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QUASIRESONANT OSCILLATIONS ON A CIRCULAR ORBIT
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The general relativistic spin—orbit interaction gives rise to a quasiresonant oscillation of the gyroscope mass cen-
ter along the orbital normal. The oscillation amplitude appears to be measurable by present-day instruments.
The influence of oblateness of the field source is investigated.

PACS: 04.80.Cc, 04.25.Nx, 95.30.Sf

1. INTRODUCTION

In general relativity, the motion of a spinning test
body (gyroscope) is affected by the spin—orbit inter-
action in two aspects: 1) the influence of the orbital
motion on the orientation of the gyroscope rotation
axes, and 2) the influence of the gyroscope intrinsic
momentum (spin) on its orbit. The first is compar-
atively simple when the parallel spin transport is as-
sumed. It is admissible if the deviation from a geodesic
motion is small. The Fermi-Walker transport along
an appointed world line is also not complicated.
a spherically symmetric field, parallel transport along
a geodesic leads to a precession of the gyroscope axes
known as the geodetic, or de Sitter precession [1]. In
the field of a rotating mass, the gyroscope axes undergo
the Schiff precession [2], to be verified in the Gravity
Probe B experiment (see [3] for details).

In

In this work, the second aspect of the spin—orbit
interaction is considered. The orbital motion of the
gyroscope is a sophisticated problem that has not been
fully resolved untill now even in the post-Newtonian ap-
proximation. There exist several different approaches
with different results in the leading approximation (see,
e.g., [4-10]). The only covariant general relativistic
equations of motion of the spinning test particles are
the well-known Papapetrou equations [5]. This set
of equations is incomplete and requires supplementary
conditions. It is generally accepted that these condi-
tions single out a representative point as the gyroscope
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mass center, but there exist diverse other opinions [9-
12]. In addition, the Papapetrou equations or alterna-
tive ones are very complicated. Their investigation is
usually limited by a general analysis; examination of
the effects is typically restricted by the motion of the
gyroscope with a vertical spin, i.e., with the gyroscope
axes orthogonal to the orbital plane [13]. For example,
it is known that such a gyroscope moves along a cir-
cular orbit with the velocity differing from the one of
a body without spin [14]. In [14], the conclusion was
drawn that the gyroscope with a horizontal spin leaves
the geodesic plane, but an erroneous estimation of this
effect was given. The effect is much larger because of
a quasiresonant character of the spin—orbit interaction,
as was first revealed in [15, 16].

In the present work, the motion of a gyroscope with
the horizontal spin is investigated and the general rel-
ativistic effect of a quasiresonant beating is proposed.
Because of a small denominator, the speed of light is
cancelled in the oscillation amplitude, and the effect
therefore becomes quite sizeable. The obvious physical
interpretation of the effect is given. This effect is inde-
pendent of supplementary conditions and is the same
in the different approaches [4-10]. The description is
significantly simplified by expanding the equations of
motion up to the linear terms in the displacement from
a geodesic. Instead of studying an intricate gyroscope
orbit, the small oscillation is investigated. This oscil-
lation gives sufficient information about the gyroscope
orbit. It is shown that a Newtonian nonsphericity of
the field source causes a specific effacing of the quasires-
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onant beating, retaining the oscillation amplitude mea-
surable.

In what follows, orthonormal bases are used in cal-
culations, Greek indices run from 0 to 3 and Latin in-
dices run from 1 to 3. The signature is (— + ++).

2. THE ESSENCE OF THE EFFECT

The general relativistic spin—orbit acceleration a de-
viating the gyroscope mass center from a geodesic is of
the order of

a~€e—4g,

: 1)

where
_GM

€ =

Ar

is the relativistic small parameter, g = GM /r? is the
Newtonian acceleration due to gravity, S is the spin of
the gyroscope, A is its orbital moment, ¢ is the speed of
light, M is the source mass, and G is the gravitational
constant. The motion of the rotating body mass center
essentially depends (in the leading approximation (1))
on the reference frame in which it is obtained. The
general expression for the spin—orbit acceleration in the
leading post-Newtonian approximation (1) is [7, 17]

GM
F(2-0)F (S (£ x V) — (1+0) (v - #)(S x £)].

a=3 [Sxv+

(2)

The parameter ¢ numbers the different mass centers:
o = 0 corresponds to the Dixon [6] and Pirani [18] con-
ditions (the intrinsic mass center), ¢ = 1 corresponds to
the Corinaldesi-Papapetrou conditions [19] (the mass
center defined in the «rest» frame in which the gyro-
scope moves with the velocity v), and o = 1/2 leads to
the results of Fock [4] and of Refs. [9, 10]. For a circular
orbit of the gyroscope (v-r = 0) with the gyroscope axis
lying in the orbital plane (S - (r x v) = 0), spin—orbit
acceleration (2) is independent of the parameter o,

a3 M

S x v.
mec2r3

(3)
Parallel transport of the spin vector S means that in
the process of revolution, acceleration (3) is directed
along the orbital normal e3 and is periodic in time 7,

a=-eze—gcos(wsT + f).

A

The frequency w; differs from the orbital frequency w
because of the geodetic precession Q¢

3
= —€w.

Aw=w—w; =0 5

(4)
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On the other hand, the frequency of the free tidal oscil-
lation along the orbital normal is equal to the orbital
frequency. This leads to an almost resonant beating
with modulation frequency (4) and the maximum am-
plitude

5,
A

_a
T 2w Aw

(5)

We note the cancellation of the speed of light ¢ in ampli-
tude (5) by the small relativistic denominator Aw given
by Eq. (4). During the time 7 < (Q2%)~!, the quasires-
onant oscillation enhances linearly with the rate

Aszgeﬁv

- (6)

and reaches the values measurable with present-day in-
struments. For example, in the case of a gyroscope with
the dimension 10~ m and the intrinsic rotation period
107" s in a near-Earth orbit r ~ 7 - 10 km, we obtain
the values

€e~10719, S 1079,
A (7)
AAw~ 1077 cm/day.

Parasitic effects of a nonrelativistic origin are mutually
cancelled in the symmetric relative oscillations of two
gyroscopes with antiparallel spins.

3. CALCULATION OF THE NET EFFECT

In the post-Newtonian approximation, the static
spherically symmetric gravitational field is described
by the tetrad

e ={(1—e)cdt, (1 +e€)dr, rsinfdp, —rdd} (8)
that represents the rest observers in the Schwarzschild
metric. In this frame, the «electric» part E and the
«magneticy part B of the Riemann tensor R (see,
e.g., [8, 17]),

— J— mn
Eij = Riojo, 2Bij = Riomne™" j,

are given by

Eyj = n?diag{-2, 1, 1}, B;; =0,

n?=GM/r®. ©)

Transition to the orbital frame e” is performed by the
boost

&t = Lie"
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in the &5 direction. The Lorentz matrix L has the stan-
dard form. Namely, the components of the 4-velocity
of the fiducial orbital motion ¢ = nt = wr are

ut =L =~{1, 0, 3, 0}, (10)
where
= (1_62)71/27 ﬂ = Q)/C,
v = (1+e)nr, w = vv/r=n(l+3¢/2),

and 7 is the proper time. The e; axis is directed along
the current radius vector, the e, axis is along the or-
bital motion velocity, and es is orthogonal to the orbital
plane,

Li=1 Li=~, Li=1

The angular velocity vector € of rotation of the orbital
triad
Vel = Q ef

has the only component
Q3 =09 def Wg = MN. (11)
The transformation of the «magneticy matrix [17]
Bij = 4By L WO Ll ;0% — Bpye? jme? 1 %
x LF ju™ L' ju™ — 4Bpme™ 1o L* O L ju™ (12)
leads to the appearance of the component
B3 = B(Es3 — Eny) = 3% (13)

in the orbital frame. The transformation of the «elec-
tricy matrix is analogous to (12) with the substitution

B—~E, F—-B
(see [17]). The result is

By = —2n%(1+¢€/2),
E33 = 7’L2(1 + 36) = w2.

Eyy = n?,
22 (14)

We note that the component Ess parallel to the boost
is invariant and the equality Es3 = w?

The equation of motion of the gyroscope mass cen-
ter in the orbital frame is the equation of geodesic devi-
ation with spin—orbit acceleration (2) in its right-hand
side!)

is exact.

3

V.V, &+ Ej ¢k =dl, (15)

1) Equation (15) can be obtained by expanding the Papa-
petrou equations up to linear terms in the displacement ¢ in
the leading approximation (1) of the spin-orbit interaction. At
S =0 — a =0, Eq. (15) is reduced to the geodesic deviation
equation.

where
VUVU£:é+29><é+Q><£+Q><(Qxﬁ).

The dot denotes the derivative with respect to the
proper time 7. In the post-Newtonian approximation,
the spin—orbit force applied to the intrinsic mass center
of the rotating body is

ma' = —c¢~'Bi Sk (16)

This formula can be obtained, for example, by the
matched asymptotic expansions method [8] or directly
from the Papapetrou equations with the supplementary
conditions of Pirani or Dixon (see [17]; distinctions be-
tween the exact conditions of Pirani and Dixon are also
discussed there).

In Eq. (15), E;;, is measured on the fiducial geodesic
u, but Bj in (16) must be calculated in the frame co-
moving with the gyroscope mass center. This «mixing»
is admissible in the approximation linear in S (Eq. (1))
and linear in ¢ (Eq. (15)) if the displacement ¢ is in-
duced by the spin—orbit interaction,

E~S, ES~SP~E=0.

On the same ground, we transport the spin vector along
the fiducial geodesic according to Fermi-Walker,

V.S=S+QxS=0, (17)

Sl = wsSQ, SQ = —wssl, Sg =0.

Parallel transport equation (17) describes the known
geodetic precession (4),
S1 = Scos(wsT 4+ B), Sy =-—=Ssin(wst + ). (18)

For the spin in the fiducial plane (S3 = 0), equa-
tions (15) and (16) of the mass center motion become

%:1 - 2ws§:2 + (B —w?)& =0, } (19)
& +2w& = 0,

) S,

&+ E3383 = 3967 . (20)

Equations (19) describe the free oscillation with the
frequency

w'=/E11 — 3w? =n(l-3¢/2),

induced by the initial perturbation in the fiducial plane.
The difference between w’ and the orbital frequency w
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is caused by the general relativistic pericenter drift of
the perturbed quasielliptic orbit,

w—w' = 3en.

If the initial perturbation in the fiducial plane is zero,
the trajectory of the gyroscope projection onto the
plane coincides with the circular geodesic.
The equation of forced oscillations (20) along the

orbital normal,

; ) S

&3+ w3 = SGXg cos(ws + ), (21)
proves to be quasiresonant due to proximity of the fre-
quencies of the natural tidal oscillation v/F33 = w and
of the compelling force ws. The difference of the fre-
quencies Aw in Eq. (4), which prevents the oscillation
from becoming resonance, is equal to the geodetic pre-
cession Q. The general solution of Eq. (21)

3

& = Acos( — Ccosn,

C :wsT‘I'B', (22)

n=wTt+a,

contains the amplitude A given by (5) and two inte-
gration constants, C' and . If C' = 0, oscillation (22)
describes the precession of the gyroscope orbit tilted by
the angle

Afr=S/A

relative to the fiducial plane, with the angular veloc-
ity of the geodetic precession given by (4) (Figure a).
The evolution of the gyroscope orbital moment with
arbitrary C' is presented in Figure b. If C = A, pure
beating occurs,

n+§

&3 = 2Asin 5

sin

n—C
5 (23)

The mass center oscillates along the orbital normal with
a variable amplitude modulated by geodetic precession
(4). The initial condition

&(r=0)=0
is provided by choosing the constant a = —3,

W+ Wwg
2

A
53:2A$n7;7$n< T+ﬂ>. (24)
Within a time 7 < (Aw)~!, the oscillation amplitude
grows at the rate A Aw given by (6) and (7). The con-
dition .

53 (T = 0) =0

fixes the initial spin orientation sin = 0 along the
radial direction (see (18)).
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S(r 4 7/Q%)

Orbit of the gyroscope. Orbital moments of the fiducial
geodesic and the gyroscope are A and A; respectively.
a — Precession of the gyroscope orbit at C = 0. b —
Variable inclination of the gyroscope orbit, the constant
C'is arbitrary. The orbital moment A\ points at the po-
sitions marked 0 and 1 when sin((n — ¢)/2) equals 0
and 1 respectively. At points 2 and 3, it turns out that
cosn =0

The problem of measuring oscillation (24) is com-
plicated by the circumstance that initial perturbations
lead to the natural tidal oscillation with the orbital
frequency w? = Fs3 (see (21)). Therefore, gyroscopes
with antiparallel spins must be manufactured to be
coaxial. In order that the Newtonian harmonic oscil-
lation due to instrumental error be smaller than the
relativistic oscillation induced by the spin—orbit inter-
action, strong restrictions on the initial perturbations
£3(0) and 53(0) are required,

&0) <&~ AAwTy, ég(O)<<0J§, (25)

where 77 is the formation time of the amplitude mea-
sured.
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4. THE EFFECT OF FIELD OBLATENESS

The Newtonian oblateness of the source does not
lead to forced gyroscope oscillations. The oblateness
affects the natural tidal oscillation frequency (Fsg)'/2,
the orbital frequency @, and consequently, the angular
velocity @ of the spin rotation relative to the orbital
triad. The two frequencies, (E33)'/? and @, enter the
equation of motion of the gyroscope mass center,

(26)

§g cos(wsT + ).

53 + E33és = 36)\

Considering only the quadrupole moment .J» (which is
given by Jo & 1-1072 for the Earth), we obtain for an
equatorial orbit that

~ 9  R?
E33 =W < 4J2 ) ) ) (27)
. 3 R?
w:w< 4J22), (28)
- 3. R?
Ws = Wg < 4J2 ) 5 (29)
where R is the equatorial radius of the source. The

frequency (Es3)'/? differs from the orbital frequency @
because of the Newtonian quadrupole precession Q7 of
the orbital plane,

3 R?

——wJ
2w2r

Fs3 = =07, (30)
The gyroscope axis does not undergo the additional

Newtonian precession,
@ -5 = 0°.

As a result of the difference in Eq. (30), small denomi-
nator (4) is changed as

A =1\/Es3 -0, =0 -/ »~

-0 ~
Jg R?

~ Aw
2

(31)

The oscillation modulation period is then given by

~ 2m
7=
AD
and amplitude (5) becomes
. Q¢ S e r?
A= — === = 2
Q7 A Jo R? (32)

The gyroscope orbital moment vector describes a conic
surface with the apex angle 2A4/r and the time period
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T. The quadrupole precession period T of a near-Earth
orbit is 2 months. For the pure beating

)
Ws 5

within the timescale 7 < T, the oscillation increases
precisely as in the case of a spherically symmetric field
(see Eq. (6)),

x « A
&3 = 2A sin Twr sin

) T+5] (33)

N 3 S

AAO =AAw=—€c—w. 4
@ w=geq (34)

The maximum amplitude formed in time 7/2 on a

near-Earth orbit for a gyroscope with S/\ ~ 1077 (see
Eq. (7)) is

A~10"" em (35)
which is several orders as good as the present-day limit
of measuring small oscillations.

5. CONCLUSIONS

The general relativistic quasiresonant spin—orbit in-
teraction leads to oscillation of the gyroscope mass
center relative to the fiducial geodesic along the or-
bital normal. The beating amplitude does not include
the speed of light and equals the ratio of the intrinsic
moment of the gyroscope to its orbital moment. The
modulation frequency equals the angular velocity of the
geodetic precession. The oscillation represents the pre-
cession of the gyroscope orbital moment. Within an
acceptable time, the oscillation amplitude reaches the
values that are amenable to experimental analysis.

Taking the source oblateness into account decreases
the beating amplitude and increases the modulation
frequency by the factor that is equal to the ratio of the
quadrupole precession velocity to the geodetic preces-
sion velocity. The period of the quadrupole precession
turns out to be a quite sufficient time to form a mea-
surable amplitude of the oscillation. The tidal accel-
eration, providing the quasiresonant character of the
oscillation, leads to strong restrictions that must be
imposed on the initial perturbations in order to distin-
guish the relativistic spin—orbit oscillation in the back-
ground of the Newtonian tidal oscillation.
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