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GYROSCOPE DEVIATION FROM GEODESIC MOTION:QUASIRESONANT OSCILLATIONS ON A CIRCULAR ORBITO. B. Karpov *Mos
ow State Mining University119991, Mos
ow, RussiaSubmitted 31 May 2002The general relativisti
 spin�orbit intera
tion gives rise to a quasiresonant os
illation of the gyros
ope mass 
en-ter along the orbital normal. The os
illation amplitude appears to be measurable by present-day instruments.The in�uen
e of oblateness of the �eld sour
e is investigated.PACS: 04.80.C
, 04.25.Nx, 95.30.Sf1. INTRODUCTIONIn general relativity, the motion of a spinning testbody (gyros
ope) is a�e
ted by the spin�orbit inter-a
tion in two aspe
ts: 1) the in�uen
e of the orbitalmotion on the orientation of the gyros
ope rotationaxes, and 2) the in�uen
e of the gyros
ope intrinsi
momentum (spin) on its orbit. The �rst is 
ompar-atively simple when the parallel spin transport is as-sumed. It is admissible if the deviation from a geodesi
motion is small. The Fermi�Walker transport alongan appointed world line is also not 
ompli
ated. Ina spheri
ally symmetri
 �eld, parallel transport alonga geodesi
 leads to a pre
ession of the gyros
ope axesknown as the geodeti
, or de Sitter pre
ession [1℄. Inthe �eld of a rotating mass, the gyros
ope axes undergothe S
hi� pre
ession [2℄, to be veri�ed in the GravityProbe B experiment (see [3℄ for details).In this work, the se
ond aspe
t of the spin�orbitintera
tion is 
onsidered. The orbital motion of thegyros
ope is a sophisti
ated problem that has not beenfully resolved untill now even in the post-Newtonian ap-proximation. There exist several di�erent approa
heswith di�erent results in the leading approximation (see,e.g., [4�10℄). The only 
ovariant general relativisti
equations of motion of the spinning test parti
les arethe well-known Papapetrou equations [5℄. This setof equations is in
omplete and requires supplementary
onditions. It is generally a

epted that these 
ondi-tions single out a representative point as the gyros
ope*E-mail: oleg�karpov�mail.ru, karpov�msmu.ru

mass 
enter, but there exist diverse other opinions [9�12℄. In addition, the Papapetrou equations or alterna-tive ones are very 
ompli
ated. Their investigation isusually limited by a general analysis; examination ofthe e�e
ts is typi
ally restri
ted by the motion of thegyros
ope with a verti
al spin, i.e., with the gyros
opeaxes orthogonal to the orbital plane [13℄. For example,it is known that su
h a gyros
ope moves along a 
ir-
ular orbit with the velo
ity di�ering from the one ofa body without spin [14℄. In [14℄, the 
on
lusion wasdrawn that the gyros
ope with a horizontal spin leavesthe geodesi
 plane, but an erroneous estimation of thise�e
t was given. The e�e
t is mu
h larger be
ause ofa quasiresonant 
hara
ter of the spin�orbit intera
tion,as was �rst revealed in [15, 16℄.In the present work, the motion of a gyros
ope withthe horizontal spin is investigated and the general rel-ativisti
 e�e
t of a quasiresonant beating is proposed.Be
ause of a small denominator, the speed of light is
an
elled in the os
illation amplitude, and the e�e
ttherefore be
omes quite sizeable. The obvious physi
alinterpretation of the e�e
t is given. This e�e
t is inde-pendent of supplementary 
onditions and is the samein the di�erent approa
hes [4�10℄. The des
ription issigni�
antly simpli�ed by expanding the equations ofmotion up to the linear terms in the displa
ement froma geodesi
. Instead of studying an intri
ate gyros
opeorbit, the small os
illation is investigated. This os
il-lation gives su�
ient information about the gyros
opeorbit. It is shown that a Newtonian nonspheri
ity ofthe �eld sour
e 
auses a spe
i�
 e�a
ing of the quasires-659
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illation amplitude mea-surable.In what follows, orthonormal bases are used in 
al-
ulations, Greek indi
es run from 0 to 3 and Latin in-di
es run from 1 to 3. The signature is (�+++).2. THE ESSENCE OF THE EFFECTThe general relativisti
 spin�orbit a

eleration a de-viating the gyros
ope mass 
enter from a geodesi
 is ofthe order of a � � S� g; (1)where � = GM
2ris the relativisti
 small parameter, g = GM=r2 is theNewtonian a

eleration due to gravity, S is the spin ofthe gyros
ope, � is its orbital moment, 
 is the speed oflight, M is the sour
e mass, and G is the gravitational
onstant. The motion of the rotating body mass 
enteressentially depends (in the leading approximation (1))on the referen
e frame in whi
h it is obtained. Thegeneral expression for the spin�orbit a

eleration in theleading post-Newtonian approximation (1) is [7, 17℄a = 3 GMm
2r3 [S� v ++(2��)r̂ � (S � (r̂� v))� (1+�)(v � r̂)(S� r̂)℄: (2)The parameter � numbers the di�erent mass 
enters:� = 0 
orresponds to the Dixon [6℄ and Pirani [18℄ 
on-ditions (the intrinsi
 mass 
enter), � = 1 
orresponds tothe Corinaldesi�Papapetrou 
onditions [19℄ (the mass
enter de�ned in the �rest� frame in whi
h the gyro-s
ope moves with the velo
ity v), and � = 1=2 leads tothe results of Fo
k [4℄ and of Refs. [9, 10℄. For a 
ir
ularorbit of the gyros
ope (v�r = 0) with the gyros
ope axislying in the orbital plane (S � (r � v) = 0), spin�orbita

eleration (2) is independent of the parameter �,a = 3 GMm
2r3 S� v: (3)Parallel transport of the spin ve
tor S means that inthe pro
ess of revolution, a

eleration (3) is dire
tedalong the orbital normal e3 and is periodi
 in time � ,a = e3 � S� g 
os(!s� + �):The frequen
y !s di�ers from the orbital frequen
y !be
ause of the geodeti
 pre
ession 
G,�! = ! � !s = 
G = 32 � !: (4)

On the other hand, the frequen
y of the free tidal os
il-lation along the orbital normal is equal to the orbitalfrequen
y. This leads to an almost resonant beatingwith modulation frequen
y (4) and the maximum am-plitude A = a2!�! = S� r: (5)We note the 
an
ellation of the speed of light 
 in ampli-tude (5) by the small relativisti
 denominator�! givenby Eq. (4). During the time � � (
G)�1, the quasires-onant os
illation enhan
es linearly with the rateA�! = 32 � S� v (6)and rea
hes the values measurable with present-day in-struments. For example, in the 
ase of a gyros
ope withthe dimension 10�1 m and the intrinsi
 rotation period10�1 s in a near-Earth orbit r � 7 � 103 km, we obtainthe values � � 10�10; S� � 10�9;A�! � 10�9 
m/day: (7)Parasiti
 e�e
ts of a nonrelativisti
 origin are mutually
an
elled in the symmetri
 relative os
illations of twogyros
opes with antiparallel spins.3. CALCULATION OF THE NET EFFECTIn the post-Newtonian approximation, the stati
spheri
ally symmetri
 gravitational �eld is des
ribedby the tetrad�e� = f(1� �) 
dt; (1 + �) dr; r sin � d�; �r d�g (8)that represents the rest observers in the S
hwarzs
hildmetri
. In this frame, the �ele
tri
� part E and the�magneti
� part B of the Riemann tensor R (see,e.g., [8, 17℄),Eij = Ri0j0; 2Bij = Riomn"mn j ;are given by�Eij = n2diagf�2; 1; 1g; �Bij = 0;n2 = GM=r3: (9)Transition to the orbital frame e� is performed by theboost �e� = L�� e�660



ÆÝÒÔ, òîì 123, âûï. 4, 2003 Gyros
ope deviation from geodesi
 motion : : :in the�e2 dire
tion. The Lorentz matrix L has the stan-dard form. Namely, the 
omponents of the 4-velo
ityof the �du
ial orbital motion � = nt = !� areu� = L�0 = 
f1; 0; �; 0g; (10)where
 = (1� �2)�1=2; � = v=
;v = (1 + �)nr; ! = 
v=r = n(1 + 3�=2);and � is the proper time. The e1 axis is dire
ted alongthe 
urrent radius ve
tor, the e2 axis is along the or-bital motion velo
ity, and e3 is orthogonal to the orbitalplane, L11 = 1; L22 = 
; L33 = 1:The angular velo
ity ve
tor 
 of rotation of the orbitaltriad ruei = 
i kekhas the only 
omponent
3 = 
12 def= !s = n: (11)The transformation of the �magneti
� matrix [17℄Bij = 4�BklL[k iu0℄L[l ju0℄ � �Bpq"p km"q ln �� Lk iumLl jun � 4�Ekm"m lnL[k (iu0℄Ll j)un (12)leads to the appearan
e of the 
omponentB31 = �(�E33 � �E11) = 3n2� (13)in the orbital frame. The transformation of the �ele
-tri
� matrix is analogous to (12) with the substitutionB ! E; E ! �B(see [17℄). The result isE11 = �2n2(1 + �=2); E22 = n2;E33 = n2(1 + 3�) = !2: (14)We note that the 
omponent E22 parallel to the boostis invariant and the equality E33 = !2 is exa
t.The equation of motion of the gyros
ope mass 
en-ter in the orbital frame is the equation of geodesi
 devi-ation with spin�orbit a

eleration (2) in its right-handside1), ruru �i +Eik �k = ai; (15)1) Equation (15) 
an be obtained by expanding the Papa-petrou equations up to linear terms in the displa
ement � inthe leading approximation (1) of the spin�orbit intera
tion. AtS = 0 ! a = 0, Eq. (15) is redu
ed to the geodesi
 deviationequation.

whereruru � = �� + 2
� _� + _
� � +
� (
� �):The dot denotes the derivative with respe
t to theproper time � . In the post-Newtonian approximation,the spin�orbit for
e applied to the intrinsi
 mass 
enterof the rotating body ismai = �
�1Bik Sk: (16)This formula 
an be obtained, for example, by themat
hed asymptoti
 expansions method [8℄ or dire
tlyfrom the Papapetrou equations with the supplementary
onditions of Pirani or Dixon (see [17℄; distin
tions be-tween the exa
t 
onditions of Pirani and Dixon are alsodis
ussed there).In Eq. (15), Eik is measured on the �du
ial geodesi
u, but Bik in (16) must be 
al
ulated in the frame 
o-moving with the gyros
ope mass 
enter. This �mixing�is admissible in the approximation linear in S (Eq. (1))and linear in � (Eq. (15)) if the displa
ement � is in-du
ed by the spin�orbit intera
tion,� � S; �S � S2 � �2 = 0:On the same ground, we transport the spin ve
tor alongthe �du
ial geodesi
 a

ording to Fermi�Walker,ruS = _S+
� S = 0; (17)_S1 = !sS2; _S2 = �!sS1; _S3 = 0:Parallel transport equation (17) des
ribes the knowngeodeti
 pre
ession (4),S1 = S 
os(!s� + �); S2 = �S sin(!s� + �): (18)For the spin in the �du
ial plane (S3 = 0), equa-tions (15) and (16) of the mass 
enter motion be
ome��1 � 2!s _�2 + (E11 � !2s)�1 = 0;��2 + 2!s _�1 = 0; ) (19)��3 +E33�3 = 3g�S1� : (20)Equations (19) des
ribe the free os
illation with thefrequen
y !0 =pE11 � 3!2s = n(1� 3�=2);indu
ed by the initial perturbation in the �du
ial plane.The di�eren
e between !0 and the orbital frequen
y !661
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aused by the general relativisti
 peri
enter drift ofthe perturbed quasiellipti
 orbit,! � !0 = 3�n:If the initial perturbation in the �du
ial plane is zero,the traje
tory of the gyros
ope proje
tion onto theplane 
oin
ides with the 
ir
ular geodesi
.The equation of for
ed os
illations (20) along theorbital normal,��3 + !2�3 = 3�S� g 
os(!s + �); (21)proves to be quasiresonant due to proximity of the fre-quen
ies of the natural tidal os
illation pE33 = ! andof the 
ompelling for
e !s. The di�eren
e of the fre-quen
ies �! in Eq. (4), whi
h prevents the os
illationfrom be
oming resonan
e, is equal to the geodeti
 pre-
ession 
G. The general solution of Eq. (21),�3 = A 
os � � C 
os �;� = !s� + �; � = !� + �; (22)
ontains the amplitude A given by (5) and two inte-gration 
onstants, C and �. If C = 0, os
illation (22)des
ribes the pre
ession of the gyros
ope orbit tilted bythe angle A=r = S=�relative to the �du
ial plane, with the angular velo
-ity of the geodeti
 pre
ession given by (4) (Figure a).The evolution of the gyros
ope orbital moment witharbitrary C is presented in Figure b. If C = A, purebeating o

urs,�3 = 2A sin � � �2 sin � + �2 : (23)The mass 
enter os
illates along the orbital normal witha variable amplitude modulated by geodeti
 pre
ession(4). The initial 
ondition�3(� = 0) = 0is provided by 
hoosing the 
onstant � = ��,�3 = 2A sin �!2 � sin�! + !s2 � + �� : (24)Within a time � � (�!)�1, the os
illation amplitudegrows at the rate A�! given by (6) and (7). The 
on-dition _�3(� = 0) = 0�xes the initial spin orientation sin� = 0 along theradial dire
tion (see (18)).
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Orbit of the gyros
ope. Orbital moments of the �du
ialgeodesi
 and the gyros
ope are � and �s respe
tively.a � Pre
ession of the gyros
ope orbit at C = 0. b �Variable in
lination of the gyros
ope orbit, the 
onstantC is arbitrary. The orbital moment �s points at the po-sitions marked 0 and 1 when sin((� � �)=2) equals 0and 1 respe
tively. At points 2 and 3, it turns out that
os � = 0The problem of measuring os
illation (24) is 
om-pli
ated by the 
ir
umstan
e that initial perturbationslead to the natural tidal os
illation with the orbitalfrequen
y !2 = E33 (see (21)). Therefore, gyros
opeswith antiparallel spins must be manufa
tured to be
oaxial. In order that the Newtonian harmoni
 os
il-lation due to instrumental error be smaller than therelativisti
 os
illation indu
ed by the spin�orbit inter-a
tion, strong restri
tions on the initial perturbations�3(0) and _�3(0) are required,�3(0)� � � A�! �f ; _�3(0)� !�; (25)where �f is the formation time of the amplitude mea-sured.662
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ope deviation from geodesi
 motion : : :4. THE EFFECT OF FIELD OBLATENESSThe Newtonian oblateness of the sour
e does notlead to for
ed gyros
ope os
illations. The oblatenessa�e
ts the natural tidal os
illation frequen
y ( ~E33)1=2,the orbital frequen
y ~!, and 
onsequently, the angularvelo
ity ~!s of the spin rotation relative to the orbitaltriad. The two frequen
ies, ( ~E33)1=2 and ~!s, enter theequation of motion of the gyros
ope mass 
enter,�~�3 + ~E33 ~�3 = 3�S� g 
os(~!s� + �): (26)Considering only the quadrupole moment J2 (whi
h isgiven by J2 � 1 � 10�3 for the Earth), we obtain for anequatorial orbit thatq ~E33 = ! �1 + 94J2R2r2 � ; (27)~! = ! �1 + 34J2R2r2 � ; (28)~!s = !s�1 + 34J2R2r2 � ; (29)where R is the equatorial radius of the sour
e. Thefrequen
y ( ~E33)1=2 di�ers from the orbital frequen
y ~!be
ause of the Newtonian quadrupole pre
ession 
J ofthe orbital plane,~! �q ~E33 = �32!J2R2r2 = 
J : (30)The gyros
ope axis does not undergo the additionalNewtonian pre
ession,~! � ~!s = 
G:As a result of the di�eren
e in Eq. (30), small denomi-nator (4) is 
hanged as�~! =q ~E33 � ~!s = 
G �
J � �
J �� �!J2� R2r2 : (31)The os
illation modulation period is then given by~T = 2��~!and amplitude (5) be
omes~A = �A 
G
J = S� �J2 r2R2 : (32)The gyros
ope orbital moment ve
tor des
ribes a 
oni
surfa
e with the apex angle 2 ~A=r and the time period

~T . The quadrupole pre
ession period ~T of a near-Earthorbit is 2 months. For the pure beating~�3 = 2 ~A sin �~!2 � sin ��~!s + �~!2 � � + �� (33)within the times
ale � � ~T , the os
illation in
reasespre
isely as in the 
ase of a spheri
ally symmetri
 �eld(see Eq. (6)), ~A�~! = A�! = 32 � S� v: (34)The maximum amplitude formed in time ~T=2 on anear-Earth orbit for a gyros
ope with S=� � 10�9 (seeEq. (7)) is ~A � 10�7 
m; (35)whi
h is several orders as good as the present-day limitof measuring small os
illations.5. CONCLUSIONSThe general relativisti
 quasiresonant spin�orbit in-tera
tion leads to os
illation of the gyros
ope mass
enter relative to the �du
ial geodesi
 along the or-bital normal. The beating amplitude does not in
ludethe speed of light and equals the ratio of the intrinsi
moment of the gyros
ope to its orbital moment. Themodulation frequen
y equals the angular velo
ity of thegeodeti
 pre
ession. The os
illation represents the pre-
ession of the gyros
ope orbital moment. Within ana

eptable time, the os
illation amplitude rea
hes thevalues that are amenable to experimental analysis.Taking the sour
e oblateness into a

ount de
reasesthe beating amplitude and in
reases the modulationfrequen
y by the fa
tor that is equal to the ratio of thequadrupole pre
ession velo
ity to the geodeti
 pre
es-sion velo
ity. The period of the quadrupole pre
essionturns out to be a quite su�
ient time to form a mea-surable amplitude of the os
illation. The tidal a

el-eration, providing the quasiresonant 
hara
ter of theos
illation, leads to strong restri
tions that must beimposed on the initial perturbations in order to distin-guish the relativisti
 spin�orbit os
illation in the ba
k-ground of the Newtonian tidal os
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