in the expression for Gy, we find the densities

ni=n(l+7)=

all

+ <1 + A) fr(—wk —p+ Vnz)]
wr,

A
1—- =
Wk

> fr(wy —p+Vnz)+

BT
no=n(l—7)=
A
= / [(1 + _k> fr(wy — p+Vnz)+
+ (1 - (%) fr—wp — pu+ Vnz)] 251;27
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where . and 7 is exponentially small. For Vz > W or, accord-
= ingly, for V' > 2t it follows that A ~ Vz/2 and 7 — 1.

fF(y) ev/T 11 gly /

is the Fermi distribution function and Qg is the vol-
ume of the first Brillouin zone.

Adding and subtracting the two equations for n;
and nsy, we obtain the resulting system of equations for
n and u:

1=Vz/wik[fp(—wk—,u+Vnz) -

— fr(wr — p+ Vnz)] STOR

nZ/[fF(—wk—M‘l'Vnz)"'

+ fr(we — p+ Vnz)] 2y

For low temperatures (T — 0) and n < 1/2, it is rea-
sonable to assume that y— Vnz is negative. Therefore,

fr(wg —p+Vnz) =0,

fr(—wr —pn+Vnz) =60(—w, — p+ Vnz)

is the step function.
It is easy to see that for n 1/2, the system of
equations (9) yields identical results for all

—A<pu—Vnz <A

From this standpoint, n = 1/2 is the indifferent equi-
librium point. For infinitely small deviations from
n = 1/2, that is, for densities n = 1/2—0, the chemical
potential must be defined as

Vz

= A4 =
1% T

V2

=—(1-1).
Z(1-7)
If we consider the strong coupling case V' > 2t and
assume a constant density of states inside the band, we

have
22

3V222
for a simple cubic lattice and therefore,

T=1

W2

3Vz’
where W = 2zt is the bandwidth. We note that for the
density n = 1/2, the charge-ordering gap A appears for
an arbitrary interaction strength V. This is due to the
existence of nesting in our simple model. In the weak
coupling case V' <« 2t and with the perfect nesting, we

have -
A 2
x W exp { Vs }

p= (10)
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As mentioned above, for a general form of the electron
dispersion without nesting, the charge ordering exists
only if the interaction strength V' exceeds a certain crit-
ical value of the order of the bandwidth W [2]. In what
follows, we restrict ourselves to the physically more in-
structive strong-coupling case V' > 2t.

For the constant density of states (flat band), the
integrals in (9) can be taken explicitly and the system
of equations (9) can be easily solved for arbitrary n. We
note, however, that in the strong-coupling case V' >> 2t
and for small density deviations from 1/2 (§ < 1), the
results are not very sensitive to the form of the elec-
tron dispersion. That is why we do not need to solve
the system of equations (9) exactly.

We now consider the case where n = 1/2 — §, with
d < 1 being the density deviation from 1/2. In this
case, = u(d,7) and we have two coupled equations
for 4 and 7. As a result,

4W?
5%~
Vz
W2

Y

w(0) 2 Vnz(l—r71) —

4W?

2
57750+ 0().

+

(11)

The energy of the charge-ordered state is therefore
given by

w? 22
Eco(d) = Eco(0) = 57726 = 3707 + 0(6°). (12)
where
W2
Eco(0) = ———
CO( ) 6V =

is the energy precisely corresponding to the density
n = 1/2 and |Eco(0)] < W. At the same time, the
charge-ordering gap A is given by

22
31222 (

2

Vz

A 1-26— 1+40)|.  (13)

The dependence of the chemical potential y and the to-
tal energy F on § in Eqs. (11) and (12) actually stems
from this linear decrease of the energy gap A with the
deviation from half-filling.

For n > 1/2, the energy of the charge-ordered state
starts to increase rapidly due to a large contribution
of the Coulomb repulsion (the upper Verwey band is
partially filled for n > 1/2). For n > 1/2, contrary
to the case where n < 1/2, each extra electron put
into the checkerboard charge-ordered state necessarily
has occupied nearest-neighbor sites, increasing the to-
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tal energy by Vz|d|. For [0] = n —1/2 > 0, we then
have
Eco(d) = Eco(0) +
W2 2W2
—— 6] - 5 &%), (14
b (Ve gim ) 1= g0+ 0@ (9
Accordingly, the chemical potential is given by
=0 IA=V2

4W?
3Vz

W2

3Vz

w(d) =Vz 18] + O(6?). (15)
It undergoes a jump equal to Vz as 7 — 1. We note
that the gap A is symmetric for n > 1/2 and is given
by

22

3V222
We could make the entire picture symmetric with re-
spect to n = 1/2 by shifting all the one-electron energy
levels and the chemical potential by Vz/2, i.e., defining

Vz

Ax |12 - (1+4)))| .

w=pu—-vz/2.

In terms of ', Egs. (11) and (15) can be written as

p_ Ve W o awEe 1
H=my Tay, T 2’
l_ﬁ_ﬁ_%w ns L
H= 73y " 3v: 0" 2

Similarly to the situation in semiconductors, we
have ' = 0 precisely at the point n 1/2, which
means that the chemical potential lies in the middle of
the band gap (see Fig. 1). At densities n = 1/2 — 0,
the chemical potential u' = —V'z/2 coincides with the
upper edge of the filled Verwey band.

3. PHASE SEPARATION

We now check the stability of the charge-ordered
state. At the densities close ton = 1/2, the dependence
of energy on the charge density has the form illustrated
in Fig. 2. This figure clearly indicates a possible insta-
bility of the charge-ordered state. Indeed, the most
remarkable implication of Eqs. (11)-(15) is that the
compressibility x of the homogeneous charge-ordered
system is negative for the densities different from 1/2,

4W?

D du_ .
3Vz

1. dp d&°E
k dn

s~ ds2

<0, (16)
where 6 = 1/2 — n. This is a manifestation of the ten-
dency toward the phase separation characteristic of the
charge-ordered system with § # 0. The presence of a
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Fig.1. Band structure of model (1) at n = 1/2. The

lower Verwey band is completely filled. The upper Ver-

wey band is empty. Chemical potential z/ = 0 lies in
the middle of the band gap with the width 2A

E
1/2
|
: n
Fig.2. Energy of the charge-ordered state versus

charge density as n — 1/2

kink in Eco(d) (cf. Eqgs. (12) and (14)) implies that
one of the states into which the system might sepa-
rate would correspond to the checkerboard charge-or-
dered state with n = 1/2, whereas the other would
have a certain density n' smaller or larger than 1/2.
This conclusion resembles that in [4] (see also [10, 14]),
although the detailed physical mechanism is different.
The possibility of a phase separation in model (1) away
from half-filling was also reported earlier in [12] for the
infinite-dimensional case. In what follows, we focus
our attention on the situation with n < 1/2 (under-
doped manganites); the case where n > 1/2 apparently
has certain special properties — the existence of stripe
phases etc. [13], the detailed origin of which is not yet
clear.
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It is easy to understand the physics of the phase sep-
aration in our case. As follows from (13), the charge-or-
dered gap decreases linearly with the deviation from
the half-filling. Correspondingly, the energy of the ho-
mogeneous charge-ordered state rapidly increases, and
it is more favorable to «extract» extra holes from the
charge-ordered state, putting them into one part of the
sample, while creating the «pure» checkerboard charge
ordering state in the other part. The energy loss due to
this redistribution of holes is overcompensated by the
gain provided by a better charge ordering.

However, the hole-rich regions would not be com-
pletely «empty», similarly to pores (clusters of vacan-
cies) in crystals: we can gain an extra energy by «dis-
solving» a certain amount of electrons there. In doing
this, we decrease the band energy of the electrons due
to their delocalization. Thus, this second phase would
be a metallic one. The simplest state of this kind is
a homogeneous metal with the electron concentration
Nm. This concentration, as well as the relative vol-
ume of the metallic and charge-ordered phases, can be
easily calculated by minimizing the total energy of the
system. The energy of the metallic part of the sample
E,, is given by

Ep = =tz + ct(ng,)?? + V(nm)?, (17)
where c is a constant.

Minimizing (17) with respect to n,,, we find the
equilibrium electron density in the metallic phase. For
the strong coupling case V' > zt, we obtain (neglecting
a relatively small correction provided by the term with

(1))

Nomo ~ t2/2V. (18)
In accordance with this simple treatment, the sys-
tem with ny,o < n < 1/2 would therefore undergo the
phase separation into the charge-ordered phase with
n = 1/2 and the metallic phase with n = n,,q. For
arbitrary n, the relative volumes v, and vco of these

phases can be found from the Maxwell construction,
vm  1/2-n

(19)
vco

n=Nmo
which implies that the metallic phase occupies the part
v, of the total volume v given by

Um

1/2—-n

v 1/2—nmo (20)

The metallic phase occupies the entire sample when the
total electron density n is less than n,,q.
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4. AN EXAMPLE: THE PHASE SEPARATED
STATE WITH METALLIC DROPLETS

As argued above, the system with a short-range re-
pulsion described by Eq. (1) is unstable with respect to
the phase separation for n close to but different from
1/2. The long-range Coulomb forces, however, prevent
the full phase separation into large regions containing
all extra holes and the pure n = 1/2 charge-ordered
region. We can avoid this energy loss by forming, in-
stead of one big metallic phase with many electrons,
finite metallic clusters with fewer electrons. The limit-
ing case would be a set of spherical droplets, each con-
taining one electron. This state is similar to magnetic
polarons («ferrons») considered in the phase separation
problem for doped magnetic insulators [8, 14, 11].

We now estimate the characteristic parameters of
these droplets. The main purpose of this treatment is
to demonstrate that the energy of the state constructed
in this way is lower than the energy of the homogeneous
state, even if we treat these droplets rather crudely and
do not optimize all their properties. In particular, we
make the simplest assumption that the droplets have
sharp boundaries and that the charge-ordered state
existing outside these droplets is not modified in their
vicinity. This state can be treated as a variational one:
optimizing the structure of the droplet boundary can
only decrease its energy.

The energy (per unit volume) of the droplet state
with the concentration of droplets ng can be written
in total analogy with the ferron energy in the double-
exchange model (see [14, 11]). This yields

772a2
Edroplet:_tnd <Z_ R2 >_
w2 4 [R\®
. H—ng-r (=2 21
6V 2 "%”(a)]’ (21)

where a is the lattice constant and R is the droplet
radius. The first term in (21) corresponds to the ki-
netic energy gain of the electron delocalization inside
the metallic droplets and the second term describes the
charge ordering energy in the remaining insulating part
of the sample.

Minimization of the energy in (21) with respect to

R gives
< >1/5

The critical concentration ng. corresponds to the
configuration where metallic droplets start to overlap,

2V
t

~

- (22)



M. Yu. Kagan, K. I. Kugel, D. I. Khomskii

MKIT®, Tom 120, Bbim. 2 (8), 2001

i.e., where the volume of the charge-ordered phase (the
second term in (21)) tends to zero. Hence,

3 3/5

® = (7)

Actually, one should include the surface energy con-
tribution to the total energy of the droplet. The sur-
face energy must be of the order W2R2?/V. For large
droplets, this contribution is small compared to the
term oc R? in (21); it would also be reduced for a «soft»
droplet boundary. It is easy to show that even in the
worst case of a small droplet (of the order of several
lattice constants) with a sharp boundary, R/a acquires
the factor 1 — 0.2(t/2V)'/5 related to the surface con-
tribution. Thus, the corrections related to the surface
would not exceed about 20% of the bulk value. That
is why we ignore this term below.

Comparing (12) with (21) and (22), we see that for
the deviations from half-filling such that

3
4

t

v

a

7 (23)

Nge =

0<6<d.=1/2—ng.,

the energy of the phase-separated state is always lower
than the energy of the homogeneous charge-ordered
state. The energy of the droplet state (21) with
the radius given by (22) is also lower than the en-
ergy of the fully phase-separated state obtained by the
Maxwell construction from homogeneous metallic state
(17). Correspondingly, the critical concentration ng. in
Eq. (23) is larger than nyo in Eq. (18). There is no
contradiction here: in the droplet state that we con-
structed, the electrons are confined to spheres of the
radius R, and even when these droplets start to over-
lap at n = ng4., occupying the entire sample, the elec-
trons, by construction, are still confined within their
own spheres and avoid each other. In other words,
a certain degree of charge-ordering correlations is still
present in our droplet state, decreasing the repulsion
and hence the total energy.

Thus, the energy of the phase-separated state with
the droplets corresponds to the global minima of the
energy for all 0 < § < §.. This justifies our conclu-
sion about the phase separation into the charge-ordered
state with n = 1/2 and a metallic state with small
spherical droplets.

The situation encountered here resembles that of
a partially filled strongly interacting Hubbard model,
with the charge-ordered state corresponding to the an-
tiferromagnetic state of the latter and with the nearest-
neighbor interaction V' playing the role of Hubbard’s
U. In both cases, the kinetic energy of doped carriers
tends to destroy this «antiferro» or charge ordering,

476

by first «spoiling» it in their vicinity and eventually
leading to the formation of the metallic state (Nagaoka
ferromagnetism). In the Hubbard model, we also face
the situation with the phase separation at a sufficiently
small doping [21].

We also note that for n > 1/2, the compressibility
of the charge-ordered state is again negative,

1 PE_ 4W?

2z = 3v. <O

K
and has the same value as for n < 1/2. As a result, it is
again more favorable to create a phase-separated state
for these densities. However, as already mentioned, the
nature of the second phase with n > 1/2 is not quite
clear at present, and therefore, we do not consider this
case here.

5. AN EXTENDED MODEL

We can now extend the model discussed in the pre-
vious sections by taking the essential magnetic interac-
tions into account. In manganites, in addition to the
conduction electrons in the e, bands, there also exist
practically localized t54 electrons, which we now include
in our consideration. The corresponding Hamiltonian
is given by

H=—t Z C;C]‘g-}—v

(i.4),0

an]’ —Ju ZSZ’O'Z' +

(i,5) i

+TD SIS —p > ni (24)
(i,7) i

In comparison to (1), the additional terms here cor-
respond to the strong Hund-rule onsite coupling Jg
between the localized spins S and the spins of conduc-
tion electrons o, and a relatively weak Heisenberg anti-
ferromagnetic (AFM) exchange J between neighboring
local spins. In real manganites, the AFM ordering of
the zigzag (CE) type in the charge-ordered phase is
determined not only by the exchange of the localized
tag electrons but to a large extent, by the charge- and
orbitally-ordered e, electrons themselves. For simplic-
ity, we ignore this factor and assume the superexchange
interaction to be the same in the charge-ordered and in
the metallic phases.

It is physically reasonable to consider this model in
the limit

JyS >V >W>JS2.

In the absence of the Coulomb term, this is exactly the
conventional double-exchange model (see, e.g., [8, 14]).
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As it is usually assumed in the theory of the double
exchange (that is, in the theory where Jgy > W), the
main role of the itinerant electrons is to form a parallel
arrangement, of local spins. The exchange-correlation
effects of the itinerant electrons themselves are not very
important here and can be included in the renormal-
ization of the effective bandwidth.

We note that the absence of doubly occupied sites
in (24) is guaranteed by the large Hund’s term. It also
favors the metallicity in the system, because the effec-
tive bandwidth depends on the magnetic order in our
problem. The estimate for the critical concentration
is therefore different from the one in (23). Similarly
to [14], the metallic droplets are ferromagnetic (FM)
because of the double exchange. The energy of one
such droplet is given by

n2a? w2 4 (R\?
E=—t(z- - |1-Zx (=
<Z R2> 6V~ 37T<a>
4 (R\® 4 (R\?
2= o _ 2 _ = ot
+2JS 37T<a> zJS ll 37T<a> (25)

The last two terms in (25) describe the loss of the
Heisenberg AFM exchange energy inside the FM metal-
lic droplets and the gain of this energy in the AFM
insulating part of the sample, respectively. The mini-
mization with respect to the droplet radius (as in (21))

R

yields
~1/5
N ( ) |
a

We note that at t/V < JS?/t, Eq. (26) gives the
same estimate for the radius of a FM metallic droplet

as in [8, 14].

In the opposite limit where t/V > JS?/t, we re-
produce the same result
< ) 1/5

as in (22). Finally, the critical concentration n, is esti-

mated as
3/5
Ne o< ( ) .

As a result, also taking the tendency to the phase
separation at very small values of n into account

t JS?
__I__

vt (26)

R

a

o
JS?

R

—_—~

a

1%

t

t JS?
_+_

V t (27)
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[8-11, 14], we arrive at the following phase diagram for
the extended model (cf. [11]):

1. At0<n < (JSQ/t)S/E’, it corresponds to the
phase separation into a FM metal with n = n’ > 0
embedded into the AFM insulating matrix (n = 0).
To minimize the Coulomb energy, it may again be fa-
vorable to split this metallic region into droplets with
the concentration n' and the average radius given by
Eq. (26) with ¢/V = 0, each containing one electron
and kept apart from one another.

2. At (792/6)*° < < (/v +782/1)"° < 1)2,
the system is a FM metal. Of course, we need a win-
dow of parameters to satisfy the inequality in the right-
hand side. In actual manganites, where ¢/V ~ 1/2-
1/3 and JS?/t ~ 0.1, these conditions imposed on n
are not necessarily satisfied. Experiments suggest that
this window is present for La; ,Ca,MnOs3, but it is
definitely absent for Pr;_,Ca,MnOj [11].

3. Finally, at (t/V +.782/t)*° < n < 1/2, we
have the phase separation in the form of FM metallic
droplets inside the AFM charge-ordered matrix.

This phase diagram is in a good qualitative agree-
ment with many available experimental results for real
manganites [22-25], in particular with the observation
of the small-scale phase separation close to the dop-
ing 0.5 [26]. We also note that our phase diagram has
certain similarities with the phase diagram obtained
in [27,28] for the problem of spontaneous ferromag-
netism in doped excitonic insulators.

3/5

6. CONCLUSIONS

Summarizing, we have shown that the narrow-band
system that has the checkerboard charge ordering at
n = 1/2 (corresponding to the doping x = 0.5) is un-
stable toward phase separation away from half-filling
(n # 1/2). The system separates into regions with the
ideal charge ordering (n = 1/2) and other regions where
extra electrons or holes are trapped. The simplest form
of these metallic regions could be spherical metallic
droplets embedded into the charge-ordered insulating
matrix. Simple considerations allow estimating the size
of these droplets and the critical concentration, or do-
ping z. = 1/2—4,, at which the metallic phase occupies
the entire sample and the charge-ordered phase disap-
pears. The account of the magnetic interactions does
not change these conclusions but somewhat modifies
the characteristic parameters of the metallic droplets.

The long-range Coulomb interaction may also mod-
ify the results, but we do not expect any qualitative
changes. For realistic values of the parameters, the size
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of metallic droplets is still microscopic (about 10 A) and
the excess charge contained in them is rather small.

The obtained picture corresponds rather well to
the known properties of 3D and layered manganites
close to (less than) half doping, * < 1/2. The perco-
lation picture of transport properties emerging from
this treatment is confirmed by the results reported
in [7,15,22,24-26]; moreover, the coexistence of fer-
romagnetic reflections and those of the CE type mag-
netic structure typical of the charge-ordered state at
x = 0.5 were observed by the neutron scattering [29].
Thus, the general behavior of the underdoped mangan-
ites (x < 0.5) is in a good qualitative agreement with
our results.

Our treatment also leads to the same tendency
to the phase separation (instability of the homoge-
neous charge-ordered phase) for the overdoped regime
x > 0.5. It is still not clear what would be the second
phase in this case. Therefore, we did not concentrate
our attention on this case.

Our treatment is also applicable to other systems
with the charge ordering, such as cobaltites [18] and
nickelates [19]. It would be interesting to study them
for charge carrier concentrations different from the
commensurate «checkerboard» one.

A number of important problems still remain
unresolved (the origin of the «in-phase» ordering
along the c-direction in perovskite manganites, the
detailed description of inhomogeneous states in the
overdoped regime x > 1/2, and the behavior at
finite temperatures). Nevertheless, in spite of the
introduced simplifications, our model seems to capture
the essential physics underlying the interplay between
phase separation and charge ordering in transition
metal oxides.
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