ЭКСТРАПОЛЯЦИЯ ТРИПЛЕТНЫХ ФАЗ ПРОТОН-ПРОТОННОГО РАССЕЯНИЯ В ОБЛАСТЬ НИЗКИХ ЭНЕРГИЙ

В. В. Пупышев*

Объединенный институт ядерных исследований 141980, Дубна, Московская обл., Россия

Поступила в редакцию 2 июня 2003 г.

Показано, что для корректной экстраполяции триплетных фаз *pp*-рассеяния в область энергий ниже нескольких МэВ необходимо наряду с кулоновским и ядерным взаимодействиями учитывать взаимодействия магнитного момента протона с кулоновским полем и магнитным моментом другого протона. Предложен простой способ такой экстраполяции.

PACS: 03.65.Nk, 13.75.Gs, 13.40.Ks

1. ВВЕДЕНИЕ

Настоящая работа посвящается семидесятилетнему юбилею профессора В. Б. Беляева и является продолжением выполненных его учениками исследований [1–8] низкоэнергетических разложений для систем нескольких квантовых частиц.

Знание энергетической зависимости характеристик рассеяния (фаз δ , амплитуд f, сечений $d\sigma$, анализирующей способности A_y и др.) в пределе низких энергий столкновения ($E \rightarrow 0$) позволяет решить две важные задачи: прикладную задачу экстраполяции этих характеристик в область низких энергий, недоступных для прямого экспериментального исследования, и обратную задачу, цель которой — восстановить взаимодействия по известным экспериментальным данным. Поэтому одной из основных проблем теории рассеяния является исследование низкоэнергетического поведения характеристик рассеяния и вывод их явных низкоэнергетических разложений.

Как известно [9, 10], в пределе низких энергий существенное влияние на энергетическую зависимость фаз рассеяния двух элементарных или составных ядерных частиц оказывают дальнодействующие степенные слагаемые $V^d \sim r^{-d}$, $d \geq 3$, полного эффективного взаимодействия

$$V^{eff}(r) = V^s(r) + V^d(r),$$

где r — расстояние между центрами масс частиц, а V^s — эффективное быстроубывающее ($V^s = o(V^d)$, $r \to \infty$) взаимодействие, порожденное ядерными силами. В системе (N, N) двух нуклонов к таким слагаемым электромагнитного происхождения относятся поляризационное взаимодействие протонов [11, 12]:

$$V^{d}(r) = V^{p}(r) = \alpha_{e} r^{-4},$$
(1)

$$\alpha_{e} = (1.07 \pm 0.11) 10^{-3} \, \phi_{M}{}^{3}, \quad d = 4,$$

взаимодействие магнитных моментов нуклонов [13]:

$$V^{d}(r) = V^{mt}(r) = b_t r^{-3} S_{12}, \quad d = 3,$$
 (2)

и взаимодействие магнитного момента нейтрона *n* или протона *p* с кулоновским полем другого протона [13]:

$$V^{d}(r) = V^{m\ell s}(r) = b_{\ell s} r^{-3} (\ell \cdot \mathbf{s}), \quad d = 3.$$
 (3)

В определениях (1)–(3) использованы стандартные обозначения теории NN-взаимодействий [14]: α_e — электрическая поляризуемость протона, ℓ и s = s₁ + s₂ — полные угловой момент и спин двухнуклонной системы, s₁ и s₂ — спины нуклонов, S₁₂ — известный тензорный оператор, $b_{\ell s}$ и b_{ℓ} —

^{*}E-mail: pupyshev@thsun1.jinr.ru

разные для систем (n, n), (n, p) и (p, p) константы.

Исчерпывающий анализ роли поляризационного потенциала (1) в *pp*-рассеянии и реакции $dd \rightarrow e + \nu_e$ дан в обзорных работах [1, 2]. Один из выводов этого анализа гласит: вклад поляризационного взаимодействия (1) в упругое *pp*-рассеяние и сечение реакции $dd \rightarrow e + \nu_e$ пренебрежимо мал, потому что кулоновское взаимодействие V^c протонов является отталкивающим, а константа α_p поляризационного потенциала невелика.

В системе (n, n) взаимодействия (1) и (3) отсутствуют, но полное взаимодействие $V = V^s + V^{mt}$ содержит дальнодействующее тензорное слагаемое (2). Его роль в триплетном пл-рассеянии (s = 1) впервые упомянута в работе [3], а затем исследовалась в [4,5]. В этих работах был впервые теоретически предсказан нейтрон-нейтронный аналог эффекта Рамзауэра [15, 16], а также было показано, что этот аналог является следствием интерференции nn-рассеяния взаимодействиями V^s и V^{mt} и должен проявляться как глубокий минимум в полном сечении триплетного рассеяния нейтронов при энергии $E \approx 20$ кэВ в системе их центра масс. Как пояснялось в работе [3], это явление представляется интересным для экспериментальных исследований сечений nn-рассеяния и реакции $\pi^- d \rightarrow \gamma nn$. Интересным представляется и экспериментальное подтверждение еще одной особенности триплетного nn-рассеяния, а именно, линейного по импульсу рассеяния убывания ³*P*_{*j*}-фаз, обусловленного, согласно фазовому анализу [5], взаимодействием V^{mt} .

Необходимость учета суммарного магнитного взаимодействия $V^m \equiv V^{m\ell s} + V^{mt}$ для корректной теоретической интерполяции экспериментальных данных *пр*- и *pp*-рассеяния отмечалась неоднократно. Хотя различные подходы к решению этой проблемы и анализ ее современного состояния подробно обсуждались в обзорных работах [6] и [17], стоит еще раз упомянуть наиболее интересные выводы работ [6] и [18–20].

В работе [6] было впервые показано, что при теоретически учитываемом взаимодействии $V^{m\ell s}$ функция $d\sigma A_{y,np}$ должна убывать при $E \rightarrow 0$ как $O(E^{1/2})$, а без учета взаимодействия — гораздо быстрее, а именно, как $O(E^{3/2})$. В работе [18] включением этого же взаимодействия в теоретический анализ *пр*-рассеяния удалось объяснить пикообразное поведение анализирующей способности $A_{y,np}(\theta)$ при энергиях $E_{lab} = 25-210$ МэВ и углах $\theta < 5^{\circ}$.

Анализирующая способность $A_{y,pp}$ оказалась главным объектом многочисленных исследований

(см. [17]) роли взаимодействия $V^{m\ell s}$ в упругом *pp*-рассеянии. Общим для всех известных способов учета этого взаимодействия является использование борновского приближения. Например, в работе [19] добавочная к кулоновскоядерной амплитуде f^{cs} амплитуда f^m , порожденная взаимодействием V^{*mℓs*}, вычислялась в борновском приближении для плоской волны $(f^m \approx f^m_B)$ и было показано, что такой способ учета взаимодействия $V^{m\ell s}$ при энергии $E_{lab} > 150$ МэВ несущественно улучшает согласие теоретического описания анализирующей способности $A_{y,pp}$ с экспериментальными данными. В работе [20] для вычисления f^m использовалось искаженное кулоновским взаимодействием борновское приближение для плоской волны $(f^m \approx f^m_{BC})$ и было установлено, что модули амплитуд f_B^m и f_{BC}^m примерно равны, но фазы существенно различаются, и поэтому функция $A_{y,pp}(\theta)$ имеет пикообразное поведение в области небольших углов θ .

Как отмечалось в работе [17], при энергии $E_{lab} = 9.75$ МэВ учет взаимодействия $V^{m\ell s}$ улучшает согласие теоретически вычисленных значений функции $A_{y,pp}(\theta)$ с ее экспериментально измеренными в области небольших углов $\theta < 30^\circ$, а при *E*_{*lab*} = 5.5 МэВ — уже в более широкой области, $\theta < 90^{\circ}$. Следовательно, можно предположить, что при дальнейшем уменьшении энергии вклад взаимодействия V^{*m*ℓs} в наблюдаемую характеристику $A_{y,pp}(\theta)$ будет возрастать и при больших углах. Так как $A_{y,pp}$ выражается известным образом [17, 21] через фазы *pp*-рассеяния, первый этап исследования этого вклада в пределе низких энергий состоит в анализе особенностей низкоэнергетического поведения фаз *pp*-рассеяния, обусловленных взаимодействиями $V^{m\ell s}$ и V^{mt} и их суммой V^m. Не менее интересным представляется исследование особенностей поведения этих фаз, порожденных взаимным воздействием ядерного и магнитного взаимодействий V^s и V^m. Несмотря на то что роль взаимодействия V^m в pp-рассеянии изучается уже давно, вопрос о теоретическом существовании упомянутых выше особенностей до сих пор является открытым. Желание автора ответить на этот вопрос стимулировало настоящую работу, излагаемую ниже по следующему плану. В разд. 2 формулируется использованная модель *pp*-рассеяния, а в разд. 3 описываются способы точного и приближенного вычисления фаз *pp*-рассеяния. Результаты выполненного численного анализа этих фаз представляются в разд. 4 и суммируются в Заключении.

2. МОДЕЛЬ ПРОТОН-ПРОТОННОГО РАССЕЯНИЯ

Пусть система (p, p) описывается нерелятивистским уравнением Шредингера [9]. В системе центра масс протонов запишем его в виде

$$\left[\bigtriangleup_r + k^2 - V^{ca}(\mathbf{r})\right] \Psi(\mathbf{r}; \mathbf{k}) = 0, \quad k^2 = \frac{m_p}{\hbar^2} E,$$

где Ψ — волновая функция протонов, **k** и E — их относительный импульс и энергия, **r** — вектор, направленный от одного протона к другому, m_p — масса протона.

Считаем, что полное взаимодействие $V^{ca} = V^c + V^a - суперпозиция, в которой взаимодействие <math>V^a$ убывает с ростом r быстрее центрального кулоновского потенциала

$$V^{c}(r) = \frac{m_{p}}{\hbar^{2}} \frac{e^{2}}{r} = \frac{1}{Rr}, \quad R \equiv \frac{\hbar^{2}}{m_{p}e^{2}},$$
 (4)

где e — заряд электрона, а R — боровский радиус pp-системы. Теоретически возможны три случая: a = s, m, ms. В первом случае a = s и $V^a = V^s$ — короткодействующее ядерное взаимодействие, во втором случае a = m и $V^a = V^m$ — магнитное взаимодействие, наконец, в третьем и наиболее реалистическом случае a = ms и $V^a = V^{ms} = V^m + V^s$ — суперпозиция магнитного и ядерного взаимодействий.

Следуя работе [13], полагаем, что V^m — суперпозиция $V^m = V^{mt} + V^{m\ell s}$, компоненты которой определены формулами

$$V^{mt} \equiv \frac{b_t S_{12}}{r^3}, \quad b_t \equiv -\frac{m_p}{\hbar^2} \,\mu_p^2 \,\mu_0^2 = -\mu_p^2 \,\frac{m_e}{m_p} \,r_e, \\S_{12} \equiv \frac{3(\mathbf{s}_1 \cdot \mathbf{r})(\mathbf{s}_2 \cdot \mathbf{r}) - r^2(\mathbf{s}_1 \cdot \mathbf{s}_2)}{4r^2}, \tag{5}$$

а также

$$V^{m\ell s} = \frac{b_{\ell s} \left(\ell \cdot \mathbf{s}\right)}{r^3},$$

$$b_{\ell s} \equiv -\frac{m_p}{\hbar^2} 8\mu_0^2 \left(\mu_p - \frac{1}{4}\right) = -2 \left(\mu_p - \frac{1}{4}\right) \frac{m_e}{m_p} r_e.$$
 (6)

Здесь m_e — масса электрона, μ_p — магнитный момент протона в ядерных магнетонах μ_0 , а r_e — классический радиус электрона,

$$\mu_0 \equiv \frac{e\hbar}{2m_p c}, \quad r_e \equiv \frac{e^2}{m_e c^2}.$$

При вычислениях будем использовать в качестве ядерного взаимодействия V^s взаимодействие Рида с мягким кором [22] и известные константы [23]

$$m_p = 938.2796 \text{ M} \cdot \text{B}, \quad \mu_p = 2.7927,$$

$$\begin{split} \hbar^2/m_p &= 41.4969\,{\rm M} {\rm y} {\rm B} \cdot {\rm \phi} {\rm m}^{-2}, \\ m_e &= 0.5110034\,{\rm M} {\rm y} {\rm B}, \quad r_e &= 2.817938\, {\rm \phi} {\rm m}, \\ {\rm Ry} &= 13.605804\, {\rm y} {\rm B}, \end{split}$$

при которых согласно формулам (4)-(6)

 $R = 28.8064... \ \phi_{M}, \quad b_{\ell s} = -0.005371... \ \phi_{M},$

 $b_t = -0.001534...$ фм.

Из физических соображений ясно, что оба магнитных взаимодействия на расстояниях, меньших по порядку величины, чем размер нуклона ($\approx 1 \, \text{фм}$), должны описываться иными несингулярными при $r \rightarrow 0$ формулами. Так как такие формулы в настоящее время неизвестны, то при $r \leq 1.0 \, \text{фм}$ можно положить $V^{mt} \equiv 0$ и $V^{m\ell s} \equiv 0$. Есть и еще одна причина не учитывать оба эти взаимодействия в области расстояний $r \leq r^s$, где r^s — радиус действия ядерного взаимодействия. Поясним ее, а также покажем, что выбор взаимодействия Рида с мягким кором не ограничивает общности нашего исследования.

Как известно из квантовой механики [9] и из метода фазовых функций [10], при больших энергиях столкновения картина рассеяния двух частиц зависит в основном от строения их взаимодействия в области малых расстояний, а основные особенности рассеяния при низких энергиях определяются поведением взаимодействия в области больших расстояний, т.е. поведением «хвоста» взаимодействия. Все современные фазовоэквивалентные NN-взаимодействия имеют одинаковый и довольно быстро убывающий юкавский хвост: $V^{s} \sim \exp(-m_{\pi}r)/r$, где $m_{\pi} = 134.9630 \text{ МэВ} - \text{масса}$ π -мезона. Этот хвост определяет поведение параметров кулоновскоядерного *pp*-рассеяния при низких энергиях, и поэтому эти параметры слабо зависят от выбора ядерного взаимодействия. Еще одна физическая причина такой слабой зависимости суммарная экранировка ядерного взаимодействия в области малых расстояний отталкивающими кулоновским и центробежным потенциалами, 1/Rr и $\ell(\ell + 1)/r^2$. Поэтому для анализа триплетных фаз *pp*-рассеяния можно без потери общности ограничиться их расчетом при каком-то одном из известных фазовоэквивалентных ядерных взаимодействий. В качестве такого взаимодействия в настоящей работе используется взаимодействие Рида с мягким кором. Это взаимодействие хорошо описывает известные экспериментальные данные в области E > 10 МэВ и, поэтому, содержит информацию как о ядерном взаимодействии, так и о

магнитном взаимодействии, эффективно учитываемом в области конечных расстояний. С физической точки зрения, верхняя граница r^s этой внутренней области есть радиус действия [1] потенциала V^s при E > 10 МэВ. Для этого радиуса действия обычно [14] используется оценка $r^s \approx 4$ фм. Чтобы избежать двойного учета магнитного взаимодействия в области $r \leq r^s$, далее считаем, что $V^{m\ell s} \equiv 0$ и $V^{m\ell} \equiv 0$ при $r \leq 4$ фм.

3. МЕТОД

Взаимодействие Рида, как и другие реалистические ядерные взаимодействия [14], содержит наряду с короткодействующими центральными слагаемыми, не зависящими от ℓ , \mathbf{s}_1 и \mathbf{s}_2 , короткодействующие спин-орбитальное и тензорное взаимодействия:

$$V^{s\ell s} = V^{s\ell s}(\mathbf{r}) \left(\boldsymbol{\ell} \cdot \mathbf{s}\right), \quad V^{st} = V^{st}(\mathbf{r}) S_{12}.$$
(7)

Первое из них сохраняет угловой момент ℓ , спин s, полный момент $\mathbf{j} = \ell + \mathbf{s}$ и полный изоспин T = 1системы (p, p), второе сохраняет s и j, но, вообще говоря, не сохраняет $\ell = j, j \pm 1$. Поэтому в общем случае триплетное pp-состояние $|sj\rangle$ с определенными полным моментом j и спином s = 1 является суперпозицией базисных pp-состояний $|s\ell j\rangle$ с $\ell = j \pm 1$:

$$|sj\rangle = a |s, j - 1, j\rangle + b |s, j + 1, j\rangle, \quad a^2 + b^2 = 1.$$
 (8)

В рассматриваемом нами случае, s = 1 и T = 1, смешивание не происходит в состоянии ${}^{3}P_{j}$ с j = 0, 1и в состояниях с $j = \ell > 1$. Состояния $|s\ell j\rangle$ с определенным ℓ называем чистыми, а все остальные состояния $|sj\rangle$ — смешанными. Например, состояние ${}^{3}P_{2}-{}^{3}F_{2}$ является смешанным и представляется суперпозицией (8) двух базисных состояний с $\ell = 1$ и $\ell = 3$.

Магнитные взаимодействия (5) и (6) содержат те же операторы $\ell \cdot \mathbf{s}$ и S_{12} , что и ядерные взаимодействия (7), но убывают при $r \to \infty$ гораздо медленнее. Поэтому учет магнитных взаимодействий не изменяет упомянутую классификацию состояний системы (p, p), но должен изменить энергетическую зависимость параметров рассеяния фаз $\delta_{\ell,j}^{c,a}$ и параметров смешивания ε_j^a , введенных Стаппом и др. [21]. По определению, $\delta_{\ell,j}^{c,a}(k)$ — разность между фазой $\delta_{\ell,j}^{ca}(k)$ рассеяния суперпозицией $V^c + V^a$ и кулоновской фазой $\delta_{\ell}^c(k)$. В случае a = s фазу $\delta_{\ell,j}^{c,s}(k)$ обычно называют кулон-ядерной или кулоновскоядерной [9]. Поэтому представляется логичным в случае a = m называть фазу $\delta_{\ell,j}^{c,m}(k)$ кулоновскомагнитной, а в случае a = ms — кулоновскомагЭкстраполяция триплетных фаз . . .

нитноядерной. Физический смысл фазы $\delta_{\ell,j}^{c,a}(k)$ точнее передает более длинное название — фаза рассеяния, порождаемая взаимодействием V^a в кулоновском поле V^c .

Для качественного и численного исследований энергетической зависимости функций $\delta_{\ell,j}^{c,a}(k), \varepsilon_{j}^{c,a}(k)$ и вкладов в эти функции от параметров взаимодействия V^a , учитываемого всюду или же только в выбранной области расстояний, наиболее удобным из всех известных подходов представляется физически прозрачный метод фазовых функций [10]. В этом методе фазы $\delta_{\ell,j}^{c,a}(k), \ \ell = j, j \pm 1$, и параметр смешивания $\varepsilon_{j}^{c,a}(k)$, порожденные взаимодействием V^a в кулоновском поле V^c , определяются выражениями

$$\delta_{\ell,j}^{c,a}(k) \equiv \lim_{r \to \infty} \, \delta_{\ell,j}^{c,s}(r;k), \quad \varepsilon_j^{c,a}(k) \equiv \lim_{r \to \infty} \, \varepsilon_j^{c,a}(r;k)$$

как пределы соответствующих фазовых функций $\delta_{\ell,j}^{c,s}(r;k)$ и $\varepsilon_j^{c,a}(r;k)$, равных нулю при r = 0, а при любом r = b являющихся фазой и параметром смешивания, порожденными тем же, но обрезанным в точке r = b взаимодействием $V^a(r)$. Фазовые функции подчиняются довольно простым с вычислительной точки зрения уравнениям [10]:

$$\partial_{r} \delta_{\ell,j}^{c,a} = -k^{-1} \sec(2\varepsilon_{j}^{c,a}) \Big\{ V_{\ell,\ell}^{a} \Big(P_{\ell}^{2} \cos^{4} \varepsilon_{j}^{c,a} - Q_{\ell}^{2} \sin^{4} \varepsilon_{j}^{c,a} \Big) - V_{n,n}^{a} \sin^{2} (2\varepsilon_{j}^{c,a}) \frac{P_{n}^{2} - Q_{n}^{2}}{4} - V_{\ell,n}^{a} \sin(2\varepsilon_{j}^{c,a}) \Big[P_{\ell} Q_{n} \cos^{2} \varepsilon_{j}^{c,a} - P_{n} Q_{\ell} \sin^{2} \varepsilon_{j}^{c,a} \Big] \Big\}, \quad (9)$$

$$\partial_{r} \varepsilon_{j}^{c,a} = -k^{-1} \Big\{ V_{\ell,n}^{a} \Big(P_{\ell} P_{n} \cos^{2} \varepsilon_{j}^{c,a} + Q_{\ell} Q_{n} \sin^{2} \varepsilon_{j}^{c,a} \Big) - \frac{1}{2} \sin(2\varepsilon_{j}^{c,a}) \sum_{n=j\pm 1} V_{n,n}^{a} P_{n} Q_{n} \Big\}.$$

Здесь $\ell, n = j \pm 1$ и $\ell \neq n - для$ смешанных состояний, $\ell = n = j, \, \varepsilon_j^{c,a} \equiv 0 - для$ чистых,

$$P_{\ell} \equiv F_{\ell} \cos \delta_{\ell,j}^{c,a} + G_{\ell} \sin \delta_{\ell,j}^{c,a} ,$$
$$Q_{\ell} \equiv F_{\ell} \sin \delta_{\ell,j}^{c,a} - G_{\ell} \cos \delta_{\ell,j}^{c,a} ,$$

 $F_{\ell}(\rho,\eta)$ и $G_{\ell}(\rho,\eta)$ — кулоновские функции [24] безразмерного аргумента $\rho \equiv kr$ и параметра Зоммерфельда $\eta \equiv 1/kR, V^{a}_{\ell,n}$ — матричные элементы взаимодействия V^{a} в базисе векторных сферических функций. Например, для взаимодействия (5)

$$V_{\ell,\ell}^{mt}(r) = 2b_t r^{-3} \left\{ \delta_{\ell,j} - \frac{\ell \delta_{\ell,j-1} + (\ell+1)\delta_{\ell,j+1}}{2j+1} \right\},$$
(10)
$$V_{\ell,n}^{mt}(r) = b_t r^{-3} \frac{\sqrt{6j(j+1)}}{2j+1}, \quad \ell \neq n,$$

а для взаимодействия (6) $V_{\ell,n}\equiv 0$ при $\ell\neq n$ и

$$V_{\ell,\ell}^{m\ell s}(r) = b_{\ell s} r^{-3} \left[j(j+1) - \ell(\ell+1) - s(s+1) \right],$$

$$j = \ell, \ell \pm s, \ s = 1.$$
(11)

Предлагаемый способ исследования влияния магнитных взаимодействий на энергетическую зависимость фаз $\delta_{\ell,j}^{c,a}$, a = m, ms, предельно прост и заключается в общедоступном сравнении графиков фаз, вычисленных при разных энергиях в трех теоретически возможных случаях a = s, m, ms.

Перед обсуждением численных результатов попытаемся предсказать основные особенности поведения фаз $\delta_{\ell,j}^{c,a}$. С этой целью рассмотрим первую итерацию уравнений (9), которая реализуется подстановкой $\delta_{\ell,j}^{c,a} \equiv 0$, $\varepsilon_j^{c,a} \equiv 0$ в правые части этих уравнений и для ожидаемых приближений $\tilde{\delta}_{\ell,j}^{c,ms}$ фаз $\delta_{\ell,j}^{c,ms}$ дает представление в виде суммы борновских фаз $\tilde{\delta}_{\ell,j}^{c,m}$ и $\tilde{\delta}_{\ell,j}^{c,m}$:

$$\begin{split} \delta^{c,ms}_{\ell,j}(k) &\approx \tilde{\delta}^{c,ms}_{\ell,j}(k) \equiv \tilde{\delta}^{c,s}_{\ell,j}(k) + \tilde{\delta}^{c,m}_{\ell,j}(k), \\ \tilde{\delta}^{c,a}_{\ell,j}(k) \equiv -k^{-1} \int_{b}^{\infty} dr \, V^{a}_{\ell,\ell}(r) \, F^{2}_{\ell}(\rho,\eta) \,, \end{split}$$
(12)

где a = s или a = m, b = 0, а для вычисления интегралов удобно сначала перейти к безразмерным переменным $x \equiv r/R$ и $q \equiv kR$. Как известно [25], при любом ℓ и $E \to 0$ борновская кулоновскоядерная фаза убывает очень быстро:

$$\tilde{\delta}_{\ell,j}^{c,s}(k) \sim (kR)^{2\ell+1} \exp(-\pi\eta), \qquad (13)$$

а борновская кулоновскомагнитная фаза — гораздо медленнее:

$$\tilde{\delta}_{\ell,j}^{c,m}(k) = -V_{\ell,\ell}^m(r) r^3 \frac{2\ell + 1 - 2\eta \chi_\ell(\eta)}{2\ell(\ell+1)(2\ell+1)} (1 + o(1)),$$

$$\chi_\ell(\eta) \equiv \frac{\pi}{2} - \operatorname{Im} \psi(\ell + 1 + i\eta), \quad \psi \equiv \frac{\Gamma'}{\Gamma}.$$
(14)

Действительно,

$$\tilde{\delta}_{\ell,j}^{c,m}(k) = -\frac{k^3}{3R^2} V_{\ell,\ell}^m(r) \, r^3(1+o(1)), \qquad (15)$$

если $\eta \ll \ell,$ что справедливо при

$$E \ll \frac{1}{2\ell^2} \frac{m_e}{m_p} \operatorname{Ry} \approx 12.5 \, \ell^{-2} \, \mathrm{\kappa \mathfrak{s}B}.$$

Приближение, более точное чем (14), можно получить из теории возмущений [8].

Из-за радикально разного убывания борновских фаз (13)–(15) при достаточно низких энергиях имеем

$$|\tilde{\delta}^{c,s}_{\ell,j}(k)| \ll |\tilde{\delta}^{c,m}_{\ell,j}(k)|, \quad \tilde{\delta}^{c,ms}_{\ell,j}(k) \approx \tilde{\delta}^{c,m}_{\ell,j}(k),$$

$$E < E_{\ell,i}^{lower}$$

Поэтому при таких энергиях можно пренебречь ядерным взаимодействием, но следует учитывать магнитное взаимодействие. В области достаточно больших энергий, где $|V^m| \ll E$, должны выполняться обратные соотношения:

$$\begin{split} |\tilde{\delta}_{\ell,j}^{c,s}(k)| \gg |\tilde{\delta}_{\ell,j}^{c,m}(k)|, \quad \tilde{\delta}_{\ell,j}^{c,ms}(k) \approx \tilde{\delta}_{\ell,j}^{c,s}(k), \\ E > E_{\ell,j}^{upper}, \end{split}$$

поэтому можно пренебречь магнитным взаимодействием, но учитывать ядерное. В промежуточной области $E_{\ell,j}^{lower} < E < E_{\ell,j}^{upper}$ модули фаз $\tilde{\delta}_{\ell,j}^{c,s}$ и $\tilde{\delta}_{\ell,j}^{c,m}$ сравнимы по порядку величины, происходит интерференция рассеяния ядерным и магнитным взаимодействиями, и для ее описания необходимо учитывать оба эти взаимодействия. Если в этой области фазы $\tilde{\delta}_{\ell,j}^{c,s}$ и $\tilde{\delta}_{\ell,j}^{c,m}$ имеют разные знаки, то при некоторой энергии их сумма $\tilde{\delta}_{\ell,j}^{c,ms}$ обращается в нуль.

Итак, если предположить, что приближения точных фаз $\delta_{\ell,j}^{c,ms}$ фазами $\tilde{\delta}_{\ell,j}^{c,ms}$, определенными формулами (12), приемлемо, то следует ожидать две особенности поведения фаз $\delta_{\ell,j}^{c,ms}$: медленное убывание ($\delta_{\ell,j}^{c,ms} \sim \delta_{\ell,j}^{c,m} \sim k^3$) в пределе $E \to 0$ при всех ℓ и j и смену знака при некоторой ненулевой энергии, но только в том случае, когда фазы $\tilde{\delta}_{\ell,j}^{c,s}$ и $\tilde{\delta}_{\ell,j}^{c,m}$ имеют разные знаки.

Следующая особенность порождается зависимостью матричных элементов (10) и (11) магнитных взаимодействий (5) и (6) только от величины j и поэтому должна проявиться в любых приближенных и точных расчетах фаз. Матричные элементы $V_{\ell,n}^{m\ell s}$ с $\ell \neq n$ возрастают с увеличением j, а элементы $V_{\ell,n}^{m\ell s}$ с и все элементы $V_{\ell,n}^{mt}$ остаются ограниченными. Поэтому следует ожидать, что с ростом j вклад взаимодействия V^{mt} в фазы $\delta_{\ell,\ell\pm 1}^{c,a}$, a = ms, будет убывать как 1/j, а вклады от этих взаимодействий в фазы $\delta_{\ell,\ell}^{c,a}$, a = m, ms, останутся одинаковыми по порядку величины.

Метод фазовых функций позволяет качественно обосновать физически более правдоподобное, чем представление (12), приближение

$$\delta_{\ell,j}^{c,ms}(k) \approx \delta_{\ell,j}^{c,s}(k) + \tilde{\delta}_{\ell,j}^{c,m}(k).$$
(16)

С этой целью положим a = ms. Интегрируя уравнения (9) на отрезке $r \leq r^s$, где $V^{ms} = V^s$, получаем значения кулоновскоядерных фаз $\delta_{\ell,j}^{c,s}(k) \approx \delta_{\ell,j}^{c,s}(r^s;k)$ как значения соответствующих фазовых функций в точке r^s . Эти значения используем в качестве граничных для исследования уравнений (9)

в области $r \geq r^s$, где $V^{ms} \approx V^m$. Первая итерация таких уравнений дает представление в виде суммы (16), а последующие итерации порождают дополнительные слагаемые, причем каждое *n*-е слагаемое (n = 2, 3, ...) убывает при $E \to 0$ быстрее предыдущего, а именно, как $(\tilde{\delta}^{c,m}_{\ell,j}(k))^n$. Поэтому при низких энергиях исследуемое представление (16) является приближением, содержащим в качестве слагаемого точную кулоновскоядерную фазу. Остается найти ее асимптотику при $E \to 0$.

Начнем со вспомогательных формул. Сначала из функции Кулона G_{ℓ} выделим целую функцию Θ_{ℓ} параметра q^2 . Для этого перепишем формулу Ламберта ((3.25) из [26]) в виде

$$G_{\ell}(\rho,\eta) = \tilde{G}_{\ell}(\rho,\eta) + h^{c}(q) F_{\ell}(\rho,\eta),$$

$$\tilde{G}_{\ell}(\rho,\eta) \equiv \frac{\Theta_{\ell}(x,q)}{C_{\ell}(q)},$$
(17)

где $C_{\ell}(q)$ и $h^{c}(q)$ выражаются через известные функции [24] $C_{\ell}(\eta)$ и $h(\eta)$:

$$C_{\ell}(q) \equiv \Gamma(2\ell+2) q^{\ell} C_{\ell}(\eta) =$$

$$= (2q)^{\ell} \exp\left(-\frac{\pi\eta}{2}\right) |\Gamma(\ell+1+i\eta)|,$$

$$h^{c}(q) \equiv \frac{h(\eta)}{qC_{0}^{2}(q)}, \quad h(\eta) \equiv \operatorname{Re} \psi(i\eta) - \ln \eta.$$

Теперь модифицируем известные разложения Бесселя–Клиффорда (см. формулы (14.4.1)–(14.4.4) в [24]), содержащие полиномы $b_n(\eta)$ параметра k^2 и модифицированные функции Бесселя $I_n(z)$ и $K_n(z)$ переменной $z \equiv 2x^{1/2}$. Объединив в этих разложениях слагаемые с одинаковыми степенями параметра k^2 , получаем требуемое представление:

$$F_{\ell}(\rho,\eta) = qC_{\ell}(q) \sum_{n=0}^{\infty} q^{2n} f_{\ell n}(x),$$

$$\tilde{G}_{\ell}(\rho,\eta) = C_{\ell}^{-1}(q) \sum_{n=0}^{\infty} q^{2n} g_{\ell n}(x).$$
(18)

Здесь

$$\begin{cases} 2 f_{\ell n}(x) \\ (2l+1) g_{\ell n}(x) \end{cases} \equiv \\ \equiv 2^{-2n} \sum_{m=2n}^{3n} a_{nm} z^{m+1} \begin{cases} I_{2\ell+m+1}(z) \\ (-1)^{-m} K_{2\ell+m+1}(z) \end{cases} \end{cases},$$

а энергонезависимые коэффициенты a_{nm} подчинены рекуррентным цепочкам ($m = 2n, \ldots, 3n$ для каждого $n = 1, 2, \ldots$) уравнений

$$2m a_{nm} + 2(2\ell + m) a_{n-1,m-2} + a_{n-1,m-3} = 0,$$

Экстраполяция триплетных фаз . . .

причем $a_{00} \equiv 1$ и $a_{nm} \equiv 0$, если n > 0 и m < 2n или m > 3n.

Далее в уравнениях (9) перейдем сначала к тангенсам фазовых функций. Затем тангенсы заменим искомыми рядами:

$$\operatorname{tg} \delta_{\ell,j}^{c,s}(r;k) = -qC_{\ell}^{2}(q) \times \\ \times \sum_{n=0}^{\infty} q^{2n} A_{\ell,j,n}(x;h^{c}), \\ \operatorname{tg} \varepsilon_{j}^{c,s}(r;k) = -qC_{j-1}(q)C_{j+1}(q) \times \\ \times \sum_{n=0}^{\infty} q^{2n} B_{j,n}(x;h^{c}),$$

$$A_{\ell,j,0}(x;h^{c}) = A_{\ell,j}(x) \left[1 + h^{c}qC_{\ell}^{2}A_{\ell,j}(x)\right]^{-1}, \\ B_{j,0}(x;h^{c}) = B_{j}(x) \left[1 + h^{c}qC_{j-1}(q)C_{j+1}(q) \times \\ \times B_{j}(x)\right]^{-1},$$

$$(19)$$

а функции Кулона представим, используя формулы (17) и (18), в виде рядов, в которых аргумент x отделен от параметра q. Наконец, положив $q \to 0$, получим энергонезависимые уравнения:

$$\partial_{x}A_{\ell,j} = R^{2} \left\{ V_{\ell,\ell}^{s} \left[f_{\ell} - A_{\ell,j}g_{\ell} \right]^{2} + V_{n,n}^{s}B_{j}^{2}g_{n}^{2} - \\ -2B_{j}V_{\ell,n}^{s} \left[f_{\ell} - A_{\ell,j}g_{\ell} \right]g_{n} \right\}, \\ \partial_{x}B_{j} = R^{2}V_{\ell,n}^{s} \left[(f_{\ell} - A_{\ell,j}g_{\ell})(f_{n} - A_{n,j}g_{n}) + \\ + B_{j}^{2}g_{\ell}g_{n} \right] - \\ - R^{2}B_{j}\sum_{n=j\pm 1} V_{n,n}^{s} \left(f_{n} - A_{n,j}g_{n} \right)g_{n},$$
(20)

где, как и в исходных уравнениях (9), $\ell, n = j \pm 1$ и $\ell \neq n$ для смешанных состояний и $\ell = n = j$, $B_j \equiv 0$ для чистых. В силу (19) искомые решения полученных уравнений (20) равны нулю при x = 0, а благодаря экспоненциальному убыванию ядерного взаимодействия всюду ограничены. Поэтому в (19) можно перейти к пределу $r \to \infty$ и получить искомые асимптотики:

$$\delta_{\ell,j}^{c,s}(k) \approx -\arctan \frac{q C_{\ell}^{2}(q) A_{\ell,j}^{c,s}}{1 + h^{c}(q) q C_{\ell}^{2}(q) A_{\ell,j}^{c,s}}, \qquad (21)$$
$$A_{\ell,j}^{c,s} \equiv \lim_{x \to \infty} A_{\ell,j}(x).$$

Так как их старшие члены отличаются от асимптотик соответствующих борновских фаз (13) лишь числовыми множителями, из доказанного приближения (16) следуют те же особенности поведения фаз $\delta_{\ell,j}^{c,ms}$, что и из предполагаемого борновского приближения (12).

Формулу (16) предлагается использовать для экстраполяции фаз $\delta_{\ell,j}^{c,ms}$ в область низких энергий.

Рис.1. Отношения фаз $\delta_{\ell,j}^{c,ms}/\delta_{\ell,j}^{c,s}$: $a-\ell=1, j=0,1,2; \ b-\ell=3, j=2$

Эта формула достаточно проста: ее второе слагаемое $\tilde{\delta}_{\ell,j}^{c,m}$ выражается через известные функции с помощью равенства (14), а первое слагаемое $\delta_{\ell,j}^{c,s}$ можно аппроксимировать асимптотикой (21) с коэффициентом $A_{\ell,j}^{c,s}$, который несложно вычислить как предел при $x \to \infty$ функции $A_{\ell,j}(x)$, подчиненной уравнениям (20). Теперь, чтобы убедиться в том, что предлагаемая экстраполяционная формула достаточно точна, обсудим результаты численного анализа фаз.

4. РЕЗУЛЬТАТЫ ВЫЧИСЛЕНИЙ

Обсуждаемые в настоящем разделе результаты получены численным интегрированием дифференциальных уравнений, выведенных из уравнений (9) с помощью замены размерных переменных r и kна безразмерные $x \equiv r/R$ и $q \equiv kR$. В качестве фаз использовались воспроизводящие их с пятизначной точностью значения соответствующих фазовых функций при достаточно большом $x = 10^2$ в случае a = s и $x = 10^6$ в случаях a = m и a = ms. За коэффициенты $A_{\ell,j}^{c,s}$ асимптотик (21) принимались значения решений $A_{\ell,j}^{c,s}(x)$ уравнений (20) в точке $x = 10^2$, что обеспечивало ту же пятизначную точность.

Вычисленные таким образом точные фазы сравнивались с приближенными фазами, найденными по соответствующим исследуемому случаю a = m, s и a = ms формулам (14), (21) или (16). Было установлено, что при энергиях ниже 15 МэВ относительная точность всех этих приближений для j=0,1,2не хуже, чем0.001.

Вычисленные значения коэффициентов $A_{\ell,j}^{c,s}$ приведем в виде произведений

$$\begin{aligned} A_{1,0}^{c,s} &\approx -26.743 \, d_1, \quad A_{1,1}^{c,s} &\approx 15.116 \, d_1, \\ A_{1,2}^{c,s} &\approx -8.739 \, d_1, \quad A_{3,2}^{c,s} &\approx -39205 \, d_3 \end{aligned}$$

с сомножителями $d_1 \equiv (3!)^{-2} R^{-3}$ и $d_3 = (7!)^{-2} R^{-7}$. Отметим, что замена фаз $\delta_{\ell,j}^{c,s}$ соответствующи-

Отметим, что замена фаз $\delta_{\ell,j}^{c,j}$ соответствующими борновскими интегралами (12) неприемлема, поскольку значение отношения $|\delta_{\ell,j}^{c,s}/\tilde{\delta}_{\ell,j}^{c,s}|$ колеблется от 0.2 до 1.5 при изменении энергии на интервале (0,15) МэВ. Поэтому представление (12) не является аппроксимацией, хотя и описывает все качественные особенности поведения фаз $\delta_{\ell,j}^{c,ms}$.

Представленные на рис. 1 и 2 графики получены численным интегрированием уравнений (9) и в масштабе этих рисунков не отличаются от графиков, построенных по приближенным формулам (14), (16) или (21).

На рис. 1 изображены графики отношений

$$\frac{\delta_{\ell,j}^{c,ms}(k)}{\delta_{\ell,j}^{c,s}(k)}, \quad \ell = 1, \quad j = 0, 1, 2; \quad \ell = 3, \quad j = 2.$$

На рис. 1*а* видно, что при $\ell = 1$ такие отношения заметно отличаются от единицы в области довольно низких энергий ($E < E_{1,j}^{upper} \approx 1$ МэВ). Следовательно, в этой области для корректного описания

Рис. 2. Сплошные кривые — фазы $\delta^{c,a}_{\ell,j}$, a=s,m,ms; штриховые — фазы $\bar{\delta}^{c,a}_{\ell,j}$, a=m,ms

 ${}^{3}P_{j}$ -фаз с j = 0,1 и ${}^{3}P_{2}$ - ${}^{3}F_{2}$ -фазы с $\ell = 1$ необходимо учитывать магнитное взаимодействие V^{m} , а в области больших энергий ($E > E_{1,j}^{upper}$) им можно пренебречь по сравнению с ядерным взаимодействием V^{s} . Согласно рис. 16 для корректного описания фазы $\delta_{\ell,2}^{c,ms}$, $\ell = 3$, следует учитывать магнитное взаимодействие V^{m} в области энергий от нуля до значения $E = E_{3,2}^{upper} \approx 15$ МэВ на порядок большего, чем в предыдущем случае $\ell = 1$.

На рис. 2 сплошными кривыми изображены графики фаз $\delta_{\ell,i}^{c,a}$, a = s, m, ms, а штриховыми кривыми нанесены графики фаз $\bar{\delta}_{\ell,j}^{c,a}$, a = m, ms, вычисленные в присутствии ($b_t = 0$) взаимодействия (5), но в отсутствие взаимодействия (6). Из рис. 2a-6 видно, что

$$\begin{split} \delta_{1,j}^{c,ms}(k) &\approx \delta_{1,j}^{c,m}(k) \gg \delta_{1,j}^{c,s}(k), \quad j = 0, 1, 2, \\ E &< E_{1,j}^{lower} \approx 20 \text{ kyb}. \end{split}$$

Значит, в области достаточно низких энергий (E < 20 кэB) вклады ядерного взаимодействия V^s в фазы $\delta_{1,j}^{c,ms}$, j = 0, 1, 2, пренебрежимо малы. Согласно рис. 2*г*, вклад от V^s в фазу $\delta_{3,2}^{c,ms}$

остается пренебрежимо малым вплоть до энергии $E = E_{3,2}^{lower} \approx 2$ МэВ.

Далее, фазы $\delta_{1,0}^{c,s}$ и $\delta_{1,0}^{c,m}$, изображенные на рис. 2*a*, имеют разные знаки, и в результате интерференции рассеяния на ядерном и сумме двух магнитных взаимодействий (5) и (6) фаза $\delta_{1,0}^{c,ms}$ меняет знак при $E \approx 120$ к
эВ. Согласно рис. 2a, при E < 200к
эВ фазы $\bar{\delta}_{1,0}^{c,a}$, a = m, ms заметно отличаются от соответствующих фаз $\delta_{1,0}^{c,a}$. Значит, оба магнитных взаимодействия (5) и (6) оказывают сравнимое по порядку величины влияние на формирование кулоновскомагнитноядерной ${}^{3}P_{0}$ -фазы $\delta_{1,0}^{c,ms}$, и поэтому ни одним из этих взаимодействий нельзя пренебречь по сравнению с другим. Согласно рис. 26, аналогичный вывод справедлив и для ${}^{3}P_{1}$ -фазы $\delta_{1,i}^{c,ms}$ но, как следует из рис. 2*в*,*г*, при расчете ${}^{3}P_{2}-{}^{3}F_{2}$ -фаз $\delta_{\ell,2}^{c,ms}$ с $\ell = 2 \pm 1$, тензорное магнитное взаимодействие (5) можно не учитывать. Наконец, как показано на рис. 2*г*, фаза $\delta_{3,2}^{c,ms}$ имеет нуль при $E \approx 4$ МэВ.

Завершим настоящий раздел следующими выводами: формула (16) позволяет с относительной точностью 0.001 экстраполировать фазы $\delta_{\ell,j}^{c,ms}$ с j = 0, 1, 2 в область энергий E < 15 МэВ, все особенности энергетической зависимости фаз, предсказанные в разд. 3 аналитически, подтверждены вычислениями.

5. ЗАКЛЮЧЕНИЕ

Суммируем основные выводы выполненного анализа триплетных фаз pp-рассеяния. Взаимодействия магнитного момента протона с кулоновским полем и магнитным моментом другого протона оказывают существенное влияние на поведение триплетных фаз при энергиях ниже нескольких мегаэлектронвольт. Благодаря этим взаимодействиям в пределе нулевой энергии столкновения все триплетные фазы должны быть пропорциональными кубу импульса столкновения, а ${}^{3}P_{0}$ -фаза и ${}^{3}P_{2}$ - ${}^{3}F_{2}$ -фаза с $\ell = 3$ должны менять знак при энергии $E \approx 120$ кэВ и, соответственно, при $E \approx 4$ МэВ. Все указанные особенности энергетической зависимости фаз с хорошей точностью описываются простой и модельно независимой относительно выбора какого-либо ядерного взаимодействия из всех фазовоэквивалентных взаимодействий экстраполяционной формулой (16). Ее слагаемые, кулоновскомагнитную и кулоновскоядерную фазы, нетрудно найти с хорошей при E < 15 МэВ точностью по формулам (14) и (21). Для вычисления с высокой точностью коэффициентов $A_{\ell,i}^{c,s}$ и $B_i^{c,s}$ старших слагаемых низкоэнергетических представлений кулоновскоядерных фаз и параметров смешивания предлагается использовать выведенные энергонезависимые уравнения (20). Полный анализ этих уравнений представляется важным для расширения теории возмущений [8] и метода фазовых функций [10] на случай суперпозиции кулоновского взаимодействия и короткодействующих центрального, спин-орбитального и тензорных взаимодействий.

В заключение стоит еще раз отметить, что так как в настоящее время непосредственное экспериментальное исследование триплетного NN-рассеяния в области энергий ниже нескольких МэВ технически невозможно, теоретическое изучение роли электромагнитных добавок к ядерному NN-взаимодействию в этой области остается интересным и актуальным.

ЛИТЕРАТУРА

- V. V. Pupyshev and O. P. Solovtsova, Int. J. Mod. Phys. A 7, 2713 (1992).
- **2**. В. В. Пупышев, О. П. Соловцова, ЭЧАЯ **27**, 859 (1996).
- V. V. Pupyshev, O. P. Solovtsova, in Cont. to the Int. Conf. Mesons and Nuclei at Intermediate Energies, ed. by M. Kh. Khankhasaev and Zh. B. Kurmanov, JINR, Dubna (1994), p. 84.
- V. V. Pupyshev and O. P. Solovtsova, Phys. Lett. B 354, 1 (1995).
- **5**. В. В. Пупышев, О. П. Соловцова, ЯФ **59**, 1807 (1996).
- 6. В. В. Пупышев, ЭЧАЯ 28, 1457 (1997).
- V. V. Pupyshev and S. A. Rakityansky, Z. Phys. A 348, 227 (1994).
- V. V. Pupyshev, J. Phys. A: Math. Gen. 28, 3305 (1995).
- 9. Л. Д. Ландау, Е. М. Лифшиц, Квантовая механика. Нерелятивистская теория, Наука, Москва (1974).
- 10. В. В. Бабиков, Метод фазовых функций в квантовой механике, Наука, Москва (1976).
- В. И. Гольданский, О. А. Карпухин, А. В. Куценко, В. В. Павловская, ЖЭТФ 38, 1695 (1960).
- 12. В. А. Петрунькин, ЭЧАЯ 12, 692 (1981).
- 13. W. A. Barker and F.N. Glover, Phys. Rev. 99, 317 (1955).

- 14. Дж. Е. Браун, А. Д. Джексон, *Нуклон-нуклонные* взаимодействия, Атомиздат, Москва (1979).
- 15. C. Ramzauer and R. Kollath, Ann. Phys. 3, 54 (1929).
- 16. J. Z. Holtsmark, Phys. Bd. 66, 49 (1930).
- 17. V. G. J. Stoks and J. J. de Swart, Phys. Rev. C 42, 1235 (1990).
- 18. W. S. Hogan and R. G. Seyler, Phys. Rev. C 1, 17 (1970).
- 19. G. Breit and H. M. Ruppel, Phys. Rev. 127, 2123 (1962).
- 20. L. D. Knutson and D. Chiang, Phys. Rev. C 18, 1958 (1978).

- H. P. Stapp, T. J. Ypsilantis, and M. Metropolis, Phys. Rev. 105, 302 (1957).
- 22. Jr. R. V. Reid, Ann. Phys. 50, 411 (1968).
- 23. M. Aguilar-Benitez, R. L. Grawford, R. Frosch et al., Phys. Lett. B 111, 1 (1982).
- 24. М. Абрамовиц, И. Стиган, Справочник по специальным функциям, Наука, Москва (1979).
- 25. R. O. Berger and L. Spruch, Phys. Rev. 138, B1106 (1965).
- 26. E. Lambert, Helv. Phys. Acta 42, 667 (1969).