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STABILITY OF NEGATIVE IONS NEAR THE SURFACE OF A SOLIDD. I. Zhukhovitskii *Institute of High Temperatures125412, Mosow, RussiaW. F. Shmidt, E. IllenbergerInstitut für Physikalishe und Theoretishe Chemie, Freie Universität BerlinD-14195, Berlin, GermanySubmitted 4 February 2003Stationary states of moleular negative ions (anions) near the surfae of a solid are investigated. The lone ele-tron is assumed to interat with a diatomi moleule and the surfae of the solid. The energies of eletron levelsare determined by solving the 2D Shrödinger equation. It is shown that its stable solutions exist at distanesfrom the surfae greater than some ritial distane, otherwise the eletron is detahed from the anion. In thease of attration between the eletron and the solid, the interation potential between the anion and the solidappears to have the Lennard�Jones form and the ion is separated from the surfae by some equilibrium distane.PACS: 34.50.Dy, 32.10.Hq, 31.15.Fx1. INTRODUCTIONThe interation of eletronegative moleules andnegative moleular ions (anions) with surfaes of on-densed state is extensively studied within the lastdeades. One of the problems most interesting to us isthe formation and evolution of negative ion resonanes(NIRs) on surfaes [1�4℄. As in the gas phase, NIRsan also be generated at surfaes by the attahment offree eletrons to absorbed moleules at a de�ned en-ergy [1�3℄. It has been reognized that the photohem-ial behavior of adsorbed moleules an e�etively begoverned by the photoindued eletron transfer fromthe substrate to the adsorbed moleule [5�7℄. In somesystems, NIRs thus formed are onsidered as the driv-ing fore for the respetive photohemial reation.The formation and evolution of NIRs are usuallyappreiably modi�ed when passing from the gas phaseto the surfae [8; 9℄. This onerns the energy of thetemporary negative ion, its lifetime (with respet tothe eletron loss and dissoiation), and the branhingratios between the dissoiative attahment hannels.Some eletron sattering experiments have beenperformed on moleules deposited on old noble gassubstrates (solids). Here, a noble gas layer of vari-*E-mail: dmrzh�or.ru

able thikness an be used to study the in�uene ofthe metalli substrate on the partiular proess, e.g.,the (dissoiative) attahment ross setion or the en-ergy shift of the negative ion resonane [8�10℄. In addi-tion, substrate-indued eletron transfer reations viathe initial formation of an eletron exiton preursor inthe noble gas layer ould be observed [3; 13℄.The stability of moleular negative ions at or nearthe surfae is an essential point in the investigation oflow-energy eletron-driven reations on adsorbed andondensed moleules [14℄. In addition to its importanefrom the standpoint of basi siene, the stability ofnegatively harged partiles at or near a solid surfaeis an important issue in many tehnologial proesseslike photoopying, laser printing, et.In [15℄, it was shown that the interation of a nega-tive ion with a nonpolar liquid results in a onsiderableshift of its photodetahment threshold. Apparently, no-tieable shifts an be expeted in the interation of ananion and the surfae of a solid. In [16�18℄, the dyna-mis of the proesses of harge transfer and produtionof moleular anions in the viinity of a surfae wereinvestigated. It was reognized that an aurate al-ulation of eletron energies requires solving the 2DShrödinger equation, beause the spherial symmetryfor the lone eletron is broken at a short distane from670



ÆÝÒÔ, òîì 124, âûï. 3 (9), 2003 Stability of negative ions : : :the surfae [18℄. Consequently, on the basis of a one-dimensional perturbation theory, su�iently auratevalues of the eletron energy annot be found at shortdistanes from the surfae beause higher-order termsrequire nonspherial orretions to the wave funtion.The objetive of this paper is to alulate the sta-tionary state energy of the lone eletron of a moleularanion near the surfae of a solid by solving the station-ary 2D Shrödinger equation. The interation of thelone eletron with the diatomi moleule is desribedby a polarization pseudopotential; the interation withthe solid is haraterized by a single parameter, thee�etive energy of the eletron inside the solid, V0.In this formulation, the problem has a two-dimensional axial symmetry with the axis perpen-diular to the surfae, and we must therefore solvethe 2D Shrödinger equation. Solutions of the mul-tidimensional Shrödinger equation are known in theases where spatial variables an be separated (as inthe theory of the Stark e�et). In the ase of unsepa-rable variables, due to the omplexity of the generalmathematial formulation, no regular methods, eitheranalyti or numerial, have been developed up to date.As a rule, the multidimensional Shrödinger equationis redued to a quasi-one-dimensional one, spei� forthe problem under onsideration. There are severalapproahes to the treatment of multidimensional equa-tions. Among them, the split-step Fourier sheme [19℄was used in [20℄ for the investigation of white noisein the 2D nonlinear Shrödinger equation. The 3Dwave paket propagation method was used in [21℄to desribe the propagation of an eletron near thesurfae of a solid.We propose a solution of this problem assumingthat the eletron state is in fat a superposition ofstates with di�erent values of the angular momentumin the orresponding e�etive spherially symmetripotentials. The state with zero angular momentumis assumed to dominate. An exat solution of theShrödinger equations is then sought as a linear om-bination of the wave funtions orresponding to dif-ferent values l of the angular momentum. Thus, the2D Shrödinger equation is redued to an in�nite setof one-dimensional equations for the radial wave fun-tions. It an be shown that its solution an be approx-imated to a very good auray by the trunation ofthe in�nite set to two equations for l = 0 (zero approx-imation) and l = 1 (�rst approximation). The latteris easily solved numerially by the iteration method.This allows alulating the lone eletron energy as afuntion of the parameters haraterizing its total in-teration potential.

Two ases must be distinguished, the repulsive sur-fae (potential barrier) and the attrative surfae (po-tential well). Repulsion of the eletron from the surfaeauses pure repulsion of the anion from the surfae;there is the minimum distane at whih a stationarystate is possible. At shorter distanes, nonstationarystates emerge, whih prove to have the deay times tooshort to be deteted experimentally. Thus, detahmentof the eletron from a diatomi moleule ours, andthe eletron is removed into vauum.In the ase of an attrative surfae, the existene ofan eletron stationary state depends on the values ofpotential parameters. If the potential well in a solid istoo deep, no stationary state is possible, and the ele-tron is detahed from the anion at the distane wherethe anion deay time beomes shorter than its residenetime near the surfae of the solid. If the well depth ismoderate, there is a �nite range with some minimumand maximum distanes from the surfae where a sta-tionary solution exists. If the potential well is shallow,there is only the minimum distane, as in the ase ofa potential barrier. In the ase of surfae attration,detahment of the lone eletron implies its tunnelinginto the potential well of a solid. If stationary statesexist, the urve of interation between the anion andthe surfae of the solid has the form harateristi ofthe interatomi interation (the Lennard�Jones poten-tial). As is known, this potential has an equilibriumdistane. Hene, a moleule-like equilibrium state ofthe anion near the surfae emerges. This makes it pos-sible to predit not only the shift of the eletron level(of the eletron photodetahment threshold), but alsothe distane from the surfae at whih the anion anbe found.This paper is organized as follows. In Se. 2,the interation potential for the lone eletron and theShrödinger equation to be solved are written; in Se. 3,its asymptotially exat solution is found and the �rst-order approximation to this solution is onsidered. Po-tential urves for anions near the surfae are alulatedin Se. 4; the results obtained are analyzed in Se. 5.2. PROBLEM FORMULATIONWe onsider a system onsisting of a highly polar-izable diatomi moleule, the surfae of a solid, and alone eletron. The interations between the moleuleand the surfae are assumed to be negligibly small, andwe an therefore take only the interations between thelone eletron and moleule, and between the eletron671



D. I. Zhukhovitskii, W. F. Shmidt, E. Illenberger ÆÝÒÔ, òîì 124, âûï. 3 (9), 2003and the surfae into aount. We let Vp and Vs denotethe respetive interation potentials.We introdue the spherial oordinate system withthe origin at the point of loation of the moleule andwith the polar axis perpendiular to the surfae. Thepolar axis is direted toward the surfae. The orre-sponding spherial oordinates are denoted by r and �.The distane between the moleule and the surfae isz0. The half-spae r� < z0 (� = os �) is the vauumand the other half-spae r� � z0 is oupied by thesolid; the surfae is de�ned by the equation r� = z0.At su�iently large distanes from the moleule in thevauum, r � r, where r is the moleule hard-ore ra-dius, the lone eletron polarizes ore eletrons of themoleule, and the interation an be desribed by thepolarization potentialVp = ��r�4;where � is the moleule polarization in the units of a30(and a0 is the Bohr radius) [22℄; the length and energyare measured in the units of a0 and in Ry, respetively(in ontrast to the atomi units, we measure the en-ergy in Ry). At small distanes r < r, due to thePauli priniple, a short-range repulsion ours, and wean therefore setVp = +1 at r < r(see [22℄). Thus, we use a spherially symmetri pseu-dopotential to desribe a lone eletron. Beause a realdiatomi moleule is not spherially symmetri, this as-sumption is made for simpliity. We also assume thatthe eletron harge is sreened inside the solid and doesnot therefore interat with the moleule, whih allowsus to set Vp = 0 for r� � z0.The lone eletron polarizes the surfae of the solid,and the arising eletrostati image fore is responsiblefor the interation between the eletron and the sur-fae at large distanes. At short distanes and insidethe solid, the eletron experienes attration aused bypolarization of surrounding moleules by its harge andthe Pauli repulsion. For simpliity, we do not take thedetails of this interation into aount and use its sim-plest form instead.We note that the harateristi length of variationof the image fore potential is given by several a0,whereas the harateristi length of the lone eletronloalization (the width of the eletron wave funtion)is about 10a0. Obviously, Vs must be uniform insidethe solid. This enables approximating Vs by a simple�step� potential Vs = 0 for r� < z0 and Vs = V0 forr� � z0. The interation between the eletron and the
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Fig. 1. Interation potential for the attrative surfaealong the polar axissurfae is therefore allowed by a single parameter V0.This parameter haraterizes the interation as a wholeand is essentially an e�etive one. Its sign depends onthe ratio between the strengths of the attrative ele-trostati image fore outside the solid and the Paulirepulsion inside it. This ratio is de�ned by onstantsharaterizing the moleule and the solid. In some ases(e.g., the surfae of a metal), the image fore domi-nates, and V0 < 0. In this ase, a potential well ours,whih auses attration, at large distanes at least. IfV0 > 0, the solid is represented by a potential barrier,and the net e�et is repulsion.Although the details of the potential Vs an be in-luded (as, e.g., in Ref. [21℄), this an onsiderably om-pliate the analysis of the results obtained and mask thenature of the e�ets that we want to demonstrate. Atthe same time, any ompliated form of the eletron�surfae interation potential an be inluded in our for-malism if neessary.Thus, the total eletron interation potentialU = Vp + Vsis given byU(r; �) =8><>: +1; r < r;��r�4; �r � �r < z0;V0; �r � z0: (1)It is shown in Fig. 1. Beause potential (1) has theaxial symmetry, the eletron energy is found from the2D stationary Shrödinger equationĤ = Es ; (2)672



ÆÝÒÔ, òîì 124, âûï. 3 (9), 2003 Stability of negative ions : : :where  (r; �) is the eletron wave funtion and Es isthe energy. In the spherial oordinates, the Hamilto-nian Ĥ is given byĤ = � 1r2 ��r �r2 ��r��� 1r2 ��1� �2� �2��2 � 2� ����+ U(r; �): (3)The boundary onditions for the wave funtion are (r; �) =  (1; �) = 0: (4)3. THE METHOD OF SOLUTIONTo solve Eq. (2), we have to additionally assumethat its solution has the same symmetry as the poten-tial U(r; �) in Eq. (1), i.e., the axial symmetry. Thisis orret for the ground state, whih is a single statefor most of diatomi anions in the approximation of thesimpli�ed eletron�moleule interation potential Vp.A solution of Eq. (2) an be represented as an ex-pansion in any omplete set of funtions of �. Similarlyto the quantum sattering theory, we use the Legen-dre polynomials Pl(�). But in ontrast to sattering,we seek a stationary bound state loalized in a �nitespatial region with the real energy Es less than theminimum value of potential (1) at r ! 1. Thus, wean represent the solution as a series in the Legendrepolynomials  (r; �) = 1r 1Xl=0 'l(r)Pl(�): (5)The wave funtion  is normalized to unity,2� 1Z0 r2dr 1Z�1 j (r; �)j2 d� = 1: (6)It follows from the disussion above and ondition (6)that 'l(r) are real funtions. Substituting (5) in (6)and realling the normalization and orthogonality on-dition for the Legendre polynomials,1Z�1 P 2l (�) d� = 22l+ 1 ; 1Z�1 Pl(�)Pk(�) d� = 0; l 6= k;we obtain the normalization ondition for the funtions'l(r), 4� 1Xl=0 24 12l + 1 1Z0 '2l (r) dr35 = 1: (7)

Beause the Legendre polynomials are eigenfuntionsof the square angular momentum operator,��2 � 1� d2Pld�2 + 2� dPld� = l(l + 1)Pl; (8)substitution of expansion (5) in Shrödinger equa-tion (2) yields� 1Xk=0Pk d2'kdr2 + 1r2 1Xk=0 k(k + 1)Pk'k ++ U 1Xk=0Pk'k = Es 1Xk=0Pk'k: (9)We multiply both sides of Eq. (9) with Pl(�) and inte-grate over � from �1 to 1 to derived2'ldr2 + �Es � l(l + 1)r2 �'l � 1Xk=0 �Vlk'k = 0; (10)where the matrix elements�Vlk(r) = �l+ 12� 1Z�1 U(r; �)Pl(�)Pk(�) d� (11)are the e�etive spherially symmetri potentials; theyare related by the ratio�Vlk = 2l+ 12k + 1 �Vkl: (12)The boundary onditions for the set of equations (10)are 'l(r) = 'l(1) = 0: (13)Thus, we have redued the 2D Shrödinger equation toan in�nite set of ordinary di�erential equations (10),eah of whih orresponds to a ertain value of the an-gular momentum.Solution of Eqs. (10) makes sense only if series (5)onverges fast. This means that some state must dom-inate superposition (5). Beause the inrease of thehard-ore parameter r of the potential Vp by few perent leads to the disappearane of the bound state ofan isolated anion, we an assume that if the lone ele-tron is loalized on the moleule, the deviation of itswave funtion from the spherially symmetri form ismoderate. Hene, the s-state (l = 0) must dominate,and we an trunate the set of equations (10) at some�nite value of l. The error involved in this trunationan easily be estimated by inlusion of a higher-orderequation. Thus, (10) an be regarded as a key to obtainan asymptotially exat solution.13 ÆÝÒÔ, âûï. 3 (9) 673



D. I. Zhukhovitskii, W. F. Shmidt, E. Illenberger ÆÝÒÔ, òîì 124, âûï. 3 (9), 2003In the zero approximation (l = 0), Eqs. (10) areredued to the one-dimensional Shrödinger equationfor the radial wave funtion '0(r)=r in the spheriallyaveraged interation potential �V00(r) in Eq. (1), d2'0dr2 + [Es � �V00(r)℄'0 = 0; (14)where
�V00(r) = 12 1Z�1 U(r; �) d� = Vp(r) + 12 1Z�1 Vs(r; �) d� =8>>>><>>>>: +1; r < r;��r�4; rh � r < z0;V02 �1� z0r �� �2r4 �1 + z0r � ; r � z0: (15)In the zero approximation, nonspheriity is obviouslynot allowed. Far from the surfae, the lone eletronwave funtion an be approximated by that of an iso-lated anion '1(r)=r. By de�nition,d2'1dr2 + [E0 � Vp(r)℄'1 = 0; (16)where E0 = limz0!1Esis the eletron energy of an isolated anion (�E0 is theeletron a�nity of an isolated moleule), and we antherefore obtain the eletron energy from (14) asEs � E0 + 2� 1Z�1 '21(r)Vs(r; �) d�:This oinides exatly with the result of the perturba-tion theory if Vs is treated as a small perturbation.At the surfae (small distane z0), Vs is not small,and the �rst order of the perturbation theory does not

therefore provide high auray. Calulation of higher-order orretions of the perturbation theory is impos-sible, beause the nonspheriity e�et is not inluded.But we an handle small distanes z0 even in the �rstapproximation on the basis of the set of equations (10).In this approximation, (10) is trunated to two equa-tions for l = 0 and 1,d2'0dr2 + [Es � �V00(r)℄'0 � �V01(r)'1 = 0; (17)d2'1dr2 + �Es � 2r2 � �V11(r)�'1 � 3 �V01(r)'0 = 0; (18)where relation (12) is used,�V01(r) = 12 1Z�1 U(r; �)� d� == 8>><>>: 0; r < z0;�1� z0r2�� �4r4 + V04 � ; r � z0; (19)
�V11(r) = 32 1Z�1 U(r; �)�2 d� = 8>>><>>>: +1; r < r;��r�4; rh � r < z0;V02 �1� z30r3�� �2r4 �1 + z30r3� ; r � z0; (20)and the wave funtion is the sum of two terms (r; �) � 1r ['0(r) + �'1(r)℄ (21)normalized by the ondition4� 1Z0 �'20(r) + '21(r)=3� dr = 1:We an estimate the auray of this approximation by

omparison of eletron energy E(0)s obtained from (14)with that alulated using (17) and (18), E(1)s .The set of equations (17) and (18) an be solvednumerially using the iteration method. First, we set'1(r) � 0;and (17) beomes a one-dimensional equation. Thisequation is solved with the boundary onditions674



ÆÝÒÔ, òîì 124, âûï. 3 (9), 2003 Stability of negative ions : : :'0(r) = 0; �d'0dr �r=r = C0;where C0 is an arbitrary number; the parameter Esappearing in the equation is adjusted to satisfy theboundary ondition '0(1) = 0:The obtained value of Es and the alulated funtion'0(r) are then substituted in Eq. (18), whih is solvedwith the boundary onditions'1(r) = 0; �d'1dr �r=r = C1:The value of C1 is then varied to satisfy the boundaryondition '1(1) = 0:For the next iteration, the alulated funtion '1(r)is substituted in Eq. (17), et. This iteration proe-dure terminates when the di�erene in the values ofEs obtained from suessive iterations, E(0)s � E(1)s , issu�iently small. Obviously, the proedure desribedan also be used for a set ontaining more than twoequations.4. CALCULATION RESULTSFor numerial alulations, we onsidered twomoleules, O2 with a moderate polarizability andhighly polarizable Br2. The moleule O2 was seletedbeause it is widely used in experiments. In addition,in spite of the obvious internal asymmetry, the exesseletron an be approximately treated as a lone one,whih allows solving the one-eletron problem. Br2 isan example of a dimer with a very high polarizabil-ity. Polarizabilities � and eletron a�nities �E0 forthese moleules [23℄ are listed in the Table. The valuesof hard-ore radii r of the potential Vp were adjustedto �t the orresponding experimental eletron a�nitiesby the values of �E0 obtained from the ground statesolution of Eq. (16).The set of equations (17) and (18) was solved nu-merially using the proedure disussed in the previoussetion for di�erent values of the interation potentialparameter V0. We �rst onsider positive V0. Figure 2illustrates the solution of Eqs. (17) and (18) for Br�2at V0 = 1 eV and z0 = 2a0. In this �gure, wave fun-tion (21) is plotted in the XZ plane (Y = 0) of theCartesian oordinate system whose Z axis is parallel tothe polar axis of the spherial oordinate system used
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Fig. 2. Wave funtion for Br�2 in the XZ plane (re-pulsive surfae, V0 = 1 eV). The plane Z = 227(z0 = 2a0) indiates the loation of the surfae of thesolidin the foregoing. The spherial oordinates are relatedto the Cartesian ones as follows:r =px2 + z2; � = z=r;x = 0:075(X � 200); z = 0:075(Z � 200):It is seen in Fig. 2 that the front of the wave funtionis lowered near the repulsive surfae. This is indiativeof a onsiderable repulsion of the wave funtion fromthe surfae. The ratioE(1)s �E(0)sE0 = 0:17is moderate, however.The lone eletron energy as a funtion of the dis-tane from the solid surfae is shown in Fig. 3. It is seenthat the results are similar for O�2 and Br�2 , althoughthe di�erenes in polarizabilities and eletron a�nitiesfor these moleules are about an order of magnitude.Eah urve drops abruptly at some small distane andE0 vanishes, whih is indiative of the existene of theminimum distane at whih a stable state of the ani-on is possible (at this distane, Es = 0). At shorterdistanes, the eletron is detahed from the anion andis removed to in�nity in the vauum, whih means theeletron detahment. Fast vanishing of the e�et of thesurfae as the anion moves away from the surfae is also675 13*
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Fig. 3. Lone eletron energy as a funtion of thedistane from a repulsive surfae. 1 � Br�2 forV0 = 0:5 eV; 2 � Br�2 for V0 = 1 eV; 3 � O�2 forV0 = 0:5 eV; 4 � O�2 for V0 = 1 eVseen in this �gure. We note that the eletron energyat a short distane from the surfae annot be alu-lated on the basis of perturbation theory; at moderatedistanes, the results of the latter are not of interestbeause of this vanishing.In the ase of an attrative surfae, the form of thewave funtion is qualitatively similar to the previousase, but the front of the wave funtion is raised nearthe attrative surfae, whih is indiative of the attra-tion of the wave funtion. The potential urve Es(z0)is more ompliated, however. In Fig. 4, the relativeenergy shifts are shown for the values of V0 that o-inide with the orresponding energies E0 of isolatedanions. For both moleules, potential urves have theform of the Lennard�Jones interatomi potential with ashort-range repulsion and vanishing long-range attra-tion. This behavior of a potential urve holds for anynegative value of V0. The reason of suh behavior isas follows. At a large separation z0 from the surfae,
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tanes, and the region of possible bound states is �-nite, zmin < z0 < zmax, where zmin and zmax aretwo roots of the equation Es(z0) = V0. As V0 in-reases, zmin ! zmax, and at some value V0 = Vmin,zmin = zmax. Obviously, this ase orresponds to thebottom of the potential urve Es(z0). At jV0j > jVminj,no stable state is realized; in this ase, only eletron de-tahment is possible.We note that independently of z0 and the sign ofV0, the interation with a surfae leads to the dereaseof anion stability, jEs(Vmin)�Vminj < jE0j due to bro-ken spherial symmetry of the lone eletron state in anisolated anion.If we neglet the interation between the moleuleand the surfae, whih is most likely a hard-ore at-tration at small distanes, then the energy Es �E0 isthat of the anion as a whole. The ondition�dEsdz0 �z=zeq = 0de�nes some distane zeq at whih the energy Es(z0)reahes the minimum and an equilibrium bound stateof the anion at solid surfae is realized. We note thatthe interation between the moleule and the metal sur-fae may notieably ontribute to the total energy ofthe anion, espeially in the region of short distanes z0,but we an expet that this does not hange the situ-ation qualitatively. Equilibrium distanes zeq and theorresponding equilibrium state energies Eeq = Es(zeq)are shown in Figs. 5 and 6 as funtions of the potentialwell depth V0. It is seen in Fig. 5 that the equilibriumdistane inreases sharply as V0 ! 0, and the urves forO�2 and Br�2 almost oinide. The quantities jEeq(V0)jinrease with jV0j until the ondition Es = V0 (dashedurve in Fig. 6) is satis�ed. In Fig. 6, the intersetionpoints of solid urves with the dashed urve indiatethe maximum well depths at whih bound states anour. For O�2 , the maximum value of V0ÆE0 is 1:04;for Br�2 , it is 1:12.5. DISCUSSIONIn this paper, we have solved the 2D Shrödingerequation for the lone eletron interating with a di-atomi moleule and the surfae of a solid. Our solu-tion allows alulating eletron energies of an anion atthe surfae. In the ase of an attrative surfae, wepredit moleule-like bound states of the anion, whihare realized if the potential well depth jV0j harater-izing the interation with the surfae does not exeedsome threshold value. We have determined this value,677



D. I. Zhukhovitskii, W. F. Shmidt, E. Illenberger ÆÝÒÔ, òîì 124, âûï. 3 (9), 2003above whih the eletron detahment ours and thelone eletron is removed either into the vauum or intothe solid.Moleule-like states of the system under onside-ration an exist only if the vibrational energy quantum~!v is muh smaller than the well depth E0 �Es. Forthe potential urves shown in Fig. 4, the estimate~!v � ~zeq � zmin r2(E0 �Eeq)M ;is valid, where M is the mass of a diatomi moleule.Beause the ratiom=M is small, the resulting ondition4mM a20(zeq � zmin)�2Ry(E0 �Eeq)�1 � 1is satis�ed for both Br�2 and O�2 (the produt in theleft-hand side is of the order 10�3 for Br�2 and 10�2 forO�2 ). We note that similar phenomenon of levitationabove the surfae is known for liquid helium [24℄.The objetive of introduing potential (1) was toqualitatively inlude all possible ases of the intera-tion between the lone eletron and the solid. For somepartiular anion and a surfae, the interation potentialmay not be redued to its simplest form (1). A rigor-ous answer to the question onerning the existene ofan equilibrium state for given experimental onditionsimplies the alulation of a real interation potentialbetween the lone eletron and the surfae. This om-pliated problem (see, e.g., [21℄) requires additional in-vestigation.It is natural to disuss the lifetimes of transient an-ion states near the surfae. The lifetime of an anionabove the eletron detahment threshold an be esti-mated as the time of tunneling under the barrier withthe height �E0 and width z0,� � 2�~E0 exp z0a0sE0Ry ! :For typial values used in our alulations, � reahesthe minimum time neessary for experimental detetionof an anion (10�3 s) at z0 > 60a0, i.e., at mesosopidistanes, where its interation with the surfae is neg-ligibly small. Therefore, it is impossible to observe ananion in the instability region: the eletron detahmentis very fast.It is lear that the higher the value of l is at whihthe set of equations (10) is trunated, the higher theauray of the alulated eletron energy. Beause (5)is an exat solution of (10), the sequene of approx-imations E(0)s , E(1)s , E(2)s , : : : onverges to the exat

energy Es. From the standpoint of the variational prin-iple, the higher the approximation order, the loser the�trial� wave funtion (k)(r; �) = r�1 kXl=0 'l(r)Pl(�)is to the exat solution for whih the energy reahesthe minimum. Therefore,Es � E(k+1)s � E(k)s ;and the auray of E(k+1)s an be roughly estimatedas jE(k+1)s � E(k)s j. In our alulations, this au-ray depends primarily on the relative energy shift(Es �E0)=E0, and the auray is better than 4% foran attrative surfae. If neessary, higher values of l anbe inluded. The iteration method disussed above analso be applied for the solution of the orresponding setof equations.It is interesting to note that for the trunated setof equations (17) and (18) for an attrative potential,a stable solution disappears at some threshold value ofEs somewhat higher than V0; that is, the limit on-dition Es = V0 does not hold automatially. However,the threshold value of Es onverges to V0 as l inreases.Thus, for O�2 in the zero approximation, this thresh-old value is Es � 1:4 eV; in the �rst approximation,Es � 0:8 eV; the exat value is 0.52 eV.One an expet that the auray of the method de-sribed in this paper is very high and that it is ompat-ible with the auray of spetrosopi measurements.Thus, alulation results ould be diretly omparedwith, e.g., measurements of eletron photodetahmentthreshold shifts.We now disuss possible experimental realization ofthe e�ets proposed in this paper. Layers of noble gasesare frequently used as simple model surfaes to studythe e�et of a ondensed environment [25℄. In a typ-ial experiment, O�2 anions are deposited on a metalsurfae overed with approximately 10 monolayers of anoble gas (krypton). Beause the energy of the ele-tron inside the solid (relative to the vauum) an rangefrom �2 to �1 eV, the ase of attration would be re-alized in suh an experiment. The ase of repulsionould our when the metal is oated with a polyethy-lene �lm. If this �lm is su�iently thik, the energyof the eletron inside the solid an vary from 0:5 to1 eV. The problems of possible experimental investiga-tion are also generally related to the photohemistry ofadsorbed moleules via phototransfer of substrate ele-trons to the adsorbate moleules. Suh problems anbe treated experimentally by harging experiments.678
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