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TWO-VELOCITY ELASTICITY THEORY AND FACET GROWTHA. F. Andreev *, L. A. Melnikovsky **Kapitza Institute for Physi
al Problems, Russian A
ademy of S
ien
es117334, Mos
ow, RussiaSubmitted 18 July 2001We explain the linear growth of smooth solid helium fa
ets by the presen
e of latti
e point defe
ts. To imple-ment this task, the framework of very general two-velo
ity elasti
ity theory equations is developed. Boundary
onditions for these equations for various surfa
e types are derived. We also suggest additional experiments tojustify the 
on
ept.PACS: 67.40.Bz, 67.40.Pm, 68.35.Ct, 61.72.Ji1. INTRODUCTIONExisten
e of two distin
t states of a 
rystal surfa
eis well known: it may be either smooth or rough (for areview, see [1℄). A smooth surfa
e is 
hara
terized bya long-range order and small �u
tuations. On the 
on-trary, a rough surfa
e behaves di�erently � it does notexhibit a long-range order and its displa
ement �u
-tuates heavily. These equilibrium properties lead todi�erent kineti
 properties. While the rough surfa
e isusually supposed to grow easily (as des
ribed by thegrowth 
oe�
ient), the smooth one is 
hara
terized byzero growth 
oe�
ient and grows with nu
lei of a newatomi
 layer (if the 
rystal has no dislo
ations). In a
-
ordan
e with this me
hanism, one should not observethe linear growth rate if low overpressure is applied.The reality is di�erent � experiments [2℄ demonstratethat a smooth helium surfa
e free of s
rew dislo
ationsgrows linearly. This work is an attempt to explain thisbehavior by the presen
e of latti
e point defe
ts (va-
an
ies). The idea is similar to that suggested by Her-ring [3℄ and by Lifshitz [4℄ as an explanation of the�ow of poly
rystals. It is quite simple: the mass �uxin bulk helium is attributed to the motion of va
an-
ies. This �ux is the mass transfer through the latti
e.Therefore, if va
an
ies are allowed to be 
reated at thebottom edge of the sample (the boundary between the
rystal and the wall, see Fig. 1) and to annihilate atthe top of it (at the smooth 
rystal�liquid interfa
e),then the 
rystal grows.*E-mail: andreev�k apitza.ras.ru**E-mail: leva�kapitza.ras.ru

The suggested 
rystal growth me
hanism 
an be ex-plained as follows. Be
ause the smooth 
rystal fa
et(the top one in Fig. 1) 
annot move with respe
t to thelatti
e, it moves upward stu
k to the latti
e. Va
uitiesappearing due to this at the bottom edge of the 
rys-tal transform into latti
e defe
ts (ordinary va
an
ies)and go up through (and faster than) the bulk helium.They �nally vanish in the liquid on the top smooth sur-fa
e of the sample. In other words, the 
rystal growson the boundary between helium and the wall, ratherthan on the smooth solid�liquid interfa
e (whi
h nev-ertheless provides mass supply for the growth). It isimportant to emphasize that this s
enario 
an o

urif and only if the va
an
ies are allowed to emerge atthe bottom edge of the 
rystal. One 
an say that thisboundary is in some sense �atomi
ally rough� � it 
angrow new atomi
 layers. For this 
ondition to be sat-is�ed, the wall surfa
e must have a disordered shapeor be slightly tilted with respe
t to basal planes of the
rystal (thereby forming a vi
inal interfa
e). This en-sures that the surfa
e 
an play the role of a sour
e ora sink of va
an
ies. An atomi
ally �at wall parallel tothe basal plane should, in 
ontrast, behave like a nor-
�����������
�����������
�����������

�����������
�����������
�����������sili
a wallvg superfluid4He 
rystalFig. 1. Typi
al experimental layout10 ÆÝÒÔ, âûï. 6 (12) 1457
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e � it is �xed to the latti
e. Thisis be
ause new atomi
 layer nu
lei must be 
reated forthe surfa
e to move.This paper is organized as follows. In Se
s. 2 and3, we derive very general two-velo
ity elasti
ity theoryequations. They 
onsist of 
onditions for the variablesof the 
onventional elasti
ity theory (in
luding latti
evelo
ity) and equations for a ma
ros
opi
 des
riptionof the quasiparti
le gas (in
luding the quasiparti
le gasvelo
ity).Equations to be derived are similar to those of thetwo-velo
ity super�uid hydrodynami
s. In our equa-tions, the latti
e and ex
itation gas velo
ities repla
ethe super�uid and normal 
omponent velo
ities of thetwo-�uid hydrodynami
s. Similarly to the regular lin-ear phonon hydrodynami
s (see [5, � 71℄), the proba-bility of Umklapp pro
esses (whi
h result in the non-
onservation of the total quasimomentum in quasipar-ti
le 
ollisions) is supposed to be low. In the low-temperature region 
onsidered here, this assumptionis quite reasonable. We also negle
t dissipation here.This means that our analysis is limited to the terms ofthe �rst order in gradients.The exa
t (nonlinear) hydrodynami
s equations fora super�uid 
an be derived (see [6℄) from phenomeno-logi
al 
onsiderations, using 
onservation laws. A 
on-stitutive argument for this derivation is the statementthat the super�uid �ow is potential. This is an intrinsi
property of the order parameter in a super�uid. This
ondition is unavailable for a 
rystal (moreover, thereis no quasimomentum 
onservation relation in the non-linear des
ription, see Eq. (15) below).We dedu
e the two-velo
ity elasti
ity theory equa-tions using a more general approa
h (see the paper byPushkarov and one of the authors [7℄, as well as [8℄and [9℄). It is based on the kineti
 equation des
riptionof the quasiparti
le dynami
s. The realization of thiste
hnique per se, in a nonlinear situation, in parti
ularis a matter of 
onsiderable interest not only for a solidbut also for a super�uid (that this pro
edure is possi-ble is mentioned in [5, � 77℄). With this te
hnique, we�nd exa
t expressions for all hydrodynami
 variablesand their dependen
e (in terms of the quasiparti
le en-ergy spe
trum) on the relative velo
ity of 
omponents.It is trivial to extend the equations obtained for thesolid dynami
s to the simpler 
ase of super�uid hydro-dynami
s.Boundary 
onditions for our equations depend onthe surfa
e type; in Se
. 4, we thoroughly 
onsider threepossibilities: rough (Se
. 4.1.1) and smooth (Se
. 4.1.2)interfa
es between solid and liquid helium, and therough boundary between solid helium and normal hard

wall (Se
. 4.2.1). Finally, in Se
. 5, we 
al
ulate thegrowth rate for the 
rystal.2. DEFINITIONSFollowing the prin
iples in Refs. [7�9℄, we employthe Euler approa
h to the latti
e des
ription. Wethus introdu
e three �node numbers� N� (� = 1; 2; 3).They are fun
tions of spa
e 
oordinates r and time t,N� = N�(r; t). From now on, Greek indi
es (like �here) are used for the �latti
e spa
e� 
omponents andLatin indi
es (e.g., i in xi for the 
omponents of r)for the real spa
e 
omponents. De�ning the re
ipro
allatti
e ve
tors as a� = �N�=�r;we obtain the elementary latti
e translation ve
tors a�as a�a� = Æ�� :Taking the time derivative, we obtain the latti
e velo
-ity as w = �a� _N�:The elasti
 energy El of the latti
e is a fun
tion ofthe deformation. Moreover, be
ause it depends not onthe spatial orientation of the in�nitesimal sample (thespa
e is isotropi
), but on the relative position of the a�ive
tors, we 
an write El = El �g���, where g�� = a�a�is a symmetri
 �metri
 tensor� of the latti
e spa
e.We are now ready to des
ribe quasiparti
le degreesof freedom. We do not spe
ify the quasiparti
le na-ture at the moment (the quasiparti
les 
an be phonons,va
an
ies as in [9℄, or ele
trons as in [7℄). All theequations written below imply the summation over allbran
hes of ex
itations; we do not expli
itly write thesum for brevity. Any quasiparti
le should be 
hara
ter-ized by its mass m (whi
h is zero for phonons, positivefor ele
trons, and negative for va
an
ies), 
oordinate,and momentum. Be
ause quasiparti
les exist in the lat-ti
e ba
kground, the quasimomentum should be used.The quasiparti
le energy in the frame of referen
e of thelatti
e � = �(a�(p � mw); g��) is a periodi
 fun
tionof the quasimomentum p (with the periods 2�~a�). Inlaboratory frame of referen
e, we have the quasiparti
leenergy (see [7℄)~� = �+mw ���p +mw22 :We also use the variables k = p �mw and k� = a�k.Quasiparti
le dynami
s is determined by the Hamiltonfun
tion H = �+ pw �mw2=2:1458



ÆÝÒÔ, òîì 120, âûï. 6 (12), 2001 Two-velo
ity elasti
ity theory and fa
et growthWe now introdu
e the distribution fun
tion f(r;p) (itis also a periodi
 fun
tion of the quasimomentum p).Its kineti
s is governed by the Boltzmann equation�f�t + �f�r �H�p � �f�p �H�r = St f: (1)Using this distribution fun
tion, we 
an obtain ma
ro-s
opi
 quantities, su
h as the mass density,� = �l + hmfi =M det �g���1=2 +mn;where the angle bra
kets denote the integration overquasimomentum spa
e,h i = Z dp;�l is the latti
e density,M is the mass of an elementary
ell, and n = hfi.We 
onsider a quasi-equilibrium distribution fun
-tion. The 
omplete set of quantities 
onserved in quasi-parti
le 
ollisions 
onsists of their mass (whi
h is pro-portional to their quantity for �real� parti
les like ele
-trons and va
an
ies and is zero for phonons), energy,and quasimomentum (in the low-temperature region,Umklapp pro
esses 
an be negle
ted). Consequently,the most general quasi-equilibrium distribution is afun
tion ofz = �� kv �m�0T = �� (p�mw)v �m�0T == �� pv �m�0 +mwvT = �� pv �m�T ;where �0 �wv = �:The respe
tive Langrange 
oe�
ients T , v, and �0 de-note the temperature, the velo
ity relative to the lat-ti
e, and the 
hemi
al potential of the quasiparti
le gas.For de�niteness, we assume that the ex
itations areBose parti
les. The distribution fun
tion is then givenby f = 1ez � 1 = �exp �� pv �m�T � 1��1 ; (2)and1) ln f + 1f = z:1) For further 
onvenien
e, we also provide here the result ofthe distribution fun
tion integration:Z fdz = ln ez � 1ez = � ln(f + 1):

We 
an now 
al
ulate other ma
ros
opi
 parame-ters with this distribution fun
tion. For the mass �ux,we haveJ = �lw +wmn+ j = �w + j = �w +mnv; (3)where the mass �ux with referen
e to the latti
e isj = m�f ���p� = mnv:Using J, we 
an write the mass 
onservation as_�+ Ji;i = 0:The number of real (massive) parti
les is also 
onservedin the bulk, and we therefore have one additional 
on-servation law _�l + (�lwi);i = 0:Similarly, the energy density is given byE = �lw22 +El �g���+ h~�fi == �w22 +El �g���+wj+ h�fi : (4)This equation allows us to prove (and �nd) exa
tma
ros
opi
 equivalents of the mi
ros
opi
 quantitiesintrodu
ed above. The total energy density of the 
rys-tal 
an be obtained via a Galilean transformation,E = E0 + �w22 + jw; (5)where E0 = E0(a�; S; �;K) is the energy in the frameof referen
e of the latti
e, withK = hkfi 
hara
terizingthe quasimomentum density. A reasonable expressionfor the E0 di�erentialdE0 = �ija�jda�i + TdS + �d�+ vdK (6)
an be obtained with the 
onventional de�nition of theentropy density for the Bose gas,S = h(f + 1) ln(f + 1)� f ln fi = hfx+ ln(f + 1)i :Its di�erential isdS = h(ln(f + 1) + 1� ln f � 1)dfi = hzdfi :Subtra
ting the di�erentials of (4) and (5), we obtain0 = �ija�jda�i+TdS+�d�+v dK�dEl �g����� d h�fi = �ija�jda�i + T hz dfi+ �d�+ v dK�� dEl �g���� h� dfi � hfd�i == �ija�jda�i + h(Tz � �+ vk)dfi + �d��� dEl �g���+ v hfdki � hfd�i : (7)1459 10*



A. F. Andreev, L. A. Melnikovsky ÆÝÒÔ, òîì 120, âûï. 6 (12), 2001We now transform the part of this equation related to the latti
e deformation�2 �lg��dg�� � dEl �g���+ v hfdki � hfd�i = �2 �lg��dg�� � �El�g�� dg�� �mv hfdwi ��*f  ���k� ((p�mw) da� �ma�dw) +� ���g���k� dg��!+ == � �El�g�� +*f � ���g���k�+! dg�� +���lÆij ��f �(Tx+ pv)�pj (pi �mwi)� a�j � da�i == � �El�g�� +*f � ���g���k�+! 2a�i a�j a�jda�i + (Æij(T hln(f + 1)i+ ��l) + viPj �mnviwj) a�jda�i == �Æij �TS + �w22 +El �E +Pv + ��l +mn�0�� �ij + viPj �mnviwj� a�jda�i :From (7), we �nally obtain0 = (�� �0)mdn+��ij � �ij + Æij �TS +El �E + ��+Pv + �w22 �+ viPj �mnviwj� a�jda�i ; (8)where we introdu
ed Pi = hpifi and�ij = 2a�i a�j  �El�g�� +*f � ���g���k�+! : (9)The terms in (8) are independent, and ea
h of them must therefore be equal to zero. That is,� = �0;�ij = �ij � Æij �TS +El �E + ��+Pv + �w22 �� viPj +mnviwj : (10)3. EQUATIONS AND FLUXESHere, we derive dynami
s equations and thermodynami
 �uxes for the system. Negle
ting dissipation at thispoint, we assume that the entropy 
onservation law is valid,_S + Fi;i = 0;where the entropy �ux Fi is determined by F = S(v +w):We 
ontinue with the equation for the momentum �ux found in [7℄,_Ji +�ik;k = 0; (11)where�ik = �wiwk �ElÆik + 2a�i a�k � �El�g�� +�f � ���g���k���+ wijk + wkji == �wiwk �ElÆik +mn(wivk + wkvi) + 2a�i a�k � �El�g�� +�f � ���g���k��� == �wiwk �ElÆik +mn(wivk + wkvi) + �ik; (12)1460



ÆÝÒÔ, òîì 120, âûï. 6 (12), 2001 Two-velo
ity elasti
ity theory and fa
et growthwhere we used de�nition (9) for �ik.Taking the appropriate equation for the energy �ux from [7℄, we have_E +Qi;i = 0; (13)where Qi = wiEl +���H�pi f�� w22 Ji + wk�ik :To �nd the se
ond term, we again use distribution fun
tion from (2),���H�pi f� = ��� ���pi + w� f� = ���T �z�pi + vi + wi� f� = (vi + wi) h�fi+ T �(Tx+ pv + �) �z�pi f� == (vi + wi) h�fi � T �pv� ln(1 + f)�pi � = (vi + wi) h�fi+ Tvi hln(1 + f)i == (vi + wi) h�fi+ Tvi�ln(1 + f) + f ln�f + 1f ��� Tvi�f �� pv �m�T � == (vi + wi) h�fi+ TviS � vi hf�i+ vivP+mn� = wi h�fi+ vi(TS + vP+mn�):For the energy �ux, we �nally haveQi = wi h�fi+ vi(TS + vP+mn�)� w22 (�wi +mnvi) + wk(�wiwk +mn(wivk + wkvi) + �ik) == wi h�fi+ vi(TS + vP+mn�) + w22 (�wi +mnvi) + wk(mnwivk +�ik) == wi �h�fi+wj+ �w22 �+ vi �TS + vP+mn��+ w22 ��+ wk�ik == vi �TS + vP+mn��+ w22 ��+ wi(E �El) + wk�ik: (14)This formula 
ompletes the list of the 
onventional elasti
ity theory equations. An additional equation is requiredto govern the quasiparti
le degrees of freedom. We now �nd the time derivative of Pi. We multiply Boltzmannequation (1) by pi and integrate over the momentum spa
e. We temporarily negle
t Umklapp pro
esses, whi
hare supposedly rare. If needed, dissipation 
an be expli
itly introdu
ed into the �nal result. In other words, thequasimomentum p is 
onserved in (normal) 
ollisions, and the term involving the 
ollision integral is thereforezero. The left-hand side of the Boltzmann equation gives_Pi = �pi��f�p �H�r � �f�r �H�p �� = �pi��f�p ����r + (pj �mwj)�wj�r �� �f�r � ���p +w��� == ��f � ���xi + (p�mw)�w�xi�� fpi� �2��r�p + �w�r �� pi �f�r ���p � pi �f�rw� == ��f ���xi + fpi �2��r�p + pi �f�r ���p�+ hfimw �w�xi ��p�w�xi f + pi �w�r f + pi �f�rw� :The �rst term 
an be transformed as 1461



A. F. Andreev, L. A. Melnikovsky ÆÝÒÔ, òîì 120, âûï. 6 (12), 2001�f ���xi + fpi �2��r�p + pi �f�r ���p� = �fpi �2��r�p + f ���xi + pi �f�r �T �z�p + v�� == �fpi �2��r�p + f ���xi + pi �f�r v + pi �f�z �z�p ����r � pk �vk�r �m���r � z �T�r �� == �pi �f�r v +mf ���xi + fp �v�xi + fz �T�xi + pif �v�r + pif �z�p �T�r � == nm ���xi +P �v�xi + ��r (Piv) +�Æikfz + pif �z�pk� �T�xk == nm ���xi +P �v�xi + ��r (Piv) +�Æikf ln 1 + ff � pi �z�pk ��z ln(f + 1)� �T�xk == nm ���xi +P �v�xi + ��r (Piv) +�f ln 1 + ff + ln(f + 1)� �T�xi = nm ���xi +P �v�xi + ��r (Piv) + S �T�xi :Consequently,_Pi = nmw �w�xi �P�w�xi � ��rPiw � nm ���xi �P �v�xi � ��r (Piv) � S �T�xi == nm ��xi �w22 � ��� S �T�xi �P ��xi (w + v) � ��r (Pi(w + v)): (15)The sought 
omplete set of the two-velo
ity elasti
itytheory equations 
onsists of Eqs. (15), (13) (with Qde�ned by (14)), and (11) (with �ij de�ned by (12)).
4. BOUNDARY CONDITIONSWe now turn to boundary 
onditions. They imme-diately follow from the 
onservation relations satis�edat the interfa
e. It is mu
h easier to perform all trans-formations in the frame of referen
e of the interfa
eitself. All the velo
ities are therefore taken relative tothe boundary. Moreover, we simplify the problem byrestri
ting it to the one-dimensional 
ase: all �uxes aresupposed to be perpendi
ular to the �at surfa
e; we letthe z axis run along this dire
tion. Be
ause no 
ur-vature is as
ribed to the surfa
e, we ignore 
apillarye�e
ts. All 
al
ulations done here are valid within thelinear approximation. Naturally, boundary 
onditionsmust depend on the type of the boundary and on thetype of the media on the other side of the interfa
e.We begin with the situation extensively dis
ussed inliterature, the solid�liquid interfa
e [1℄. Be
ause thepossibility of the mass �ux through the latti
e is takeninto a

ount, the results are di�erent, however.

4.1. Solid�liquid Interfa
eThe liquid on the other side of the interfa
e (beingsuper�uid) is 
hara
terized by the 
hemi
al potential�L, normal and super�uid densities �Ln and �Ls , normaland super�uid velo
ities vLn and vLs , temperature TL,pressure pL, and the entropy density SL (see Fig. 2):R+ SS(vS + wS) = SLvLn ;wS(ES �ESl +�Szz) + vS(TSSS +mSnS�S) == �L(�Ls vLs + �LnvLn ) + SLTLvLn ;vSmSnS + �SwS = �Ls vLs + �LnvLn ;�Szz �ESl = pL: (16)The supers
ript �S� indi
ates that the appropriatequantities refer to the solid. The �rst equation is theentropy growth 
ondition and R is the surfa
e dissi-pative fun
tion. The last three equations in (16) aresimply the requirements for the energy, mass, and mo-mentum 
onservation for the surfa
e, respe
tively. Thesurfa
e dissipative fun
tion must be a positive squareform. Using (16) and (10), it 
an be expressed asRTL = vS �SS(TS � TL) +mSnS(�S � �L)�++ wS �ES �ESl +�Szz � �S�L � TLSS� == vS �mSnS(�S � �L) + SS(TS � TL)�++ wS ��Szz + �S(�S � �L) + SS(TS � TL)� :1462



ÆÝÒÔ, òîì 120, âûï. 6 (12), 2001 Two-velo
ity elasti
ity theory and fa
et growth
S
L

ai� vLsvLn 
rystalsuperfluidvSwS QFz
Fig. 2. Solid�liquid boundary: �uxes in one dimen-sionWe now re
all that the solid�liquid boundary 
anbe either atomi
ally-rough or atomi
ally-smooth, de-pending on the temperature. The nature of the surfa
emay (or may not) impose 
ertain restri
tions on thedynami
s. For both types of the surfa
e, the equation�Szz �ESl = pL (17)is satis�ed. 4.1.1. Rough Surfa
eEmploying the Onsager prin
iple, we obtainvS = � �mSnS(�S � �L) + SS(TS � TL)�++ � ��Szz + �S(�S � �L) + SS(TS � TL)� ;wS = � �mSnS(�S � �L) + SS(TS � TL)�++ � ��Szz + �S(�S � �L) + SS(TS � TL)� : (18)The kineti
 matrix  � �� �! is positivly de�nite.4.1.2. Smooth Surfa
eA smooth surfa
e implies immobility of the inter-fa
e relative to the latti
e. That is,wS = 0:For the quasiparti
le gas velo
ity, we then obtain a re-stri
ted version of (18),vS = � �mSnS(�S � �L) + SS(TS � TL)� ; (19)with the kineti
 
oe�
ient � > 0.4.2. Solid�Wall BoundaryBy a wall, we imply a ma
ros
opi
ally �at stru
ture-less medium, in short, �
on
rete�. The �solid�wall�boundary o

urs between solid helium and some nor-mal rigid solid (sili
a in experiment [2℄). A �
on
rete�

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������


rystal
on
reteSW wS Fai� Qz QvS
Fig. 3. Solid�wall boundary: �uxes in one dimensionwall is 
hara
terized by no mass �ux in it (i.e., throughthe interfa
e). The wall 
an supply an arbitrary energy�ux; we let Q denote the �ux and TW the wall temper-ature (see Fig. 3). Con
rete is 
hara
terized by fewervariables than liquid, and the appropriate equations aretherefore somewhat simpler.As for the solid�liquid interfa
e, the a
tual bound-ary 
onditions must depend on the mi
ros
opi
 patternof the surfa
e. We 
an imagine a smooth basal plane ofthe 
rystal adja
ent to an atomi
ally �at 
on
rete wall.This plane must stay at rest with respe
t to the wallbe
ause its motion requires the 
reation of new atomi
layer nu
lei. The plane is similar to the smooth solid�liquid interfa
e, and we 
an naturally say that su
h aninterfa
e is smooth. The boundary 
ondition is thengiven by wS = vS = 0:Another, mu
h more interesting s
enario is realizedif the interfa
e is slightly tilted with respe
t to the basalplane. Su
h planes may move by growing additionalnodes at the edge. This means that no restri
tions areimposed on the latti
e velo
ity near the interfa
e. Inother words, va
an
ies are allowed to freely appear andvanish on the surfa
e (in this sense, the surfa
e is simi-lar to a grid of dislo
ations arranged at the boundary ofthe 
rystal that serve as sour
es or sinks for va
an
ies;similar spe
ulations 
an be found in [4℄ in explainingpoly
rystal plasti
ity). We 
all this type of the inter-fa
e �rough�. In this sense, the solid�wall boundary
an be either smooth or rough. The suggested growthme
hanism 
an be applied only to the rough boundary.4.2.1. Rough BoundaryAssuming the boundary to be rough and using thesame approa
h as for the liquid, we write the 
onserva-1463



A. F. Andreev, L. A. Melnikovsky ÆÝÒÔ, òîì 120, âûï. 6 (12), 2001tion lawsSS(vS + wS) = R+Q=TW ;wS(ES �ESl +�Szz) + vS(TSSS +mSnS�S) = Q;vSmSnS + �SwS = 0:Again, R is the surfa
e dissipative fun
tion,RTW = vS �mSnS�S (ES �ESl +�Szz � �S�S�� TWSS) + SS(TW � TS)� == vS �mSnS�S �Szz +�1� mSnS�S �SS(TW � TS)� :It must be positive, and for the quasiparti
le velo
ityon the surfa
e we therefore havevS == ��mSnS�S �Szz+�1�mSnS�S �SS(TW�TS)� ; (20)where � > 0 is the surfa
e kineti
 
oe�
ient.5. THE GROWTH RATEWe now use the equations and boundary 
onditionsobtained above. The physi
al system dis
ussed in whatfollows is solid helium with elementary ex
itations rep-resented by phonons and va
an
ies. We �rst introdu
ea 
ertain amount of fri
tion between the quasiparti-
le gas and the latti
e. To obtain a physi
ally soundresult, we again restri
t our analysis to one dimension.Furthermore, for simpli
ity, all our 
al
ulations are per-formed within the linear approximation. We 
an writethe quasimomentum density (with the supers
ript �S�omitted) as K = �Kv, where�K � ~a4 T 4�4D
 : (21)Here, �D is the Debye temperature, 
 is the velo
ity ofsound in the 
rystal, and a is the latti
e period. Thelast equation is quite obvious. It follows from the fa
tthat in the low-temperature region, the quasimomen-tum is mainly asso
iated with phonons (the number ofva
an
ies is exponentially small). The result therefore
oin
ides with the one for the mass density (and themomentum density) of the normal 
omponent of thesuper�uid, �K � �n � T 4=~3
5(see [10℄).
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Fig. 4. Crystal growth in one dimensionTo des
ribe (rare) Umklapp events, we introdu
ethe appropriate relaxation time parameter �U . It is a�between-Umklapp-
ollision time�. From (15), we thenhave0 = _K = �mnr�� SrT � K�U == �mnr�� SrT � �K v�U :It is worth mentioning that �U may well depend on bothphonons and va
an
ies, despite the fa
t that the popu-lation of va
an
ies is mu
h lower than that of phonons.For instan
e, if the va
an
y energy band is su�
ientlynarrow, the probability of Umklapp pro
esses is sig-ni�
antly higher for va
an
ies than for phonons. Thismight over
ome the low 
on
entration of va
an
ies.Interestingly enough, these formulas allow us toobtain the growth rate for a smooth surfa
e. Thequasiparti
les playing the 
ru
ial role here (that ofmass 
arriers) are va
an
ies, with their mass given bym = �mHe.To estimate the rate, we write the temperature gra-dient as rT = T2 � T1h ;where the subs
ripts �1� and �2� stand for the solid�wall and the solid�liquid interfa
es respe
tively (seeFig. 4). Similarly, we write r� = (�2 � �1)=h forthe 
hemi
al potential. We now use boundary 
ondi-tions (19) and (20),1464
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ity elasti
ity theory and fa
et growth(�+ �)v = ���mn(�2 � �L) + S(T2 � TL) ++mn� �zz1 +�1� mn� �S(TW � T1)� == ���mn(�2 � �1) + S(T2 � T1) + S(TW � TL) ++mn��1 � �L + 1� ��zz1 � S(TW � T1)��� == �����Kh v�U + S(TW � TL) ++mn�1� ��zz1 � S(TW � T1)�+ �1 � �L��:In other words,v� 1� + 1� + �Kh�U � = S(TW � TL) ++mn�1� ��zz1 � S(TW � T1)�+ �1 � �L� ;where (using Eqs. (10) and (17))�zz1 = �zz1 � T1S1 �El1 +E1 � �1�1 == pL � T1S1 +E1 � �1�1:In equilibrium, �zz1 = 0; �1 = �L;and TW = TL = T1:If the liquid temperature and pressure 
hange by �Tand �p, we 
an write an equation for the growthrate vg ,� vg �mn � 1� + 1� + �Kh�U � = �S�T ++mn�1� (�p� S�T1 � T�S1 +�E1�� ���1 � ���1 + S�T1) + ��1 + SL�T ��p�L � == �S�T +mn��p� + SL�T ��p�L � == ��S � SLmn�L ��T +mn�1� � 1�L��p; (22)where we used Eq. (6), the thermodynami
 equalityd� = dp� SdT�

for the liquid, and the obvious relationvg = �vmn� :We now 
onsider this equation where the se
ondterm in the right-hand side is equal to zero. This isa usual s
enario for heat 
ondu
tivity measurements.The heat �ux Q = vTS 
an then be expressed asQ = � �TRK1 +RK2 + h=�;where RK1 and RK2 are the Kapitza thermal resis-tan
es on the solid�wall and solid�liquid boundariesand � is the heat 
ondu
tivity of the 
rystal. Takingthe inequalitiesRK2 � RK1; mn� �; �� �L � �into a

ount, we immediately obtainRK1 = 1�TS2 ; � = �UTS2�K :As a result, the growth rate is given byvg = mn�(TS2RK + TS2h=�) �S�T +mn�� �L�2 �p� :Stri
tly speaking, the last equality implies that ther-modynami
 properties of the 
rystal mainly depend onphonons, while the 
ontribution of va
an
ies to the ef-fe
t under 
onsideration is limited to the mass transfer.The growth rate here depends on the overpressure aswell as on the temperature di�eren
e between the liquidand the wall.In the real experiment [2℄, the temperature is lowerthan 100mK. In this region, the phonon free path ismu
h longer than the experimental 
ell size and theimpa
t of phonons on the va
an
y behavior is propor-tional to a high power of the small ratio T=�D. Conse-quently, as �D !1, we 
an 
onsider the va
an
y gasas an independent 
omponent and negle
t the in�uen
eof phonons on it. The 
rystal growth is a

ounted forby the presen
e of va
an
ies; hen
e, to estimate thegrowth rate in the experimental situation, we 
an sim-ply substitute the va
an
y-only quantities for all vari-ables in Eq. (22). Be
ause it seems that there were es-sentially no temperature gradients in the experiment,we 
onsider the isothermal 
ase �T = 0.The kineti
 
oe�
ients � and � are determinedby the va
an
y annihilation probabilities in va
an
y�surfa
e 
ollisions. The va
an
y gas velo
ity v at theinterfa
e should be expressed in terms of the a

ommo-dation 
oe�
ient W (whi
h is the ratio of the number1465
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an
ies to the total number of in
identva
an
ies) as v � �ff VTW; (23)where �f � fm��=Tis the di�eren
e between the in
ident and re�e
ted dis-tribution fun
tions andVT �pT=m�is the thermal velo
ity. Here, m� is the e�e
tive massnear the bottom of the va
an
y energy band. This mass
an be estimated from the energy band width � asm� � ~2a2� :The a

ommodation 
oe�
ient W , as any other in-elasti
 pro
ess probability in quasiparti
le�surfa
e in-tera
tions [11℄, is approximately the squared ratio ofthe latti
e period to de Broglie wavelength,W � �a��2 � T� :We 
an now 
ompare Eqs. (23), (19), and (20). For the
oe�
ients, this yields,� � � � an~r T� :An estimate of the relaxation time �N 
hara
teriz-ing the normal (non-Umklapp) va
an
y 
ollisions 
anbe obtained from �N � 1n�VT ;where � � a2 is the va
an
y�va
an
y s
attering 
ross-se
tion. The Umklapp relaxation time is exponentiallylonger �U � �N exp(�U=T ), where �U < � is a 
ertainenergy spe
i�
 to the va
an
y Umklapp pro
esses.Using the obvious relation �K = m�n, we pro
eedto the growth rate. From Eq. (22), it follows thatvg � m2n2(�� �L)(1=�+ 1=� +m�n=�U )�3�p �� m2n2(�� �L)�p�=Tn~=a+ hm�n2a2VT exp(��U=T )��3�p �� a4(�� �L)~�  exp��0T �r�T ++exp���UT � har T� !�1�p:

Here, as an estimate, we set �a3 � m and na3 �� exp(��0=T ), where �0 is the bottom of the va
an
yband energy. For the fa
et mobility ��f = vg=�p intro-du
ed in [2℄, we have��f � a4~ �� �L� �� exp��0T �r�T + exp���UT � har T�!�1 : (24)6. CONCLUSIONFormula (24) provides a reasonable 
orresponden
ebetween the theory proposed here and the experi-ment [2℄. It suggests three main predi
tions to be ver-i�ed in further experiments.1. The fa
et mobility has a maximum at some �-nite temperature. If the temperature de
reases belowthe point of the maximum, the growth rate must alsode
rease. Otherwise, if the mobility does not tend tozero as the temperature tends to zero, this should be
onsidered as an indi
ation of the presen
e of zero-pointva
an
ies (see [12℄).2. The observed growth rate depends on the heightof the sample.3. The 
rystal grows at the boundary betweenthe solid and the wall. This fa
t 
an potentially beobserved experimentally using some small foreignobje
t frozen into the 
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