ДЕЛОКАЛИЗОВАННЫЕ ДИСЛОКАЦИИ В КВАНТОВЫХ ТОЧКАХ

И. А. Овидько^{*}, А. Г. Шейнерман

Институт проблем машиноведения Российской академии наук 199178, Санкт-Петербург, Россия

Поступила в редакцию 24 июня 2003 г.

Предложена теоретическая модель, описывающая зарождение дислокаций несоответствия с делокализованными ядрами в островковых пленках. Проведена оценка параметров наноостровков (квантовых точек) с делокализованными дислокациями несоответствия в системе Ge/Si. В рамках предложенной модели показано, что зарождение делокализованных дислокаций несоответствия в квантовых точках в широком интервале их параметров энергетически более выгодно, чем зарождение совершенных дислокаций несоответствия (обычно рассматриваемых в моделях квантовых точек с дислокациями).

PACS: 68.65.Hb, 61.72.Bb, 61.72.Ji, 61.72.Lk

1. ВВЕДЕНИЕ

В последние годы пространственно-упорядоченные ансамбли полупроводниковых наноостровков (квантовых точек) являются предметом интенсивных исследований фундаментального и прикладного характера, см., например, [1–15]. Функциональные свойства полупроводниковых наноостровков, имеющих широкие перспективы применения в электронике и оптоэлектронике, существенным образом зависят от дефектной структуры наноостровков. В частности, зарождение дислокаций несоответствия (ДН) в наноостровках приводит к деградации их уникальных свойств [2]. Это обусловливает значимость определения критических параметров наноостровков, при которых ДН зарождаются в наноостровках (рис. 1). Полные, частичные и расщепленные ДН в наноостровках (рис. 1а, б, в) являются аналогами соответственно полных [16-25], частичных и расщепленных [26-30] ДН в непрерывных пленках. Каждая конфигурация частичных и расщепленных ДН включает одну или две частичных ДН (с векторами Бюргерса, которые не являются векторами кристаллических решеток наноостровка или подложки) и дефект упаковки (рис. 16, в). В общем случае в непрерывных кристаллических пленках возможно также зарождение ДН нового типа,

Рис.1. Типы дислокаций несоответствия в пирамидальном наноостровке на подложке: *a*) полная дислокация с линейным ядром, *б*) частичная дислокация с линейным ядром и дефектом упаковки, *в*) расщепленная дислокация, состоящая из двух частичных дислокаций (с линейными ядрами) и дефекта упаковки между ними, *в*) делокализованная дислокация с вектором Бюргерса, равномерно распределенным вдоль ее ядра (полосы конечной ширины)

^{*}E-mail: ovidko@def.ipme.ru

а именно, делокализованных ДН с вектором Бюргерса, «размазанным» вдоль протяженного дислокационного ядра [31]. Такие ДН, которые в дальнейшем мы будем называть делокализованными ДН, рассматривались только в случае непрерывных пленок [31]. До последнего времени теоретические модели зарождения ДН в наноостровках рассматривали только совершенные (полные) ДН (рис. 1*a*) (см., например, [13–15]). Недавно были предложены теоретические модели [32, 33], описывающие зарождение частичных и расщепленных ДН в наноостровках. Основная цель настоящей работы – теоретический анализ условий зарождения делокализованных ДН (рис. 1*г*) в наноостровках.

2. ДЕЛОКАЛИЗОВАННАЯ ДИСЛОКАЦИЯ В НАНООСТРОВКЕ. МОДЕЛЬ

Рассмотрим гетероэпитаксиальную систему, состоящую из островка и полубесконечной подложки (рис. 1). Наноостровок имеет форму правильной пирамиды с квадратным основанием со стороной *l* и углом наклона боковой грани а. Наноостровок и подложка предполагаются упруго изотропными материалами с одинаковыми модулями сдвига G и коэффициентами Пуассона *v*. В рамках модели граница островка и подложки характеризуется одномерным несоответствием f, определяемым выражением $f = 2(a_i - a_s)/(a_i + a_s)$, где a_i и a_s — параметры кристаллических решеток соответственно островка и подложки. Несоответствие f будем моделировать краевыми дислокациями (называемыми в дальнейшем когерентными дислокациями) с векторами Бюргерса $db\mathbf{e}_x$, непрерывно распределенными вдоль межфазной границы с линейной плотностью f/db.

Из-за различия между параметрами кристаллических решеток наноостровка и подложки в наноостровке возникают напряжения несоответствия. Релаксация напряжений несоответствия в наноостровках и тонких пленках обычно происходит за счет зарождения ДН и их конфигураций [13–33]. Наиболее распространенный тип ДН — это полные [13–25], иногда частичные и расщепленные [26–30, 32, 33] ДН. Наряду с такими ДН, в тонких пленках возможно также зарождение делокализованных ДН [31]. Каждая такая ДН характеризуется вектором Бюргерса, распределенным вдоль протяженного дислокационного ядра, имеющего форму полосы конечной ширины (в отличие от полных и частичных дислокаций, имеющих линии в качестве ядер). В на-

Рис.2. Дислокация несоответствия с делокализованным ядром в двухфазном цилиндре с плоской границей раздела фаз (островка и подложки). Несоответствие параметров кристаллических решеток и делокализованная дислокация несоответствия моделируются непрерывным распределением когерентных дислокаций (показаны черным) и антикогерентных дислокаций (показаны белым)

стоящей работе исследуются характеристики делокализованных ДН в наноостровках, условия зарождения которых в наноостровках отличны от таковых (рассматривавшихся в работе [31]) в обычных тонких пленках. Различие в условиях зарождения ДН обусловлено различием в геометрии наноостровков и тонких пленок. В частности, в силу геометрии наноостровка делокализованная ДН может зарождаться на межфазной границе наноостровок-подложка вблизи линии пересечения этой границы и боковой свободной поверхности наноостровка (рис. 1*г*). При этом боковая свободная поверхность существенным образом экранирует поле напряжений ДН, что уменьшает упругую энергию ДН и облегчает ее зарождение в наноостровке.

Рассмотрим подробно формирование на границе островка и подложки полной ДН с делокализованным ядром (рис. 1 г). В общем случае такой дефект представляет собой некоторое неоднородное непрерывное распределение дислокаций по участку границы островка и подложки. Однако для простоты будем моделировать ДН с делокализованным ядром однородным распределением дислокаций (в дальнейшем называемых антикогерентными).

Зарождение ДН с делокализованным ядром энергетически выгодно, если разность ΔW энергии островка с ДН и его энергии в когерентном состоянии отрицательна. Точный аналитический расчет энергии островка с дислокацией на подложке требует аналитических выражений для полей напряжений краевой дислокации возле свободной поверхности, образованной свободными поверхностями островка и подложки (рис. 1 г). Ввиду отсутствия таких выражений для расчета энергии, связанной с образованием в островке ДН, будем моделировать подложку с островком упругим цилиндром радиуса R и бесконечной длины (рис. 2). В рамках модели граница раздела островка и подложки представляет собой полосу, которая пересекает цилиндр параллельно его оси под углом а к его поверхности. Угол α соответствует углу между основанием реального островка и его боковой гранью. В системе координат, изображенной на рис. 2, граница островка и подложки занимает область ($|x| < l/2 = R \sin \alpha$, $y = y_0 = R \cos \alpha$). Дислокации несоответствия моделируются антикогерентными дислокациями, равномерно распределенными по области |x| < a границы островка и подложки с линейной плотностью 1/2a.

3. ЭНЕРГЕТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ДЕЛОКАЛИЗОВАННОЙ ДИСЛОКАЦИИ НЕСООТВЕТСТВИЯ В НАНООСТРОВКЕ

Найдем изменение ΔW энергии системы, связанное с образованием на границе островка и подложки ДН с делокализованным ядром (на единицу ее длины). Величина ΔW представима в виде

$$\Delta W = W^d + W^{d-f} + W^c, \tag{1}$$

где W^d — собственная энергия ДН, W^{d-f} — энергия ее взаимодействия с полем упругих напряжений несоответствия, а W^c — энергия ядра ДН.

Собственная энергия W^d ДН рассчитывается как энергия взаимодействия антикогерентных дислокаций с векторами Бюргерса $-b/(2a) dx e_x$, где $b = a_i$ — расстояние между атомами в островке:

$$W^{d} = \frac{1}{2} \left(\frac{b}{2a}\right)^{2} \int_{-a}^{a} \int_{-a}^{a} g(x, x') \, dx \, dx', \qquad (2)$$

где g(x, x') — энергия взаимодействия двух параллельных дислокаций (расположенных в точках x и x') с единичными векторами Бюргерса $\mathbf{b} = -\mathbf{e}_x$. Энергия g(x, x') рассчитывается с помощью выражения [23] для функции напряжений дислокации в цилиндре как $g(x, x') = \tilde{g}(2\sin\alpha x/l, 2\sin\alpha x'/l)$, где

$$g(\tilde{x}, \tilde{x}') = D\{(M-1)[1-2\tilde{y}_0^2(M+1)] - \ln M\}, \quad (3)$$

$$M = \frac{(\tilde{x} - \tilde{x}')^2}{\tilde{y}_0^4 + (\tilde{x}^2 + \tilde{x}'^2 - 2)\tilde{y}_0^2 + (\tilde{x}\tilde{x}' - 1)^2},$$
 (4)

 $\tilde{y}_0 = 2\sin \alpha y_0/l$, a $D = G/[2\pi(1-\nu)]$.

Энергия W^{d-f} взаимодействия ДН с напряжениями несоответствия рассчитывается как энергия взаимодействия когерентных дислокаций с антикогерентными дислокациями:

$$W^{d-f} = -\frac{b}{2a} f \int_{-a}^{a} \int_{-l/2}^{l/2} g(x, x') \, dx \, dx'.$$
 (5)

Энергия ядра ДН связана с искажением химических связей на межфазной границе в результате образования ДН. Следуя работе [31], представим эту энергию в виде

$$W^c = 2a\Delta\gamma,\tag{6}$$

где $\Delta \gamma$ — изменение удельной поверхностной энергии межфазной границы в результате образования на ней ДН с делокализованным ядром.

Подставляя формулы (2), (5) и (6) в (1), получаем

$$\Delta W = \frac{b^2}{8} \left\{ \frac{1}{\tilde{a}^2} \int_{-\tilde{a}}^{\tilde{a}} \left[\int_{-\tilde{a}}^{\tilde{a}} \tilde{g}(\tilde{x}, \tilde{x}') d\tilde{x}' - \frac{4a}{b} f \times \right] \right\} \times \int_{-\sin\alpha}^{\sin\alpha} g(\tilde{x}, \tilde{x}') d\tilde{x}' d\tilde$$

где $\tilde{a} = 2a \sin \alpha / l.$

Для расчета ΔW внутренние интегралы в формуле (7) были взяты аналитически, а внешний интеграл — численно. Зависимости $\Delta W(\tilde{a})$ в интервале 0 < a < l/2 приведены на рис. 3 для различных значений $\Delta \gamma$ при l = 100b и $\alpha = 11^{\circ}$ для островков Ge/Si, характеризуемых следующими значениями параметров: f = 0.042, b = 0.566 нм, G = 40 ГПа, $\nu = 0.26$. Для сравнения горизонтальной линией на рис. 3 показано изменение энергии ΔW , связанное с образованием в центре основания такого островка полной ДН с локализованным ядром. Как следует из рис. 3, существует некоторая равновесная длина $\tilde{a} = \tilde{a}_0$ дефекта, соответствующая минимуму ΔW . Величина \tilde{a}_0 уменьшается с ростом $\Delta \gamma$. При любом значении $\Delta \gamma$, не превышающем удельной энергии 0.066 Дж/м² дефекта упаковки в системе Ge/Si, $\Delta W(\tilde{a}_0) < 0$ и $\Delta W(\tilde{a}_0) < \Delta \tilde{W}$, т.е. формирование в островке ДН с делокализованным ядром является энергетически выгодным процессом. Таким образом, аккомодация напряжений несоответствия путем зарождения в островке ДН с делокализованным ядром является альтернативой формированию

Рис. 3. Зависимости изменения энергии ΔW , связанного с образованием в островке делокализованной дислокации, от безразмерной полуширины \tilde{a} этого дефекта для $\Delta \gamma = 0$, 0.03 и 0.066 Дж/м² (кривые 1, 2 и 3 соответственно). Горизонтальная линия показывает изменение энергии $\Delta \tilde{W}$ в результате формирования в центре основания островка дислокации с локализованным ядром. Величины ΔW и $\Delta \tilde{W}$ приведены в единицах $Db^2/8$

в нем локализованной дислокации и может происходить даже в островках небольшого размера, где формирование обычных дислокаций энергетически невыгодно.

4. ЗАКЛЮЧЕНИЕ

В настоящей работе проведен теоретический анализ условий зарождения делокализованных ДН (дефектов несоответствия нового типа) в квантовых точках (наноостровках). Теоретически выявлено, что зарождение делокализованных ДН (рис. 1г) является энергетически предпочтительным в наноостровках в системе Ge/Si в широком интервале их структурных и геометрических параметров, по сравнению с зарождением обычных полных ДН (рис. 1а). Этот результат обусловливает интерес к проведению экспериментов по идентификации типа ДН в наноостровках, поскольку различные ДН, вообще говоря, чувствительны к различным параметрам структуры, химического состава и технологии получения наноостровков. В частности, условия зарождения делокализованных ДН (рис. 1г) существенным образом зависят от энергии искажения химических связей в протяженном ядре такой дислокации, в отличие от совершенных ДН (рис. 1а). Идентификация типа ДН и критических параметров, контролирующих их зарождение в

наноостровках, открывает возможности для совершенствования технологий получения ансамблей наноостровков с улучшенными функциональными характеристиками. Кроме того, выявление различных типов ДН в наноостровках представляет интерес для развития фундаментальных представлений физики дефектов в наноструктурных твердых телах.

Работа выполнена при финансовой поддержке РФФИ (грант № 01-02-16853), Санкт-Петербургского научного центра РАН, а также в рамках программы «Интеграция» (грант № В0026).

ЛИТЕРАТУРА

- V. A. Shchukin and D. Bimberg, Rev. Mod. Phys. 71, 1125 (1999).
- Н. Н. Леденцов, В. М. Устинов, В. А. Щукин et al., ФТП 32, 385 (1998).
- D. Kouris, A. Peralta, and K. Sieradzki, Surf. Sci. 445, 420 (2000).
- P. Sutter and M. G. Lagally, Phys. Rev. Lett. 84, 4637 (2000).
- 5. A. Bouret, Surf. Sci. 432, 37 (1999).
- B. Voigtländer and N.Theuerkauf, Surf. Sci. 461, L575 (2000).
- I. A. Ovid'ko and A. G. Sheinerman, Appl. Phys. A 74, 273 (2002).
- D. E. Jesson, M. Kästner, and B. Voigtländer, Phys. Rev. Lett. 84, 330 (2000).
- T. I. Kamins, E. C. Karr, R. S. Williams et al., J. Appl. Phys. 81, 211 (1997).
- S. A. Chaparro, J. Drucker, Y. Zhang et al., Phys. Rev. Lett. 83, 1199 (1999).
- S. A. Chaparro, Y. Zhang, J. Drucker et al., J. Appl. Phys. 87, 2245 (2000).
- 12. J. Tersoff, C. Teichert, and M. G. Lagally, Phys. Rev. Lett. 76, 1675 (1996).
- E. Pehlke, N. Moll, A. Kley et al., Appl. Phys. A 65, 525 (1997).
- 14. H. T. Johnson and L. B. Freund, J. Appl. Phys. 81, 6081 (1997).
- 15. R. V. Kukta and L. B. Freund, J. Mech. Phys. Sol. 45, 1835 (1997).

- 16. E. A. Fitzgerald, Mater. Sci. Rep. 7, 87 (1991).
- J. H. van der Merve, Crit. Rev. Sol. St. Mater. Sci. 17, 187 (1991).
- 18. S. C. Jain, A. H. Harker, and R. A. Cowley, Phil. Mag. A 75, 1461 (1997).
- 19. М. Ю. Гуткин, И. А. Овидько, Дефекты и механизмы пластичности в наноструктурных и некристаллических материалах, Янус, Санкт-Петербург (2001).
- 20. T. J. Gosling and J. R. Willis, Phil. Mag. A 69, 65 (1994).
- 21. F. Bailly, M. Barbé, and G. Cohen-Solal, J. Cryst. Growth, 153, 115 (1995).
- 22. I. A. Ovid'ko, J. Phys.: Condens. Matter 11, 6521 (1999); 13, L97 (2001).
- M. Yu. Gutkin, I. A. Ovid'ko, and A. G. Sheinerman, J. Phys.: Condens. Matter 12, 5391 (2000).
- 24. A. G. Sheinerman and M. Yu. Gutkin, Phys. Stat. Sol. (a) 184, 485 (2001).

- 25. S. V. Bobylev, I. A. Ovid'ko, and A. G. Sheinerman, Phys. Rev. B 64, 224507 (2001).
- 26. B. C. de Cooman and C. B. Carter, Acta Metall. 37, 2765 (1989).
- 27. B. C. de Cooman, C. B. Carter, K. T. Chan et al., Acta Metall. 37, 2779 (1989).
- 28. J. Zou and D. J. H. Cockayne, Appl. Phys. Lett. 69, 1083 (1996).
- 29. M. Loubradou, R. Bonnet, A. Vila et al., Mater. Sci. Forum 207–209, 285 (1996).
- 30. M. Tamura, Appl. Phys. A 63, 359 (1996).
- 31. A. E. Romanov, T. Wagner, and M. Rühle, Scripta Mater. 38, 869 (1998).
- 32. I. A. Ovid'ko, Phys. Rev. Lett. 88, 046103 (2002).
- 33. I. A. Ovid'ko and A. G. Sheinerman, Phys. Rev. B 66, 245309 (2002).