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NONERGODIC NUCLEAR DEPOLARIZATIONIN NANO-CAVITIESE. B. Fel'dman *, M. G. RudavetsInstitute of Problems of Chemial Physis, Russian Aademy of Sienes,142432, Chernogolovka, Mosow Region, RussiaSubmitted 17 June, 2003Reently, it has been observed that the e�etive dipolar interations between nulear spins of spin-arryingmoleules of gas in a losed nano-avities are independent of the spaing between all the spins. We derive exattime-dependent polarization for all spins in the spin-1=2 ensemble with spatially independent e�etive dipolarinterations. If the initial polarization is on a single (�rst) spin, P1(0) = 1, then the exat spin dynamis of themodel is shown to exhibit periodi short pulses of the polarization of the �rst spin, the e�et being typial ofsystems having a large numberN of spins. If N � 1, then within the period 4�=g (2�=g) for odd (even) N -spinlusters, with g standing for the spin oupling, the polarization of spin 1 swithes quikly from unity to thetime-independent value 1=3 over the time interval about (gpN)�1. Thus, spin 1 spends almost all the time inthe time-independent ondition P1(t) = 1=3. The period and the width of the pulses determine the volume andthe form fator of the ellipsoidal avity. The formalism is adapted to the ase of time-varying nano-�utuationsof the volume V (t) of avitation nano-bubbles. If the oupling g(V (t)) is varied by the Gaussian-in-time randomnoise due to the variation of the volume V (t), then the envelope of the polarization peaks goes irreversibly to1=3. The polarization dynamis of a single spin exhibits the Gaussian (exponential) time dependene when theorrelation time of �utuations of the nano-volume is larger (smaller) than h(Æg)2i�1=2, where h(Æg)2i is thevariane of the g(V (t)) oupling. Finally, we report exat alulations of the NMR line shape for the N -spingaseous aggregate.PACS: 05.30.-d, 76.20.+q1. INTRODUCTIONThe nature of ergodiity as a fundamentally impor-tant element of the onsonant desription of statisti-al mehanis is urrently being disussed in the NMRontext [1℄. Spin dynamis is ergodi if the initial po-larization prepared at a single (�rst) spin is spread overthe system, leading, as time proeeds, to the spatiallyuniform distribution of the polarization, as expeted onthe basis of a simple physial intuition. On the otherhand, nonergodi behavior that was reently observednumerially in the nulear spin-1=2 1D hains with thegeneral XY Z spin Hamiltonian [2℄ enters suh that thetime-averaged polarization of the �rst spin turns out tobe several times larger than the time average polariza-tion of any other spin in the hain. This observation ofnonergodiity has been extended to 1D hains and ringswith theXY Hamiltonian [3℄, showing analytially that*E-mail: feldman�ip.a.ru

the time-averaged polarization of the �rst spin di�ersby the fator 1.5�2 from the time-averaged polarizationof all the other spins in the hain. These onsiderationsin 1D spin lusters address the problem of the nature ofergodiity for di�erent spin Hamiltonians. Motivatedby the study of nonergodi spin dynamis and beausean exat solution is a luky exeption in statistial me-hanis, we assume in this paper that spin interationsan be onsidered independent of the spaing betweenthe spins rather than having an r�3 dependene.Reently, a spin Hamiltonian with spae-indepen-dent spin ouplings has been applied for exploring theNMR spetra of the gas of spin-arrying moleules un-dergoing fast thermal motion within nonspherial av-ities [4℄. In that report, the authors have arrived atthe spae-independent e�etive spin ouplings by mo-tionally averaging the exat dipolar Hamiltonian overuniformly distributed spatial oordinates of the spins innanometer-size avities. This tehnique is expeted tohave a promising appliation for determining the pore233



E. B. Fel'dman, M. G. Rudavets ÆÝÒÔ, òîì 125, âûï. 2, 2004shapes and sizes [5℄ by the NMR spetra.With regard to the e�etive nulear spin Hamil-tonian with in�nite-range ouplings, it is noteworthythat this type of interations has also been proposedin the theory of nano-eletrodes [6; 7℄. There, thein�nite-range dipolar nulear interations are induedindiretly due to the fast energy transfer between theeletron and nulear spins. On the oarse-grain timesale of the fast eletron spin dynamis, the slow e�e-tive nulear spin dynamis is governed by an e�etivenulear spin Hamiltonian with an in�nite-range inter-ation. Quite apart from its importane as a physialmodel in the NMR experiments for the many-spin ag-gregate in a on�ned volume [4; 6; 7℄ and few protonmoleules [8℄, the model with in�nite-range spin inter-ations is of a fundamental interest in its own rightbeause it allows treating the 3-dimensional ase ex-atly, without any referene to a 1D spin ordering.It represents the quantum nonequilibrium version ofthe exatly solvable equilibrium spin model [9℄, has amapping to the BCS pairing Hamiltonian of superon-dutivity [10℄, and has long been onsidered as a testfor many-body problems in higher spatial dimensions,D � 1. The objetive of this paper is to present theexat solution of nonergodi dynamis with an in�nite-range spin Hamiltonian in the N -spin ensemble.To our knowledge, the only result reported on thismodel is that of Waugh [11℄, who announed (withoutproof) that the time-averaged polarization of the �rstspin is exatly equal to (N+2)=3N and the polarizationof any other spin is exatly 2=3N for odd numbered,N , spin luster. To larify the problem of spin dy-namis, the present paper reports a detailed analytitheory of the average polarization for both odd andeven numbered spin lusters; it also gives the theory ofspin dynamis that is entirely missing in [11℄. A on-densed form of this paper has been published in [12℄.A brief overview of the present paper is as follows. InSe. 2, we onstrut the e�etive nulear spin Hamilto-nian of spin-arrying moleules in a nano-avity. Se-tion 3 gives the formalism required to obtain the exattime-dependent polarization. This is followed by Se. 4that disusses three issues of the polarization dynamisthat are amenable to the tehniques of the Se. 2: thenonergodiity of the polarization dynamis of a singlespin in the nano-avity, the polarization dynamis of asingle spin within a �utuating nano-bubbles, and thespetral line shape of the nulear spin ensemble. Fi-nally, Se. 5 summarizes the results of the alulationsand onfronts the results obtained with the known an-alyti results for the XY Hamiltonian.

2. EFFECTIVE NUCLEAR SPINHAMILTONIAN IN A NANO-CAVITYThe purpose of this setion is to onstrut the ef-fetive spin Hamiltonian H that governs spin dynamisof spin-arrying moleules in a nano-size avity on theoarse-grain temporary sale of the order 10 ps. Atthese spae-time sales, the e�etive spin Hamiltoniandi�ers from the exat dipolar Hamiltonian; in parti-ular, the many-body spin Hamiltonian H has a highsymmetry that permits the exat solution for the spe-trum and, as a result, the exat derivation of the po-larization dynamis of the gas within the nano-avity.In this setion, we summarize the main ideas of [4℄; ho-wever, in deriving the e�etive spin Hamiltonian H byaveraging over spin spatial oordinates, we generalizethe e�etive spin oupling to the ase of a nonperfetgas in the nano-avity.The starting point of the derivation of the operatorH is the expression�(t; fIn; rn(t);pn(t)gNn=1) == U(t)�(0; fIn; rn(0);pn(0)gNn=1)U�1(t); (1)for the density matrix with ompletely spei�ed oordi-nates frn(t)gNn=1 and momenta fpn(t)gNn=1 of N spin-arrying moleules. The propagator U(t) is assoiatedwith the time-dependent exat dipolar Hamiltonian (infrequeny units)H(t) = NX1�i<j hi;j(t);hi;j(t) = 2~P2(os �ij(t))r�3ij (t)(IiIj � 3IizIjz); (2)where  stands for the gyromagneti ratio, In�(� = x; y; z) speify the spin-1=2 operators, and �ij(t)is the instant polar angle between the vetor rij(t)from ri(t) to rj(t) and the external magneti �eld B.A ornerstone fat for the onstrution of the ef-fetive spin Hamiltonian is the essential di�erene be-tween the time sale of the relaxation in the phase spaerN �pN and the time sale of the spin dynamis underthe Hamiltonian in Eq. (2). Atually, for the hydrogengas at room temperature and atmospheri pressure, thefollowing estimations hold. The average onentration�n � 2:7 � 1019 moleules/m3;the mean free path� = (�n�a2)�1 � 10�4 mfor the radius of a moleule a � 10�8 m and thethermal veloity �v � 105 m/s. Then, a simple or-der-of-magnitude alulation leads us to expet that234



ÆÝÒÔ, òîì 125, âûï. 2, 2004 Nonergodi nulear depolarization : : :for the gas in the avity of the size ` � 10 nm, theKnudsen di�usion oe�ient isD � �v` � 10�1 m2=s;the harateristi time sale of the spatial relaxation ofthe gas (due to the di�usive re�etion from the wall ofthe pore) to the spatially homogeneous distribution istdif � `2=D � 10�11 s;and the harateristi time sale of the veloity relax-ation towards the Maxwell distribution istv � `=�v � 10�11 s:These time sales tv and tdif are well separated fromthe NMR time sale tnmr = 10�4�10�3 s assoiatedwith the dipolar interation in Eq. (2). The smallnessof the parameter" = treltnmr = 10�7 � 1; (3)where trel = max(tv ; tdif );allows determining the average nulear spin Hamilto-nian governing the behavior of the nulear spins over aoarse-grain time intervals �t obeyingtrel � �t� tnmr: (4)Averaging the exat Hamiltonian over time �t is per-formed to the zeroth order in the perturbation expan-sion in powers of the parameter ", yielding the average(or e�etive) Hamiltonian [13℄hi;j = 1�t �tZ0 hi;j(ri(t0); rj(t0)) dt0; (5)with the orretions being of the order O("1).The deisive point of the following treatment is thereplaement of time integration in Eq. (5) with integra-tion over spatial oordinates within the on�ned region.Equating the temporal averaging with the spatial av-eraging makes sense under the ergodi hypotheses [14℄,Æt(d rN ; d pN )t = Z�1 exp�� EkT � d rNd pN ; (6)where the notation implies that a representative pointliving in the whole phase spae rN � pN , while movingover the time t, trel � t� tnmr, spends only a frationZ�1 exp�� EkT � d rNd pN

of the whole time t within the volume d rNd pN , withE being the total energy. Relation (6) inorporates theGibbs stohasti level of desription into the dynami-al treatment of moleular ollisions. The phase spaedegrees of freedom are assumed to relax to their equi-librium distribution at a given temperature T .We introdue the equilibrium pair distribution fun-tion for moleules 1 and 2,D2(r1; r2) == ZV d3r3 : : : ZV d3rN exp��U(rN )kT �ZV d3r1 : : : ZV d3rN exp��U(rN )kT � ; (7)where U(rN ) denotes inter-moleular eletrostati in-terations (we reall that kUk=kHk � 107 [15℄). Then,taking ergodiity (6) for granted, the evolution ofthe spin degrees of freedom on the oarse-grain timesale �t in Eq. (4) is governed by the stati (time-independent) e�etive HamiltonianH = NX1�i<j hi;j ; hi;j = g NX1�i<j(IiIj � 3IizIjz) (8)with spaing-independent pair ouplings g for any pairof spins i and j,g = 2~ ZV ZV d3ri d3rjD2(ri; rj)P2(os �ij)r�3ij : (9)The e�etive operator H involves only the (slow) spinoperators, whereas the (fast) spatial oordinates of thenuleus (labeled by indies i and j) are integrated out.On the oarse-grain sale �t, any nulear spin �feels�the �eld that is independent of the spatial oordinatesof all the other spins �ying within the nano-avity butdepends on the quantum states of those spins.The e�etive spin oupling g enodes the infor-mation about the shape and size of the nano-avity.The primary objetive of the preeding disussion is topresent the expression for the oupling g in Eq. (9) foran ellipsoidal nano-avity.For perfet hard-sphere moleules within the nano-avity, the pair distribution funtion is given byD2(ri; rj) = V �2235
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Fig. 1. Shemati representation of a nano-avity par-tially oupied with spin-arrying moleules undergoingrapid thermal motionfor the moleules i and j in the avity. Hene, theaveraging in Eq. (9) givesg = 2~FV ;F = 1V �� ZV ZV d3r1 d3r2�(jr1 � r2j � �)P2(os �12)r�312 ; (10)where the funtion �(x) (= 1(0) for x > 0(< 0)) ex-ludes the intersetion of two hard spheres having thediameter �. In this paper, we use the remarkablefat [4℄ that the volume V of the nano-avity entersthe expression for the e�etive oupling g in Eq. (10),whih itself enters the polarization (de�ned below inSe. 3), giving rise to the dependene of the polariza-tion on the volume of the nano-avity by no means astrivial as merely proportional to the volume.The transformation of the oordinates r1 and r2 tothe relative oordinate r12 = r1 � r2 and the oordi-nate of the enter of gravity r = (r1+ r2)=2, see Fig. 1,redues the form fator F in Eq. (10) to the form

F = ZV �(jr1 � r2j � �)d3r12 P2(os �12)r�312 : (11)It is onvenient to assume that the initial point of thevetor r12 = r1 � r2 starts at the origin of the frame ofreferene xyz onneted with the ellipsoid, see Fig. 1.Straightforward integration over r12 in Eq. (11), see,e.g., [16℄, yields the sought form fatorF = I�P2(os�);I = 8>>>>>>><>>>>>>>:
23 + 2� 1"2 � 1��1� 1"Arth"� ;a � b23 � 2� 1j"j2 + 1��1� 1j"jArtgj"j� ;a � b: (12)Here, " is the exentriitet of the ellipsoid with theprinipal axes a; b = . Equation (12) shows that thedependene of the form fator on the angle � betweenthe z axis of the referene frame of the ellipsoid andthe Z axis of the laboratory referene frame is fatoredout. For a� b, we have " = 1 and I = 2=3. For a = b,we have " ! 0 and Eq. (12) gives I = 0. For a � b,j"j ! 1 and I = 2=3� 2 = �4=3. These limiting aseson�rm the result reported in [4℄.3. POLARIZATION DYNAMICSWe onsider the spin Hamiltonian H of an N -spinluster in a uniform external magneti �eld B parallelto the Z axis of a �xed referene frame XY Z and thespatially independent spin ouplings g in Eq. (10),H = ! NXn=1 Inz ++ g2 NXm6=n f�ImzInz � ImxInx � ImyInyg ; (13)where ! = B denotes the Zeeman frequeny and � isan arbitrary fator.The standard way of approahing the N -spin ag-gregate is to �nd the polarization at the n-th spin at atime instant t given the initial polarization at the 1-stspin,Pn(t) = tr�exp(iHt)I1z exp(�iHt)Inz	tr fI21zg : (14)The Hamiltonian in Eq. (13) an be rewritten as (upto the onstant gN(1� �=2)=4)H = !Iz + g2(� + 1)I2z � g2I2; (15)236



ÆÝÒÔ, òîì 125, âûï. 2, 2004 Nonergodi nulear depolarization : : :where I =XNn=1 Inis the total spin and Iz = NXn=1 Inzis its projetion on the z axis. The polarization Pn(t)in Eq. (14) is unhanged if we modify the HamiltonianH in Eq. (15) to the e�etive oneH 0 = �g2I2: (16)In addition, the equivalene of polarizations Pn(t) ofall spins exept the �rst, as well as time onservationof the total polarization PNn=1 Pn(t) allow us to fouson the �rst spin only,P1(�) = tr�exp(i�I2)I1z exp(�i�I2)I1z	tr fI21zg ; (17)where the dimensionless time sale is de�ned as� = gt=2.A powerful tool for investigating the problem inEq. (17) is the theory of oupling of angular mo-menta [17; 18℄. To desribe it, we onsider the totalspin luster omposed of two subsystems A and B. Thesubsystem A has only the spin I1 = IA and the remain-ing fragment B of the spin luster has the spin IB , withthe total spin I = IA + IB . The states of the two sub-systems A and B are oupled together within the stateof the whole system A
B through the Clebsh�Gordan(CG) oe�ientsjIA; IB ; I;mi == XmA=�1=2mB=m�mA CI;mIA;mA;IB ;mB jIAmAijIBmBi; (18)where IA = 1=2 and mA = �1=2 are the spin and itsmagneti quantum numbers for the 1-st spin respe-tively, and IB and mB = m � mA are the spin andits magneti quantum numbers of the fragment B. ForIB = 0, only I = 1=2 and m = �1=2 are allowed.For IB � 1=2, the allowed I and m are I = IB � 1=2,�I � m � I . The CG oe�ients are given by (see,e.g., [19℄)CIB+1=2;m1=2;1=2;IB ;m�1=2 = CIB�1=2;m1=2;�1=2;IB ;m+1=2 == �IB + 1=2 +m2IB + 1 �1=2 ;CIB+1=2;m1=2;�1=2;IB ;m+1=2 = CIB�1=2;m1=2;1=2;IB ;m�1=2 == �IB + 1=2�m2IB + 1 �1=2 : (19)

The two pairs of independent variables (IB ;mB) and(IA = 1=2, mA = �1=2) are used for determining thetrae in Eq. (17) for the whole N -spin system A
B,tr f: : : g = NB=2XIB=IminB w(IB)�� IB+1=2XI=jIB�1=2j IXm=�IhIA; IB ; I;mj : : : jIA; IB ; I;mi; (20)where NB = N � 1 is the number of spins in the frag-ment B; the minimal value of IB is IminB = 0 for evenNB and IminB = 1=2 for odd NB . The fatorw(IB) = 2IB + 1NB + 1� NB + 112NB + IB + 1� (21)is the number of ways of grouping NB individual spins1=2 into the total spin IB . The fator w(IB) satis�esthe relation [17; 18; 20℄NB=2XIB�jmB jw(IB) = � NB12NB +mB�: (22)The right-hand side of Eq. (22) is the number of statesfor eah allowed eigenvalue mB of the fragment B.To deal with the diagonal evolution matries inEq. (17), we introdue additional bases of the bra,hIA; IB ; I 0;m0j, and ket, jIA; IB ; I 0;m0i, vetors inthe Hilbert spae H(IA) 
 H(IB) for �xed valuesIA = 1=2 and IB ; we then use the ompleteness ofthe 2(2IB + 1) orthonormal basis vetors belonging tothe spae H(IA)
H(IB),1H(IA)
H(IB) == IB+1=2XI0=jIB�1=2j IXm0=�I jIA; IB ; I 0;m0ihIA; IB ; I 0;m0j;(23)and, �nally, insert the representation of unity inEq. (23) in front of the rightmost operator I1z inEq. (17), whose matrix elements are given byhIA; IB ; I 0;m0jI1z jIA; IB ; I;mi = Æm;m0 �� XmA=�1=2mACI0;m01=2;mA;IB ;m0�mA �� CI;m1=2;mA;IB;m�mA : (24)With these algebrai steps, we immediately obtain thepolarization P1(�) in terms of the CG oe�ients as237
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P1(�) = 2�(NB�1) NB=2XIB=IminB w(IB) XjIB�1=2j�I�IB+1=2jIB�1=2j�I0�IB+1=2 X�I�m�I�I0�m0�I0 Æm;m0 exp (i�fI(I + 1)� I 0(I 0 + 1)g)��0� XmA=�1=2mACI0;m01=2;mA;IB ;m0�mACI;m1=2;mA;IB ;m�mA1A2 : (25)For the term IB = 0, only a single pair (I = 1=2,I 0 = 1=2) is allowed in the sum in Eq. (25), and forIB � 1=2, the four pairs of (I; I 0) must be distinguishedin this sum depending on the sign (+) or (�) in the ex-pressions(I; I 0) = �I = IB � 12 ; I 0 = IB � 12� : (26)Armed with the polarization P1(�) in Eq. (25), we

now deompose it into the time-independent part P1and the osillating part P os1 (�),P1(�) = P1 + P os1 (�): (27)The time-independent ontribution P1 to the funtionP1(�) is provided by the quantum numbers m;m0 be-longing to the states I = I 0 = IB � 1=2 if IB � 1=2,and by the quantum numbers m;m0 belonging to thestates I = I 0 = 1=2 if IB = 0,P1 = 2�(NB�1) NB=2XIB=IminB w(IB) IB+1=2XI=jIB�1=2j IXm=�I0� XmA=�1=2mA�CI;m1=2;mA;IB ;m�mA�21A2 : (28)Our aim is now to sum over the indies m and I for a�xed value of IB in Eq. (28). For this, we start with thestate IB = 0 that arises for even NB (see the ommentsto Eq. (20)). For IB = 0, only I = 1=2 is allowed, andthe partial polarization P1(IB) in Eq. (28) is given byP1(IB = 0) = 2�(NB�1)w(0) 1=2Xm=�1=2m2: (29)Next, we onsider the ontribution to P1 in Eq. (28)from the spin IB � 1=2. In this situation, I = IB�1=2are allowed and invoking the CG oe�ients inEq. (19), the ontributions P1(IB) to P1 an be onve-niently written asP1(IB) = 2�NBw(IB) IBX�=�IB 2�+ 12IB + 1 : (30)Combining P1(IB = 0) in Eq. (29) and P1(IB) inEq. (30) results inP1 = 2�NB NB=2XIB=IminB w(IB) IBX�=�IB 2�+ 12IB + 1 : (31)

The sum over � in Eq. (31) easily yieldsIBX�=�IB(2�+1)2 = (2IB+1)�1+43IB(IB+1)� ; (32)and substituting w(IB) from Eq. (21), we arrive at thesought resultP1 = 2�NBNB + 1 NB=2XIB=IminB � NB + 112NB + IB + 1����1 + 43IB(IB + 1)� : (33)The remaining sum over IB in Eq. (33) depends onwhether NB is an even or odd number. If NB is even,then IminB = 0 and straightforward summation over IBin Eq. (33), with the known sums involving the bino-mial oe�ientsNB=2XIB=0� NB + 112NB + IB + 1� = 2NB ;NB=2XIB=0 IB(IB + 1)� NB + 112NB + IB + 1� = NB2NB�2; (34)
238



ÆÝÒÔ, òîì 125, âûï. 2, 2004 Nonergodi nulear depolarization : : :yields the polarizationP1 = N + 23N (35)for an odd N = NB + 1 spin luster [11℄. If NB isodd, then IminB = 1=2 and some simple algebra givesthe polarizationP1 = N + 2� 21�N� NN=2�3N (36)for an even N = NB + 1 spin luster.When N � 1, the polarization P1 in Eq. (36) be-haves as N + 2� 2(�N=2)�1=23N :Equations (35) and (36) give the sought time-indepen-dent ontributions P1 to the total polarization P1(�)

in Eq. (27) for odd and even numbered spin lusters,respetively.It remains to �nd the time-dependent ontributionP os1 (�) to the total polarization P1(�) in Eq. (25).Among the four pairs (I; I 0) in Eq. (26), only the pairs(I; I 0) with I 6= I 0 ontribute to the time-dependentpart of the funtion P1(�) in Eq. (25). This oursfor IB � 1=2 only, beause otherwise, i.e., for IB = 0,the allowed values I = I 0 = 1=2 are already enoun-tered in the time-independent polarization P1. Thus,among the four pairs (I; I 0) in Eq. (26) only the twopairs (I = IB +1=2, I 0 = IB � 1=2) and (I = IB � 1=2,I 0 = IB +1=2) are allowed and provide omplex onju-gate ontributions to the real-valued funtion P os1 (�).It su�es to deal with the �rst pair, (I = IB + 1=2,I 0 = IB � 1=2). The polarization beomesP os1 (�) = 2�(NB�1) NB=2XIB=1=2w(IB) IB+1=2Xm=�(IB+1=2) IB�1=2Xm0=�(IB�1=2) Æm;m02 os (2�(IB + 1=2))��0� XmA=�1=2mACIB�1=2;m01=2;mA;IB ;m0�mACIB+1=2;m1=2;mA;IB ;m�mA1A2 : (37)To omplete the derivation of the funtion P os1 (�), weuse the expression for the fator w(IB) in Eq. (21), theCG oe�ients in Eq. (19), and sum over m and m0 inEq. (37) for a �xed value of IB . This givesP os1 (�) = 2�NB+33(NB + 1) NB=2XIB=1=2� NB + 112NB + IB + 1��� IB(IB + 1) os(2�(IB + 1=2)): (38)Finally, by gathering the expressions for P1 in Eqs. (35)and (36) and the expression for P os1 (�) in Eq. (38), wego over (with the substitution k = IB �1=2 for even Nand k = IB for odd N) to the total polarization at the�rst spin,P1(�) = N + 2� 21�N� NN=2�3N + 24�N3N �� N=2�1Xk=0 Ak(N) os(�(N � 2k)) (39)for an even N -luster, and

P1(�) = N + 23N + 24�N3N �� (N�1)=2Xk=0 Ak(N) os(�(N � 2k)) (40)for an odd N -luster, with the oe�ientAk(N) = �N + 12 � k��N � 12 � k��Nk�arising in both ases. Formulas (39) and (40) are theentral result of the paper. They are used to desribea variety of systems in the next setion.4. DISCUSSION4.1. Nonergodi spin dynamisAs Eq. (40) states, for large odd-N lusters, thetime-averaged polarization hP1(�)i of spin 1 tends to1=3, while the time-averaged polarization 2=3N of anyother spin tends to 0, i.e., polarization of spin 1 doesnot spread uniformly over an N -spin luster. We allthis behavior the nonergodi spin dynamis, to onfrontit with the ergodi spin dynamis providing the 1=Npolarization for all spins in an N -spin ensemble. Figu-239



E. B. Fel'dman, M. G. Rudavets ÆÝÒÔ, òîì 125, âûï. 2, 2004re 2a shows the behavior of the polarization P1(�) fora series of odd-N lusters. The priniple features ofthe periodi pulses of the polarization are determinedby two fators: �rst, time reversibility of the dynamisa�ets the exat reentrane of the polarization to theprepared value P1(0) = 1 after eah period 4�=g, and,seond, gives rise to the time interval with the time-independent polarization of spin 1, see the Appendixfor details. For large-N lusters, the total period 4�=gan be partitioned into the swithing timetsw = 4�O(1)gpNand the stopping timetst = 4�g �1� O(1)pN � ;we reall that � = gt=2. As shown in the Ap-pendix, the polarization P1(�) is peaked at the in-stants t = 0; 2�=g; 4�=g; : : : . The pro�le of the funtionP1(�), e.g., around � = 0, isP1(�) = 13 + 23�1� �2N� exp���2N2 � : (41)The funtion P1(�) has the same pro�le around all theinstants � = m�, for all integer m. The interval be-tween the suessive peaks and their width areT = 2�g ; �T = 4�O(1)gpN ; (42)respetively. In other words, for large-N lusters, thepolarization of spin 1 stays at the �xed value P1 = 1=3almost all the time. The osillating part of P1(�) isan odd funtion of time with respet to the instants� = �=2; 3�=2; : : : , as is apparent from Eq. (40).Figure 2b shows the pro�les of the polarization forN -spin lusters with even N . For large even values ofN , the polarization at spin 1 stays �xed over the longtime interval tst = 2�g �1� O(1)pN �within eah period 2�=g. Unlike odd-N lusters, thepro�les of P1(�) for even-N lusters are even funtionsof time with respet to time instants � = �=2; 3�=2; : : : .Using the experimental values of the time intervalT and the width of the pulses �T in Eq. (42) togetherwith the expressions for the oupling g in Eqs. (10)

and (12), we �nd that the volume and form fator aregiven by V = 4 � T�T �2 ;F �ab�P2(os�) = 8 T2~�2T ; (43)where  = N=V denotes the onentration of themoleules arrying spin 1=2 and the angle � is assumedto be known.4.2. Polarization dynamis in �utuatingnano-bubblesEquations (39) and (40) an be adapted to aountfor the time dependene of the volume of the nano-avity, thereby providing a means to explore NMRimaging of avitation bubbles in water [21℄, blood [22℄,et., along with the onventional high-speed photog-raphy. Dynamis of the surfae of a typial bubblingbehavior ours at a milliseond time sale [21℄, i.e., atthe same time sale that is relevant for the nulear spindynamis. It is therefore legitimate to ask how the dy-namis of a nano-size volume a�ets the nulear spindynamis. Our intention in this setion is to show that�utuations of the nano-volume (governed either by ex-ternal inputs or by inherently thermal noise) drive thepolarization to the nonergodi value 1=3 irreversibly,and therefore time-periodi pulsating of the polariza-tion breaks down as time proeeds.The formulation in Se. 3 is easily extended to thease of a time-varying volume V beause the ouplingg(V (t)) enters Hamiltonian (13) as a ommon fatorin front of the operator part. The funtional form ofthe polarization P os1 (�) in Eq. (38), whih has beenderived for time-independent oupling g, is generalizedto the ase of a funtion g(t) provided that the time� = gt=2 in Eq. (38) is replaed with a new time,� = 12gt! 12 tZ0 g(t0)dt0: (44)We are interested in transformation (44),g(t) = hgi+ Æg(t); (45)where Æg(t) is the Gaussian random noise haraterizedby the �rst two momentshÆg(t)i = 0;hÆg(t1)Æg(t2)i = h(Æg)2i(jt1 � t2j); (46)240
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Fig. 2. a � Polarization P1(�) in Eq. (40) of the �rst spin is varied with the dimensionless time � = gt=2 for the series ofan odd total number N of spins. b � Polarization P1(�) in Eq. (39) for the series of even Nwhere h(Æg)2i is the variane and (t) denotes the or-relation funtion, for example, (t) = exp(�t=t), witht being the orrelation time. In aordane with theomment before Eq. (44), we replae the fatoros (2�(IB + 1=2))in Eq. (38) withos24(IB + 1=2)0�hgit+ tZ0 Æg(t0) dt01A35 :Gaussian averaging of this fator over the random fun-tion Æg(t) is performed as (see, e.g., [15℄)*exp0�i(IB + 1=2) tZ0 Æg(t0)dt01A+Æg == exp��(IB + 1=2)2h(Æg)2iT 2�; (47)

with T 2 = tZ0 (t� t0) (t0) dt0: (48)We �rst on�ne our attention to the polarization foreven N , with N � 1, and then lose the setion withthe �nal result for odd N , N � 1. We write the polar-ization in Eq. (38) with averaging (47) asP1(t) = P1 + 2�NB+33(NB + 1) �� NB=2XIB=1=2� NB + 112NB + IB + 1�IB(IB + 1)�(t);�(t) = exp�� (IB + 1=2)2 h(Æg)2iT 2��� os (hgit(IB + 1=2)) : (49)
The exponent in Eq. (49) tell us that the suessivepeaks of the time-dependent part of P1(t) redue to4 ÆÝÒÔ, âûï. 2 241
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N = 134
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1:00P1

hgit=2�Fig. 3. Polarization dynamis of a single spin, P1(t),within the N = 134 spin aggregate when the volumeof the nano-avity �utuates providing the relative vari-ane of the g oupling equal to h(Æg)2i=hgi2 = 10�4,see Eqs. (51) and (52)zero as t!1, and therefore only the time-independentpart of P1(t), i.e., P1 = 1=3 in Eq. (33), survives ast ! 1 after the Gaussian averaging over the funtionÆg(t). The integral over t0 in the onstant T 2 in Eq. (48)an be evaluated in the two asymptoti ases, for thelarge and the small orrelation time [15℄,T 2 = ( t2=2 if t2 h(Æg)2i � 1;tt if t2 h(Æg)2i � 1: (50)To �nd the funtion P1(t) in Eq. (49) for N � 1, wean replae the sum in Eq. (49) with the Gaussian av-eraging, as in Eq. (A.3) in the Appendix, whih givesP1(t) = 13 + 163N3=2p�=2 �� N=2Xn=1 os (hgitn)�n2 � 14� exp(�an2); (51)where a = 2N + h(Æg)2iT 2: (52)Figure 3 shows the polarization dynamis of a singlespin within the N = 134 spin aggregate forh(Æg)2ihgi2 = 10�4:Based on the formulas in the Appendix, we simplify thesum over n in Eq. (51) via the Poisson resummation

formula. De�ning the partial sums entering Eq. (51)byS1(t) = N=2Xn=1 os (hgitn) exp(�an2) == �12+12r�a 1Xq=�1 exp ��2 �q+hgit2� �2 =a! ; (53)andS2(t) = N=2Xn=1 os (hgitn)n2e�an2 = ��S1(t)�a == p�4a3=2 1Xq=�1 1� 2�2a �q + hgit2� �2!�� exp ��2a �q + hgit2� �2! ; (54)we obtainP1(t) = 13 + 163N3=2p�=2 �S2(t)� 14S1(t)� : (55)To �nd the envelope of the suessive peaks of thefuntion P1(t) in Eq. (55), we substitute the timet = 2�m=hgi in Eqs. (53)�(55), with m running overinteger numbers. This gives the polarization at thedisrete values m,S1(m) = N=2Xn=1 exp(�an2) == �12 + 12r�a 1Xk=�1 exp���2k2a � ; (56)S2(m) = N=2Xn=1n2 exp(�an2) == p�4a3=2 1Xk=�1�1� 2a�2k2� exp���2k2a � : (57)The funtions S1(m) and S2(m) inherit their depen-dene on the �time� m through the onstant a inEqs. (52) and (50),a == 8>>>><>>>>: 2N + 2�2m2 h(Æg)2ihgi2 if t2h(Æg)2i � 1;2N + 2�mt h(Æg)2ihgi if t2h(Æg)2i � 1; (58)242



ÆÝÒÔ, òîì 125, âûï. 2, 2004 Nonergodi nulear depolarization : : :where we substitute t = 2�m=hgi in Eqs. (52) and (50).For N � 1 and m� 1, we drop the summand 2=N inEq. (58) assuming that a� 1,a �8>><>>: 2�2m2 h(Æg)2ihgi2 if t2h(Æg)2i � 1;2�mt h(Æg)2ihgi if t2h(Æg)2i � 1: (59)For a � 1, we �nd the sums over k in Eqs. (56)and (57) by again using the Poisson resummation for-mula, Eq. (A.5), whih aelerates onvergene of thesums for a � 1. Reading Eq. (A.4) bakwards, fromthe right-hand side to the left-hand side, we obtainI(a) =r�a 1Xk=�1 exp���2k2a � == 1X`=�1 exp(�a`2) = 1 + 2e�a +O(e�4a): (60)Thus, Eqs. (53) and (54) beomeS1(m) = �12 + 12I(a) = e�a; (61)S2(m) = �12 �I(a)�a = e�a; (62)and Eq. (55) therefore gives the polarization of the �rstspin P1(m) = 13 + 4p2N3=2p� e�a (63)with a in Eq. (59).We onlude this setion with the result for the to-tal polarization for an odd total number N of spins.Due to alternating peaks of the polarization P1(t) inEq. (40) (see also Fig. 2a), we obtainP1(m) == 8>>><>>>: 13 � 4p2N3=2p� e�a for large odd m;13 + 4p2N3=2p� e�a for large even m: (64)Equation (64), with a in Eq. (59), shows that the po-larization peaks P1(m) of a spin-arrying gas have aGaussian and an exponential time dependene for largeand small orrelation times of the �utuations of thenano-bubbles, respetively.

4.3. NMR line shapeTo alulate the NMR line shape exatly, we use thesame e�etive Hamiltonian (13) as desribed in Se. 3.The NMR line shape is the Fourier transform of thefree indution deay (FID), F (t), of an N -spin ensem-ble [15℄. The NMR line shape on the protons in hy-drogenated thin silion �lms provided the �rst exper-imental evidene for the validity of e�etive Hamilto-nian (13) in nano-avities [4℄. We are interested in theFID signal F (t) = tr�eiHtI+e�iHtI�	tr fI+I�g (65)with I� = NXn=1 In�; I� = Ix � iIy; � = x; y; z:The reason for an exat solution for the FID in Eq. (65)is that the total Hamiltonian in Eq. (13) an be ex-pressed in terms of the three olletive spin operatorsI� just as in Eq. (15). Beause [I2; I�℄ = 0, we anrewrite Eq. (65) asF (t) = trneiGtI2z I+e�iGtI2z I�otr fI+I�g ; (66)with G = 3g=2 for dipolar interations in the e�etiveHamiltonian (13) with � = 2. The Heisenberg equationof motion for the operatorI+(t) = exp(iGtI2z )I+ exp(�iGtI2z )is solved exatly asI+(t) = exp(iGt(2Iz � 1))I+(0); I+(0) = I+:The averaging in Eq. (65) is performed in theN !=(N"!N#!)-fold degenerate basis of the states(N"; N#) with N" (N#) spins up (down), suh thatN" + N# = N and Iz = (N" � N#)=2. The averaginggives the FID F (t) = �os�32gt��N�1 : (67)The e�et of dephasing of proton spins within the nano-avity due to the interations with the protons at thesurfae of the nano-avity is introdued phenomenolog-ially asF (t) = �os�32gt��N�1 exp�� tT2� : (68)243 4*



E. B. Fel'dman, M. G. Rudavets ÆÝÒÔ, òîì 125, âûï. 2, 2004where the time T2 relevant for the experiments [4℄ isT2 � 1�3 ms. The moments of the line shape areMn = 1Z�1 d!!nI(!) = �dnF (t)d(it)n �����t=0 ; (69)where I(!) enters through the Fourier transformationof the FID, F (t) = 1Z�1 d! I(!)ei!t: (70)The funtion I(!) is meaningful for the frequenies0 < ! < 2~=�3, with � standing for the diameter ofhard-sphere spin-arrying moleules. The upper ut-o� of the frequeny provides �nite seond and fourthmoments for gT2 � 1,M2 = (N � 1) (3g=2)2 ;M4 = (N � 1)(3N � 5) (3g=2)4 : (71)The moment M2 derived in [4℄ by the Van Vlek for-mula oinides with M2 in Eq. (70), as it should. Theline shape in the nano-avity volume appears to bevolume-dependent (through the oupling g in Eq. (10)),allowing one to determine the volume of the nano-poresin hydrogenated silion �lm [4℄.5. CONCLUSIONWe have presented the exat time-dependent de-sription of spin-1=2 dynamis with in�nite-range spininterations and the initial polarization prepared on asingle spin 1, i.e., P1(0) = 1. Spin dynamis for odd andeven numbered lusters demonstrates periodi pulses ofthe polarization P1(�) on spin 1. For large-N lusterswith odd N , the polarization on spin 1 has pulses overthe time interval tsw = 4�O(1)gpN ;from P1(0) = 1 to the time-independent polarization,whih therefore laststst = 4�g �1� O(1)pN �within any period 4�=g. For large-N lusters with evenN , the swithing time istsw = 2�O(1)gpN

and the period equals 2�=g. The stationary polariza-tion on spin 1 is nonergodi, beause its value tendsto 1=3 (instead of tending to the ergodi value 1=N)as N tends to in�nity. The pro�les of the polariza-tions within the series of odd (even) large lusters areremarkably similar.The spei� polarization pro�le in lusters within�nite-range spin interations is in sharp ontrast withthe polarization pro�les in 1D lusters with the nearest-neighbor XY Hamiltonian [3℄. Two di�erenes an bedrawn from the presented results.1. The overall behavior of the polarization P1(t) inthe system with an in�nite-range interation is stritlyreversible, periodi with the period 4�=g for any N ,whereas on large 1D hains (N � 1) with the XYHamiltonian, the polarization P1(t) on spin 1 moves inirregular fashion.2. ForN -spin lusters with N � 1, the polarizationP1(t) of spin 1 exhibits a plateau region at the noner-godi value P1 = 1=3; the pulses of the polarizationP1(t) have a short time span about 4�O(1)=(gpN).This is in ontrast to the behavior of the polarizationP1(t) in 1D spin hains with the XY Hamiltonian,where polarization on spin 1 depends on time in ir-regular fashion with tst = 0.Finally, this paper demonstrates the sensitivity ofthe polarization dynamis (reversibility and ergodiityin many-spin systems) to the radius of the interation.Inorporation of the real dipolar interations intothe theory is the most hallenging task of dynamialtheory and the aurate answer is not settled yet,although the general piture of the spin dynamis isknown to be di�usional [23℄.We thank to D. E. Fel'dman and S. V. Iordanskiifor helpful disussions, A. K. Khitrin for sending thereport [4℄, and S. I. Doronin and I. I. Maximov for helpin preparing the manusript. This paper was supportedin part by the RFBR (grant � 01-03-33273).APPENDIXDerivation of Eq. (41)We want to prove that the funtion P os1 (�) inEq. (38) for N � 1 has the form of periodi pulses,eah of the width �T = 4�O(1)gpN244



ÆÝÒÔ, òîì 125, âûï. 2, 2004 Nonergodi nulear depolarization : : :at equidistant time instants � = 0; 2�; 4�; : : : , suhthat the pro�le of P os1 (�), e.g., at the time instant� = 0 isP os1 (�) == 23�1� �2N� exp���2N=2�; for N � 1: (A.1)To prove Eq. (A.1), we introdue the new variablen = IB + 12in Eq. (38), suh that the funtion P os1 (�) takes theform (we reall that the total number of spins is equalto N = NB + 1)P os1 (�) = 163N N=2Xn=1 2�N� NN=2 + n����n2 � 14� os (2�n) : (A.2)Next, we use the asymptoti formula for the binomialdistribution,2�N� NN=2 + n� = 1p�N=2 �� exp�� n2N=2��1 + n3O(1)pN � : (A.3)Equation (A.3) allows us to onsider summation inEq. (A.2) as averaging over the Gaussian distributionfuntion. To simplify the alulation of Eq. (A.2) fur-ther, we apply the Poisson identity [24℄1X`=�1 os (2��`) exp(�a`2) ==r�a 1Xk=�1 exp���2(k + �)2a � : (A.4)In many irumstanes, inluding the present ones, theresulting sum over k in the right-hand side of Eq. (A.4)onverges muh faster than the original sum over ` inthe left-hand side of Eq. (A.4). To apply Eqs. (A.4)to Eq. (A.2), we an expand the sum in Eq. (A.2) upto n = 1 beause the terms in the sum in Eq. (A.2)pratially vanish for n > N=2 and N � 1. Thus, byPoisson identity (A.4), we introdue the sum (a partialontribution to the sum in Eq. (A.2))S1(�) = N=2Xn=1 os (2�n) exp�� n2N=2� = �12 ++ 12r�N2 1Xk=�1 exp���2 �k + ���2 N2 � : (A.5)

To show that the funtion S1(�) has the formof Gaussian peaks at the equidistant instants� = 0;��;�2�; : : : , it su�es to analyze thefuntion S1(�) around the point � = 0. The leadingontribution to the sum in Eq. (A.5) is then providedby the term k = 0. We note that if we analyze thepeak around � = m�, where m is an integer, then theleading ontribution to S1(�) omes from the termk = �m. Thus, in onsidering N � 1, we an drop allthe terms in Eq. (A.5) exept the leading term k = 0,whih yieldsS1(�) = �12 + 12r�N2 exp���2N2 � : (A.6)Analogously, we determine the partial sumS2(�) = N=2Xn=1 os (2�n)n2 exp�� n2N=2� == � ��(2=N)S1(�) = N3=2p�8p2 �1� �2N��� exp���2N2 � : (A.7)At N � 1, the funtion S1(�) in Eq. (A.6) has a neg-ligible ontribution to the funtionP os1 (�) = 163N3=2p�=2 �S2(�)� 14S1(�)�in omparison with the ontribution of the funtionS2(�) in Eq. (A.7), yielding the sought result inEq. (A.1).In general, the funtion P os1 (�) for an arbitrary �has pulses at the moments � = k� with integer k,P os1 (�) = 1Xk=�1 23 �1� �2 �k + ���2N��� exp���2 �k + ���2 N2 � : (A.8)REFERENCES1. F. S. Dzheparov, Zh. Eksp. Teor. Fiz. 116, 1398 (1999).2. R. Brüshweiler and R. R. Ernst, Chem. Phys. Lett.264, 393 (1997).3. E. B. Fel'dman, R. Brüshweiler, and R. R. Ernst,Chem. Phys. Lett. 294, 297 (1998); E. B. Fel'dman andM. G. Rudavets, Chem. Phys. Lett. 311, 453 (1999).4. J. Baugh, A. Kleinhammes, D. Han, Q. Wang, andY. Wu, Siene 294, 1505 (2001).245
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