ГЕНЕРАЦИЯ ЧЕТНЫХ ГАРМОНИК В РЕЛЯТИВИСТСКОЙ ЛАЗЕРНОЙ ПЛАЗМЕ АТОМАРНЫХ КЛАСТЕРОВ

В. П. Крайнов^{*}, В. С. Растунков

Московский физико-технический институт 141700, Долгопрудный, Московская обл., Россия

Поступила в редакцию 25 августа 2003 г.

Показано, что при облучении атомарных кластеров полем сверхсильного фемтосекундного лазерного импульса генерируются различные гармоники этого поля. Они возникают при упругих столкновениях свободных электронов с атомарными ионами внутри кластеров в присутствии лазерного поля. Выход четных гармоник, электромагнитное поле которых является поперечным, обусловлен релятивизмом движения электронов при учете их дрейфовой скорости, возникшей в момент внутренней ионизации атомов и атомарных ионов кластера. Эти гармоники испускаются в том же направлении, что и нечетные гармоники. Рассчитаны проводимости и электромагнитные поля гармоник. Эффективность возбуждения гармоник медленно убывает с ростом номера гармоники. Возбуждение четных гармоник прекращается, если дрейфовая скорость электронов равна нулю, а отлична от нуля только их колебательная скорость. Результаты применимы и при облучении твердотельных мишеней внутри скин-слоя.

PACS: 36.40.Gk, 36.40.Vz

1. ВВЕДЕНИЕ

При взаимодействии сверхсильных лазерных импульсов фемтосекундной длительности с большими кластерами [1, 2] или твердотельными мишенями (в скин-слое) образуется плазма, состоящая из релятивистских электронов и многозарядных атомарных ионов. Процесс многократной полевой ионизации носит туннельный или надбарьерный характер [3], так как параметр Келдыша γ в сверхатомном поле весьма мал:

$$\gamma = \frac{\omega\sqrt{2E_Z}}{F} \ll 1. \tag{1}$$

Здесь F и ω — соответственно амплитуда напряженности электрического поля и частота лазерного излучения, а E_Z — потенциал ионизации атомарного иона с кратностью заряда Z. Всюду используется атомная система единиц, $e = m_e = \hbar = 1$. Столкновительная ионизация атомарных ионов существенна лишь в слабых электромагнитных полях, когда скорости электронов невелики. Кластерные пучки имеют определенные преимущества перед твердотельными мишенями ввиду отсутствия

тонкого скин-слоя и слабого отражения электромагнитной волны от поверхности.

В случае линейно поляризованного поля лазерного излучения электроны покидают атомарные ионы в процессе многократной ионизации, имея существенно неоднородное угловое распределение по дрейфовым скоростям (т. е. начальным скоростям электронов в момент ионизации). Действительно, характерные значения начальных импульсов электрона вдоль и перпендикулярно поляризации лазерного излучения в нерелятивистском случае равны [4–6]

$$p_{\parallel} = \sqrt{\frac{3\omega}{2\gamma^3}}, \quad p_{\perp} = \sqrt{\frac{F}{2\sqrt{2E_Z}}}, \quad p_{\parallel} \gg p_{\perp}.$$
 (2)

Конечно, электроны могут вылететь и с большими дрейфовыми скоростями (см. ниже формулу (4)), но с меньшей вероятностью. В поле титан-сапфирового лазера с интенсивностью 10^{19} BT/см² и при потенциале ионизации многозарядного атомарного иона в 500 эВ значение $p_{\parallel} \approx 100$ а.е. (c = 137 а.е.), т.е. типичный продольный дрейфовый импульс является релятивистским.

Еще более релятивистским является колебательное движение электронов в поле сверхсильного ла-

^{*}E-mail: krainov@online.ru

зерного импульса. Релятивистский импульс колебательного движения имеет порядок величины

$$p_F = \frac{F}{\omega} \,. \tag{3}$$

В поле титан-сапфирового лазера с интенсивностью 10^{19} Bt/cm^2 величина $p_F \approx 300$ а.е., т.е. колебательное движение электрона является существенно релятивистским.

При столкновении электронов с многозарядными атомарными ионами в присутствии лазерного поля возникает вынужденное излучение гармоник поля как следствие немонохроматичности движения свободного электрона в лазерном поле. Нерелятивистский случай для линейно поляризованного лазерного излучения $(F/\omega \ll c)$ ранее уже был подробно рассмотрен Силиным [7-9]. В этом пределе излучаются только нечетные гармоники (вдоль вектора поляризации лазерного поля). Силин рассмотрел также случай слабого релятивизма [10], в котором имеет место также и излучение четных гармоник. Однако продольное поле этого излучения поляризовано вдоль волнового вектора внешнего лазерного поля, поэтому оно существует только внутри плазмы и не выходит наружу. Аналогичный случай в общей релятивистской постановке был недавно рассмотрен в работе [11].

В работе [11] пренебрегалось дрейфовыми импульсами p_{\parallel} и p_{\perp} по сравнению с колебательным импульсом p_F ввиду их относительной малости. Однако в данной работе было впервые показано, что совместный учет колебательного и дрейфового импульсов приводит к генерации четных гармоник, которые можно наблюдать. Действительно, вектор электрического поля этих гармоник содержит компоненту вдоль вектора электрического поля внешнего лазерного поля, т. е. поле четных гармоник является поперечным и отлично от нуля в волновой зоне вне области плазмы. В соответствии с результатами работ [10, 11] эта компонента исчезает при $p_{\parallel} = p_{\perp} = 0$.

Ввиду неравенства (2) мы будем полагать отличным от нуля только продольный дрейфовый импульс p_{\parallel} . С целью математического упрощения задачи мы не будем усреднять по распределению этого импульса в момент ионизации, как это делалось в работах Силина [7–9], а просто фиксируем его значение. Действительно, в принципе нет большой разницы между зависимостью выхода гармоник от текущего значения продольного импульса или от продольной температуры, определяемой соотношением (2). При туннельной ионизации формально распределение по продольным дрейфовым импульсам совпадает с максвелловским распределением [4,12]:

$$w \propto \exp\left(-p_{\parallel}^2 \frac{\gamma^3}{3\omega}\right).$$
 (4)

2. ДВИЖЕНИЕ РЕЛЯТИВИСТСКОГО ЭЛЕКТРОНА В СВЕРХСИЛЬНОМ ЛАЗЕРНОМ ПОЛЕ

При облучении твердых тел полем сверхсильного лазерного импульса проблема осложняется тем, что бо́льшая часть импульса отражается от поверхности скин-слоя. Электрическое поле внутри тонкого скин-слоя весьма мало по сравнению с электрическим полем падающей электромагнитной волны и по сравнению с магнитным полем внутри скин-слоя. Движение свободного релятивистского электрона в скин-слое существенно отличается от его движения в вакууме (в последнем случае его траектория похожа на цифру «8» для случая линейной поляризации). В частности, в случае вакуума амплитуда двумерных колебаний релятивистского электрона в плоскости, проходящей через вектор поляризации и волновой вектор поля волны, имеет порядок величины c/ω . Эта величина существенно больше толщины скин-слоя c/ω_p (при выполнении обычного условия плотной плазмы $\omega_p \gg \omega$), где $\omega_p = \sqrt{4\pi N_e}$ плазменная частота (*N*_e — концентрация свободных электронов). Таким образом, в случае твердотельной мишени колебания электрона существенно искажаются и ослабляются наличием скин-слоя; траектория движения электрона становится ближе к одномерной траектории вдоль вектора поляризации, а также ближе к поверхности твердого тела.

Указанная проблема отсутствует при облучении атомарных кластеров (конечно, в принципе, ее нет и при облучении атомарных газов; но из-за малой плотности газов выход гармоник в случае газовой мишени невелик). Радиус кластера R (десятки ангстрем) меньше толщины скин-слоя (сотни ангстрем), так что внешнее электромагнитное поле свободно проникает сквозь весь кластер. Однако амплитуда колебаний релятивистского электрона $c/\omega \gg R$. Поэтому генерация гармоник имеет место лишь в те моменты времени, когда релятивистский электрон проходит через кластер в процессе колебаний. При этом в случае больших кластеров внешняя ионизация кластеров незначительна, так что за время действия фемтосекундного лазерного импульса кластер не успевает существенно расшириться из-за кулоновского взрыва.

Соответственно, интенсивность гармоник, вычисленная для движения электрона в кластерной среде, должна быть умножена на малый фактор $\omega R/c \ll 1$, отражающий долю времени, проводимую релятивистским электроном внутри кластера. Имея это в виду, обратимся далее к движению свободного электрона в поле сверхсильной лазерной волны, пренебрегая эффектами фокусировки лазерного импульса. Наличие плазменной среды учтем лишь тем, что волновое число лазерного поля в среде

$$k = \frac{\sqrt{\omega^2 - \omega_p^2}}{c}$$

отличается от волнового числа свободного электрона в вакууме.

Уравнения Ньютона для движения релятивистского электрона в поле волны линейной поляризации могут быть решены аналитически (хотя и в неявной форме) [13]. Выберем ось x вдоль направления распространения волны, ось y вдоль ее поляризации и ось z вдоль направления вектора напряженности магнитного поля. Кинематический импульс электрона вдоль оси y определяется соотношением

$$p_y(t) = p_{\parallel} + \frac{F}{\omega} \cos \varphi. \tag{5}$$

Здесь p_{\parallel} — дрейфовый импульс вдоль оси поляризации, $\varphi = \omega t - kx$ — фаза электромагнитной волны. Кинематический импульс электрона вдоль оси x равен (в пренебрежении поперечным дрейфовым импульсом)

$$p_x(t) = \frac{1}{2\kappa} \left(\frac{F}{\omega} \cos \varphi + p_{\parallel} \right)^2 + \frac{c^2 - \kappa^2}{2\kappa}.$$
 (6)

Здесь константа к равна

$$\kappa = \sqrt{c^2 + p_{\parallel}^2 + \frac{F^2}{2\omega^2}} \,. \tag{7}$$

Наконец, полагаем, что $p_z(t) = 0$: движение вдоль магнитного поля отсутствует (опять в пренебрежении поперечным дрейфовым импульсом).

Компоненты кинематических скоростей электрона вдоль осей *у* и *х* соответственно равны

$$v_{y}(t) = \frac{2c\kappa p_{y}(t)}{c^{2} + \kappa^{2} + p_{y}^{2}(t)},$$

$$v_{x}(t) = \frac{2c\kappa p_{x}(t)}{c^{2} + \kappa^{2} + p_{y}^{2}(t)}.$$
(8)

Наконец, дифференциал времени dt может быть выражен через дифференциал фазы поля $d\varphi$ с помощью соотношения

$$dt = \frac{c^2 + \kappa^2 + p_y^2(t)}{2\omega\kappa^2} \, d\varphi. \tag{9}$$

При столкновении электрона с атомарным ионом, имеющим заряд Z, транспортное сечение упругого релятивистского рассеяния на малые углы определяется формулой Мотта [14] (в атомных единицах):

$$\sigma_M = \frac{4\pi Z^2 \Lambda}{p^2(t) v^2(t)} \,. \tag{10}$$

Здесь Λ — кулоновский логарифм, p(t), v(t) — соответственно полные импульс и скорость электрона. Кулоновский логарифм в пределе больших скоростей является квантовым [7].

Частота упругих электрон-ионных столкновений равна

$$\nu_{ei} = \sigma_M N_i v = \frac{4\pi Z^2 N_i \Lambda}{p^2(t) v(t)}.$$
(11)

Здесь N_i — концентрация атомарных ионов. Умножая (11) на вектор скорости электрона **v**, на концентрацию электронов N_e и на интервал времени dt, получим плотность электрического тока электронов:

$$d\mathbf{j} = -N_e \mathbf{v} \nu_{ei} \, dt. \tag{12}$$

Она имеет компоненты вдоль осей *x* и *y*. Отметим, что это соотношение справедливо и в релятивистском случае (так называемая формула Паули [13]).

Компонента тока (12) вдоль оси x приводит к продольному электрическому полю, которое, как уже отмечалось выше, отсутствует вне области плазмы. Поэтому в дальнейшем мы сосредоточим наше внимание на компоненте плотности электрического тока только вдоль оси y. Подставляя в (12) полученные выше выражения для полной скорости и импульса электрона, находим

$$dj_y = -AFf(\varphi)\,d\varphi.\tag{13}$$

Здесь введено обозначение

$$A = \frac{4\pi Z^2 N_e N_i \Lambda \omega}{F^3} \tag{14}$$

и определена функция

$$f(\varphi) = \frac{(u + \cos\varphi) \left[1 + s(u\cos\varphi + (1/4)\cos 2\varphi)\right]}{\left[(u + \cos\varphi)^2 + s(u\cos\varphi + (1/4)\cos 2\varphi)^2\right]^{3/2}}.$$
 (15)

Безразмерные константы $\boldsymbol{u}, \boldsymbol{s}$ определены соотношениями

$$s = \left(\frac{F}{\omega\kappa}\right)^2, \quad u = \frac{p_{\parallel}\omega}{F}.$$
 (16)

Из (13) следует выражение для компоненты тензора удельной электрической проводимости вдоль оси *y*:

$$\sigma_y = \frac{1}{F} \int dj_y = -A \int_0^{\varphi} f(\varphi) \, d\varphi. \tag{17}$$

Величина σ_y является нелинейной функцией напряженности электрического поля *F*.

Разлагая подынтегральное выражение в (17) в ряд Фурье, получаем набор гармоник

$$\sigma_y = -A \sum_{n=1}^{\infty} C_n \sin n\varphi - A C_0 \varphi.$$
 (18)

Здесь коэффициент ряда Фурье C_n определяется интегралом

$$C_n = \frac{1}{\pi n} \int_0^{2\pi} f(\varphi) \cos n\varphi \, d\varphi, \qquad (19)$$

$$C_0 = \frac{1}{2\pi} \int_0^{2\pi} f(\varphi) \, d\varphi. \tag{20}$$

Видно, что отличны от нуля как нечетные, так и четные гармоники проводимости. Они когерентны с полем исходной электромагнитной волны. Имеется и нулевая гармоника, соответствующая постоянному электрическому полю.

3. РЕЗУЛЬТАТЫ РАСЧЕТОВ ПРОВОДИМОСТИ НА ЧАСТОТАХ ГАРМОНИК

Коэффициенты C_n в (19), (20), определяющие значения проводимости для гармоник внешнего электромагнитного поля, рассчитывались численно как функции обезразмеренного дрейфового импульса электрона (см. (16))

$$u = p_{\parallel} \frac{\omega}{F} \,. \tag{21}$$

Фиксировалось значение обезразмеренного колебательного импульса электрона

$$w = \frac{F}{\omega c} \,. \tag{22}$$

Тогда константа s, определенная соотношением (16), может быть выражена через u и w соотношением

$$s = \frac{1}{u^2 + 1/2 + 1/w^2}$$

На рисунках приведены результаты расчетов коэффициентов C_n с n = 0–5 для типичного релятивистского случая $w = F/\omega c = 2$, соответствующего пиковой интенсивности титан-сапфирового лазера, равной $8 \cdot 10^{18}$ Br/см².

Рисунок а соответствует возбуждаемому полю на основной гармонике. При значениях дрейфового импульса u < 1 имеем $C_1 > 0$, что соответствует нормальной (положительной) проводимости электронного тока (электроны движутся противоположно направлению электрического поля). При u > 1проводимость становится отрицательной (электроны движутся по полю). Как и следовало ожидать, поле фундаментальной гармоники является максимальным по сравнению со всеми остальными гармониками. Оно определяет джоулево поглощение электромагнитной энергии атомарной средой [15]. Это поглощение в соответствии с рис. а определяется электронами с небольшими дрейфовыми скоростями, доминирующими в выражении для поглощения, проинтегрированном по всем дрейфовым скоростям. Значение $C_1(0)$ совпадает с полученным в работе [11] для случая w = 2, как и должно быть.

В принципе электрон, образованный в процессе туннельной или надбарьерной ионизации переменным полем, может иметь любое значение дрейфового импульса. Но вероятность больших значений дрейфового импульса подавлена как экспоненциально малой вероятностью (4) их образования, так и малостью коэффициента C_1 при больших значениях p_{\parallel} (см. рис. a).

На рис. б показана зависимость коэффициента для второй гармоники C₂ от величины обезразмеренного дрейфового импульса и. В соответствии с результатами работы [11] при u = 0 вторая гармоника вдоль оси поляризации поля не возбуждается. Вероятность ее возбуждения максимальна при $u \approx 0.5$ и убывает далее с увеличением u. То, что $C_2 < 0$, означает отрицательную проводимость второй гармоники (электроны движутся вдоль вектора электрического поля электромагнитной волны). Из сравнения рис. а и б можно сделать вывод, что интенсивность второй гармоники не намного меньше, чем интенсивность основной гармоники. Однако существенное возбуждение второй гармоники имеет место только при релятивистских значениях дрейфового импульса электрона.

Коэффициент C_3 , отражающий величину третьей гармоники, показан на рис. *в.* Значение $C_3(0)$ также совпадает с полученным в работе [11] для случая w = 2, как и должно быть. При u < 0.5 проводимость на третьей гармонике является отрицатель-

Зависимости коэффициентов $C_1(a)$, $C_2(b)$, $C_3(b)$, $C_0(c)$, $C_4(d)$ и $C_5(e)$ от обезразмеренного дрейфового импульса электрона u

ной, в то время как при u > 0.5 она становится положительной.

Рисунок г соответствует статической части проводимости. Она обращается в нуль при u = 0 в соответствии с результатами работы [11]. В основном статическая проводимость является положительной, причем ее величина, хотя и меньше проводимости на основной частоте, все же достаточно велика. Она медленно убывает с ростом дрейфового импульса u.

На рис. ∂ представлен коэффициент C_4 для четвертой гармоники. В целом с ростом номера гармоники ее интенсивность убывает. Как и должно быть для четной гармоники, величина $C_4(0) = 0$.

Наконец, на рис. e представлен коэффициент C_5 для проводимости на пятой гармонике. Значение $C_5(0)$ совпадает с полученным в работе [11] для случая w = 2. Проводимость на пятой гармонике при u < 0.3 положительна, а при u > 0.3 отрицательна.

Из совокупности полученных результатов можно сделать вывод, что в релятивистской лазерной плазме имеет место эффективное возбуждение не только нечетных, но и четных гармоник, а также постоянного электрического тока вдоль оси поляризации внешнего линейно поляризованного электромагнитного поля.

4. ИНТЕНСИВНОСТЬ РЕЛЯТИВИСТСКИХ ГАРМОНИК

Полученные выражения для токов могут быть использованы для нахождения электромагнитных полей возбуждаемых гармоник, следуя подходу Силина [16]. Уравнение Максвелла для проекции векторного потенциала на ось поляризации *у* внешнего электромагнитного поля в соответствии с (18) имеет вид (на частоте *n*-й гармоники)

$$-\frac{1}{c^2}\frac{\partial^2 A_y^{(n)}}{\partial t^2} + \frac{\partial^2 A_y^{(n)}}{\partial x^2} + \frac{4\pi}{c}j_y^{'(n)} = -\frac{4\pi}{c} \times \int dj_y^{(n)} = -\frac{4\pi}{c}\sigma_y^{(n)}F = \frac{4\pi}{c}AC_nF\sin n\varphi. \quad (23)$$

Здесь величина $j'_y^{(n)}$ обозначает плотность тока электронов, не связанную со столкновениями электрона с атомарными ионами и обусловленную электромагнитным полем возникшей гармоники (см. ниже). Соответствующее уравнение для напряженности электрического поля на частоте гармоники

$$F_y^{(n)} = -\frac{1}{c} \frac{\partial A_y^{(n)}}{\partial t}$$

получаем из (23) дифференцированием по времени:

$$-\frac{\partial^2 F_y^{(n)}}{\partial t^2} + c^2 \frac{\partial^2 F_y^{(n)}}{\partial x^2} - 4\pi \frac{\partial j'_y^{(n)}}{\partial t} = = -4\pi A n \omega C_n F \cos\left[n(\omega t - kx)\right]. \quad (24)$$

Здесь $k^2 = (\omega^2 - \omega_p^2)/c^2$ — квадрат волнового числа для поля падающей электромагнитной волны.

Из второго закона Ньютона имеем (в нерелятивистском рассмотрении ввиду малости тока, созданного полем гармоники)

$$\frac{\partial j'_y^{(n)}}{\partial t} = N_e F_y^{(n)}$$

Подставляя это соотношение в (24), находим его решение

$$F_{y}^{(n)} = \frac{4\pi A\omega nC_{n}F}{(n^{2}-1)\omega_{p}^{2}}\cos\left[n(\omega t - kx)\right].$$
 (25)

Оно справедливо и в реалистическом случае $\omega_p > \omega$, так как на размерах кластера поле не успевает затухнуть. Подставляя в (25) значение константы Aиз (14), находим окончательно

$$F_y^{(n)} = \frac{Z\omega_p^2 \omega^2 n C_n \Lambda}{(n^2 - 1)F^2} \cos\left[n(\omega t - kx)\right].$$
 (26)

Для отношения интенсивности гармоники к интенсивности внешнего электромагнитного поля из (26) получим

$$\eta^{(n)} = \frac{\left|F_{y}^{(n)}\right|^{2}}{|F\cos\varphi|^{2}} = \left|\frac{ZC_{n}\omega_{p}^{2}\omega^{2}n\Lambda}{(n^{2}-1)F^{3}}\right|^{2}.$$
 (27)

Оно убывает с ростом интенсивности падающей волны, а также с увеличением номера *n* гармоники.

Оценивая $F \sim \omega c$ для общего релятивистского случая, получим оценку эффективности возбуждения гармоник

$$\eta^{(n)} \propto \left(\frac{Ze^2\omega_p^2 C_n n\Lambda}{m_e (n^2 - 1)c^3\omega}\right)^2.$$
(28)

Здесь восстановлены заряд и масса электрона, которые выше полагались равными единице. Эффективность гармоники растет с увеличением плотности атомарной среды (поэтому кластеры эффективнее газовой среды) и с уменьшением частоты лазерного поля ω . Полученные оценки справедливы и в случае, когда плазменная частота превышает лазерную частоту.

5. ЗАКЛЮЧЕНИЕ

Экспериментально генерация гармоник наблюдалась авторами работы [17] для аргоновых кластеров (см. также обзор [3]). Показано, что для кластеров из несколько тысяч атомов аргона наблюдаются нечетные гармоники от третьей до девятой, причем фактор усиления порядка 5 по сравнению с газовой средой, имеющей ту же среднюю плотность. Кроме того, в случае кластеров наблюдаются более высокие гармоники, чем в случае газообразной среды. Генерация четных гармоник отсутствовала, так как интенсивность лазерного излучения в эксперименте была менее 10¹⁸ Вт/см². Генерация гармоник, связанная с нелинейностью колебаний Ми (поверхностные плазменные колебания электронного облака в кластере), несущественна ввиду слабой ангармоничности колебаний Ми. Этот вывод подтвержден численными расчетами для небольших металлических кластеров [18].

Выводы данной работы могут быть применены также и для облучения твердотельных мишеней сверхсильными лазерными импульсами, где отмеченные выше эффекты имеют место в области скин-слоя. Четные и нечетные гармоники лазерного поля (от второй до десятой) наблюдались авторами работы [19] при интенсивности более 10^{19} BT/см². Область генерации гармоник соответствовала концентрации электронов от 10^{21} до 10^{23} см⁻³.

Как следует из результатов данной работы, возбуждение четных гармоник определяется величиной дрейфовой скорости электронов. В момент надбарьерной ионизации электрон может приобрести достаточно большую дрейфовую скорость. Конечно в сверхсильном лазерном поле она не определяется соотношением (2), а должна быть определена из релятивистской теории. Предварительные оценки показывают, что эта скорость является нерелятивистской, в отличие от колебательной скорости электрона, даже при интенсивностях порядка 10²⁰ Вт/см². Однако электрон может набрать релятивистскую энергию в течение лазерного импульса в процессе нагрева плазмы. Этот нагрев обусловлен вынужденным тормозным поглощением лазерной энергии при столкновениях электронов с многозарядными атомарными ионами, отражении от внутренней поверхности кластера, упругом рассеянии на заряженных кластерах, возбуждении поверхностных плазменных колебаний (колебания Ми) и т.д. Однако нагрев электронов в плазме всегда ослабевает с увеличением их кинетической энергии из-за уменьшения частоты их столкновения с другими

объектами. Экспериментальные данные работы [20] по облучению аргоновых кластеров сверхсильным фемтосекундным лазерным импульсом показывают, что типичная температура электронов составляет несколько кэВ. Электронные энергетические спектры измерялись в работах [21, 22] при облучении ксеноновых кластеров лазерным импульсом длительностью 150 фс и пиковой интенсивностью $2 \cdot 10^{16}$ Вт/см². Средняя энергия электронов не превышала 2 кэВ. Несмотря на малость дрейфовой скорости электронов, именно она является причиной появления четных гармоник в релятивистской лазерной плазме.

Работа выполнена при поддержке РФФИ (гранты № 02-02-16678, 04-02-16499), ВRНЕ (проект MO-011-0) и МНТЦ (проект 2155).

ЛИТЕРАТУРА

- T. Ditmire, T. Donnelly, A. M. Rubenchik, R. W. Falcone, and M. D. Perry, Phys. Rev. A 53, 3379 (1996).
- G. Grillon, Ph. Balcou, J.-P. Chamberlet et al., Phys. Rev. Lett. 89, 065005 (2002).
- V. P. Krainov and M. B. Smirnov, Phys. Rep. 370, 237 (2002).
- P. B. Corkum, N. H. Burnett, and F. Brunel, Phys. Rev. Lett. 62, 1259 (1989).
- N. B. Delone and V. P. Krainov, J. Opt. Soc. Am. B 8, 1207 (1991).
- V. P. Krainov, J. Phys. B: At. Mol. Opt. Phys. 36, L169 (2003).
- 7. В. П. Силин, КЭ 27, 283 (1999).
- 8. В. П. Силин, ЖЭТФ 114, 864 (1998).
- 9. В. П. Силин, ЖЭТФ 117, 926 (2000).
- В. П. Силин, Краткие сообщ. по физике ФИ РАН 8, 32 (1998).
- 11. V. P. Krainov, Phys. Rev. E 68, 027401 (2003).
- 12. N. B. Delone and V. P. Krainov, *Multiphoton Processes in Atoms*, Springer, Berlin (2000).
- Л. Д. Ландау, Е. М. Лифшиц, Теория поля, Наука, Москва (1988).
- 14. В. Б. Берестецкий, Е. М. Лифшиц, Л. П. Питаевский, *Квантовая электродинамика*, Наука, Москва (1989).

- 15. G. Ferrante, M. Zarcone, and S. A. Uryupin, Phys. Plasmas 8, 4745 (2001).
- 16. В. П. Силин, ЖЭТФ 47, 2254 (1964).
- 17. T. D. Donnelly, T. Ditmire, K. Neumann, M. D. Perry, and R. W. Falcone, Phys. Rev. Lett. 76, 2472 (1996).
- F. Calvayrac, P.-G. Reinhard, and E. Suraud, J. Phys.
 B: At. Mol. Opt. Phys. 31, 1367 (1998).
- M. Tatarakis, A. Gopal, I. Watts et al., Phys. Plasmas 9, 2244 (2002).
- 20. Т. Аугусте, П. Оливера, С. Хулин и др., Письма в ЖЭТФ 72, 38 (2000).
- 21. T. Ditmire, E. Springate, J. W. G. Tisch et al., Phys. Rev. A 57, 369 (1998).
- 22. R. A. Smith, J. W. G. Tisch, T. Ditmire et al., Phys. Scr. 80, 35 (1999).