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A TURBULENCE MODEL IN UNBOUNDED SMOOTH SHEARFLOWS. THE WEAK TURBULENCE APPROACHG. D. Chagelishvili a;b *, R. G. Chanishvili a, T. S. Hristov , J. G. Lominadze aa Department of Theoretial Astrophysis, Abastumani Astrophysial Observatory380060, Tbilisi, Georgiab Spae Researh Institute of Russian Aademy of Sienes117810, Mosow, Russia University of California, IrvineIrvine CA 92697-3975, USASubmitted 7 June 2001We disuss a new onept of the subritial transition to turbulene in unbounded smooth (nonin�etional)spetrally stable shear �ows. This onept (the so-alled �bypass� transition) follows from onsidering thenon-normality of the linear dynamis of vortex disturbanes in shear �ows and is most easily interpreted bytraing the evolution of spatial Fourier harmonis (SFHs) of the disturbanes. The key features of the oneptare as follows: the transition of the �ow by only �nite amplitude vortex disturbanes despite the fat that thephenomenon is energetially supported by a linear proess (the transient growth of SFHs); the anisotropy ofproesses in the k-spae; the onset of haos due to the dynamial (not stohasti) proess � nonlinear proessesthat lose the transition feedbak loop by the angular redistribution of SFHs in the k-spae. The evolution oftwo-dimensional small-sale vortex disturbanes in the parallel �ow with a uniform shear is analyzed within theweak turbulene approah. This numerial test analysis is arried out to prove the most problemati statementof the onept, the existene of a positive feedbak aused by the nonlinear proess. Numerial alulations alsoshow the existene of a threshold: if the amplitude of the initial disturbane exeeds the threshold value, theself-maintenane of disturbanes beomes realisti. The latter is a harateristi feature of the �ow transitionto the turbulent state and its maintenane.PACS: 47.27.Cn, 47.27.Eq, 47.20.Ky, 47.20.Ft1. INTRODUCTIONShear �ows are permanently interesting beausethey are widely spread both in the terrestrial and as-trophysial environment (galaxies, stars, jets, planetatmospheres, oeans, et.) and in the laboratory andindustry (tokamaks, MHD failities, et.). Some sim-ple and important hydrodynami shear �ows (e.g., theCouette �ow) remain insensitive to in�nitesimal distur-banes at any Reynolds numbers but beome turbulentat �nite disturbanes even at moderate (subritial)Reynolds numbers. Moreover, the transition to turbu-lene ourring in suh �ows strongly depends not onlyon the amplitude of the initial disturbanes but also on*E-mail: georgeh123�yahoo.om

their type and spetrum. Physis of these fats was notexplained even one deade ago [1�6℄.Spei� features of shear �ows rigrorously estab-lished reently [7℄ led to di�ulties in studying linearphenomena in the framework of the anonial modalanalysis, i.e., the tehnique where all the disturbedquantities are expanded in Fourier integrals in time.The point is that the operators arising in this approahare not self-adjoint [8℄. Their eigenfuntions are notorthogonal to eah other, whih yields a strong inter-ferene among them. As a result, even if all the imagi-nary parts of all eigenfrequenies are negative and theeigenfuntions monotonially deay with time (i.e., the�ow is spetrally stable), a partiular solution an re-veal a large relative growth over a �nite time interval.The analysis of separate eigenfuntions and eigenfre-quenies is therefore not su�ient to arrive at de�nite508



ÆÝÒÔ, òîì 121, âûï. 2, 2002 A turbulene model : : :onlusions on the linear evolution of disturbanes. Inaddition, taking the interferene into aount usuallyleads to insurmountable ompliations. This has givenimpetus to the so-alled nonmodal analysis as a toolfor desribing the evolution of disturbanes in smoothshear �ows (i.e., those without the in�etion point), pri-marily in the parallel �ow with the uniform shear of ve-loity. Within this approah, the temporal behavior ofthe spatial Fourier harmonis (SFHs) of disturbanes isstudied without any spetral expansion in time. Beingan optimal tool, the nonmodal analysis onsiderablysimpli�es the mathematial desription of the proessesand is apable of revealing the key phenomena that es-ape pereption in the modal approah (in partiular,the phenomena aused by the non-normality of the lin-ear dynamis). Many new unexpeted results on timeevolution of both the vortex mode [9�17℄ and aoustiwave [18; 19℄ disturbanes have already been obtainedwithin this approah; it was also suessfully appliedto the study of the MHD waves [20�22℄. New lin-ear mehanisms of the mutual transformation of wavemodes [23�25℄ and onversion of vorties to waves [26�29℄ have been disovered. A new onept of the sub-ritial transition to turbulene in smooth shear �ows(those without the in�etion point) has been formu-lated [30�37℄. The latter, named the �bypass� transi-tion, is the subjet of our analysis.Aording to the onept, the subritial transi-tion to turbulene that ours in spetrally stable shear�ows is aused by the interplay among four (linear andnonlinear) basi phenomena. The transition senariobased on this onept is presented in detail (in qual-itative terms) in Se. 2. In Se. 2, we also onsiderthe �philosophial� problem of turbulene, i.e., how aompletely deterministi and ausal system an havehaoti solutions. In Se. 3, we give numerial testalulations to prove the most problemati statementof the onept � the existene of a positive nonlinearfeedbak. The subsequent results of numerial alula-tions are also presented in Se. 3. We have restritedourselves to the investigation of the ation of nonlin-earity for the two-dimensional symmetri disturbane(whih is quite simple and most suitable for testing)in the weak turbulene approximation. In reality, theshear �ow turbulene has a three-dimensional (3D) na-ture. However, from the disussion presented in Se. 4it follows that nonlinear proesses should easier opewith the �mission� of the positive feedbak in the a-tual 3D ase than in the 2D one. The weak turbu-lene equation for a 2D vortex mode disturbanes inthe parallel �ow with a uniform shear is derived in theAppendix.

2. SCENARIO OF THE SUBCRITICALTRANSITION TO TURBULENCEVortex mode (aperiodi/nonosillating) distur-banes are the reator of turbulene in the unbounded,parallel �ow with a onstant shear rate and a uniformdensity that we onsider here. Therefore, the presentedsenario involves disturbanes of only this type. Thenonmodal formalism allows revealing the followingspei� features in the evolution of SFHs:(a) The wave number of a SFH along the axis or-thogonal to the �ow veloity (i.e., along the �ow shear)varies in time; in the linear approximation, there is a�drift� of a SFH in the wave-number spae, i.e., in thek-spae.Atually, (f. [9�28℄) in a parallel �ow with uniformshear U0 = (Ay; 0; 0) (1)(where A is the shear parameter that is assumed tobe positive), disturbanes annot have the form of asimple plane wave beause of the e�et of the shearingbakground on the wave rests. The SFH wave num-bers are then time-dependent: if a SFH with the wavenumbers kx, ky(0), and kz is initially disturbed,vx(0) = ~vx(kx; ky(0); kz ; 0)�� exp(ikxx+ iky(0)y + ikzz); (2)then the evolution of its phase for t > 0 is determinedby the equationsvx(t) / exp(ikxx+ ky(t)y + ikzz); (3)ky(t) = ky(0)� kxAt (4)that desribe the �linear drift� of the SFH in the wave-number spae.The values of the spatial harateristis (i.e., kx,ky(t), and kz) de�ne the energy exhange intensity be-tween SFHs and the bakground �ow to a greater ex-tent. Therefore, the linear drift leads to the variationof the intensity of this exhange.(b) Not all SFHs an draw energy from the shear;only the SFHs that are loated in a ertain region ofthe k-spae (alled the �ampli�ation region� below)are ampli�ed. Moreover, eah SFH is ampli�ed dur-ing a limited time interval until it leaves the ampli�a-tion region as a result of the linear drift. In addition,the presene of SFHs in this region imposes onditionsmainly on the diretion (and not the magnitude) oftheir wave vetor. Therefore, the proess of the en-ergy exhange between vortex mode disturbanes andthe shear �ow has a pronouned anisotropi harater509
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AtFig. 1. Time evolution of the normalized energy of2D and 3D SFHs de�ned in the linear stage and inthe invised ase (i.e., with only proesses (a) and(b) involved). Thin solid line orresponds to a 2DSFH with the parameters ky(0)=kx = 10, kz = 0,~vx(0)=~vy(0) = �10, and ~vz(0) = 0. The bold solidline orresponds to a 3D SFH with the parametersky(0)=kx = 10, kz=kx = 1, ~vx(0)=~vy(0) = �5, and~vz(0)=~vy(0) = �5. Here, ~vx(0), ~vy(0), and ~vz(0) arethe omponents of the SFH veloity at t = 0. kx,ky(0), and kz are related to the wave numbers of theSFH (see Fig. 2)in the k-spae. Physis of this proess is desribed indetail in [38℄.Therefore, vortex mode disturbanes at the linearstage of the evolution are pumped by the bakgroundshear �ow and grow within a limited time interval, i.e.,exhibit a transient growth. There is an essential dif-ferene between the transient growths of 2D and 3DSFHs [16�20℄, whih an be seen by omparing the evo-lution of their energy, as in Fig. 1. This �gure showstime evolution of the normalized energy of 2D and 3DSFHs. It orresponds to the linear dynamis of sepa-rate SFHs in the invised ase (i.e., when only proesses(a) and (b) are at work).The ampli�ation region in the k-spae is muhwider for 3D SFHs than for 2D ones. Moreover, in on-trast to 2D SFHs, the energy of 3D SFHs does not de-rease after passing the ampli�ation region (3D SFHsdo not return energy to the �ow) but it saturates andapproahes a value that may be muh higher than theirinitial value. In reality, however, a visous dissipationbeomes e�ient as jky(t)j ! 1 and (if no new phe-nomena, e.g., nonlinear phenomena are involved) on-verts the energy of SFHs into heat. We list the visousdissipation as item ().Thus, the nonmodal approah demonstrates notonly the possibility of the algebrai/transient growthof SFHs of vortex mode disturbanes in shear �ows,but also the anisotropi properties of linear proesses

in the wave-number spae. This anisotropy is also ob-served in nonlinear proesses.(d) Nonlinear proesses, apart from the usual frag-mentation of the disturbane sale, are also responsiblefor the angular redistribution of SFHs in the k-spae,i.e., they ould �supply� SFHs to the ampli�ation re-gion, losing a feedbak loop of the transition to tur-bulene. In a fored shear �ow, the nonlinear terms donot ontribute to the energy transfer between the mean�ow and disturbanes.Proesses (a) and (b) are quantitatively analyzedand well-aknowledged in papers devoted to the non-modal approah. The existene of a positive feedbak(aused by the nonlinear proesses) has been hekedusing model equations [34; 35℄. In Se. 3, we prove it us-ing the Navier�Stokes equation in the weak turbuleneapproah.It is plausible that the angular redistribution ofSFHs in the k-spae is the main proess aused by thenonlinearity. The nonlinear proesses then indiretlyfavor the energy extration by SFHs from the shear�ow (the SFH sale derease to the dissipative saleshould be ensured by the linear drift of SFHs in thek-spae).The senario of the subritial transition to tur-bulene (alled the �bypass� transition) is based onthe interplay of the linear and nonlinear basi phe-nomena itemized above. In presenting this senario,we shematially desribe these proesses in the planekz = onst (whih is parallel to the plane kxky). Itis obvious that the boundaries of the k-spae regionswhere phenomena (b) and () our are vague. We�x the regions where these phenomena are operativefor larifying the analysis. The visous dissipation be-omes essential for harmonis with the wave numberssatisfying the inequalityqk2x + k2y > k� ;where the value of k� depends on the Reynolds number.As follows from Fig. 1, the real growth of the distur-bane energy ours when the ratio jky(t)=kxj reahesmoderate values (the dashed region in Fig. 2). We antherefore separate three regions inside the irleqk2x + k2y < k� :I(I0), II(II0), and III(III0). We now disuss what hap-pens to a SFH of the vortex mode disturbane injetedin region I(I0), for instane at point 1 (see Fig. 2). Thewave number of the SFH varies in time, thereby lead-ing to a drift in the diretion marked by the arrows.510
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Fig. 2. A onventional separation of regions of the a-tion of the basi physial proesses that are responsiblefor the onset of turbulene/haos in aordane withthe bypass transition. The energy exhange betweenthe disturbanes and the bakground �ow is essen-tial (a transient growth takes plae) in regions II(II0)dashed by vertial lines; nonlinear proesses (e.g., ofthe type k0 + k00 ! k) and the �linear drift� are ef-fetive in all regions I(I0), II(II0), and III(III0) inside theirlepk2x + k2y < k� . The visous dissipation of SFHsdominates outside the irle pk2x + k2y > k�After a ertain moment, when the harmonis passespoint 2, its energy starts to grow. This growth is tran-sient and lasts until the SFH leaves the ampli�ationregion II(II0) (point 3 in Fig. 2). Continuing its drift,the harmonis then reahes point 4, where the dissi-pative proesses are swithed on and onvert the dis-turbane energy into the heat. Consequently, if thenonlinear phenomena are ine�ient, nothing interest-ing an our as regards the transition, and the distur-banes eventually disappear. A permanent extrationof the shear energy by disturbanes is neessary fortheir maintenane. This is possible in the ase of thepermanent existene of disturbanes in regions I(I0) andII(II0) that an be provided by nonlinear proesses, inpartiular, by the three-wave proessesk0 + k00 ! k(see Fig. 2), four-wave proessesk0 + k00 + k000 ! k;�ve-wave proesses, et. This means a predominanttransfer of the disturbane energy by the nonlinear pro-esses from region III(III0) to regions I(I0) and II(II0).

However, there are no restritions on the reverse trans-fer (from regions I(I0) and II(II0) to region III(III0)).But, as shown is Se. 3, the nonlinear proesses ensurea preferential transfer of the disturbane energy to theampli�ation region.The reprodution of disturbanes in region I(I0) de-pends on both the amplitude and the spetrum of theinitial disturbanes. The nonlinear deay proesses areinsigni�ant at low amplitudes and are not able to re-sist the linear drift of SFHs in the k-spae. As a result,low-amplitude disturbanes are damped without anytrae, i.e., without induing the transition to turbu-lene. The higher is the initial disturbane amplitude,the more notieable nonlinear e�ets our. At a er-tain amplitude (whih evidently depends on the initialdisturbane spetrum and the Reynolds number), non-linear proesses an ompensate the ation of the lineardrift, thereby ensuring the permanent return of SFHs tothe ampli�ation region (this is justi�ed by simulationsin Se. 3). This eventually ensures a permanent extra-tion of energy from the bakground �ow and the main-tenane of disturbanes. Therefore, a ertain thresholdmust our in aordane with the senario disussedhere.Any theory aiming at explaining the transition toturbulene must distintly answer the problem of howa ompletely deterministi and ausal system an havehaoti solutions. In aordane with the above se-nario, the onset of turbulene/haos ours beause ofdynamial (not stohasti) proesses and an be ex-plained as follows.We assume that we initially have a spatially loal-ized vortial disturbane with su�iently regular fea-tures: a pakage of spatial Fourier harmonis. In gen-eral, a disturbane of some physial variable, e.g., ve-loity an be represented asv(r; t) = Z dkj~v(k; t)j exp[i'(k; t) + ik � r℄; (5)where j~v(k; t)j and '(k; t) are real funtions of k andt. We assume that the initial phase '(k; 0) is a weaklyvarying funtion of k. In this ase, the initial distur-bane v(r; 0) is regular and su�iently smooth in spae.What kind of proesses govern the phase evolutionat any point of the k-spae?We onsider proesses in at arbitrarily hosen pointin the k-spae inside the pakage. Following the se-nario, the SFH that happens to be at the point at theinitial moment of time, leaves this point beause of thelinear drift. But this �loss� is ompensated by the lin-ear and nonlinear proesses: a portion of energy �ar-rives� as the result of the linear drift; portions of energy511



G. D. Chagelishvili, R. G. Chanishvili, T. S. Hristov, J. G. Lominadze ÆÝÒÔ, òîì 121, âûï. 2, 2002are transferred from numerous points of the k-spae asa result of the nonlinear deay proesses (three-wave,four-wave, et.) desribed above. The total energyof the SFH at the hosen point is omposed of theseportions. Naturally, all these portions have their ownphases. It is lear that the Fourier harmoni phase atthe point must be a ertain sum of these phases. It isevident that the phase '(k; t) beomes a strongly vary-ing funtion of k with the passage of time, beause thephases of SFHs at neighboring points of the k-spae andi�er from eah other by any value. Consequently, aninitially regular disturbane beomes more and moreirregular, thereby tending to the haoti behavior.3. THE WEAK TURBULENCE APPROACHIn aordane with the above senario, nonlinearproesses do not ontribute to the energy transfer be-tween the mean �ow and perturbations. They result in(i) the fragmentation of the disturbane sale, i.e., theenergy transfer from large sales to smaller ones and�nally to the dissipative ones; (ii) the angular redistri-bution of SFHs in the k-spae. It must be noted thatthe energy transfer to the small dissipative sales alsoours beause of the linear drift of SFHs (proess (a)),whih ould be even more operative than the nonlinearfragmentation of the disturbane sale. We again em-phasize that the main role of the nonlinear proesses inthe presented senario onsists in (ii) rather than (i),beause in doing so, they ould �supply� SFHs to theampli�ation region, losing the feedbak loop of thetransition to turbulene. The existene of a positivenonlinear feedbak is the most problemati statementof the onept. It has been veri�ed using model equa-tions [34; 35℄. In this setion, we attempt to prove itusing the Navier�Stokes equation. We performed nu-merial alulations for a 2D symmetri vortex modedisturbane in the weak turbulene approximation. Aswe see in what follows, the 2D symmetri disturbaneis most suitable for testing the existene of the positivenonlinear feedbak.The weak turbulene equation desribing the evolu-tion of the energy spetral density of a 2D disturbaneis derived in the Appendix,�Ek�t +rk(VEk)� 2Akxkyk2x + k2yEk ++ �(k2x + k2y)Ek = N̂Ek; (6)where rk = (�=�kx; �=�ky) ;

V = (�Akx; 0);and Ek is the energy density of the 2D vortex modedisturbanes at a �xed point of the k-spae. (In otherwords, Ek is the spetral density of energy.) The termN̂Ek is de�ned by Eq. (A.36). As an be seen fromEq. (6) (and as desribed in Se. 2), the energy spe-tral density (�Ek=�t) hanges beause of the followingreasons.1) The linear �drift� of SFHs in the wave-numberspae (the seond term in the left-hand-side). Thisterm does not ause a variation of the total disturbaneenergy, Z dkrk(VEk) = 0;but results in a transfer of SFHs from the ampli�ationregion to the attenuation one.2) The energy exhange between disturbanes andthe bakground �ow (the third term in the left-handside). Assuming that A > 0, we an state that the2D SFHs for whih ky(t)=kx > 0 gain energy fromthe bakground �ow and their amplitude inreases,whereas the amplitudes of SFHs for whih ky(t)=kx < 0derease.3) The visosity (the last term in the left-hand side),whih transforms the disturbane energy into heat andwhih is signi�ant for large wave numbers.4) The nonlinear three-wave proesses (the term inthe right-hand side), leading to the energy exhangebetween di�erent SFHs [39-41℄. It is easy to show thatZ dkN̂Ek = 0;i.e., the nonlinear term leads only to the energy redis-tribution in the k-spae (not to a hange of the totaldisturbane energy).The onditions for wave vetors (k0 + k00 = k)and frequenies (!1 + !2 = !) are usually imposedon three-wave proesses in the weak turbulene equa-tions [39�41℄. Beause both onditions annot besimultaneously satis�ed for waves with ertain wavevetors, the restrition of three-wave proesses arises.Moreover, these onditions ause the existene ofsome ompletely non-deaying spetra. The vortexmode disturbanes onsidered here are aperiodi(!1; !2; ! = 0) and therefore automatially satisfy theseond ondition (!1 + !2 = !). Hene, there areno forbidden three-wave proesses for SFHs in ourase. However, they have di�erent probabilities. Forexample, the probability of the proesses k0 + k0 = kis equal to zero, although it is not forbidden in prini-ple. Therefore, the nonlinear term in Eq. (6) is equal512



ÆÝÒÔ, òîì 121, âûï. 2, 2002 A turbulene model : : :to zero if a single SFH mode is disturbed. This explainsthe following well-known fat: a single SFH mode is anexat solution of the omplete inompressible Navier�Stokes equation, while a superposition of modes is usu-ally not.The net e�et of all the three-wave proesses de-pends on two fators: the probability with whih dif-ferent deay ats our (the oe�ients of Ek0Ek00 andEkEk00 in Eq. (A.36)) and the distribution of SFHs inthe k-spae (the values of Ek0Ek00 and EkEk00). If thespetral density of energy is inreased in the �rst andthird quarters of the k-spae at the ost of the seondand fourth ones, we an say that the three-wave pro-esses lead to the preferential transfer of SFHs to theampli�ation region, i.e., lead to the regeneration ofSFHs, whih an gain shear energy (lead to the positivefeedbak). This trend of nonlinear proesses an be re-vealed by showing their asymmetry in the k-spae with

respet to the Kx axis. To proeed, we onsider theinitial 2D disturbane with the highest possible sym-metry with respet to the Kx axis (see Fig. 3). In thisase, proesses (a) and () are symmetri with respetto Kx and proess (b) is asymmetri beause it resultsin removal of SFHs from the �rst and third quartersof the k-spae to the seond and fourth ones; proess(b) is therefore asymmetri in the opposite diretion tononlinear proess (d). That is why the symmetri 2Ddisturbane presented in Fig. 3 is most suitable for de-termining the trend of the nonlinear transfer of SFHs.3.1. Results of the numerial alulation of theweak turbulene equationWe onsider the 2D initial disturbane with thespetral density of energy that is symmetri in thek-spae (see also Fig. 3),Ek(t = 0) == ( B �artg ��1(k2� � k2x � k2y)� artg ��2(k2x + k2y � k20)�	2 for k2� > k2x + k2y and k2x + k2y > k20 ;0 for k2� < k2x + k2y and k2x + k2y < k20 ; (7)where B de�nes the value of the initial disturbaneenergy, k0 and k� = 1=pA� are the minimum andmaximum values of the disturbane wave vetors re-spetively, and �1 and �2 denote the sharpness of thedisturbane boundaries in the k-spae. The alula-tions are arried out at �1 = 0:07, �2 = 0:8, k0 = 0:3,and k� = 10 (i.e., A = 1 and � = 0:01). The ab-sene of SFHs with large wave numbers is justi�ed bythe ation of visosity. SFHs with small wave numbersare also absent, beause we onsider small-sale distur-banes. The evolution of Ek was numerially investi-gated for a short time interval (At � 1) beause of tworeasons. First, Eq. (6) is obtained in the weak turbu-lene approximation and it is therefore orret only fora relatively short time interval (t . 1=A). Seond, thetrend of nonlinear proesses is revealed even for suhshort time intervals.Initially, we tried to answer the question what theredistributing ation of the nonlinear term N̂Ek is inthe k-spae. Spei�ally, whether the term N̂Ek trans-fers disturbane energy to the ampli�ation region.For 2D disturbanes, the ampli�ation region oversthe �rst and third quarters of the kxky plane (wherekxky > 0) and the attenuation region overs its seondand fourth quarters (where kxky < 0). Introduing po-lar oordinates ' = artg(ky=kx) and k = qk2x + k2y,we an say that the angle ' between 0 and �=2 orre-sponds to the ampli�ation region, and between ��=2

and 0 to the attenuation one.Obviously, the value and sign of N̂Ek depend on' and k. Taking the integral over k, we obtain thefuntion that desribes the nonlinear redistribution ofenergy only in ',	('; t) � Z dk kN̂Ek: (8)It is easy to see that if the onditions	('; t)j0<'<�=2 > 0; 	('; t)j��=2<'<0 < 0 (9)are satis�ed, we an unambiguously state that the non-linear proesses transfer the disturbane energy to theampli�ation region, thereby realizing the positive feed-bak.We thus determine the dependene of 	 on '. Theresult of our alulations at the time instane At = 0:1is shown in Fig. 4. It is seen that onditions (9) are sat-is�ed, i.e., the nonlinear three-wave proesses lead tothe preferential energy transfer to the ampli�ation re-gion. Beause we used a symmetri initial disturbane(with SFHs having the same �weight� in the ampli�a-tion and attenuation regions), we an onlude that thenonlinear three-wave proesses do have the tendeny totransfer SFHs to the ampli�ation region. This onlu-sion an be onsidered as a numerial on�rmation (inthe weak turbulene approximation) of the suggestiongiven in 4).17 ÆÝÒÔ, âûï. 2 513
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Fig. 3. The spetral density distribution of the distur-bane energy in the kxky plane for the time instanet = 0, i.e., initial onditions for the numerial solutionof Eq. (6). The absene of SFHs with large wave num-bers is related to the ation of visosity. SFHs withsmall wave numbers are also absent, beause we on-sider small-sale disturbanes
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AtFig. 5. The disturbane normalized total energy vstime. Eah urve orresponds to a di�erent amplitudeof the initial disturbane (i.e., to a di�erent value ofthe initial disturbane energy), B1 � B2 < B3 (seeEq. (7)). The �rst urve suits well to low values ofB = B1 at whih the e�et of nonlinear proesses anbe ignored. In this ase, the total energy of the distur-bane is gradually dereasing. For the other two valuesB = B2 and B3 (with B1 � B2 < B3), the e�etof nonlinear proesses is signi�ant and the initial de-rease of the total energy of disturbanes is replaedby its growthnonlinear proesses an be ignored. As seen from Fig. 5,the total disturbane energy gradually dereases if non-linear proesses are negligible. For the other two valuesB = B2 and B3 (with B1 � B2 < B3), at whih thee�et of nonlinear proesses is signi�ant, the initial de-rease of the total energy is replaed by its growth. Thehigher is the initial energy, the sooner the growth be-gins. The results shown in Fig. 5 an be explained onlyby the nonlinear transfer of energy of the disturbanesto the ampli�ation region. The following argumentsmay prove this onlusion.Only the unstable and dissipation proesses ((b)and ()) lead to hanging the total disturbane energy.Visosity (proess ()) always auses a derease of thedisturbane energy. As for proess (b), its net e�etdepends on the distribution of the energy spetral den-sity in the ampli�ation and attenuation regions. If the�weight� of SFHs in the ampli�ation region is �heav-ier� than that in the attenuation region, the net e�etof proess (b) auses an inrease of the total energyof the 2D disturbane. Vie versa, if the �weight� ofSFHs is �heavier� in the attenuation region, proess ()auses a derease of the total energy. It follows fromthe above argument that in aordane with Eq. (6),the total energy of 2D disturbanes an beome higher514



ÆÝÒÔ, òîì 121, âûï. 2, 2002 A turbulene model : : :only if the �weight� of SFHs in the ampli�ation re-gion is �heavier� than that in the attenuation region.In addition, the �weight� must be so muh �heavier�that the net e�et of the third term in Eq. (6) dominateover that of the visous term.Initially, the SFHs of the 2D disturbane onsideredhere (see Eq. (7) and Fig. 3) have the same �weight�in the ampli�ation and attenuation regions. If we as-sume that the e�et of nonlinear proesses is negligible,the disturbane is transferred to the attenuation regionwith time by the linear drift. This auses an inrease ofthe �weight� of SFHs in the attenuation region towardhigher values than in the ampli�ation region, and thetotal energy of the disturbane under study must there-fore begin to derease. It is the temporal history thatan explain the B = B1 urve run in Fig. 5. The be-havior of the urves with B = B2 and B3, namely thefat that the initial derease of the total disturbaneenergy is replaed by its growth, thus unambiguouslyindiates that beginning with a ertain time instane(whih ours the earlier the larger the disturbane am-plitude is), the �weight� of SFHs in the ampli�ationregion dominates over the �weight� of SFHs in the at-tenuation one. This fat an be explained only by thepreferential transfer of SFHs to the ampli�ation re-gion aused by the nonlinear proesses. It also followsfrom Fig. 5 that there exists some threshold Bth for theinitial disturbanes. If B > Bth (e.g., B2; B3 > Bth),the initial derease of the total disturbane energy isreplaed by its growth, whih must eventually lead tothe self-maintenane of disturbanes. We did not al-ulate the threshold beause of the following simplereasons. In our alulations, the threshold must ap-pear at large times At� 1, where the weak turbuleneapproah beomes invalid. In addition, we made al-ulations for a de�nite disturbane and the alulationof the threshold in the partiular ase would not enrihthe theory; muh more important is the establishmentof the threshold existene.4. DISCUSSIONThe aim of this paper was to prove the existene ofthe positive nonlinear feedbak, the most problematistatement of the �bypass� transition to turbulene. Weperformed numerial alulations for the 2D ase in theweak turbulene approximation. The results of alula-tions shown in Fig. 4 desribe the preferential nonlineartransfer of the disturbane energy to the ampli�ationregion and the results in Fig. 5 evidene for the prefer-ential transfer that an ruially hange the temporal

history: the total disturbane energy derease an bereplaed by its growth at ertain amplitudes. This be-havior makes the self-maintenane of the disturbanerealisti. This is in turn the harateristi feature ofthe �ow transition to the turbulent state and its main-tenane.We an therefore onlude that our numerial testalulations prove the existene of the positive nonlin-ear feedbak in the 2D ase. In reality, the shear �owturbulene has a 3D nature (f. Ref. [6℄). However,the qualitative analysis in Se. 2 implies that nonlin-ear proesses easier ope with the positive feedbak inthe atual 3D ase than in 2D one. Indeed, we referto the ase disussed in Se. 2, where SFHs of inom-pressible vortial 3D disturbanes are initially in regionI(I0) (see Fig. 2) and then drift along the ky axis thusfalling in the ampli�ation region II(II0). They are am-pli�ed and reah region III(III0) beause of the drift.In distintion to 2D SFHs (see Fig. 1), 3D SFHs donot beome weaker after leaving the ampli�ation re-gion. The spetral energy density of 3D disturbanesmust therefore be higher in region III(III0) than in re-gion I(I0). Combining this fat with the preferentialnonlinear transfer of the SFH energy to the ampli�-ation region, we onlude that the positive nonlinearfeedbak must be easier realized in the 3D ase than inthe 2D one.In aordane with the �bypass� transition toturbulene, the transient growth of disturbanes is akey element of the subritial transition. (The �ow isspetrally stable.) At the same time, triggering thenonlinear positive feedbak � nonlinear regenerationof the SFH that an draw the mean �ow energy �is a neessary step to the transition. These fatsrequire the existene of a su�iently high level ofinitial disturbanes in the system for the subritialtransition. It is obvious that �nite disturbanes anbe produed by external fores. For instane, a pairof oblique waves with small, but �nite amplitudeswere used in Refs. [42; 43℄ as the initial ondition innumerial simulations of the transition. However,�nite disturbanes must also have the intrinsi �utu-ation origin aording to Refs. [44; 45℄. (These resultsshed new light on the �utuation bakground of thevortex mode �utuations in the laminar Couette �ow.)Namely, aording to Refs. [44; 45℄, the bakground ofthe vortex mode �utuations in a ertain subspae ofthe wave-number spae is su�iently strong at highReynolds numbers and the level of its spetral energydensity by far exeeds the level of the white noise. Thismust in turn trigger a nonlinear positive feedbak andlead to the transition. The reality of this time history515 17*



G. D. Chagelishvili, R. G. Chanishvili, T. S. Hristov, J. G. Lominadze ÆÝÒÔ, òîì 121, âûï. 2, 2002should be proved by diret numerial simulation.Our researh was supported by the INTAS (grantGE-97 � 0504). APPENDIXDerivation of the weak turbulene equationWe let the x axis of a Cartesian oordinate systemlie along the veloity of the mean �ow and the y axisalong the �ow veloity shear, U0(Ay; 0; 0). The �uidis assumed to be inompressible. Considering that thedisturbed variables are independent of the z oordinate,the ontinuity equation and the equations of motion forthe disturbanes are given by�vx�x + �vy�y = 0; (A.1)� ��t +Ay ��x� vx +Avy + vx �vx�x ++ vy �vx�y = ��P�x ; (A.2)� ��t + Ay ��x� vy + vx �vy�x + vy �vy�y = ��P�y ; (A.3)where vx and vy are the respetive disturbane veloi-ties in the Cartesian oordinate system along the x andy axes and P is the pressure disturbane normalized bythe undisturbed density of the �uid �0. The ation ofvisosity in the weak turbulene equation is taken intoaount in the end. It is signi�ant that we onsider dis-turbanes with the harateristi length sale muh lessthan the distane between the �ow boundaries. Thisallows us to neglet the boundary e�ets.To simplify subsequent transformations, we intro-due a oordinate system x1y1, with its origin and thex1 axis oiniding with those of xy and the y axis on-veting with the mean �ow. This is equivalent to hang-ing the variables asx1 = x�Ayt; y1 = y; t1 = t; (A.4)��x = ��x1 ; ��y = ��y1 �At1 ��x1 ;��t = ��t1 �Ay1 ��x1 : (A.5)In terms of the new variables, Eqs. (A.1)�(A.3) an berewritten as��x1 vx +� ��y1 �At1 ��x1� vy = 0; (A.6)

�vx�t +Avy + vx �vx�x1 ++ vy � ��y1 �At1 ��x1� vx = � �P�x1 ; (A.7)�vy�t + vx �vx�y1 + vy � ��y1 �At1 ��x1� vy == �� ��y1 �At1 ��x1�P: (A.8)Substitution (A.4) is not a physial transition toa new oordinate system, beause in Eqs. (A.6)�(A.8)(as well as in Eqs. (A.1)�(A.3)), the quantities vx andvy are omponents of the disturbane veloity in theCartesian oordinate system xy. The oe�ients ofthe original set of linear equations (A.1)�(A.3) dependon the spatial oordinate y. As a result of the trans-formation, this spatial inhomogeneity is hanged to thetemporal one (Eqs. (A.7) and (A.8)).The disturbed variables an be Fourier deom-posed with respet to the Eulerian (laboratory) oor-dinates (x; y) and the Lagrangian (onveted) oordi-nates (x1; y1),8><>: vxvyP 9>=>; = 1Z�1 dkxdky8><>: v̂x(kx; ky; t)v̂y(kx; ky; t)P̂ (kx; ky; t) 9>=>;�� exp(ikxx+ ikyy); (A.9)8><>: vxvyP 9>=>; = 1Z�1 dk1xdk1y8><>: ~vx(k1x; k1y; t1)~vy(k1x; k1y; t1)~P (k1x; k1y; t1) 9>=>;�� exp(ik1xx1 + ik1yy1): (A.10)The two Fourier representations in Eqs. (A.9) and(A.10) are di�erent, although they oinide at the ini-tial moment (t = 0) beause x � x1 and y � y1. Thisdi�erene is manifested in the dynamis of SFHs in thewave-number spae. The wave vetor k1 of a partiularSFH is onstant in time in the onveted oordinates,while it varies in laboratory oordinates. Eah of thesetwo methods has its advantages. In the linear theory,Eq. (A.10) is onvenient in studying the real spatialFourier harmonis moving with them. However, in an-alyzing the weak turbulene equation (thus assumingthe exitation of many degrees of freedom), it is impos-sible to follow the evolution of eah Fourier harmonis.In the latter ase, it is more onvenient to study whatours to the energy at a �xed point of the k-spae,516



ÆÝÒÔ, òîì 121, âûï. 2, 2002 A turbulene model : : :i.e., to desribe the variation of the spetral density ofthe disturbane energy at a �xed point of the k-spae.In spite of this, expansion (A.10) is also useful for in-termediate transformations.To derive the weak turbulene equation, we insertexpansion (A.10) in (A.6)�(A.8),k1x~vx(k1x; k1y; t) ++ (k1y � k1xAt)~vy(k1x; k1y ; t) = 0; (A.11)��k1yk1x �At� �~vy(k1; t)�t � 2A~vy(k1; t) ++ Z dk01dk001 �Æ(k01 + k001 � k1)�k01yk01x �At� �� ~vy(k01; t)ik001x�k001yk001x �At� ~vy(k001 ; t)�++ Z dk01dk001 �Æ(k01 + k001 � k1)~vy(k01; t)ik001x ���k001yk001x �At��� ���k001yk001x �At�� ~vy(k001 ; t)� = �ik1x ~P ; (A.12)�~vy(k1; t)�t + Z dk01dk001 ���Æ(k01 + k001 � k1) ���k01yk01x �At� ~vy(k01; t)� �� ik001x~vy(k001 ; t)�++ Z dk01dk001 �Æ(k01 + k001 � k1)~vy(k01; t) �� ik001x~vy(k001 ; t)�k001yk001x �At�� == �ik1x�k1yk1x �At� ~P : (A.13)Eliminating ~P from these equations gives a sym-metri equation for vy ,(k21x + k21y)�~vy(k1x; k1y; t)�t �� 2Ak1xk1y(t)~vy(k1x; k1y; t) ++ i2 Z dk01dk001 �Æ(k01x + k001x � k1x)Æ(k01y + k001y � k1y)�� k1x[k0021 (t)� k021 (t)℄�k001yk001x � k01yk01x��� ~vy(k01x; k01y; t)~vy(k001x; k001y; t)g = 0; (A.14)

wherek1y(t) = k1y � k1xAt; k21(t) = k21x + k21y(t):Introduing the funtionCk = [k21x + k21y(t)℄~vy(k1; t); (A.15)we rewrite Eq. (A.14) in a more onvenient form (f.Refs. [39�41℄)i�Ck1�t = Z dk01dk001Vk1k01k001Ck01Ck001 ; (A.16)whereVk1k01k001 = Æ(k01 + k001 � k1)k021 (t)� k0021 (t)k021 (t)k0021 (t) �� (k01x + k001x)�k01yk01x � k001yk001x� : (A.17)We note that Ck is related to the vortiity of the spatialFourier harmonis.Assuming that many degrees of freedom (modes)are exited, we use the random phase approximation(f. Ref. [39℄), whih an be expressed by
Ck1Ck01� = nk1(t)Æ(k1 + k01) �� n(k1x; k1y ; t)Æ(k1 + k01); (A.18)where h: : : i denotes the phase average.To use the methods of the weak turbulene theory,we expand Ck asCk1 = C(0)k1 + C(1)k1 + : : : ; (A.19)where C(0)k1 � C(1)k1 (A.20)and �C(0)k1�t = 0; (A.21)whih means that the nonlinearity is taken into aountwithin the perturbation theory. Using Eqs. (A.19)�(A.21), it follows from (A.16) thatC(1)k1 == �i Z dk01dk001 8<:C(0)k01 C(0)k001 tZ0 dt0Vk1k01k0019=; : (A.22)We next use the relations between higher orrelationsaepted in the weak turbulene theory,DC(0)k1 C(0)k01 C(0)k001 E = 0; (A.23)517



G. D. Chagelishvili, R. G. Chanishvili, T. S. Hristov, J. G. Lominadze ÆÝÒÔ, òîì 121, âûï. 2, 2002DC(0)k1 C(0)k01 C(0)k001 C(0)k0001 E = DC(0)k1 C(0)k01 EDC(0)k001 C(0)k0001 E++DC(0)k1 C(0)k001 EDC(0)k01 C(0)k0001 E+DC(0)k1 C(0)k0001 EDC(0)k01 C(0)k001 E == nk1nk001 Æ(k1 + k01)Æ(k001 + k0001 ) ++ nk1nk01Æ(k1 + k001 )Æ(k01 + k0001 ) ++ nk1nk01Æ(k1 + k0001 )Æ(k01 + k001): (A.24)As an be easily seen, we then have�nk1�t Æ(k1 + k0001 ) == �i Z dk01dk001 �Vk1k01k001 
Ck01Ck001Ck0001 �++ Vk0001 k01k001 
Ck1Ck001Ck0001 �� �� �i Z dk01dk001 nVk1k01k001 �DC(0)k01 C(0)k001 C(1)k0001 E++ DC(1)k01 C(0)k001 C(0)k0001 E+ DC(0)k01 C(1)k001 C(0)k0001 E�++ Vk0001 k01k001 �DC(0)k1 C(0)k01 C(1)k001 E+ DC(1)k1 C(0)k01 C(0)k001 E++ DC(0)k1 C(1)k01 C(0)k001 E�o : (A.25)In view of (A.22) and (A.24), this beomes= 2 Z dk01dk001 k01k001 ��8<:Æ(k1 � k01 � k001 )Æ(k1 + k0001 ) �� 0�nk1nk001 tZ0 dt0 k01k001 + 2nk1nk001 tZ0 dt0 �k01k0011A++ Æ(k1 + k01 + k001 )Æ(k1 + k0001 )��0�nk01nk001 tZ0 dt0 k01k001++ 2nk1nk001 tZ0 dt0 k1k0011A9=; ; (A.26)where k01k001 (t) � � 1k0021 (t) � 1k021 (t)� (k01x+k001x)�k01yk01x � k001yk001x� :Changing the variables in the seond part of the inte-gral as k01 ! �k01 and k001 ! �k001and taking into aount that �k01;�k001 = � k01k001 ; (A.27)

we ontinue the transformations as�nk1�t = 4 Z dk01dk001Æ(k1 � k01 � k001 ) k01k001 ��0�nk01nk001 tZ0 dt0 k01k001�� 2nk1nk001 tZ0 dt0 k1 �k0011A : (A.28)Inserting the expressions for  k01k001 and  k1 �k001 (seeEq. (A.26)) in the time integrals and integrating, weobtaintZ0 dt0 k01k001 = 1A (k01x + k001x)�k01yk01x � k001yk001x���( 1k0021x artg At1 + (k001y=k001x) �(k001y=k001x)�At� �� 1k021x artg At1+(k01y=k01x) �(k01y=k01x)�At�) ; (A.29)tZ0 dt0 k01�k001 = 1A (k1x � k001x)�k1yk1x � k001yk001x���( 1k0021x artg At1 + (k001y=k001x) �(k001y=k001x)�At� �� 1k 21x artg At1+(k1y=k1x) �(k1y=k1x)�At�) : (A.30)As mentioned above, it is onvenient to obtain theequation for the energy density at a �xed point of thek-spae in order to onstrut the weak turbulene the-ory. For this, we use Eqs. (A.4)�(A.5) to transformEqs. (A.28)�(A.30) to the new variables kx and ky,
v2� = 
v2x + v2y� = Z dk1(~v2x + ~v2y) == Z dk1~v2y(k1x; k1y; t) 1 + k21y(t)k21x(t)! == Z dk1 n(k1x; k1y; t)k21x[k21x + k21y(t)℄ == Z dkn(kx; ky + kxAt; t)k2y(k2x + k2y) ; (A.31)wherekx � k1x; ky � k1y(t) = k1y � k1xAt: (A.32)518
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v2� = Z dk �v̂2x(kx; ky; t) + v̂2y(kx; ky; t)� == Z dkE(k; t) � Z dkEk; (A.33)whene Ek = n(kx; ky + kxAt; t)k2x(k2x + k2y) : (A.34)Ek is the energy density of the 2D vortex modedisturbanes at a �xed point of the k-spae. In otherwords, this is the spetral density of energy.Inserting integrals (A.29) and (A.30) in Eq. (A.28),hanging the variables in aordane with (A.4), andusing (A.34), we obtain the equation for the spetraldensity of the disturbane energy at a �xed point inthe k-spae,�Ek�t +rk(VEk)� 2Akxkyk2x + k2yEk ++ �(k2x + k2y)Ek = N̂Ek; (A.35)where rk = (�=�kx; �=�ky) ; V = (�Akx; 0);and̂NEk = 4A Z dk0dk00Æ(k � k0 � k00)�� (k02 � k002)(k0yk00x � k00yk0x)2 ��( 1k2  1k002x artg At1 + (k00y=k00x) �(k00y=k00x) +At��� 1k02x artg At1 + (k0y=k0x) �(k0y=k0x) +At�!Ek0Ek00++ 2 1k02  1k002x artg At1 + (k00y=k00x) �(k00y=k00x) +At��� 1k2x artg At1+(ky=kx) ((ky=kx)+At)��� EkEk00� : (A.36)In the derivation of Eqs. (A.35) and (A.36), thevisosity term was omitted. It was then added inEq. (A.35) (the fourth term in the left-hand side).REFERENCES1. S. A. Orszag and L. C. Kells, J. Fluid Meh. 96, 159(1980).
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