ДВУХЭЛЕКТРОННАЯ ОДНОКВАНТОВАЯ ИОНИЗАЦИЯ АТОМА В СИЛЬНОМ ПОЛЕ ИЗЛУЧЕНИЯ

Е. А. Волкова, А. М. Попов, О. В. Тихонова*

Научно-исследовательский институт ядерной физики им. Д. В. Скобельцына Московского государственного университета им. М. В. Ломоносова 119899, Москва, Россия

Поступила в редакцию 19 сентября 2001 г.

Методом прямого численного интегрирования нестационарного уравнения Шредингера для модельной двухэлектронной системы в поле электромагнитной волны исследуется процесс двухэлектронной фотоионизации в условиях, когда энергия кванта превышает энергию, необходимую для удаления обоих электронов атома. Получены зависимости вероятностей одно- и двухэлектронной ионизации от интенсивности излучения, проанализированы энергетические спектры и двойные импульсные распределения фотоэлектронов. Показано, что одноквантовая ионизация играет заметную роль только в предельных случаях слабого и сильного полей. Полученные данные используются для анализа вклада различных каналов в процесс двойной ионизации и, в частности, для выяснения роли межэлектронного взаимодействия. Проведено сопоставление расчетных данных с аналитической моделью явления.

PACS: 33.80.-b, 33.90.+h

1. ВВЕДЕНИЕ

Создание лазерных источников электромагнитного излучения высокой мощности привело к обнаружению и исследованию эффекта многоэлектронной ионизации атомов в сильных световых полях [1]. Наиболее существенной особенностью эффекта является аномально большой выход двукратно заряженных ионов по сравнению с моделью, рассматривающей процесс двойной ионизации как совокупность последовательных процессов ионизации атома и однократно заряженного положительного иона [2, 3]. Для объяснения такой особенности эффекта был предложен ряд моделей («встряски» [2], «перерассеяния» [4], коллективного туннелирования [5]), однако ни одна из них не описывает всю совокупность экспериментальных данных [1].

В последнее время процесс образования двукратно заряженных ионов в поле лазерного излучения широко исследуется также методом прямого численного интегрирования нестационарного уравнения Шредингера, описывающего модельную двухэлектронную систему во внешнем электромагнитном поле [6–13]. Хотя такие расчеты позволяют увидеть детальную пространственно-временную картину процесса однократной и двойной ионизации, вопрос о вкладе того или иного механизма в величину вероятности фотоотрыва сразу двух электронов остается открытым.

Первые эксперименты по двухэлектронной фотоионизации атомов были выполнены задолго до создания источников мощного лазерного излучения. В [14,15] исследовалась фотоионизация атомов инертных газов коротковолновым электромагнитным излучением в условиях, когда энергия кванта превышала энергию фотоотрыва сразу двух электронов из внешней оболочки атома. В таких условиях возможно удаление двух электронов при поглощении одного фотона, причем вероятность этого процесса определяется интенсивностью корреляционного обмена энергией между электронами. Теоретические исследования одноквантовой двухэлектронной ионизации подробно рассмотрены в [16]. Однако они фактически ограничиваются теорией возмущений и приближением самосогласованного поля для атомных электронов. В сильных электромагнитных полях, когда наряду с однофотонными происходят и многофотонные процессы, таких приближений

^{*}E-mail: ovt@mics.msu.su

явно недостаточно. Следует также отметить, что, как показано в [8,17], приближение самосогласованного поля, основанное на нестационарных уравнениях Хартри или Хартри–Фока, не может быть использовано для описания двухэлектронной многофотонной ионизации даже на качественном уровне.

В данной работе методом прямого численного интегрирования нестационарного уравнения Шредингера исследован процесс однократной и двойной фотоионизации модельной двухэлектронной квантовой системы в условиях, когда энергия кванта $\hbar\omega$ достаточна для удаления обоих атомных электронов. На основе полученных данных исследуются различные каналы двухэлектронной ионизации. Проведено сопоставление результатов расчета с аналитической моделью явления.

2. ЧИСЛЕННАЯ МОДЕЛЬ

В данной работе мы ограничимся рассмотрением одномерной двухэлектронной квантовой системы, моделирующей отрицательный ион водорода H⁻ и подробно изученной в [9, 18, 19]. Гамильтониан системы задавался в виде

$$H_0 = \sum_{i=1}^{2} \left(T_i + V(x_i) \right) + V_{12}(x_1, x_2), \qquad (1)$$

где T_i — кинетическая энергия *i*-го электрона,

$$V(x_i) = -\frac{e^2}{\sqrt{\alpha^2 + x_i^2}}$$

— энергия его взаимодействия с ядром,

$$V_{12} = \frac{e^2}{\sqrt{\alpha^2 + (x_1 - x_2)^2}}$$

— энергия межэлектронного взаимодействия. При значении параметра сглаживания $\alpha = 0.92$ Å энергии удаления первого и второго электронов составляют соответственно $I_1 \approx 1.11$ эВ и $I_2 \approx 11.45$ эВ.

Подробный анализ рассматриваемой модели отрицательного иона водорода и ее связи с трехмерными моделями был проведен в [9]. В частности, в [9] было показано, что система имеет единственное связанное состояние, которое характеризуется различной величиной области пространственной локализации электронов. Действительно, если пытаться представить волновую функцию стационарного состояния системы в виде симметризованного произведения одноэлектронных волновых функций

$$\varphi_0(x_1, x_2) = N \left[u(x_1)v(x_2) + u(x_2)v(x_1) \right]$$

(N -нормировочный множитель, $u(x) \neq v(x))$, то необходимо предположить, что дисперсии координаты, рассчитанные по функциям u и v, различны¹⁾. Это значит, что электронная плотность одного из электронов (принцип тождественности микрочастиц не позволяет уточнить, какого именно) локализована ближе к притягивающему центру, чем другого. Другими словами, рассматриваемая модель представляет собой систему с вытолкнутым электроном. В этом смысле в дальнейшем будем говорить о «внешнем» и «внутреннем» электронах.

Все возбужденные состояния нашей системы принадлежат континууму, причем среди этих состояний можно выделить состояния одно- и двухэлектронного континуумов. Аналогично [9], состояния одноэлектронного континуума мы приближенно будем описывать симметризованной волновой функцией вида

$$\varphi_{nk}(x_1, x_2) = \frac{1}{\sqrt{2}} \times \left\{ \Phi_n(x_1) \frac{\exp(ikx_2)}{\sqrt{2\pi}} + \Phi_n(x_2) \frac{\exp(ikx_1)}{\sqrt{2\pi}} \right\}.$$
 (2)

Здесь $\Phi_n(x)$ — волновая функция, описывающая одноэлектронный атом (атом водорода) в *n*-ном стационарном состоянии (соответствующие значения энергии E_n приведены в таблице), k — волновой вектор электрона в континууме, связанный с энергией соотношением $E = \hbar^2 k^2/2m$.

Анализ временной динамики модельного иона ${\rm H}^-$ в поле волны проводился на основе метода прямого численного интегрирования нестационарного уравнения Шредингера для волновой функции системы. В дипольном приближении взаимодействие системы с полем электромагнитной волны определяется оператором

$$W = -e(x_1 + x_2)\varepsilon(t)\cos(\omega t), \qquad (3)$$

где ε, ω — амплитуда и частота поля электромагнитной волны. Аналогично [9, 12, 13], огибающая $\varepsilon(t)$ имела сглаженную трапецеидальную форму, причем длительности фронтов и плато импульса генерации соответственно составляли $t_f = 5T$ и $t_{pl} = 10T$, $T = 2\pi/\omega$.

Частота внешнего поля была выбрана такой, что $\hbar\omega = 15$ эВ. Этого достаточно для одноквантовой ионизации обоих атомных электронов. Параметры

¹⁾ В трехмерном случае такая ситуация описывается, например, волновой функций Чандрасекара (см. [9] и цитированную там литературу).

таолица

n	1	2	3	4	5	6	7	8	9
E_n , эВ	-11.45	-6.05	-3.85	-2.52	-1.74	-1.26	-0.96	-0.60	-0.41

сетки и размер области счета были выбраны аналогично [12,13], что позволило провести расчет волновой функции системы в течение всего импульса без поглощения потока вероятности вблизи границ. Последнее обстоятельство является важным при вычислении энергетических спектров и импульсных распределений фотоэлектронов.

Расчет всех физических характеристик системы проводился с использованием функции $\psi(x_1, x_2, t_0)$, полученной в результате численного интегрирования нестационарного уравнения Шредингера, в момент времени t_0 , соответствующий окончанию импульса излучения. В частности, вероятность обнаружить систему в связанном состоянии определялась как

$$W_{0}(t) = |C_{0}(t)|^{2} = \left| \int \psi(x_{1}, x_{2}, t) \varphi_{0}(x_{1}, x_{2}) dx_{1} dx_{2} \right|^{2}, \quad (4)$$

где $\varphi_0(x_1, x_2)$ — волновая функция основного состояния системы.

Вероятности одноэлектронной ионизации, энергетические и импульсные распределения электронов рассчитывались по функции

$$\tilde{\psi}(x_1, x_2, t) = \psi(x_1, x_2, t) - C_0(t)\varphi_0(x_1, x_2) \times \\ \times \exp\left\{-\frac{i}{\hbar}E_0t\right\} \quad (5)$$

 $(E_0$ — энергия стационарного состояния $\varphi_0(x_1, x_2))$, описывающей состояние системы в одно- и двухэлектронном континуумах. Методика соответствующих расчетов подробно рассмотрена в [9].

Для анализа вклада межэлектронного обмена энергией в процесс ионизации системы часть расчетов была проведена в приближении «пассивного» электрона, использовавшемся ранее при анализе двухэлектронной ионизации излучением видимого диапазона частот [12, 13]. В рамках этого приближения взаимодействие с внешним полем записывается в виде

$$W = -ex_1\varepsilon(t)\cos(\omega t), \tag{6}$$

при этом ионизация «пассивного» электрона происходит лишь в результате его взаимодействия с «активным» электроном.

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1 приведены распределения плотности вероятности $|\psi(x_1, x_2)|^2$ в момент окончания лазерного импульса для трех значений интенсивности излучения. Представленные данные свидетельствуют о том, что в рассматриваемых условиях двойная ионизация происходит преимущественно в результате поглощения системой двух квантов поля, причем можно полагать, что каждый из электронов поглощает по одному кванту. Действительно, структура распределения электронной плотности $|\psi(x_1, x_2)|^2$ в области, соответствующей двойной ионизации, свидетельствует о том, что скорости фотоэлектронов соотносятся как

$$v_2: v_1 \approx 2: 1,$$

что хорошо коррелирует с отношением

$$\frac{E_2}{E_1} = \frac{v_2^2}{v_1^2} = \frac{\hbar\omega - I_1}{\hbar\omega - I_2} \approx 4:1,$$

полученным в предположении независимой фотоионизации «внешнего» и «внутреннего» электронов. При этом мы полагаем, что энергия удаления «внутреннего» электрона равна потенциалу ионизации модельного атома водорода $I \approx 11.45$ эВ, т.е. эта величина практически не зависит от наличия «внешнего» электрона. Заметим, что процесс носит последовательный во времени характер: сначала ионизуется «внешний» электрон, что приводит к появлению быстрого электрона в континууме и образованию «креста» на распределении $|\psi(x_1, x_2)|^2$, а затем к ионизации «внутреннего» электрона. При этом в континууме появляется электрон со сравнительно малой энергией $E_2 \approx \hbar \omega - I_2 \approx 3.5$ эВ, а на распределении $|\psi(x_1, x_2)|^2$ формируется поток вероятности, удаляющийся от обеих осей координат. Данные, представленные на рис. 1, позволяют утверждать, что в «момент» ионизации второго («внутреннего») электрона удаление от притягивающего центра первого электрона составляет примерно 10 Å, откуда за-

держка времени вылета второго электрона оценивается как 0.3 фс. Такая величина задержки соответствует длительности одного оптического цикла. Отметим, что процесс двойной ионизации носит, тем не менее, коррелированный характер: электроны разлетаются только в противоположные стороны (такая особенность вылета отмечена также в [16]), что свидетельствует о необходимости учета межэлектронного взаимодействия в процессе фотоотрыва двух электронов.

Аналогичные распределения $|\psi(x_1, x_2)|^2$, полученные в приближении «пассивного» электрона, представлены на рис. 2. Эти распределения свидетельствуют об интенсивном обмене энергией между электронами. К моменту окончания воздействия поля волны поглощенная энергия распределяется между электронами так, что по получающимся распределениям $|\psi(x_1, x_2)|^2$ практически невозможно судить о том, какой из электронов подвергался внешнему воздействию. Исключение составляет лишь случай предельно сильных полей (см. рис. 2*в*), когда интенсивность обмена энергией оказалась заметно меньше, что привело к преимущественной ионизации «активного» электрона.

Зависимости вероятностей одно- и двухэлектронной ионизации от интенсивности излучения, полученные из решения уравнения Шредингера (точные расчеты и расчеты в приближении «пассивного» электрона), приведены на рис. 3. Отметим, что в области преобладания одноэлектронной ионизации ($P \le 10^{16} \ \mathrm{Bt/cm^2}$) вероятности одноэлектронной ионизации в модели «пассивного» электрона и при точных расчетах практически совпадают. В то же время вероятность двойной ионизации в модели «пассивного» электрона оказывается в несколько раз больше, чем в точных расчетах. Таким образом, приходим к выводу: в не очень сильных полях двойная ионизация происходит в результате межэлектронного обмена энергией, а воздействие поля волны на оба электрона «мешает» процессу. По-видимому, в модели «пассивного» электрона воздействие поля волны на связанный «активный» электрон оказывается более сильным, чем в точных расчетах, в результате чего энергия колебательного движения «активного» электрона оказывается больше, что ведет к увеличению вероятности ионизации электронным ударом «пассивного» электрона. Такая картина процесса соответствует широко обсуждаемой модели «перерассеяния» [4]. Таким образом, можно предполагать, что в рассматриваемом нами случае воздействие поля на оба электрона частично разрушает эффект «перерассеяния».

Рис. 1. Пространственные распределения двухэлектронной плотности $|\psi(x_1,x_2)|^2$ в момент окончания внешнего воздействия для интенсивностей излучения 10^{15} (*a*), 10^{16} (*б*), 10^{17} (*b*) Вт/см². Линии уровня соответствуют значениям: $1 - 10^{-2}$, $2 - 10^{-3}$, $3 - 10^{-4}$, $4 - 10^{-5}$

Рис. 3. Вероятности одно- (1, 3) и двухэлектронной (2, 4) ионизации системы за импульс в зависимости от интенсивности излучения, полученные в точных расчетах (1, 2) и в приближении «пассивного» электрона

С другой стороны, в области сильных полей $(P \ge 10^{16} \ {
m Br/cm^2})$ вероятность двойной ионизации в «пассивной» модели убывает с ростом интенсивности, что свидетельствует об уменьшении роли обмена энергией между электронами. Двойная ионизация в точных расчетах оказывается существенно больше, чем в приближении «пассивного» электрона. Однако в области $P \geq 10^{17}~{\rm Bt/cm^2}$ в точных расчетах также наблюдается уменьшение полной (одно- и двухэлектронной) вероятности ионизации с ростом интенсивности: возникает эффект стабилизации относительно процесса ионизации. Поскольку в указанном диапазоне интенсивностей взаимодействие между электронами мало, эффект стабилизации имеет, по-видимому, одноэлектронную природу и может быть понят в рамках формализма Крамерса-Хеннебергера [20, 21].

Дополнительным подтверждением того, что в системе имеются «внешний» и «внутренний» электроны, которые ионизуются внешним полем почти независимо, является рассчитанное для одноэлектронной ионизации распределение по квантовым состояниям оставшегося электрона (см. рис. 4). Второй максимум при n = 5 появляется в результате фотоотрыва «внутреннего» электрона, причем вероятность этого процесса растет с ростом интенсивности излучения.

Энергетические спектры фотоэлектронов, рассчитанные как результат разложения волновой функции $\tilde{\psi}(x_1, x_2)$ по функциям (2), также свидетельствуют о независимом фотоотрыве «внешнего» и «внутреннего» электронов (см. рис. 5). Главный пик 1 соответствует фотоотрыву «внешнего»

Рис.2. То же, что на рис. 1, но в приближении «пассивного» электрона

Рис. 4. Вероятности заселения различных стационарных состояний одноэлектронного атома, образовавшегося при одноэлектронной ионизации двухэлектронной системы. Интенсивности излучения 10^{15} (1), 10^{16} (2), 10^{17} (3) Вт/см²

Рис. 5. Энергетические спектры фотоэлектронов (в отн.ед.) для интенсивностей излучения 10^{15} (*a*), 10^{16} (*b*), 10^{17} (*b*) Вт/см². Номера пиков пояснены в тексте

электрона, при этом образующийся в результате фотоионизации атом водорода остается в основном состоянии. Пик 2 соответствует отрыву внутреннего электрона, атом водорода оказывается в возбужденном состоянии (n = 4, 5, 6). С ростом интенсивности излучения величина этого пика возрастает. Наличие пика 3 соответствует фотоотрыву электрона с возбуждением оставшегося электрона в состояние с n = 2. Происхождение этого пика не может быть понято в модели независимой фотоионизации «внешнего» и «внутреннего» электронов, оно связано с корреляционным обменом энергией между электронами. Действительно, в рассматриваемом случае энергия, поглощаемая системой в виде кванта $\hbar\omega$, распределяется в определенной пропорции между обоими электронами. С увеличением интенсивности излучения роль этого корреляционного процесса убывает, при $P = 10^{17} \text{ Br/см}^2$ корреляционный пик 3 практически отсутствует.

Перейдем к анализу импульсных распределений фотоэлектронов, образовавшихся при двойной ионизации. Эти распределения вычислялись в момент окончания лазерного воздействия с помощью выражения

$$W(k_1, k_2) = \left| \tilde{\psi}_p(k_1, k_2) \right|^2 \propto \left| \frac{1}{2\pi} \int \tilde{\psi}(x_1, x_2) \times \left[\exp\left(-i(k_1 x_1 + k_2 x_2) \right) + \exp\left(-i(k_1 x_2 + k_2 x_1) \right) \right] \times dx_1 dx_2 \right|^2.$$
(7)

Как уже отмечалось, они учитывают состояния одноэлектронного и двухэлектронного континуумов. Полученные распределения для различных значений интенсивности представлены на рис. 6. Электронные плотности, соответствующие одноэлектронной ионизации, определяют характерную прямоугольную структуру (она наиболее ярко выражена на рис. 6δ), обусловленную тем, что один из электронов (связанный) имеет широкое распределение по импульсам со средним нулевым значением, а другой (свободный) характеризуется импульсом

$$p = \sqrt{2m(\hbar\omega - |E_n|)}, \qquad (8)$$

где E_n — энергия связанного электрона в атоме. В случае $P = 10^{15}$ Вт/см² (рис. 66) отчетливо видны максимумы, соответствующие n = 1, 2. Двойная ионизация, соответствующая поглощению двух квантов поля, очевидно, дает на распределении $W(k_1, k_2)$ локальные максимумы, положение которых удалено от обеих осей координат. Такие максимумы действительно возникают (см. рис. 66, 6). Вместе с тем в предельно слабых ($P = 10^{14}$ Вт/см²) и

Рис. 6. Двойные импульсные распределения электронов $W(k_1, k_2)$ в суперпозиции состояний одно- и двухэлектронного континуумов к концу импульса. Интенсивности 10^{14} (*a*), 10^{15} (*b*), 10^{17} (*b*), $3 \cdot 10^{17}$ (*b*) Вт/см². Линии уровня (в отн. ед.) приведены на каждом рисунке

предельно сильных ($P = 3 \cdot 10^{17} \text{ Br/cm}^2$) полях в континууме с некоторой вероятностью возникают два медленных электрона (см. рис. 6*a*, *s*). Эти электроны, очевидно, не могут появиться в результате двухквантового поглощения и связаны с существованием одноквантового двухэлектронного процесса фотоионизации. Представленные распределения убедительно свидетельствуют, что в промежуточном диапазоне интенсивностей ($P = 10^{15}$ – 10^{17} Br/cm^2) такой процесс практически отсутствует.

Аналогичные выводы следуют из распределений по суммарному значению импульса двух электронов $K = k_1 + k_2$, полученных из функции $W(k_1, k_2)$ путем интегрирования по относительному импульсу $k = k_1 - k_2$. Эти распределения W(K) представлены на рис. 7. Двойная структура пиков при $P = 10^{15}$, 10^{17} BT/см² (см. рис. 76, 6) возникает в результате одноэлектронной ионизации: в этом случае один электрон имеет в среднем нулевой импульс и суммарный импульс определяется импульсом элек-

Рис.7. Распределение по суммарному импульсу двух электронов W(K) в суперпозиции состояний одно- и двухэлектронного континуумов, соответствующее моменту окончания импульса. Интенсивности излучения 10^{14} (*a*), 10^{15} (*б*), 10^{17} (*b*), $3 \cdot 10^{17}$ (*c*) Вт/см²

трона в континууме. С увеличением интенсивности (рис. 7*г*) возрастает роль процесса двойной ионизации и положение пика определяется разностью абсолютных значений импульсов фотоэлектронов (напомним, что электроны разлетаются в противоположные стороны). Это приводит к смещению пика в область меньших значений K. Вместе с тем в слабых полях ($P = 10^{14} \text{ Bt/cm}^2$) структура функции W(K)принципиально другая: в распределении доминируют медленные электроны, образовавшиеся при однофотонной двухэлектронной ионизации. Аналогично возрастание доли медленных электронов наблюдается в предельно сильных полях ($P = 3 \cdot 10^{17} \text{ Bt/cm}^2$). В этом случае, по-видимому, можно говорить о конкуренции процессов одно- и двухфотонной двухэлектронной ионизации.

Проведем качественный анализ полученных данных по вероятностям одноквантового и двухквантового процессов двухэлектронной ионизации. В случае слабых полей, когда можно пользоваться теорией возмущений [16, 22], выражение для амплитуды однофотонной двухэлектронной ионизации можно записать в виде

$$M_{fi}^{(1)} \propto \sum_{kn} \left(\frac{\langle k_1, k_2 | u | \varphi_{nk} \rangle \langle \varphi_{nk} | d\varepsilon | \varphi_0 \rangle}{E_{kn} - E_0 - \hbar \omega} + \frac{\langle k_1, k_2 | d\varepsilon | \varphi_{nk} \rangle \langle \varphi_{kn} | u | \varphi_0 \rangle}{E_{kn} - E_0} \right).$$
(9)

Здесь d — дипольный оператор, $u = e^2/x_{12}$ — оператор межэлектронного взаимодействия, φ_0 , φ_{nk} — волновые функции основного состояния и одноэлектронного континуума, E_0 , E_{kn} — соответствующие им энергии, $|k_1, k_2\rangle$ — состояния двухэлектронного континуума.

Аналогично, для амплитуды двухфотонного процесса имеем

$$M_{fi}^{(2)} \propto \sum_{kn} \left(\frac{\langle k_1, k_2 | d\varepsilon | \varphi_{nk} \rangle \langle \varphi_{nk} | d\varepsilon | \varphi_0 \rangle}{E_{kn} - E_0 - \hbar \omega} \right).$$
(10)

Первый процесс (9) линеен по напряженности поля волны, а второй (10) квадратичен, поэтому в слабых полях однофотонная ионизация должна доминировать. Отношение амплитуд рассматриваемых процессов определяется отношением энергии взаимодействия электрона с полем волны $d\varepsilon$ к энергии межэлектронного взаимодействия $u = e^2 / x_{12}$. Полагая для нашей системы $x_{12} \approx 4a_0, d \approx 4ea_0$ $(a_0 - боровский радиус), получим <math>M_{fi}^{(2)}/M_{fi}^{(1)} \approx 1$ при $P \approx 3 \cdot 10^{14} \text{ Br/см}^2$, что хорошо согласуется с результатами численных расчетов. Удивительным представляется тот факт, что в предельно сильных полях вклад одноквантовой двухэлектронной ионизации опять возрастает. По-видимому, этот эффект связан с явлением стабилизации относительно ионизации в сильных электромагнитных полях. Действительно, при выполнении условия $d\varepsilon \gg e^2/x_{12}$ движение элек-

тронов можно в первом приближении считать независимым друг от друга. В таких условиях процесс двойной ионизации может рассматриваться как совокупность двух процессов одноэлектронной ионизации. При превышении порога стабилизации вероятность этих процессов убывает с ростом лазерной интенсивности. На этом фоне роль межэлектронного обмена энергией вновь возрастает, а следовательно, возрастает и вероятность одноквантовой двухэлектронной ионизации. При этом в условиях сверхсильных полей, когда амплитуда колебаний свободного электрона в поле волны оказывается больше характерного атомного размера, этот межэлектронный обмен энергией можно истолковать в терминах концепции перерассеяния. Качественным подтверждением изменения механизма двухэлектронной ионизации в предельно сильных полях служит также распределение электронной плотности $|\psi(x_1, x_2)|^2$, полученное в момент окончания импульса излучения с интенсивностью $P = 3 \cdot 10^{17} \text{ BT/cm}^2$ (см. рис. 8). Помимо характерной структуры, свидетельствующей о наличии быстрого и медленного электронов (см. данные на рис. 1), появляются фотоэлектроны с почти одинаковыми импульсами и энергией примерно равной 1 эВ. Кроме того, наряду с вылетом электронов в противоположные стороны, появляется вероятность однонаправленного вылета, что в [23-25] рассматривается как подтверждение эффекта «перерассеяния».

4. ЗАКЛЮЧЕНИЕ

В данной работе исследован процесс двухэлектронной ионизации системы в условиях, когда энергия кванта превышает суммарную энергию связи обоих электронов в атоме. Показано, что в широком диапазоне интенсивностей излучения двойная ионизация происходит в результате последовательного и коррелированного поглощения двух квантов поля и сопровождается противоположно направленным вылетом фотоэлектронов. Строго одноквантовый процесс двойной ионизации реализуется лишь в относительно слабых полях, когда энергия взаимодействия электрона с полем волны оказывается существенно меньше энергии межэлектронного взаимодействия. Показано, что в предельно сильных полях относительный вклад межэлектронного обмена энергией в процесс двойной ионизации также возрастает, что ведет к увеличению вероятности фотоотрыва двух электронов при поглощении одного кванта лазерного поля. При этом в случае предельно сильных полей энергия колебательного движения электрона оказывается достаточной для ионизации атомного электрона электронным ударом, что может рассматриваться как проявление эффекта перерассеяния.

Работа выполнена при поддержке CRDF (грант RP1-2259) и РФФИ (проекты № 00-02-16046, 00-15-96554).

ЛИТЕРАТУРА

- 1. Optics Express 8 (2001), специальный выпуск, посвященный двухэлектронной ионизации.
- D. N. Fittinghoff, P. R. Bolton, B. Chang, and K. C. Kulander, Phys. Rev. Lett. 69, 2642 (1992).
- B. Walker, B. Sheehy, L. F. DiMauro et al., Phys. Rev. Lett. 73, 1227 (1994).
- 4. P. B. Corcum, Phys. Rev. Lett. 71, 1994 (1993).
- U. Eichman, M. Dörr, H. Maeda et al., Phys. Rev. Lett. 84, 3550 (2000).
- R. Grobe and J. H. Eberly, Phys. Rev. Lett. 68, 2905 (1992).
- R. Grobe and J. H. Eberly, Phys. Rev. A 48, 4664 (1993).
- 8. D. Bauer, Phys. Rev. A 56, 3028 (1997).

- 9. Е. А. Волкова, А. М. Попов, О. В. Тихонова, ЖЭТФ 114, 1618 (1998).
- W.-C. Liu, J. H. Eberly, S. L. Haan, and R. Grobe, Phys. Rev. Lett. 83, 520 (1999).
- 11. M. Lein, E. K. U. Gross, and V. Engel, J. Phys. B 33, 433 (2000).
- 12. Е. А. Волкова, А. М. Попов, О. В. Тихонова, ЖЭТФ
 118, 816 (2000).
- A. M. Popov, O. V. Tikhonova, and E. A. Volkova, Laser Phys. 11, 236 (2001).
- 14. T. A. Carlson, Phys. Rev. 156, 142 (1967).
- J. A. R. Samson and G. N. Haddad, Phys. Rev. Lett. 33, 875 (1974).
- **16**. М. Я. Амусья, *Атомный фотоэффект*, Наука, Москва (1987), гл. 8.
- 17. A. M. Popov, O. V. Tikhonova, and E. A. Volkova, Laser Phys. 9, 124 (1999).

- 18. A. I. Artemiev, R. Grobe, and J. H. Eberly, in *Proc. SILAP-IY*, ed. by H. G. Muller and M. V. Fedorov Kluwer Acad. Publ. (1996), p. 285.
- S. L. Haan, R. Grobe, and J. H. Ebergy, Phys. Rev. A 50, 378 (1994).
- 20. M. Pont and M. Gavrila, Phys. Rev. Lett. 65, 2362 (1990).
- 21. A. M. Popov, O. V. Tikhonova, and E. A. Volkova, Laser Phys. 5, 1029, 1184 (1995).
- 22. M. Ya. Amysia, Comments At. Mol. Phys. № 10(4), 155 (1981).
- 23. Th. Weber, M. Weckenbrock, A. Staudte et al., Phys. Rev. Lett. 84, 443 (2000).
- 24. R. Moshammer, B. Feuerstein, W. Schmitt et al., Phys. Rev. Lett. 84, 447 (2000).
- 25. S. P. Goreslavski and S. V. Popruzhenko, Opt. Express
 8, 395, (2001); J.Phys.B, 34, L239 (2001).