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We explain the linear growth of smooth solid helium facets by the presence of lattice point defects. To imple-
ment this task, the framework of very general two-velocity elasticity theory equations is developed. Boundary
conditions for these equations for various surface types are derived. We also suggest additional experiments to

justify the concept.
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1. INTRODUCTION

Existence of two distinct states of a crystal surface
is well known: it may be either smooth or rough (for a
review, see [1]). A smooth surface is characterized by
a long-range order and small fluctuations. On the con-
trary, a rough surface behaves differently — it does not
exhibit a long-range order and its displacement fluc-
tuates heavily. These equilibrium properties lead to
different kinetic properties. While the rough surface is
usually supposed to grow easily (as described by the
growth coefficient), the smooth one is characterized by
zero growth coefficient and grows with nuclei of a new
atomic layer (if the crystal has no dislocations). In ac-
cordance with this mechanism, one should not observe
the linear growth rate if low overpressure is applied.
The reality is different — experiments [2] demonstrate
that a smooth helium surface free of screw dislocations
grows linearly. This work is an attempt to explain this
behavior by the presence of lattice point defects (va-
cancies). The idea is similar to that suggested by Her-
ring [3] and by Lifshitz [4] as an explanation of the
flow of polycrystals. It is quite simple: the mass flux
in bulk helium is attributed to the motion of vacan-
cies. This flux is the mass transfer through the lattice.
Therefore, if vacancies are allowed to be created at the
bottom edge of the sample (the boundary between the
crystal and the wall, see Fig. 1) and to annihilate at
the top of it (at the smooth crystal-liquid interface)
then the crystal grows.
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The suggested crystal growth mechanism can be ex-
plained as follows. Because the smooth crystal facet
(the top one in Fig. 1) cannot move with respect to the
lattice, it moves upward stuck to the lattice. Vacuities
appearing due to this at the bottom edge of the crys-
tal transform into lattice defects (ordinary vacancies)
and go up through (and faster than) the bulk helium.
They finally vanish in the liquid on the top smooth sur-
face of the sample. In other words, the crystal grows
on the boundary between helium and the wall, rather
than on the smooth solid-liquid interface (which nev-
ertheless provides mass supply for the growth). It is
important to emphasize that this scenario can occur
if and only if the vacancies are allowed to emerge at
the bottom edge of the crystal. One can say that this
boundary is in some sense «atomically rough» — it can
grow new atomic layers. For this condition to be sat-
isfied, the wall surface must have a disordered shape
or be slightly tilted with respect to basal planes of the
crystal (thereby forming a vicinal interface). This en-
sures that the surface can play the role of a source or
a sink of vacancies. An atomically flat wall parallel to
the basal plane should, in contrast, behave like a nor-

superfluid

Tvg
( “He crystal w

Fig.1. Typical experimental layout

silica wall

1457



A. F. Andreev, L. A. Melnikovsky

MIT®, Tom 120, Bbin. 6 (12), 2001

mal smooth surface — it is fixed to the lattice. This
is because new atomic layer nuclei must be created for
the surface to move.

This paper is organized as follows. In Secs. 2 and
3, we derive very general two-velocity elasticity theory
equations. They consist of conditions for the variables
of the conventional elasticity theory (including lattice
velocity) and equations for a macroscopic description
of the quasiparticle gas (including the quasiparticle gas
velocity).

Equations to be derived are similar to those of the
two-velocity superfluid hydrodynamics. In our equa-
tions, the lattice and excitation gas velocities replace
the superfluid and normal component velocities of the
two-fluid hydrodynamics. Similarly to the regular lin-
ear phonon hydrodynamics (see [5, §71]), the proba-
bility of Umklapp processes (which result in the non-
conservation of the total quasimomentum in quasipar-
ticle collisions) is supposed to be low. In the low-
temperature region considered here, this assumption
is quite reasonable. We also neglect dissipation here.
This means that our analysis is limited to the terms of
the first order in gradients.

The exact (nonlinear) hydrodynamics equations for
a superfluid can be derived (see [6]) from phenomeno-
logical considerations, using conservation laws. A con-
stitutive argument for this derivation is the statement
that the superfluid flow is potential. This is an intrinsic
property of the order parameter in a superfluid. This
condition is unavailable for a crystal (moreover, there
is no quasimomentum conservation relation in the non-
linear description, see Eq. (15) below).

We deduce the two-velocity elasticity theory equa-
tions using a more general approach (see the paper by
Pushkarov and one of the authors [7], as well as [8§]
and [9]). Tt is based on the kinetic equation description
of the quasiparticle dynamics. The realization of this
technique per se, in a nonlinear situation, in particular
is a matter of considerable interest not only for a solid
but also for a superfluid (that this procedure is possi-
ble is mentioned in [5, § 77]). With this technique, we
find exact expressions for all hydrodynamic variables
and their dependence (in terms of the quasiparticle en-
ergy spectrum) on the relative velocity of components.
It is trivial to extend the equations obtained for the
solid dynamics to the simpler case of superfluid hydro-
dynamics.

Boundary conditions for our equations depend on
the surface type; in Sec. 4, we thoroughly consider three
possibilities: rough (Sec. 4.1.1) and smooth (Sec. 4.1.2)
interfaces between solid and liquid helium, and the
rough boundary between solid helium and normal hard

wall (Sec. 4.2.1). Finally, in Sec. 5, we calculate the
growth rate for the crystal.

2. DEFINITIONS

Following the principles in Refs. [7-9], we employ
the Euler approach to the lattice description. We
thus introduce three «node numbersy N¢ (a =1,2,3).
They are functions of space coordinates r and time ¢,
N® = N%(r,t). From now on, Greek indices (like «
here) are used for the «lattice space» components and
Latin indices (e.g., 7 in z; for the components of r)
for the real space components. Defining the reciprocal
lattice vectors as

a® = ON®/dr,

we obtain the elementary lattice translation vectors ag
as
a“ag = dj3.
Taking the time derivative, we obtain the lattice veloc-
ity as
w = —a, N

The elastic energy FE; of the lattice is a function of
the deformation. Moreover, because it depends not on
the spatial orientation of the infinitesimal sample (the
space is isotropic), but on the relative position of the a$
vectors, we can write F; = E) (gaﬁ)., where ¢*% = a®a®
is a symmetric «metric tensory of the lattice space.

We are now ready to describe quasiparticle degrees
of freedom. We do not specify the quasiparticle na-
ture at the moment (the quasiparticles can be phonons,
vacancies as in [9], or electrons as in [7]). All the
equations written below imply the summation over all
branches of excitations; we do not explicitly write the
sum for brevity. Any quasiparticle should be character-
ized by its mass m (which is zero for phonons, positive
for electrons, and negative for vacancies), coordinate,
and momentum. Because quasiparticles exist in the lat-
tice background, the quasimomentum should be used.
The quasiparticle energy in the frame of reference of the
lattice € = e(aq(p — mw), g®?) is a periodic function
of the quasimomentum p (with the periods 2rha®). In
laboratory frame of reference, we have the quasiparticle
energy (see [7])

w2

E=€+mw— +m—.

€= op 2
We also use the variables k = p — mw and k, = a,k.
Quasiparticle dynamics is determined by the Hamilton

function

H = e+ pw — mw?/2.
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We now introduce the distribution function f(r,p) (it
is also a periodic function of the quasimomentum p).
Tts kinetics is governed by the Boltzmann equation

o orom oron g

ot Jr Op
Using this distribution function, we can obtain macro-
scopic quantities, such as the mass density,

1/2 +mn,

p=p+ (mf) =M det (¢*)
where the angle brackets denote the integration over
quasimomentum space,

()= [ .

p1 is the lattice density, M is the mass of an elementary
cell, and n = (f).

We consider a quasi-equilibrium distribution func-
tion. The complete set of quantities conserved in quasi-
particle collisions consists of their mass (which is pro-
portional to their quantity for «real» particles like elec-
trons and vacancies and is zero for phonons), energy,
and quasimomentum (in the low-temperature region,
Umklapp processes can be neglected). Consequently,
the most general quasi-equilibrium distribution is a
function of

_e—kv—muy e—(p-mw)v—mpuy _

0T T - T -
€ — PV — Mg + MWV € — PV —mo

T T '

where
Ho — WV = ¢.

The respective Langrange coefficients T', v, and g de-
note the temperature, the velocity relative to the lat-
tice, and the chemical potential of the quasiparticle gas.
For definiteness, we assume that the excitations are
Bose particles. The distribution function is then given

—1
feotg = (B ) L

and)
f+1
In ——

f

1) For further convenience, we also provide here the result of
the distribution function integration:

‘o1
/fdz:lne
eZ

We can now calculate other macroscopic parame-
ters with this distribution function. For the mass flux,
we have

J=pw+wmn+j=pw+j=pw+mnv, (3)

where the mass flux with reference to the lattice is

N
j=m p = mnv.

Using J, we can write the mass conservation as
p+Jii=0.

The number of real (massive) particles is also conserved
in the bulk, and we therefore have one additional con-
servation law

oL+ (plwi),i =0.
Similarly, the energy density is given by
w? .
E = Ly + B, (9°7) + (¢f) =

w2

2
This equation allows us to prove (and find) exact
macroscopic equivalents of the microscopic quantities
introduced above. The total energy density of the crys-
tal can be obtained via a Galilean transformation,

= LB (%) + Wi (ef). (&)

2
E:EO+%+jW, (5)

where Ey = Eg(a®, S, p, K) is the energy in the frame
of reference of the lattice, with K = (kf) characterizing
the quasimomentum density. A reasonable expression
for the Ey differential

dEy = \ijayjda; +TdS + pdp + vdK (6)

can be obtained with the conventional definition of the
entropy density for the Bose gas,

S=((f+D)I(f+1) - flnf) = (fo +In(f +1)).
Its differential is
dS ={(In(f +1)+1—1Inf—1)df) = (zdf).
Subtracting the differentials of (4) and (5), we obtain
0 = Njjay;da +TdS+pdp+v dK—dE; (9°°) —
—d{ef) = Nijayjdai + T (zdf) + pdp + v dK —

—dE; (9°°) — (edf) — (fde) =
= Nijay;dal + ((Tz — e+ vk)df) + pdp —
= dE; (9°%) + v (fdk) = (fde) . (7)

1459 10%*



A. F. Andreev, L. A. Melnikovsky MIT®, Tom 120, Bbin. 6 (12), 2001

We now transform the part of this equation related to the lattice deformation

0E
519asdg™” = dB (g°°) + v (fdk) = (fde) = G pugasdg™ = 5 g™ —mv {faw) -

2
_ <f (5’671 ((p — mw) da, — ma,dw) + <8j‘iﬁ>kﬁ dgcw) > =

_ (oE e o (2T EAY) ) ) das =
= <6ga6+<f <6ga6>ka>> dg +</~l’pl62] <f dp; (pi — mw;) aj | daa; =

0E Oe Y y
== (agalﬁ + <f <8g—“5>k >> QG?G?andai + (055 (T (In(f + 1)) + pp1) + vi Py — mnvw;) ayjda; =

2
= <6ij <TS + p% +E —E+Pv+pup + mn,u0> —Nij +viPj — mnviwj> ayjday.

From (7), we finally obtain

2
0= (u— po)mdn + {)\ij —Aij + 645 <TS +E —E+up+Pv+ p%) +v; P — mnviwj} ayjday, ()

where we introduced P; = (p; f) and

o 0E Oe
Aij = 2a¢d’ (895‘[5 + <f <39—“">k >> : (9)

The terms in (8) are independent, and each of them must therefore be equal to zero. That is,

H = Mo,

2 (10)

)\ij = Aij — 61’]‘ <TS +E —FE+up+Pv+ p%) - Q)in + mnv;w;.

3. EQUATIONS AND FLUXES

Here, we derive dynamics equations and thermodynamic fluxes for the system. Neglecting dissipation at this
point, we assume that the entropy conservation law is valid,

S+ F;; =0,
where the entropy flux Fj is determined by
F=5Sv+w).
We continue with the equation for the momentum flux found in [7],
Ji+ My = 0, (11)

where

8El Oe
H'kzpw"wk—E[(S'k-FQaan( ~ +<f< - ) >> + wijr + wiji =
2 3 7 T 'k 89 i ag B o 1 2

OF, Oe
. ' ~ ' ' ' a B 1 —
= pwwi — Eydip + mn(w;vg + wiv;) + 2af ay, <3ga6 + <f <8gaﬁ>ka>> -

= pwiwy — B + mn(wivg + wpv;) + Ag, (12)
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where we used definition (9) for A;.
Taking the appropriate equation for the energy flux from [7], we have

E+Q;; =0, (13)

where

OH
Opi

'LU2
QizwiEl+<€ f>_7ji+wknik~

To find the second term, we again use distribution function from (2),

(ot )= () 1) = (e (g o) ) = v e o7 (oo i) -

= () ef) = 7 (v D) — o e+ 7o 1 4 1) =

- (vi+wi)<ef>+Tv,»<1n( + )+ fIn <f;j >> —Tvi<fw> _

= (v; + w;) (ef) + Tv;S — v; (fe) + v;VP + mno = w; (ef) + v;(T'S + vP + mn¢).
For the energy flux, we finally have

2

— (pw; + mnv;) + wi(pwiwg + mn(w;ve + wiv;) + Aig) =

Qi = w;i (ef) + v; (TS + vP + mno) — 5

2
=w; (ef) + v;(TS + vP + mno) + %(pwi + mnuv;) + wi (mnw;v, + M) =

w? w?
= w; <<ef>+wj+p7> + v; <TS+VP-|—mn <¢+ 7)) +wpAj, =
2

= <T5'+VP+mn <¢+ %)) +w;(E — E) +wiAi. (14)

This formula completes the list of the conventional elasticity theory equations. An additional equation is required
to govern the quasiparticle degrees of freedom. We now find the time derivative of P;. We multiply Boltzmann
equation (1) by p; and integrate over the momentum space. We temporarily neglect Umklapp processes, which
are supposedly rare. If needed, dissipation can be explicitly introduced into the final result. In other words, the
quasimomentum p is conserved in (normal) collisions, and the term involving the collision integral is therefore
zero. The left-hand side of the Boltzmann equation gives

[ (050 0fom\\ _/ (of @) 20 (9 VY
P”‘<p’<apar arap>>‘<” <ap<ar+( m“’”ar]> ar<ap+“’>>>‘
. Oe ow 0% ow af Oe af _
B <_f <6xi +(p—mw) 7 ) Ipi <6r6p + g) “Pirap  Pior >

Oe 82 af Oe ow aw 8 af

The first term can be transformed as
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(g L= i 2 )
=<fpf£21+f§;+p22fv+p%§—§(%— e ) )=
= (pighv e mige o+ fog + fe g bl e+ nif g ) =
= nm §¢+P§V S(P )+ <Zkfz+plf§ >§£
— nm §Z+P§; aQ(P )+< mflnl;f_pi;;i (f+1)> gi
- gg‘i +P§; %(Piv) + <fln1+f +1n(f+1)> gi gz +Paxl 4 %(Pv) +s§£.
Consequently,
P, = nmwgz - SZ - %Piw—nmgfi —Pg;: - %(Piv) - ngi =
= nma%Z <w72 - ¢> - Sg—; - Pa%(w+v) - %(Pi(w +v)). (15)

\
The sought complete set of the two-velocity elasticity

theory equations consists of Eqs. (15),
defined by (14)), and (11

(13) (with @
) (with II;; defined by (12)).

4. BOUNDARY CONDITIONS

We now turn to boundary conditions. They imme-
diately follow from the conservation relations satisfied
at the interface. It is much easier to perform all trans-
formations in the frame of reference of the interface
itself. All the velocities are therefore taken relative to
the boundary. Moreover, we simplify the problem by
restricting it to the one-dimensional case: all fluxes are
supposed to be perpendicular to the flat surface; we let
the z axis run along this direction. Because no cur-
vature is ascribed to the surface, we ignore capillary
effects. All calculations done here are valid within the
linear approximation. Naturally, boundary conditions
must depend on the type of the boundary and on the
type of the media on the other side of the interface.
We begin with the situation extensively discussed in
literature, the solid-liquid interface [1]. Because the
possibility of the mass flux through the lattice is taken
into account, the results are different, however.

4.1. Solid—liquid Interface

The liquid on the other side of the interface (being
superfluid) is characterized by the chemical potential
L. normal and superfluid densities pE and pL, normal

u
and superﬂu1d velocities vl and vF, temperature T,

pressure p”, and the entropy den51ty ST (see Fig. 2):
R+ S85(w% +w’) = STk,
w¥(BY = Ef + A2,) + 0%(T95% + m®n¢%) =
= u"(prvy + prog) + ST oy, (16)
s,S. 8§ _
vm-n +pw _psvs-l_pnvna
Afz - l :p

The superscript «S» indicates that the appropriate
quantities refer to the solid. The first equation is the
entropy growth condition and R is the surface dissi-
pative function. The last three equations in (16) are
simply the requirements for the energy, mass, and mo-
mentum conservation for the surface, respectively. The
surface dissipative function must be a positive square
form. Using (16) and (10), it can be expressed as

RT* =% (85(T*°
S(BS =B + AL - pout
- S (msns(¢s —ut

S (AL +p%(6° — "

= T%) +m n®(¢% — pt)) +

_ TLSS) —
)+ ST - Th)) +
)+ ST - Th)).
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Fig.2. Solid-liquid boundary: fluxes in one dimen-

sion

We now recall that the solid-liquid boundary can
be either atomically-rough or atomically-smooth, de-
pending on the temperature. The nature of the surface
may (or may not) impose certain restrictions on the
dynamics. For both types of the surface, the equation

Afz - Els = pL (17)

is satisfied.

4.1.1. Rough Surface
Employing the Onsager principle, we obtain

US: ( S S(¢S_ L)+SS(TS—TL))+
+n (A + 0% (0% — uh) +85(T5 = TT)) , 18)

ws:n(m n®(¢% — p" )+SS(TS—TL))+

+v (A2 +p%(0% —ph) +85(T° - T")) .

a
The kinetic matrix ( 77) is positivly definite.
n v

4.1.2. Smooth Surface

A smooth surface implies immobility of the inter-
face relative to the lattice. That is,

w® = 0.

For the quasiparticle gas velocity, we then obtain a re-
stricted version of (18),
S = a (msns(¢s — ot

)+ S5(T -Th),  (19)

with the kinetic coefficient v > 0.

4.2, Solid—Wall Boundary

By a wall, we imply a macroscopically flat structure-
less medium, in short, «concrete». The «solid—wall»
boundary occurs between solid helium and some nor-
mal rigid solid (silica in experiment [2]). A «concrete»

¢\

Fig. 3. Solid—wall boundary: fluxes in one dimension

wall is characterized by no mass flux in it (i.e., through
the interface). The wall can supply an arbitrary energy
flux; we let @ denote the flux and T" the wall temper-
ature (see Fig. 3). Concrete is characterized by fewer
variables than liquid, and the appropriate equations are
therefore somewhat simpler.

As for the solid-liquid interface, the actual bound-
ary conditions must depend on the microscopic pattern
of the surface. We can imagine a smooth basal plane of
the crystal adjacent to an atomically flat concrete wall.
This plane must stay at rest with respect to the wall
because its motion requires the creation of new atomic
layer nuclei. The plane is similar to the smooth solid—
liquid interface, and we can naturally say that such an
interface is smooth. The boundary condition is then
given by

wd =05 =0.

Another, much more interesting scenario is realized
if the interface is slightly tilted with respect to the basal
plane. Such planes may move by growing additional
nodes at the edge. This means that no restrictions are
imposed on the lattice velocity near the interface. In
other words, vacancies are allowed to freely appear and
vanish on the surface (in this sense, the surface is simi-
lar to a grid of dislocations arranged at the boundary of
the crystal that serve as sources or sinks for vacancies;
similar speculations can be found in [4] in explaining
polycrystal plasticity). We call this type of the inter-
face «rough». In this sense, the solid—wall boundary
can be either smooth or rough. The suggested growth
mechanism can be applied only to the rough boundary.

4.2.1. Rough Boundary

Assuming the boundary to be rough and using the
same approach as for the liquid, we write the conserva-
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tion laws
SS(w¥ +w’) =R+ Q/TV,
w?(BY — Ef + A2,) +0%(T55° + m°n®¢”) = Q,

vSmSnd + pSwS =0.

Again, R is the surface dissipative function,
5,8

RTVY =45 <mp: (ES — ES + AS, — pS¢5—

- TV $%) +85(T" - TS)> =

mSnS mSnS
=05 < pe A2+ <1 — s > ST —TS)> :

It must be positive, and for the quasiparticle velocity
on the surface we therefore have

’US:

S, S S,S
—3 <mp—:A§Z+ <1_mpg > SS(TW—TS)> . (20)

where § > 0 is the surface kinetic coefficient.

5. THE GROWTH RATE

We now use the equations and boundary conditions
obtained above. The physical system discussed in what
follows is solid helium with elementary excitations rep-
resented by phonons and vacancies. We first introduce
a certain amount of friction between the quasiparti-
cle gas and the lattice. To obtain a physically sound
result, we again restrict our analysis to one dimension.
Furthermore, for simplicity, all our calculations are per-
formed within the linear approximation. We can write
the quasimomentum density (with the superscript «S»
omitted) as K = pxv, where

h T

e~ 21
PR~ 0%4e (21)

Here, ©p is the Debye temperature, ¢ is the velocity of
sound in the crystal, and a is the lattice period. The
last equation is quite obvious. It follows from the fact
that in the low-temperature region, the quasimomen-
tum is mainly associated with phonons (the number of
vacancies is exponentially small). The result therefore
coincides with the one for the mass density (and the
momentum density) of the normal component of the
superfluid,
PK ~ Pn ~ T4/h305

(see [10]).

MIT®, Tom 120, Bbin. 6 (12), 2001
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Fig.4. Crystal growth in one dimension

To describe (rare) Umklapp events, we introduce
the appropriate relaxation time parameter 7. It is a
«between-Umklapp-collision time». From (15), we then
have

) K
0=K = —mnVé— SVl — — =
TU

— Ve — SVT — pre—.
TU

It is worth mentioning that 77 may well depend on both
phonons and vacancies, despite the fact that the popu-
lation of vacancies is much lower than that of phonons.
For instance, if the vacancy energy band is sufficiently
narrow, the probability of Umklapp processes is sig-
nificantly higher for vacancies than for phonons. This
might overcome the low concentration of vacancies.

Interestingly enough, these formulas allow us to
obtain the growth rate for a smooth surface. The
quasiparticles playing the crucial role here (that of
mass carriers) are vacancies, with their mass given by
m = —MHe.

To estimate the rate, we write the temperature gra-
dient as

_Lh-T

T
\Y P

where the subscripts «1» and «2» stand for the solid—
wall and the solid-liquid interfaces respectively (see
Fig. 4). Similarly, we write V¢ = (¢2 — ¢1)/h for
the chemical potential. We now use boundary condi-
tions (19) and (20)

3
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(a+p)v=ap <mn(¢2 —uBy+8(1y —-Th) +
p p
= aﬂ{mn(qﬂg o)+ ST —T1) +S(T" -T") +
+mn <¢1 S % (Aosr — S(TV — T1))>} -
= O‘ﬂ{_PKhT1 + S(TW - TL) +
U

+mn G (Aot = S(TY —=T1)) + 61 — ,ﬁ) }

In other words,

where (using Eqs. (10) and (17))

Azt =Nt —T0S1 — Epn + By — o1p1 =
:pL —T1S1 + Ei — ¢1p1.

In equilibrium,

Azzl = 07 ¢1 = ,uLa
and
™ =Tt =T.

If the liquid temperature and pressure change by AT
and Ap, we can write an equation for the growth
rate vg,

1 1 e
— v, <—+—+M> = —SAT +
mn \a [ U

1
+mn <; (Ap — SATl — TASl + AEl—

SEAT — A
— pAG: — 6Apr + SATY) + Ady + 7”)

oL

L _
= —SAT +mn (% + w>

= - <S— SL%> AT +mn G - p%) Ap, (22)

where we used Eq. (6), the thermodynamic equality

_ dp—8dT
p

dp

for the liquid, and the obvious relation

vmn
p

’Ug:—

We now consider this equation where the second
term in the right-hand side is equal to zero. This is
a usual scenario for heat conductivity measurements.
The heat flux @ = vT'S can then be expressed as

AT

@= _RK1 + Rio + h/h:’

where Ry1 and Rpgo are the Kapitza thermal resis-
tances on the solid—wall and solid-liquid boundaries
and « is the heat conductivity of the crystal. Taking
the inequalities

p—pt<p

Ri» < Ri1, mn < p,

into account, we immediately obtain

R 1 TUT.S'2
K1 = Smao R = .
" TS PK

As a result, the growth rate is given by

o mn
= p(TS?Ri + TS?h/k)

L

Vg <SAT + mn? ;zp Ap) .
Strictly speaking, the last equality implies that ther-
modynamic properties of the crystal mainly depend on
phonons, while the contribution of vacancies to the ef-
fect under consideration is limited to the mass transfer.
The growth rate here depends on the overpressure as
well as on the temperature difference between the liquid
and the wall.

In the real experiment [2], the temperature is lower
than 100mIK. In this region, the phonon free path is
much longer than the experimental cell size and the
impact of phonons on the vacancy behavior is propor-
tional to a high power of the small ratio 7/©p. Conse-
quently, as @p — oo, we can consider the vacancy gas
as an independent component and neglect the influence
of phonons on it. The crystal growth is accounted for
by the presence of vacancies; hence, to estimate the
growth rate in the experimental situation, we can sim-
ply substitute the vacancy-only quantities for all vari-
ables in Eq. (22). Because it seems that there were es-
sentially no temperature gradients in the experiment,
we consider the isothermal case AT = 0.

The kinetic coefficients a and [ are determined
by the vacancy annihilation probabilities in vacancy—
surface collisions. The vacancy gas velocity v at the
interface should be expressed in terms of the accommo-
dation coefficient W (which is the ratio of the number
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of annihilated vacancies to the total number of incident
vacancies) as

v~ %VTW, (23)

where

Af ~ fmAu/T
is the difference between the incident and reflected dis-
tribution functions and

Vi ~ \/T/m*

is the thermal velocity. Here, m™ is the effective mass
near the bottom of the vacancy energy band. This mass
can be estimated from the energy band width A as

h2
~ SR

The accommodation coefficient W, as any other in-
elastic process probability in quasiparticle—surface in-
teractions [11], is approximately the squared ratio of
the lattice period to de Broglie wavelength,

*

m

a2 T
we (3L
A A
We can now compare Eqs. (23), (19), and (20). For the
coefficients, this yields,

a |T

An estimate of the relaxation time 7n characteriz-
ing the normal (non-Umklapp) vacancy collisions can
be obtained from

1

nchT’

T™N ~

where o ~ a? is the vacancy-vacancy scattering cross-
section. The Umklapp relaxation time is exponentially
longer 717 ~ 75 exp(Ay /T), where Ay < Ais a certain
energy specific to the vacancy Umklapp processes.

Using the obvious relation px = m*n, we proceed
to the growth rate. From Eq. (22), it follows that

m*n?(p — p")
(1/a+ 1/ 4+ m*n/1)p3

Vg ~ Ap ~

m?n?(p — p}) .
~ p ~
(\/A/Tnh/a + hm*n?a®Vr exp(—AU/T)) p3

Here, as an estimate, we set pa® ~ m and na® ~
~ exp(—ey/T), where €q is the bottom of the vacancy
band energy. For the facet mobility y} = vy /Ap intro-
duced in [2], we have

Y i
Ky 7

X (exp (%0) \/g-l- exp <—%> % %) h . (24)

6. CONCLUSION

Formula (24) provides a reasonable correspondence
between the theory proposed here and the experi-
ment [2]. It suggests three main predictions to be ver-
ified in further experiments.

1. The facet mobility has a maximum at some fi-
nite temperature. If the temperature decreases below
the point of the maximum, the growth rate must also
decrease. Otherwise, if the mobility does not tend to
zero as the temperature tends to zero, this should be
considered as an indication of the presence of zero-point
vacancies (see [12]).

2. The observed growth rate depends on the height
of the sample.

3. The crystal grows at the boundary between
the solid and the wall. This fact can potentially be
observed experimentally using some small foreign
object frozen into the crystal in its upper part.
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