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The character of internal excitations is compared for phase transitions and chemical transitions in atomic sys-
tems. Although the temperature dependences of some physical parameters of atomic systems have resonance-like
structures with maxima in both cases, the dependences of the partition functions on the number of elementary
excitations or the excitation energy differ because of the difference in the numbers of interactions that govern
the transitions. The phase changes of condensed rare gases are considered in the case where the external pres-
sure is small and the differences between phases are predominantly associated with differences in configurations.
Important energy parameters of rare gases are determined by the attractive part of the pairwise interaction
potential between atoms. The statistical analysis shows the existence of a «freezing limit» temperature for
these systems, below which the liquid state becomes unstable. The kinetics of the decay of such unstable states

is analyzed in terms of the diffusion of voids.
PACS: 61.20.Gy, 61.25.Bi, 61.43.Fs, 64.70.Dv

1. INTRODUCTION

A phase transition corresponds to a transition be-
tween different aggregate states; for a first-order phase
transition, the internal energy of a bulk system changes
discontinuously as the temperature varies and the pres-
sure is constant [1-3]. In contrast to this, a chemi-
cal transition, i.e., a transition between two limiting
chemical states of a substance, occurs throughout some
temperature range, with a shifting equilibrium ratio of
the species, when conducted at a constant pressure.
This principal difference between the phase and chem-
ical transformations is lost for systems consisting of a
finite number of atoms—notably, clusters [4-10]. Com-
puter simulations of phase transitions in clusters [4-10]
reveal some peculiarities of this phenomenon, in par-
ticular, the coexistence of the phases throughout some
temperature range. From general considerations, one
can infer that this range has sharp upper and lower
bounds, which we may call the «melting limit» 7, and
the «freezing limit» Ty. The range between Ty and
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T,, can remain or shrink to zero as the number of par-
ticles IV in the cluster grows very large. However in
either case, the observable effect of increasing N is to
make the range of the apparent coexistence shrink to a
single temperature T, at which the free energies and
mean chemical potentials of the two forms are equal.
Away from this temperature, the thermodynamically
unfavored phase can be present in observable amounts
for relatively small N, but as IV increases, the unfa-
vored phase becomes so unfavored that the amounts
or frequencies of its appearance become unobservably
small. Because of the observability of unfavored phases
for small systems, the transitions or phase changes be-
tween aggregate states are very similar to those be-
tween chemical states such as chemical isomers.

The study of phase transitions in clusters [4-10], es-
pecially focusing on their microscopic nature, has given
us a deepened understanding of the nature of phase
transitions for bulk systems. Analyzing the phase and
chemical transformations in bulk systems from the mi-
croscopic standpoint, one can find both common and
different features of these phenomena. Such an analysis
is the goal of this paper. We are guided by the simplest
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cases for this analysis.

We compare the solid-liquid phase transition for a
system of atoms bound by a pair interaction with the
simple chemical transformations, ionization and disso-
ciation. This comparison allows us to establish the
common and different features of the phase and chem-
ical transitions from the microscopic standpoint. The
microscopic interpretation allows us to expand our un-
derstanding of the phase transition.

2. CHEMICAL EQUILIBRIUM AND
TRANSFORMATIONS

We first consider the simplest chemical equilibria,
in which a gaseous system consists of particles XY at
low temperatures that dissociate into X and Y at high
temperatures, and the chemical equilibrium therefore
has the form

XY +— X+Y. (2.1)

For the ionization equilibrium, we use this form and
consider X to be an ion (AT) and Y an electron (e), in
which case the ionization equilibrium is

At +e+— A (2.2)

In parallel, we consider the dissociation equilibrium, in
which the composite particles XY are dimer molecules
and the dissociation equilibrium has the form

A+A—— A, (2.3)

We use the simplest formulas for these equilibria. For
the ionization equilibrium, the number densities of elec-
trons N, ions N;, and atoms N, are related by the Saha
equation [11,12]

NeNi _ gegi (meTe\*? J
No  ¢a <27rh2> e\ ) (29

where m, and T, are the mass and temperature of elec-
trons and g, g;, and g, are the statistical weights of
the electron (g, = 2), the ion, and the atom electronic
states. Introducing the probabilities for an electron
to be free w, = N./N or to be bound in an atom
we = No/N (where N = N, + N, is the total num-
ber density of free and bound electrons, and hence,
we + w, = 1), we represent Saha formula (2.3) for a
quasineutral plasma with N, = N; as

(

where the statistical weight g of free electron states is
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In general, the statistical weight of free, continuum
states is the ratio of the typical atomic number density
in the condensed phase to the density of free atoms in
the gas phase, and hence, this value is large. There-
fore, the value 1/Ing is a small parameter of the the-
ory, because we consider transitions between free and
bound states; these transitions occur in a relatively nar-
row range of temperatures due to a small value of this
parameter. We note that we deal with an ensemble
consisting of a sufficiently large number of particles to
allow us to neglect the fluctuations.

We now determine the temperature width for this
transition. We define the electron temperature for the
ionization transition Tj,, as the temperature for which
we (Tion) = 1/2. To be precise, we define the tempera-
ture range AT of the transition from atoms to electrons
and ions such that the value w, varies in this region
from 1/4 up to 3/4. Hence, we have

2

T
% In 27,

and a small parameter in this case is

AT = (2.7)

Tion/J =1/1Ing.
In particular, under conditions of Fig. 1, Eq. (2.7) gives
AT /Ton = 0.3.

Using the same expressions for the probabilities of
free and bound states, we have for the dissociation equi-

librium
= gexp <

where w, is the probability for an atom to be free
and w,, is the probability for an atom to be bound
in the dimer molecule; D is the dissociation energy of
the molecule. In contrast to the ionization equilibrium,
where the probability of excited atom states is small,
excited rotational and vibrational molecule states are
taken into account in Eq. (2.8). But the structure of
this formula is the same as for the ionization equilib-
rium. Figures 1 and 2 give some examples of the ion-
ization and dissociation equilibria. The width of the
transition between free and bound states in the tem-

2
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e

(2.8)

perature scale is determined by the small parameter
1/1n g and decreases as the number density of particles
decreases.

As a result of renormalization, we can infer from
Eq. (2.5) the respective partition functions of free and
bound electron states Z, and Z,. For the ionization
equilibrium, we then have

72 J
v ()

7 (2.9)
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Fig.1. The specific heat capacity of argon with a

sodium admixture in the temperature range of the

sodium ionization transition. The concentration of

sodium atoms is equal to 10% and the number den-

sity of argon atoms corresponds to the pressure 1 Torr
at room temperature
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Fig.2. The specific heat capacity of iodine .J> in the

range of the dissociation transition if the iodine num-

ber density corresponds to the pressure 1 Torr at room
temperature

We obtain a corresponding relation for the dissociation
equilibrium. These formulas can be used for the anal-
ysis of statistics of chemical equilibria.

We now determine the partial partition function for
the ionization equilibrium that corresponds to a given
number of free electrons at a certain temperature. An
equivalent result appears for the dissociation equilib-
rium. If the total number of nuclei in the system is n
and the number of ionized atoms is m, the probability
of this event is determined by the Poisson formula

m, n—m
we wll

Wom =C =Clw(1 —we)"™ ™,

(2.10)

where the ratio between w,. and w, (with w, +w, = 1)
is given by Eq. (2.5). The partition function Z,,,, of the
system with a given number of free and bound electrons
is proportional to this value, and we take these values
to be identical for simplicity. We note that formation
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of m free electrons in this system corresponds to the
excitation energy

m(J + 3T, /2) = m.J.

For a large number of free and bound electrons in
the system, i.e., m > 1 and n > 1, the partition func-
tion Z,,, has a sharp maximum as a function of m:
near the maximum m = my, it has the form

Zm = Zopexp |—a(m — mo)2 , (2.11)

and in accordance with the above relations, we have

n

1
a =

- . (2.12)
2mg n —myg

mp = NWe,
From this expression, we see that the partition function
has a narrow maximum in the range of the number of
broken bonds Am ~ \/n if my ~ n, and the relative
maximum width Am/mg tends to zero as 1/y/n when
the number of atoms tends to infinity.

3. CONFIGURATION EXCITATION OF A
SYSTEM OF BOUND ATOMS

It follows from the above analysis that as a func-
tion of the excitation energy, the partition function is
characterized by one maximum. In contrast to this, the
partition function for the solid-liquid phase equilibrium
has two maxima, and each maximum corresponds to a
certain aggregate state. Below we consider, from this
standpoint, the solid-liquid phase transition for con-
densed rare gases when the interaction between nearest
neighbors dominates. We use measured parameters of
the aggregate states of condensed rare gases near their
triple points and consider a condensed rare gas as a
system of bound atoms with short-range interactions,
i.e., assume that interactions between nearest neighbors
give the main contribution to the constitutive parame-
ters of such systems. The reduced parameters of con-
densed rare gases are expressed through the parameters
of the pair interaction potential of these atoms, which
are known well [13-16]; this information is based on the
parameters of diatomic molecules, condensed and dense
rare gases and collision parameters of pairs of atoms.
Next, the classical character of the atomic motion in
condensed systems of Ne, Ar, Kr, and Xe, together with
the short-range character of the interactions of atoms
in these systems, allows us to use a scaling analysis
to express bulk parameters of these systems through
parameters of the interaction potential of two atoms.
Simplifying this operation, we choose the parameters
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of the pair interaction potential of these atoms as D,
the depth of the potential well, and R., the equilib-
rium distance between atoms of the diatomic molecule.
Adding to these parameters the atom mass m, we can
express the physical value of any dimensioned property
through the three parameters m, R., and D. The de-
gree of coincidence of the reduced physical parameters
for different rare gases then determines the accuracy of
such a scaling law for real systems; for real rare gases,
this measure of accuracy is several percent.

The analysis of parameters of the solid rare gases
shows a small contribution of a long-range interaction.
Indeed, the ratio of the distance a between nearest
atoms in the solid rare gases at zero temperature to
the equilibrium distance between atoms of the corre-
sponding diatomic, averaged over all the stable rare
gases, is [17-19]

a/R. =1.005 =+ 0.013,

and the reduced sublimation energy e4,; of solid rare
gases is 6.4+0.2 per atom. For a system of bound atoms
with only the nearest-neighbor interactions, these val-
ues are equal to 1 and 6 respectively, whereas for a sys-
tem of atoms with the Lennard—Jones interactions, for
which there is a long-range contribution to physical pa-
rameters of the system, the respective values are equal
to 0.97 and 8.41 [20]. This shows that condensed rare
gases are close to systems of atoms with the interaction
between nearest neighbors only, and the error from this
assumption is less than 10% for any parameter.

Taking real condensed rare gases as a system of
bound atoms with a short-range interaction (i.e., the
interaction between nearest neighbors only), we obtain
additional information about this system on the basis
of parameters of condensed rare gases. In particular,
Table 1 contains the reduced parameters of the phase
transition of this system near the triple point. In this
Table, T}, and ps. are the temperature and pressure
at the triple point, AHy,, and ASy,s are the fusion
energy and the entropy change per atom as a result of
the phase transition, pso and pyi, are the density of the
solid and liquid rare gases at the triple point, and p(0)
is this value at zero temperature; the specific volume
per atom for the solid and liquid states are denoted as
Vo and Vj;4, respectively. In addition, the equilibrium
vapor pressure p above the solid and liquid surfaces is
given by the respective formula

Esol
T

Eligq
T

) . (3.1)

where the parameters g4, and &5, characterize the
binding energies per atom for the solid and liquid states

P = Psol €Xp (‘ ) y P = Dliq €XPp (‘

892

Table 1.
rare gases at the triple point [17-10]

Reduced average parameters of condensed

Reduced value Average quantity
T:»/D 0.579 + 0.007
perR2/D, 1073 1.9+0.2
AHgys/D 0.98 + 0.02
ASfus 1.68 +0.03
pir AV/AH s, 1074 22404
Esub/ D 6.4+0.2
p(0)R2/\/2 1.0140.04
psot R V2 0.92 + 0.02
prigR2 /\/2 0.80 + 0.02
Viie/ Vo 1.153 + 0.006
v/ D 5.4+0.2
psot R /D 110 + 20
pigR2 /D 25+ 4
Eliq/D 5.540.1
T../D 1.04 +0.02

of this system, to within the accuracy of the thermal en-
ergy at the melting point. The parameters of Eq. (3.1)
are given in Table 1.

It follows from the data in Table 1 that the mechan-
ical work p;»AV during the phase transition of a real
rare gas near the triple point is small compared to the
change AH ¢, of the internal energy of the constituent
atoms. This simplifies the analysis and allows us to
neglect the expansion of the system of bound atoms
during the phase transition, and hence, to treat this
process as a function of only one variable. Below, we
consider the temperature range of the melting point
where the criterion

AHpys > pAV (3.2)
is satisfied. Here, p is the pressure on the melting curve
and AV is the increase of the specific volume. In this
temperature range, the attractive part of the pair inter-
action potential of atoms is responsible for the behavior
of this system of atoms, and it is not necessary to ex-
plicitly account for the external pressure because that
would be very small compared to the attraction forces
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between the interacting atoms. This criterion is valid

under the condition

p K (3.3)

ﬁ .

e

Equation (3.1) and the data in Table 1 imply that these
criteria are valid at least at temperatures

T < T, (3.4)

where T, is the critical temperature for the liquid—gas
transition (see Table 1). We note that at high external
pressures, the repulsive part of the pair interaction po-
tential of atoms is important for the phase transition
and the mechanical work pAV makes a considerable
contribution to the fusion energy.

We now analyze the excitation of a system of many
bound atoms with a pair interaction in the case where
the interaction the interaction between nearest neigh-
bors dominates. Computer simulations of clusters,
which are systems of such bonded atoms and have
completed shells, show the complex character of the
phase transition. At a certain degree of excitation,
atoms of filled shells move out of those shells to the
cluster surface; they float on it, albeit with somewhat
hindered motion, and then return, typically exchang-
ing roles with other atoms coming out of the surface
layer [21, 22]. These transitions are easiest for the out-
ermost shell, but are possible for others beneath, and in
some range of temperatures one can thus construct sev-
eral caloric curves [23], each describing the excitation
of a particular shell. Evidently, when a cluster becomes
very large, one can extract the surface excitation and
the bulk (internal) excitation in this way. Although we
here draw from the experience of phase transitions in
clusters, in order to simplify this analysis, we restrict
the further discussion to internal excitations only, and
therefore consider infinite clusters or bulk systems of
bound atoms.

We note two types of excitations in a bulk system
of bound atoms. The first deals with the excitation
of vibrations or phonons; this excitation is identical
in principle for the solid and liquid states, apart from
the regular character of excitations of a periodic lattice.
The excitation of the other type, the configuration exci-
tation, corresponds to a change in the atomic positions.
When this excitation is small, it can be characterized
by the change in the number of vacancies inside the
crystal lattice. These vacancies result from removal
of atoms from sites of the crystal lattice to positions
outside. When the number of vacancies becomes large,
such that neighboring vacancies border, these vacancies
transform into voids [24], and the energy of formation of
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an individual void, as well as its volume, depends on the
degree of the configuration excitation. We assume the
excitations of these two types to be independent and
analyze the configuration excitation, which is responsi-
ble for the phase transition as a result of formation of
voids inside the system.

Considering the configuration excitation to be un-
equilibrium with respect to the thermal motion of
atoms, we use a simple model for this excitation [25-
27]. We prepare an excited state as follows. In a crys-
tal consisting of n + v atoms, we create v vacancies
inside by removing v atoms to the outside. Then v,
the number of vacancies formed, characterizes the ex-
citation degree of this system. In the second stage of
the evolution, this system relaxes such that it shrinks,
and its internal energy typically (but not necessarily)
drops. We characterize the degree of the configura-
tion excitation of this system by the number of voids
v, which coincides with the number of interior vacant
sites. Of course, in contrast to a vacancy, an individual
void varies its form and volume in time; we consider an
individual void in terms of its average form and volume.
We use statistical parameters for each void, character-
izing it by a certain energy &, of its formation and the
statistical weight g,. Thus, we describe the degree of
the configuration excitation of the system by the num-
ber of voids that are initially isolated vacancies. In this
manner, we consider an excitation as a gas of noninter-
acting voids that are identical on average, whereas the
parameters of an individual void depend on the degree
of excitation.

The statistical model under consideration involves
averaging over atomic positions in a system of inter-
acting atoms. If we restrict the treatment to interac-
tions between nearest neighbors only, we can express
the excitation energy through the average number of
the nearest neighbors n. for any internal atom. The
mean binding energy per atom is then given by

e =Dn./2,

where D is the binding energy per individual bond and
the average volume per atom is

V =12Vy/ne,
where the specific volume V4 is that based on the solid

state. From this, we have

Esub NEsub

V=W

=V (3.5)

b
Esub — EpU/T

where ¢, is the energy of formation of one elementary
void and &gy, is the binding energy per atom for the
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solid state. In particular, this implies that for the lig-
uid state,

Vb Esub

—- =1, 3.6
Vv Esub — AI—I‘)"us / ( )

gliq =
and the statistical average of this parameter over real
rare gases gives

&1ig = 1.024 £ 0.006,

and Eq. (3.2) is therefore valid within the accuracy of
3%. Evidently, the error in &;, is related to the accu-
racy of using the mean-field approximation.

Considering the liquid—solid phase transition as a
result of the formation of voids, we construct the par-
tition function of a void gas as

Z(v) = Cp 4,9, exp (—U;U) ,

where ¢, is the energy of formation of an individual
void, g, is the statistical weight of a void, and these
parameters depend on the parameter z = v/n. Assum-
ing voids to be independent, we define the energy of
the formation of an individual void as

cp=co—U (%) : (3.8)

(3.7)

where U is the effective interaction potential of voids,
€p is the energy of the formation of a vacancy in the
crystal as a result of removing an internal atom to the
surface, i.e., when v = 0 (¢g = 6 D in the case of the
interaction between nearest neighbors only). We take
the statistical weight of an individual void to have the

form [26, 27]
g=l+a-, a>1 (3.9)

For the effective interaction potential, we use [26, 27]
U(5) =z o (+57) —ew (-677)| =
n v v
v
S
n

u(z) = exp (—%) — exp (—kg) ,

xr

(3.10)

where a and k are parameters. These relations im-
ply that as the unoccupied space inside the system in-
creases, the statistical weight per atom increases, and
the energy of the formation of new vacancies decreases.
It then follows that the reduced logarithm of the par-
tition function is given by

In Z(v)

+zln <1+%> —x%o[l—U(x)L

=zIn(l +ax) +1In(l+2) +

(3.11)

[
r = —.
n

Table 2. Mean parameters of condensed rare gases
at the triple point
Value Average quantity
« 0.13+£0.01
k 4.84+0.2
’U[iq/n 0.31£0.01
a 65+ 15
U(viig/n)/D 3.3+£0.2
U(vmin/n)/D 1.3+0.1
—In Z((vmin/n)/n) 0.39 £ 0.02
M 80 T T T T T
>
ol
% 60 + T="T. b
51
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n

0
1.00 1.05 1.10 1.15 120 1.25 1.30
Reduced specific volume

Fig. 3. The dependence of the specific free energy of con-

densed rare gases on the reduced volume per one atom.

The right minimum corresponds to the liquid state; at
T = T., the liquid state becomes unstable

The use of the phase transition parameters for con-
densed rare gases at their triple points together with
this expression for the partition function allows us to
find the parameters of this model [25-27]. We note
that the complex form (3.6) of the effective interaction
potential of voids is related to a bimodal form of the
partition function that cannot be realized at k = oo.
The parameters of this model averaged over the stable
rare gases are given in Table 2 [26, 27].

One can continue the partition function of a sys-
tem of bound atoms to the range of low temperatures,
where the liquid state of the bulk is a metastable ag-
gregate state. Figure 3 shows the dependence of the
specific free energy

F=-ThZ

on the specific volume and is based on Eqs. (3.5) and
(3.7)—(3.10); the mechanical work as a result of the
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Fig. 4. Caloric curves for argon — the temperature de-

pendences of the internal energy of aggregate states.

The solid caloric curve is given by Eq. (4.1) and the
caloric curve is given by Eq. (4.3)

phase transition is neglected in accordance with crite-
ria (3.3) and (3.4). The first (left) maxima of these
curves in Fig. 3 at low excitation energy corresponds
to the solid state; the second correspond to the lig-
uid state. We use Eq. (3.7) for the specific partition
function and the relations between the volume per one
atom V', the specific excitation energy ve,/n, and the
relative number of voids v/n. It follows from Fig. 3
that below the freezing limit T, = 0.36D, the liquid
maximum of the partition function disappears and the
liquid state becomes unstable.

4. THE CALORIC CURVE OF CONDENSED
RARE GASES AND THE RATE OF
EQUILIBRATION

Thus, neglecting the surface configuration excita-
tion of large clusters of rare gases, we restrict our de-
scription to two aggregate states that correspond to the
solid and liquid states of a bulk system. Figure 4 gives
the caloric curves for these states. Each caloric curve
is the temperature dependence of the specific internal
energy of the isothermal system of bound atoms. We
take the excitation energy as a sum of the phonon exci-
tation energy and the configuration excitation energy.
The phonon contribution to the excitation energy per
atom is given by [11]

Op
where
3 i 23dz
d(x) x_3/exp(z) —1 (4.2)
0

895

is the Debye function; the Debye temperature @ p does
not conform to the scaling law. Figure 4 corresponds
to argon, for which we take [20, 28] ©p ~ 90 K. The
specific energy of the configuration excitation is taken
as ve,/n for the liquid state and is zero for the solid
state, and therefore, the total specific internal energy
of the liquid state is

Op

r)

v
+ Eé‘v”q,

and the second term is absent for the solid state. Next,
the liquid caloric curve terminates at the freezing limit
T, where the liquid maximum of the free energy disap-
pears (see Fig. 3). In the same manner, the solid caloric
curve terminates at high temperatures in this formu-
lation. Because the critical temperature of the solid
state is sufficiently high such that the mechanical work
of solid-liquid transitions cannot be neglected, it would
be incorrect to discuss the high-temperature range of
the caloric curve within this framework. Because the
scaling law is invalid for the phonon excitation ener-
gies, we specifically analyze the parameters of argon in
what follows.

We note the principal difference in the construction
of caloric curves for clusters and for bulk systems. For
clusters, the coexistence of the solid and liquid phases
is possible in some temperature range where the proba-
bility of the location of a cluster in each aggregate state
is nonnegligible. Hence, assuming that the time inter-
vals between transitions from one aggregate state to
another is long compared to the observation time and
that the times required for the transitions are brief on
the same scale, we terminate the caloric curve of each
state at a temperature at which the probability of ob-
serving the cluster in this state becomes small. (More
rigorously, we could terminate where the local mini-
mum in the free energy of that form disappears.) For
large clusters or a bulk system, this probability of the
observation of the unfavored phase is very, very small,
even in the vicinity of the melting point, but a typi-
cal dwell time in one phase may be long, even infinite,
precisely at the melting point, if the cluster is macro-
scopic. Hence, constructing the caloric curve in Fig. 4
for argon, we suppose the mean dwell time in the liquid
state to be sufficiently long. The true low-temperature
termination of the liquid caloric curve means that at
even lower temperatures, the metastable liquid state
does not exist. In addition, Fig. 5 gives the specific
volume of the argon liquid state; the argon fusion en-
ergy for the solid—liquid phase transition is represented
in Fig. 6. In accordance with criteria (3.3)-(3.5), our
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Fig.6. The fusion energy for the solid—liquid phase tran-
sition in argon

treatment is restricted to a range of temperatures that
are not too high.

For a bulk system, the decay of the liquid state be-
low the melting point is determined by fluctuations due
to nonuniformities in the void distribution. This also
occurs for small clusters. For very large clusters or bulk
systems, we neglect these fluctuations, and metastable
liquid states can therefore live very long in the absence
of external perturbations. Below the freezing limit, the
decay of an unstable liquid state results from the diffu-
sion of voids to the boundary of the system; below, we
briefly analyze this process.

Because the diffusion process has an activation
character, it slows down with a temperature decrease
and stops at sufficiently low temperatures. Because the
voids move by diffusion, the rate of this process depends
on the geometry of the system. We consider atoms to
be bonded with a substratum, and bound atoms to
form a film on the substratum surface. (The substra-
tum may be another layer of the same material.) If
the film thickness is [, the typical time of a void de-

parture outside the film is of the order I?/Dg;f, where
Dy is the diffusion coefficient of voids inside the film.
Because a displacement of voids is determined by the
inverse displacement of atoms, the diffusion coefficient
of voids is

E
Ddif ~ (-*)Da2 exp <__a> )

= (4.4)

where wp = Op/h is the Debye frequency, a is the
lattice constant, T is a current temperature, and F,
is the activation energy for the atomic displacement,
which depends on the relative number of voids or va-
cancies inside the system. We assume that the heat
transport proceeds more effectively than the process of
void diffusion because of the activation character of the
last process, i.e., the criterion

Daip < x, (4.5)
is satisfied, where y is the thermal diffusivity coeffi-
cient.

The activation energy drops if the relative number
of voids drops. Evidently, the «frozeny temperature
(an analogue of the glassy temperature [30]) is deter-
mined by the condition

Dy
[Pt

Assuming the temperature variation rate d1'/dt to be
constant, we obtain from Eqs. (4.5) and (4.4) that

2 E T2
wpa exp (__a) f ~ 17

2 dT

(4.6)

(4.7)

where Ty is the temperature below which voids are
frozen, and the activation energy F, > T corresponds
to a frozen relative number of voids.

The activation energy of this process increases as
the number of voids decreases. Below, we consider this
transition in the limit in which the atoms form a crys-
tal lattice, and even the nearest vacancies do not bor-
der each other. We take a face-centered cubic lattice
for the solid state of the system of bound atoms. The
transition of a vacancy from one lattice site to a neigh-
boring one is similar to the transition of an atom next
to a vacancy to the vacancy site. For simplicity, we fix
other atoms in the sites of the crystal lattice. To make
the transition to a neighboring site, a test atom must
overcome a barrier; from symmetry considerations, the
barrier height is the difference of the total interaction
potentials of atoms with the test atom located in a site
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of the crystal lattice and halfway between two neighbor-
ing vacancies. If we introduce the pair interaction po-
tential of atoms U(R) at the distance R between them,
we obtain the barrier height

E, = —11U(a) — 2U(V2a) — 4U(V/3a) — U(2a) +
+4U <§a> +4U <§a> +
2 2
+8U (ga> +2U <2a> . (4.8)

We account for the interaction of a transiting atom with
the nearest neighbors as it passes from the initial to the
final atom position; a is the distance between nearest
neighbors of the lattice.

In particular, we use the Lennard—Jones interaction

potential between atoms
12 6
) (%)

(

where R, is the equilibrium distance between atoms for
a classical diatomic molecule and D is its dissociation
energy. In this case, we have

Re

R

R.

U(R) =D -

E, =9.2D. (4.10)
For the Morse interaction potential
U(R) = D lexp (—2a(R — R.)—)

— 2exp(a(R - R.))] (4.11)

and the Morse parameter o = 6/ R, (making the poten-
tial as similar to the Lennard—Jones one as possible),
we have

E, =82D. (4.12)

We note that both interaction potentials are character-
ized by identical dissociation energies D of the diatomic
molecule and identical second derivatives of the inter-
action potentials at their equilibrium distances,

U"(Re) = 72/ R2.

If we restrict the interactions to those between nearest
neighbors of the crystal lattice, then a = R.. These
results can be used to obtain an upper limit for the ac-
tivation energy of the transition under consideration.
The criterion of validity of Eqs. (4.11) and (4.12) is
such that neighboring voids are individual vacancies at
the crystal lattice sites, i.e., v < n/12.

We now analyze the character of the frozen process
under the conditions of the specific experiment [29, 30],
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when the thickness of the argon film on the cooper tar-
get is 0.1 um and the cooling rate is 2 K/min. In accor-
dance with Eq. (4.7), voids are frozen if E,/T; ~ 14.
If the decay of an unstable state resulting from an irre-
versible transport of voids starts from the temperature
T, = 52 K, some fraction of the voids diffuses to the
outside under the given conditions, until the activation
energy of the void diffusion process reaches the value

Because this value is less than the activation energy
(4.10) and (4.12) for the diffusion of vacancies in the
crystal, some of the voids are frozen by this cooling
process. Thus, it follows from the above estimate that
a system of bound atoms is characterized by a nonequi-
librium number of voids or vacancies that are caught
and frozen at low temperatures, and this number de-
pends on the rate of cooling of this system.

5. CONCLUSION

Although there is no difference in the forms of the
temperature dependence of some physical parameters
for systems of a finite number of bound atoms in
the cases of chemical transformations and phase
transitions, these phenomena are different in principle
due to the different dependences of the corresponding
partition functions on the number of elementary
excitations or the excitation energy. For chemical
transformations, the partition function has a sharp
maximum at the average number of excitations at a
given temperature, and this maximum tends to infinity
as the number of excitations tends to infinity. The
temperature variation leads to a smooth transition
from one chemical state of the system to the other.
For the phase transition of a large system, when
surface excitations are not important, the partition
function has two maxima as a function of the number
of elementary configuration excitations; these maxima
correspond, e.g., to the solid and the liquid. The
liquid state is characterized by a freezing limit below
which the liquid maximum disappears. Quenching
the configuration excitations in a large system of
interacting atoms results in a transport of voids to the
boundaries of the system or from them. The character
of the void transport process determines the state of
this system of bound atoms after its cooling.
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