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DYNAMICAL TUNNELING OF BOUND SYSTEMS THROUGHA POTENTIAL BARRIER: COMPLEX WAY TO THE TOPF. Bezrukov a*, D. Levkov a;b**aInstitute for Nu
lear Resear
h, Russian A
ademy of S
ien
es117312, Mos
ow, RussiabMos
ow State University, Department of Physi
s119899, Mos
ow, RussiaSubmitted 15 January, 2003A semi
lassi
al method of 
omplex traje
tories for the 
al
ulation of the tunneling exponent in systems withmany degrees of freedom is further developed. It is supplemented with an easily implementable te
hnique thatenables one to single out the physi
ally relevant traje
tory from the whole set of 
omplex 
lassi
al traje
tories.The method is applied to semi
lassi
al transitions of a bound system through a potential barrier. We �ndthat the properties of physi
ally relevant 
omplex traje
tories are qualitatively di�erent in the 
ases of potentialtunneling at low energy and dynami
al tunneling at energies ex
eeding the barrier height. Namely, in the 
aseof high energies, the physi
ally relevant 
omplex traje
tories des
ribe tunneling via 
reation of a state 
lose tothe top of the barrier. The method is 
he
ked against exa
t solutions of the S
hrödinger equation in a quantumme
hani
al system of two degrees of freedom.PACS: 03.65.Sq, 03.65.-w, 03.65.Xp1. INTRODUCTIONSemi
lassi
al methods provide a useful tool for thestudy of nonperturbative pro
esses. Tunneling phe-nomena represent one of the most notable 
ases wheresemi
lassi
al te
hniques are used to obtain otherwiseunattainable information on the dynami
s of the transi-tion. A standard example of the semi
lassi
al te
hniqueis the WKB approximation to tunneling in quantumme
hani
s of one degree of freedom. In this 
ase, solu-tions S(q) of the Hamilton�Ja
obi equation are purelyimaginary in the 
lassi
ally forbidden region. There-fore, the fun
tion S(q) 
an be obtained as the a
tionfun
tional on a real traje
tory q(�), whi
h is a solu-tion of the equations of motion in the Eu
lidean timedomain, t = �i�;with the real Eu
lidean a
tionSE = �iS:*E-mail: fedor�ms2.inr.a
.ru**E-mail: levkov�ms2.inr.a
.ru

This simple pi
ture of tunneling is no longer validfor systems with many degrees of freedom, where solu-tions S(q) of the Hamilton�Ja
obi equation are knownto be generi
ally 
omplex in the 
lassi
ally forbiddenregion (see Refs. [1, 2℄ for a re
ent dis
ussion). Thisleads to the 
on
ept of �mixed� tunneling, as opposedto �pure� tunneling where S(q) is purely imaginary.�Mixed� tunneling 
annot be des
ribed by any realtunneling traje
tory. However, it 
an be related to a
omplex traje
tory, in whi
h 
ase the fun
tion S(q)(and therefore the exponential part of the wave fun
-tion) is 
al
ulated as the a
tion fun
tional on this 
om-plex traje
tory.A parti
ularly di�
ult situation arises when one
onsiders transitions of a nonseparable system with astrong intera
tion between its degrees of freedom, su
hthat the quantum numbers of the system 
hange 
on-siderably during the transition. Methods based on theadiabati
 expansion are not appli
able in this situation,while the method of 
omplex traje
tories proves to beextremely useful.The method of 
omplex traje
tories in the formsuitable for the 
al
ulation of S-matrix elements was938
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al tunneling of bound systems : : :formulated and 
he
ked by dire
t numeri
al 
al
ula-tions in Refs. [3, 4, 5℄ (see Ref. [6℄ for a review). Furtherstudies [7�12℄ showed that this method 
an be general-ized to the 
al
ulation of the tunneling wave fun
tionsand tunneling probabilities, energy splittings in double-well potentials, and de
ay rates from metastable states.Similar methods were su

essful in the study of tun-neling in high-energy 
ollisions in �eld theory [13�16℄,where one 
onsiders systems with a de�nite parti
lenumber (N = 2) in the initial state, and in the studyof 
hemi
al rea
tions and atom ionization pro
esses,where the initial bound systems are in de�nite quan-tum states [6, 17, 18℄, et
. The main advantage of themethod of 
omplex traje
tories is that it 
an be easilygeneralized and numeri
ally implemented in the 
asesof a large and even in�nite (�eld theory) number of thedegrees of freedom, in 
ontrast to other methods su
has the Huygens-type 
onstru
tion in Refs. [1, 2℄ and theinitial value representation (IVR) in Refs. [3; 19�23℄.In this paper, we develop the method of 
omplextraje
tories further. Namely, we 
on
entrate on the fol-lowing problem. It is known [3℄ that a physi
ally rele-vant 
omplex traje
tory satis�es the 
lassi
al equationsof motion with 
ertain boundary 
onditions. However,this boundary value problem generi
ally has also anin�nite, although dis
rete, set of unphysi
al solutions.In one-dimensional quantum me
hani
s, all solutions
an easily be 
lassi�ed. In systems with many degreesof freedom, su
h a 
lassi�
ation is extremely di�
ult,if at all possible. In the 
ase of a small number ofthe degrees of freedom (realisti
ally, N = 2), one 
ans
an over all solutions and �nd the solution giving thelargest tunneling probability [3, 9, 10℄, but in systemswith a large or in�nite number of the degrees of free-dom, the problem of 
hoosing the physi
ally relevantsolution be
omes a formidable task.The problem of 
hoosing the appropriate solutionbe
omes even more pronoun
ed when the qualitativeproperties of the relevant 
omplex traje
tory are dif-ferent in di�erent energy regions. This may happenwhen the physi
ally relevant 
lassi
al solution �meets�an unphysi
al one at some energy value E = E1, orin other words, when solutions of the boundary valueproblem, viewed as fun
tions of the energy, bifur
ateat E = E1.In this paper, we give an example of this type, whi
happears to be fairly generi
 (see also [11, 12, 24, 15, 16℄).We then develop a method that allows 
hoosing thephyisi
ally relevant solution automati
ally, implementit numeri
ally, and 
he
k this method against the nu-meri
al solution of the full S
hrödinger equation.We study inelasti
 transitions of a bound system

through a potential barrier. To be spe
i�
, we 
onsidera model with one internal degree of freedom in addi-tion to the 
enter-of-mass 
oordinate. We 
onsider asituation where the spa
ing between the levels of thebound system is small 
ompared to the height of thebarrier, and assume a su�
iently strong 
oupling be-tween the degrees of freedom, to make sure that thequantum numbers of the bound system 
hange 
onsid-erably during the transition pro
ess. This is pre
iselythe situation in whi
h the method of 
omplex traje
to-ries shows its full strength.Transitions of bound systems involve a parti
ularenergy s
ale, the barrier height V0. At energies belowV0, 
lassi
al over-barrier transitions are forbidden ener-geti
ally; the 
orresponding regime is 
alled �potentialtunneling�. For E > V0, it is energeti
ally allowed forthe system to evolve 
lassi
ally to the other side of thebarrier. However, over-barrier transitions may be for-bidden dynami
ally even at E > V0. Indeed, inelasti
intera
tions of a bound system with a potential bar-rier generally lead to the ex
itation of the internal de-grees of freedom with the simultaneous de
rease of the
enter-of-mass energy, whi
h may prevent the systemfrom the over-barrier transition. The tunneling regimeat energies ex
eeding the barrier height is 
alled �dy-nami
al tunneling�1).Examples of dynami
al tunneling are well-known ins
attering theory [4℄. This type of tunneling betweenbound states was dis
overed in Ref. [25℄, and the gen-erality of dynami
al tunneling in large mole
ules wasstressed in Refs. [26, 27℄. Dynami
al tunneling is ofprimary interest in our study.We observe a novel phenomenon that dynami
altunneling at E & V0 (more pre
isely, at E > E1, whereE1 is somewhat larger than V0) o

urs in the follow-ing way: the system jumps on top of the barrier andrestarts its 
lassi
al evolution from the region near thetop. From the physi
al standpoint, this is not quitewhat is normally meant by �tunneling through a bar-rier�. Yet the transitions remain exponentially sup-pressed, but the reason is di�erent: to jump above thebarrier, the system has to undergo 
onsiderable rear-rangement, unless the in
oming state is 
hosen in a1) It is 
lear that the properties of transitions of a bound sys-tem at E > V0 depend on the 
hoi
e of the initial state. Namely,there always exists a 
ertain 
lass of states transitions from whi
hare not exponentially suppressed. To 
onstru
t an example, onepla
es the bound system on top of the barrier and evolves it
lassi
ally ba
kwards in time to the region where the intera
tionwith the barrier is negligibly small. On the other hand, even atE > V0, there are states transitions from whi
h are exponentiallysuppressed (dynami
al tunneling).939
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ial way (see footnote 1). This rearrangement 
ostsan exponentially small probability fa
tor. We note thata similar exponential fa
tor was argued to appear invarious �eld theory pro
esses with multi-parti
le �nalstates [28�31℄.We �nd that the new physi
al behavior of the sys-tem is related to a bifur
ation of the family of 
om-plex-time 
lassi
al solutions, viewed as fun
tions of en-ergy. This is pre
isely the bifur
ation mentioned above.Our method of dealing with this bifur
ation is to regu-larize the boundary value problem su
h that the bifur-
ations disappear altogether (at real energies), and theonly solutions re
overed after removing the regulariza-tion are physi
al ones.This paper is organized as follows. The system tobe dis
ussed in what follows is introdu
ed in Se
. 2.1.In Se
. 2.2, we formulate the boundary value prob-lem for the 
al
ulation of the tunneling exponent. InSe
. 2.3, we then examine the 
lassi
al over-barrier so-lutions and �nd all initial states that lead to 
lassi
allyallowed transitions. In Se
. 2.4, we present a straight-forward appli
ation of the semi
lassi
al te
hnique out-lined in Se
. 2.2 and �nd that it 
eases to produ
e rel-evant 
omplex traje
tories in a 
ertain region of initialdata, namely, at E > E1. In Se
. 3, we introdu
e ourregularization te
hnique and show that it indeed en-ables us to �nd all the relevant 
omplex traje
tories,in
luding those with E > E1 (Se
. 3.1). We 
he
kour method against the numeri
al solution of the fullS
hrödinger equation in Se
. 3.2. In Se
. 3.3 and Ap-pendix C, we show how our regularization te
hniqueis used to smoothly join the �
lassi
ally allowed� and�
lassi
ally forbidden� families of solutions in the re-spe
tive 
ases of two- and one-dimensional quantumme
hani
s.2. SEMICLASSICAL TRANSITIONSTHROUGH A POTENTIAL BARRIER2.1. The modelThe situation dis
ussed in this paper is a transitionthrough a potential barrier of the bound system 
on-sidered in Refs. [11, 12℄, namely the system made oftwo parti
les of identi
al masses m, moving in one di-mension and bound by a harmoni
 os
illator potentialof frequen
y ! (Fig. 1). One of the parti
les intera
tswith a repulsive potential barrier. The potential bar-rier is assumed to be high and wide, while the spa
ing

0
V Em m! XFig. 1. An os
illator hitting a potential barrier, withonly the �dark� parti
le intera
ting with the barrierbetween the os
illator levels is mu
h smaller than thebarrier height V0. The Hamiltonian of the model isH = p212m + p222m + m!24 (x1 � x2)2 ++ V0 exp�� x212�2� ; (1)where the 
onditions on the os
illator frequen
y andpotential barrier are~! � V0;� � ~=pmV0: (2)Be
ause the variables do not separate, this is 
ertainlya nontrivial system.We 
hoose units with ~ = 1; m = 1. It is also
onvenient to treat the frequen
y ! as a dimensionlessparameter, su
h that all physi
al quantities are dimen-sionless. In our subsequent numeri
al study, we use thevalue ! = 0:5, but keep the notation �!� in formulas.The system is semi
lassi
al, i.e., 
onditions (2) are sat-is�ed, if we 
hoose � = 1=p2� and V0 = 1=�, where� is a small parameter. At the 
lassi
al level, this pa-rameter is irrelevant: after res
aling the variables2) asx1 ! x1=p�; x2 ! x2=p�;the small parameter enters only through the overallmultipli
ative fa
tor 1=� in the Hamiltonian. There-fore, the semi
lassi
al te
hnique 
an be developed asan asymptoti
 expansion in �.The properties of the system are made 
learer by re-pla
ing the variables x1 and x2 with the 
enter-of-mass
oordinate2) To keep the notation simple, we use the same symbols x1; x2for the res
aled variables.940
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al tunneling of bound systems : : :X � x1 + x2p2and the relative os
illator 
oordinatey � x1 � x2p2 :In terms of these variables, the Hamiltonian be
omesH = p2X2 + p2y2 + !22 y2 + 1� exp���(X + y)22 � : (3)The intera
tion potentialUint � 1� exp���(X + y)22 �vanishes in the asymptoti
 regions X ! �1 and de-s
ribes a potential barrier between these regions. AtX ! �1, Hamiltonian (3) 
orresponds to an os
illa-tor of the frequen
y ! moving along the 
enter-of-mass
oordinate X . The os
illator asymptoti
 state is 
har-a
terized by its ex
itation number N and total energyE = p2X2 + !�N + 12� :We are interested in the transmissions through the po-tential barrier of the os
illator with given initial valuesof E and N .2.2. T=� boundary value problemThe probability of tunneling from a state with a�xed initial energy E and os
illator ex
itation numberN from the asymptoti
 region X ! �1 to any statein the other asymptoti
 region X ! +1 is given byT (E;N) == limtf�ti!1Xf ���hf j exp��iĤ(tf � ti)� jE;Ni���2 ; (4)where it is impli
it that the initial and �nal states havesupport only well outside the range of the potential,with X < 0 and X > 0, respe
tively. Semi
lassi
almethods are appli
able if the initial energy and ex
ita-tion number are parametri
ally large,E = ~E=�; N = ~N=�;where ~E and ~N are kept 
onstant as �! 0. The tran-sition probability has the exponential formT = D exp�� 1�F ( ~E; ~N)� ; (5)

Im t
Re tAA0 T=2BC DFig. 2. Contour in the 
omplex time planewhere D is a pre-exponential fa
tor, whi
h is not 
on-sidered in this paper. Our purpose is to 
al
ulate theleading semi
lassi
al exponent F ( ~E; ~N). The expo-nent for tunneling from the os
illator ground state isobtained in [11�13; 32℄ by taking the limit ~N ! 0 inF ( ~E; ~N).In what follows, we res
ale the variables asX ! X=p�; y ! y=p�and omit the tilde over the res
aled quantities ~E and ~N .The exponent F (E;N) is related to a 
omplex tra-je
tory that satis�es a 
ertain 
omplexi�ed 
lassi
alboundary value problem. We present the derivation ofthis problem in Appendix A. The out
ome is as follows.There are two Lagrange multipliers T and �, whi
h arerelated to the parameters E and N 
hara
terizing thein
oming state. The boundary value problem is 
onve-niently formulated on the 
ontour ABCD in the 
om-plex time plane (see Fig. 2), with the imaginary partof the initial time equal to T=2. The 
oordinates X(t)and y(t) must satisfy the 
omplexi�ed equations of mo-tion in the interior points of the 
ontour, and must bereal in the asymptoti
 future (region D):ÆSÆX(t) = ÆSÆy(t) = 0; (6a)Im y(t)! 0;ImX(t)! 0; as t! +1: (6b)In the asymptoti
 past (region A of the 
ontour, wheret = t0+ iT=2, t0 is real negative), the intera
tion poten-tial Uint 
an be negle
ted and the os
illator de
ouples,y = 1p2! (u exp(�i!t0) + v exp(i!t0)) :The boundary 
onditions in the asymptoti
 past,t0 ! �1, are that the 
enter-of-mass 
oordinate Xmust be real, while the 
omplex amplitudes of the de-
oupled os
illator must be linearly related,ImX ! 0;v ! e�u�; as t0 ! �1: (6
)941
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onditions (6b) and (6
) in fa
t make eightreal 
onditions (be
ause, e.g., ImX(t0) ! 0 impliesthat both ImX and Im _X tend to zero), and 
ompletelydetermine the solution, up to the time translation in-varian
e (see the dis
ussion in Appendix A).It is shown in Appendix A that a solution of thisboundary value problem is an extremum of the fun
-tionalF [X; y;X�; y�;T; �℄ = �iS[X; y℄ + iS[X�; y�℄��ET �N� + Boundary Terms: (7)The value of this fun
tional at the extremum gives theexponent for the transition probability (up to the largeoverall fa
tor 1=�, see Eq. (5)),F (E; N) = 2 ImS0(T; �)�ET �N�; (8)where S0 is the a
tion of the solution, integrated byparts,S0 = Z dt��12X d2Xdt2 �� 12y d2ydt2 � 12!2y2 � Uint(X; y)� : (9)Here, the integration runs along the 
ontour ABCD.The values of the Lagrange multipliers T and � are re-lated to the energy and ex
itation number asE(T; �) = ��T 2 ImS0(T; �); (10)N(T; �) = ���2 ImS0(T; �): (11)Using Eq. (8), it is also straightforward to verify theinverse Legendre transformation formulasT (E; N) = � ��EF (E; N); (12)�(E; N) = � ��N F (E; N): (13)It 
an also be veri�ed that the right-hand side ofEq. (10) 
oin
ides with the energy of the 
lassi
al solu-tion and the right-hand side of Eq. (11) is equal to the
lassi
al 
ounterpart of the o

upation number,E = _X22 + !N; N = uv: (14)Therefore, we 
an either seek the values of T and � that
orrespond to given E and N , or, following a 
ompu-tationally simpler pro
edure, solve the boundary valueproblem (6) for given T and � and then �nd the 
orre-sponding values of E and N from Eq. (14). We note

that initial 
onditions (6
) 
omplemented by Eqs. (14)are equivalent to the initial 
onditions in Refs. [3�5℄,the latter being expressed in terms of a
tion�angle vari-ables. The boundary 
onditions in the asymptoti
 fu-ture, Eq. (6b), are di�erent from those in Refs. [3�5℄,be
ause we 
onsider in
lusive, rather than �xed, �nalstate.We now dis
uss some subtle points of boundaryvalue problem (6). First, we note that the asymptoti
reality 
ondition in (6b) does not always 
oin
ide withthe reality 
ondition at �nite time. Of 
ourse, if the so-lution approa
hes the asymptoti
 region X ! +1 onthe part CD of the 
ontour, asymptoti
 reality 
on-dition (6b) implies that the solution is real at any�nite positive t. Indeed, the os
illator de
ouples asX ! +1, and therefore 
ondition (6b) means thatits phase and amplitude, as well as X(t), are real ast ! +1. Due to the equations of motion, X(t) andy(t) are real on the entire CD part of the 
ontour. Thissituation 
orresponds to the transition dire
tly to theasymptoti
 region X ! +1. However, the situation
an be drasti
ally di�erent if the solution on the �nalpart of the time 
ontour remains in the intera
tion re-gion. For example, we 
an imagine that the solutionapproa
hes the saddle point of the potential X = 0,y = 0 as t ! +1. Be
ause one of the perturbationsaround this point is unstable, there may exist solutionsthat approa
h this point exponentially along the un-stable dire
tion, i.e.,X(t); y(t) / exp(�
onst � t)with possibly 
omplex prefa
tors. In this 
ase, the so-lution may be 
omplex at any �nite time, and be
omereal only asymptoti
ally, as t ! +1. Su
h a solu-tion 
orresponds to tunneling to the saddle point ofthe barrier, after whi
h the system rolls down 
lassi-
ally towards X ! +1 (with probability of the orderof 1, inessential for the tunneling exponent F ). We seein Se
. 3.1 that the situation of this sort indeed o

ursfor some values of the energy and ex
itation number.Se
ond, be
ause the intera
tion potential disap-pears at large negative time (in the asymptoti
 regionX ! �1), it is straightforward to 
ontinue the asymp-toti
 form of the solution to the real time axis. Forsolutions satisfying (6
), this givesy(t) = 1p2! �u exp��!T2 � exp(�i!t)++ u� exp�� + !T2 � exp(i!t)� ;ImX(t) = �T2 pX942
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al tunneling of bound systems : : :at large negative time. We see that the dynami
al
oordinates on the negative side of the real time axisare generally 
omplex. For solutions approa
hing theasymptoti
 region X ! +1 as t! +1 (su
h that Xand y are exa
tly real at �nite t > 0), this means thatthere should exist a bran
h point in the 
omplex timeplane: the 
ontour A0ABC in Fig. 2 winds around thispoint and 
annot be deformed to the real time axis.This argument does not work for solutions ending inthe intera
tion region as t ! +1, and hen
e bran
hpoints between the AB part of the 
ontour and the realtime axis may be absent. We see in Se
. 3.1 that thisis indeed the 
ase in our model in a 
ertain range of Eand N .2.3. Over-barrier transitions: the region of
lassi
ally allowed transitions and itsboundary E0(N)Before studying the exponentially suppressed tran-sitions, we 
onsider the 
lassi
ally allowed ones. Forthis, we study the 
lassi
al evolution (real time, real-valued 
oordinates) su
h that the system is initiallylo
ated at large negative X and moves with a positive
enter-of-mass velo
ity towards the asymptoti
 regionX ! +1. The 
lassi
al dynami
s of the system isspe
i�ed by four initial parameters. One of them (e.g.,the initial 
enter-of-mass 
oordinate) �xes the invari-an
e under time translations, while the other three arethe total energy E, the initial ex
itation number of they-os
illator, de�ned in 
lassi
al theory as N � Eos
=!,and the initial os
illator phase 'i.Any initial quantum state of our system 
an be fullydetermined by the energy E and the initial os
illatorex
itation number N ; we 
an represent ea
h state bya point in the EN plane. There is, however, one ad-ditional 
lassi
ally relevant initial parameter, the os-
illator phase 'i. An initial state (E;N) leads to un-suppressed transmission if the 
orresponding 
lassi
alover-barrier transitions3) are possible for some value(s)of 'i. These states form some region in the EN plane,whi
h is to be found in this se
tion.For given N , at su�
iently large E, the system 
an
ertainly evolve to the other side of the barrier. Onthe other hand, if E is smaller than the barrier height,the system de�nitely undergoes re�e
tion. Thus, thereexists some boundary energy E0(N) su
h that 
lassi-
al transitions are possible for E > E0(N), while for3) We note that the 
orresponding 
lassi
al solutions obeyboundary 
onditions (6b) and (6
) with T = � = 0, i.e., theyare solutions to boundary value problem (6).

0.20.6
0 0.5 1.5N EES = 1EPI(N)NS

E1(N) E0(N)Fig. 3. The boundary E0(N) of the region of 
lassi
allyallowed transitions, the bifur
ation line E1(N), and theline of the periodi
 instantons EPI(N)E < E0(N) they do not o

ur for any initial phase 'i.The line E0(N) represents the boundary of the regionof 
lassi
ally allowed transitions. We have 
al
ulatedE0(N) numeri
ally: the result4) is shown in Fig. 3.An important point of the boundary E0(N) 
or-responds to the stati
 unstable 
lassi
al solutionX(t) = y(t) = 0. In the �eld theory 
ontext, su
ha solution is 
alled �sphaleron� [33℄, and we keep thisterminology in what follows. This solution is the saddlepoint of the potentialU(X; y) � !2y2=2 + Uint(X; y)and has exa
tly one unstable dire
tion, the neg-ative mode (see Fig. 4). The sphaleron energyES = U(0; 0) = 1 determines the minimum value of thefun
tion E0(N). Indeed, 
lassi
al over-barrier transi-tions with E < ES are impossible, but the over-barriersolution with a slightly higher energy 
an be obtainedas follows: a momentum along the negative mode isadded at the point X = y = 0, �pushing� the systemtowardsX ! +1. Continuing this solution ba
kwardsin time shows that the system tends to X ! �1 forlarge negative time and has a 
ertain os
illator ex
ita-tion number. Solutions with the energy 
loser to thesphaleron energy 
orrespond to a smaller �push� andthus spend longer time near the sphaleron. In the lim-iting 
ase where the energy is equal to ES , the solutionspends an in�nite time in the vi
inity of the sphaleron.This limiting 
ase has a de�nite initial ex
itation num-ber NS , su
h that E0(NS) = ES (see Fig. 3). The4) We note that the boundary E0(N) of the region of 
lassi-
ally allowed transitions 
an be extended to N > NS. Be
auseE = ES is the absolute minimum of the energy of 
lassi
ally al-lowed transitions, the fun
tion E0(N) grows with N at N > NS.In fa
t, it tends to the asymptoti
s Eas0 = !N as N ! +1. Inwhat follows, we are not interested in transitions with N > NS,and therefore this part of the boundary E0(N) is not shown inFig. 3.943
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0 y +X0 y �X01
U(X; y)

Fig. 4. The potential (dotted lines) in the vi
inity ofthe sphaleron (X = 0; y = 0) (marked by the point),the ex
ited sphaleron (thi
k line) 
orresponding to thepoint (E;N) = (1:985; 3:72) at the boundary of the re-gion of 
lassi
ally allowed transitions, and the traje
toryof the solution that is 
lose to this ex
ited sphaleron(thin line). The asymptoti
 regions X ! �1 arealong the diagonalvalue of NS is unique be
ause there is exa
tly one neg-ative dire
tion of the potential in the vi
inity of thesphaleron.In 
omplete analogy to the features of the over-barrier 
lassi
al solutions near the sphaleron point(ES , NS), we expe
t that as the values of E and Napproa
h any other boundary point (E0(N); N), the
orresponding over-barrier solutions spend more andmore time in the intera
tion region, where Uint 6= 0.This follows from a 
ontinuity argument. Namely, we�rst �x the initial and �nal times, ti and tf . If withinthis time interval a solution with the energy E1 evolvesto the other side of the barrier and a solution with theenergy E2 and the same os
illator ex
itation number isre�e
ted, there exists an intermediate energy at whi
hthe solution ends up at t = tf in the intera
tion re-gion. Taking the limit as tf ! +1 and E1 �E2 ! 0,we obtain a point at the boundary E0(N) and a solu-tion tending asymptoti
ally to some unstable time-de-pendent solution that spends in�nite time in the inter-a
tion region. We 
all the latter solution the ex
itedsphaleron; it des
ribes some (in general, nonlinear) os-
illations above the sphaleron along the stable dire
-tion in the 
oordinate spa
e. Therefore, every pointof the boundary (E0(N); N) 
orresponds to some ex-
ited sphaleron. In the phase spa
e, solutions tendingasymptoti
ally to the ex
ited sphalerons form a sur-fa
e (separatrix) that separates regions of qualitativelydi�erent 
lassi
al motions of the system.In Fig. 4, we display a solution, found numeri
ally in

our model, that tends to an ex
ited sphaleron. We seethat the traje
tory of the ex
ited sphaleron is, roughlyspeaking, orthogonal to the unstable dire
tion at thesaddle point (X = 0; y = 0).2.4. Suppressed transitions: bifur
ationline E1(N)We now turn to 
lassi
ally forbidden transitions and
onsider the boundary value problem in Eq. (6). It isrelatively straightforward to obtain solutions for � = 0numeri
ally. In this 
ase, boundary 
onditions (6b)and (6
) take the form of reality 
onditions in theasymptoti
 future and past. It 
an be shown [34℄ thatthe physi
ally relevant solutions with � = 0 are real onthe entire 
ontour ABCD in Fig. 2 and des
ribe non-linear os
illations in the upside-down potential on theEu
lidean part BC of the 
ontour. The period of theos
illations is equal to T , and hen
e the points B andC are two di�erent turning points where _X = _y = 0.These real Eu
lidean solutions are 
alled periodi
 in-stantons. A pra
ti
al te
hnique for obtaining these so-lutions numeri
ally on the Eu
lidean part BC 
onsistsin minimizing the Eu
lidean a
tion (for example, withthe method of 
onjugate gradients, see Ref. [11, 12℄ forthe details). The solutions on the entire 
ontour arethen obtained by solving the Cau
hy problem numeri-
ally, forward in time along the line CD and ba
kwardin time along the line BA. From the solution in theasymptoti
 past (region A), we then 
al
ulate its en-ergy and ex
itation number (14). The solutions of thisCau
hy problem are obviously real, and hen
e bound-ary 
onditions (6b) and (6
) are indeed satis�ed for� = 0. It is worth noting that solutions with � = 0 aresimilar to the ones in quantum me
hani
s of one degreeof freedom. The line of periodi
 instantons in the ENplane in our model is shown in Fig. 3.On
e the solutions with � = 0 are found, it is nat-ural to try to 
over the entire region of 
lassi
ally for-bidden transitions in the EN plane with a deformationpro
edure, by moving in small steps in � and T . Thesolution of the boundary value problem with (T +�T ,� +��) may be obtained numeri
ally, by applying aniteration te
hnique, with the known solution at (T; �)serving as the initial approximation5). If the solutionsend up in the 
orre
t asymptoti
 region at ea
h step,i.e., X ! +1 on part D of the 
ontour, the solutionsobtained by this pro
edure of small deformations arephysi
ally relevant. But the method of small defor-5) In pra
ti
e, the Newton�Raphson method is parti
ularly
onvenient (see Refs. [11, 12, 14, 15℄).944
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Fig. 5. The dependen
e of the tunneling 
oordinate Xon time for two solutions with nearly the same energyand initial ex
itation number. The physi
al solutiontunnels to the asymptoti
 region X ! +1, while theunphysi
al one is re�e
ted to X ! �1. The physi-
al solution has E = 1:028, N = 0:44, while the un-physi
al one has E = 1:034, N = 0:44. These twosolutions are 
lose to the point on the bifur
ation lineE1(N = 0:44) = 1:031mations fails to produ
e relevant solution if there arebifur
ation points in the EN plane, where the physi-
al bran
h of solutions merges to an unphysi
al bran
h.Be
ause there are unphysi
al solutions 
lose to physi
alones in the vi
inity of bifur
ation points, the pro
edureof small deformations 
annot be used near these points.We have found numeri
ally that in our model, themethod of small deformations produ
es 
orre
t solu-tions of the T=� boundary value problem in a largeregion of the EN plane where E < E1(N). How-ever, at su�
iently high energy E > E1(N), whereE1(N) & ES , the deformation pro
edure generates so-lutions that boun
e ba
k from the barrier (see Fig. 5),i.e., have a wrong �topology�. This o

urs deep insidethe region of 
lassi
ally forbidden transitions, where thesuppression is large, and one naively expe
ts the semi-
lassi
al te
hnique to work well. Clearly, solutions witha wrong topology do not des
ribe the tunneling transi-tions of interest. Therefore, if the semi
lassi
al methodis appli
able in the region E1(N) < E < E0(N) at all,there exists another, physi
al bran
h of solutions. Inthat 
ase, the line E1(N) is the bifur
ation line wherethe physi
al solutions �meet� the ones with a wrong�topology�. Walking in small steps in � and T is use-less in the vi
inity of this bifur
ation line, and a spe
ialtri
k is required to �nd the relevant solutions beyondthat line. The bifur
ation line E1(N) for our quantumme
hani
al problem of two degrees of freedom is shownin Fig. 3.The loss of topology beyond a 
ertain bifur
ationline in the EN plane is by no means a property of

our model only. This phenomenon has been observedin �eld theory models, in the 
ontext of both indu
edfalse va
uum de
ay [14℄ and baryon-number violatingtransitions in gauge theory [15℄ (in �eld theory models,the parameter N is the number of in
oming parti
les).In all 
ases, the loss of topology prevented one from
omputing the semi
lassi
al exponent for the transi-tion probability in the interesting region of relativelyhigh energies.Returning to quantum me
hani
s of two degrees offreedom, we point out that the properties of tunnel-ing solutions with di�erent energies approa
hing thebifur
ation line E1(N) from the left of the EN planeare in some sense similar to the properties of tunnel-ing solutions in one-dimensional quantum me
hani
swhose energy is 
lose to the barrier height, see Ap-pendix C. Again by 
ontinuity, these solutions of ourtwo-dimensional model spend a long time in the inter-a
tion region; this time tends to in�nity on the lineE1(N). Hen
e, at any point of this line, there is a so-lution that starts in the asymptoti
 region left of thebarrier and ends up on an ex
ited sphaleron. Su
h be-havior is indeed possible be
ause of the existen
e of anunstable dire
tion near the (ex
ited) sphaleron, evenfor 
omplex initial data. In the next se
tion, we sug-gest a tri
k to deal with this situation � this is ourregularization te
hnique.3. REGULARIZATION TECHNIQUEIn this se
tion, we develop our regularization te
h-nique and �nd the physi
ally relevant solutions betweenthe lines E1(N) and E0(N). We see that all solutionsfrom the new bran
h (and not only on the lines E0(N)and E1(N)) 
orrespond to tunneling onto the ex
itedsphaleron (�tunneling on top of the barrier�). Thesesolutions would be very di�
ult, if at all possible, to ob-tain dire
tly, by numeri
ally solving the nonregularized
lassi
al boundary value problem (6): they are 
omplexat �nite times and be
ome real only asymptoti
ally ast ! +1, whereas numeri
al methods require workingwith �nite time intervals.As an additional advantage, our regularization te
h-nique allows obtaining a family of over-barrier solu-tions that 
overs all the region of the initial data 
or-responding to 
lassi
aly allowed transitions, in
ludingits boundary. This is of interest in models with a largenumber of the degrees of freedom and in �eld theory,where �nding the boundary E0(N) by dire
t methodsis di�
ult (see e.g., Ref. [35℄ for a dis
ussion of thispoint).16 ÆÝÒÔ, âûï. 4 945
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lassi
ally forbiddentransitionsThe main idea of our method is to regularize theequations of motion by adding a term proportional toa small parameter � su
h that 
on�gurations stayingnear the sphaleron for an in�nite time no longer existamong the solutions of the T=� boundary value prob-lem. After performing the regularization, we explore allthe region of 
lassi
ally forbidden transitions without
rossing the bifur
ation line. Taking the limit �! 0,we then re
onstru
t the 
orre
t values of F , E, and N .In formulating the regularization te
hnique, itis more 
onvenient to work with the fun
tionalF [X; y;X�; y�;T; �℄, Eq. (7), itself rather than withthe equations of motion. We prevent F from beingextremized by 
on�gurations approa
hing the ex-
ited sphalerons asymptoti
ally. To a
hieve this, weadd a new term of the form 2�Tint to the originalfun
tional (7), where Tint estimates the time thatthe solution �spends� in the intera
tion region. Theregularization parameter � is the smallest one in theproblem, and hen
e any regular extremum of thefun
tional F (the solution that spends �nite timein the region Uint 6= 0) 
hanges only slightly afterthe regularization. At the same time, the ex
itedsphaleron 
on�guration has Tint = 1, whi
h leads tothe in�nite value of the regularized fun
tionalF� � F + 2�Tint:Hen
e, the ex
ited sphalerons are not stationary pointsof the regularized fun
tional.For the problem under 
onsideration, Uint � 1 inthe intera
tion region, and Tint 
an be de�ned asTint = 12 �Z dtUint(X; y) + Z dtUint(X�; y�)� : (15)We note that Tint is real and that the regularization isequivalent to the multipli
ation of the intera
tion po-tential with a 
omplex fa
tor,Uint ! (1� i�)Uint = e�i�Uint +O(�2): (16)This results in the 
orresponding 
hange of the 
lassi
alequations of motion, while boundary 
onditions (6b)and (6
) remain unaltered.We still have to understand whether solutions with� 6= 0 exist at all. The reason for the existen
e of su
hsolutions is as follows. We 
onsider a well-de�ned (for� > 0) matrix element

T� = limtf�ti!1Xf ���hf j exp h(�iĤ��Uint)(tf�ti)i �� jE;Ni���2 ;where, as before, jE; Ni denotes the in
oming statewith given energy and os
illator ex
itation number.The quantity T� has a well-de�ned limit as �! 0, equalto tunneling probability (4). Be
ause the saddle pointof the regularized fun
tional F� gives the semi
lassi
alexponent for the quantity T�, we expe
t that su
h asaddle point indeed exists.Therefore, the regularized T=� boundary valueproblem is expe
ted to have solutions ne
essarilyspending �nite time in the intera
tion region. By 
onti-nuity, these solutions do not experien
e re�e
tion fromthe barrier if the pro
edure of small deformations start-ing from solutions with the 
orre
t �topology� is used.The line E1(N) is no longer a bifur
ation line of theregularized system, and the pro
edure of small defor-mations therefore enables us to 
over the entire regionof 
lassi
ally forbidden transitions. The semi
lassi
alsuppression fa
tor of the original problem is re
overedin the limit �! 0.It is worth noting that the intera
tion time is Le-gendre 
onjugate to �,Tint = 12 ���F�(E;N; �): (17)This equation 
an be used as a 
he
k of numeri
al 
al-
ulations.We implemented the regularization pro
edure nu-meri
ally. To solve the boundary value problem, we usethe 
omputational methods des
ribed in Ref. [11, 12℄.To obtain the semi
lassi
al tunneling exponent in theregion between the bifur
ation line E1(N) and theboundary of the region of 
lassi
ally allowed transitionsE0(N), we began with a solution to the nonregularizedproblem deep in the �forbidden� region of the initialdata (i.e., at E < E1(N)). We then in
reased the valueof � from zero to a 
ertain small positive number, keep-ing T and � �xed. We next 
hanged T and � in smallsteps, keeping � �nite, and found solutions of the reg-ularized problem in the region E1(N) < E < E0(N).These solutions had the 
orre
t �topology�, i.e., theyindeed ended up in the asymptoti
 region X ! +1.Finally, we lowered � and extrapolated F , E, and N tothe limit �! 0.We now 
onsider the solutions in the regionE1(N) < E < E0(N), whi
h we obtain in thelimit � ! 0, more 
arefully. They belong to a newbran
h, and may therefore exhibit new physi
alproperties. Indeed, we found that as the value of �946
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Fig. 6. Large-time behavior of a solution with � = 0 at(E = 1:05, N = 0:43). The 
oordinates X and y arede
omposed in the basis of the eigenmodes near thesphaleron. We note that Im 
+ = 0de
reases to zero, the solution at any point (E;N)with E1(N) < E < E0(N) spends more and moretime in the intera
tion region. The limiting solution
orresponding to � = 0 has in�nite intera
tion time: inother words, as t! +1, it tends to one of the ex
itedsphalerons. The resulting physi
al pi
ture is that at asu�
iently large energy (i.e., at E > E1(N)), the sys-tem prefers to tunnel exa
tly onto an unstable 
lassi
alsolution, ex
ited sphaleron, that os
illates about thetop of the potential barrier. To demonstrate this, wehave plotted in Fig. 6 the solution x(t) � (X(t); y(t))at large times, after taking the limit �! 0 numeri
ally.To understand this �gure, we re
all that the potentialnear the sphaleron point X = y = 0 has one positivemode and one negative mode. Namely, introdu
ingnew 
oordinates 
+, 
� asX = 
os� 
+ + sin� 
�;y = � sin� 
+ + 
os� 
�;
tg 2� = �!22 ;we write, in the vi
inity of the sphaleron,H = 1 + p2+2 + p2�2 + !2+2 
2+ � !2�2 
2�;where !2� = ���1 + !22 �+r1 + !44 > 0:Be
ause the solutions of the T=� boundary value prob-lem are 
omplex, the 
oordinates 
+ and 
� are also
omplex. In Fig. 6, we show real and imaginary partsof 
+ and 
� at a large real time t (part CD of the 
on-tour). We see that while Re 
+ os
illates, the unstable


oordinate 
� asymptoti
ally approa
hes the sphaleronvalue: 
� ! 0 as t ! +1. The imaginary part of
� is nonzero at any �nite time. This is the reasonfor the failure of straightforward numeri
al methods inthe region E > E1(N): the solutions from the physi
albran
h do not satisfy the reality 
onditions at any largebut �nite �nal time. We have pointed out in Se
. 2.2that this 
an happen only if the solution ends up nearthe sphaleron, whi
h has a negative mode. This is pre-
isely what happens: for � = 0 at asymptoti
ally larget, our solutions are real and os
illate near the sphaleron,remaining in the intera
ton region.3.2. Regularization te
hnique versus exa
tquantum me
hani
al solutionQuantum me
hani
s of two degrees of freedom is a
onvenient testing ground for 
he
king the semi
lassi-
al methods and, in parti
ular, our regularization te
h-nique. We have found solutions of the full stationaryS
hrödinger equation and exa
t tunneling probabilityT by applying the numeri
al te
hnique in Refs. [11, 12℄.Our numeri
al 
al
ulations were performed for severalsmall values of the semi
lassi
al parameter �, namely,for � = 0:01�0:1. Transitions through the barrier forthese values of the semi
lassi
al parameter are well sup-pressed. In parti
ular, for � = 0:02, the tunneling prob-ability T is of the order e�14. To 
he
k the semi
lassi-
al result with better pre
ision, we have 
al
ulated theexa
t suppression exponentFQM (�) � �� log T(
f. (5)) for � = 0:09; 0:05; 0:03; 0:02 and extrapolatedFQM to � = 0 by polynomials of the third and fourthdegree. The extrapolation results are independent ofthe degree (3 or 4) of polynomials with the pre
ision1%. The extrapolated suppression exponent FQM (0)
orresponds to in�nite suppression and must exa
tly
oin
ide (up to numeri
al errors) with the 
orre
t semi-
lassi
al result.We performed this 
he
k in the region E > ES = 1,whi
h is most interesting for our purposes. The resultsof the full quantum me
hani
al 
al
ulation of the sup-pression exponent FQM in the limit � ! 0 are repre-sented by points in Fig. 7. The lines in that �gure rep-resent the values of the semi
lassi
al exponent F (E;N)for 
onstant N , whi
h we obtain in the limit � ! 0 ofthe regularization pro
edure. In pra
ti
e, instead oftaking the limit � ! 0, we 
al
ulate the regularizedfun
tional F�(E;N) = F (E;N) +O(�)947 16*
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0.00.1 0.2 0.3 0.4 0.5 0.6 0.7 0.81.01.21.41.6Fig. 7. The tunneling exponent F (E;N) in the regionE > ES = 1. The lines show the semi
lassi
al resultsand the dots represent exa
t ones, obtained by solvingthe S
hrödinger equation. The lines a
ross the plotare the boundary of the region of 
lassi
ally allowedtransitions E0(N) and the bifur
ation line E1(N)for su�
iently small �. We used the value � = 10�6, andthe value of the suppression exponent was then foundwith the pre
ision of the order 10�5. We see that inthe entire region of 
lassi
ally forbidden transitions (in-
luding the region E > E1(N)), the semi
lassi
al resultfor F 
oin
ides with the exa
t one.3.3. Classi
ally allowed transitionsWe now show that our regularization pro
edure al-lows obtaining a subset of 
lassi
al over-barrier solu-tions existing at su�
iently high energies. This subsetis interesting be
ause it extends to the boundary of theregion of 
lassi
ally allowed transitions, E = E0(N).In prin
iple, �nding this boundary is purely a problemof 
lassi
al me
hani
s; indeed, in the me
hani
s of twodegrees of freedom, this boundary 
an be found numer-i
ally by solving the Cau
hy problem for given E andN and all possible os
illator phases, see Se
. 2.3. Butif the number of the degrees of freedom is mu
h larger,this 
lassi
al problem be
omes quite 
ompli
ated, be-
ause a high-dimensional spa
e of Cau
hy data has tobe spanned. As an example, a sto
hasti
 Monte Carlote
hnique was developed in Ref. [35℄ to deal with thisproblem in the �eld theory 
ontext. The approa
h be-low is an alternative to the Cau
hy methods.We �rst re
all that all 
lassi
al over-barrier solu-tions with given energy and ex
itation number satisfythe T=� boundary value problem with T = 0, � = 0.We 
annot rea
h the �allowed� region of the EN plane

without regularization, be
ause we have to 
ross theline E0(N) 
orresponding to the ex
ited sphaleron 
on-�gurations in the �nal state. But the ex
ited sphaleronsno longer exist among the solutions of the regularizedboundary value problem at any �nite value of �. Thissuggests that the regularization allows entering the re-gion of 
lassi
ally allowed transitions and, after takingan appropriate limit, obtaining 
lassi
al solutions with�nite values of E and N .By de�nition, the 
lassi
ally allowed transitionshave F = 0. We therefore expe
t that in the �allowed�region of the initial data, the regularized problem hasthe property thatF�(E;N) = �f(E;N) +O(�2):In view of the inverse Legendre formulas (12) and (13),the values of T and � must be of the order of �,T = ��(E;N); � = �#(E;N);where the quantities � and # are related to the initialenergy and ex
itation number (see Eqs. (12), (13)) as� = � lim�!0 ��E F�� = �12 ��ETint(E;N); (18)# = � lim�!0 ��N F�� = �12 ��N Tint(E;N); (19)where we have used Eq. (17). We thus expe
t thatthe region of 
lassi
ally allowed transitions 
an be in-vaded by taking a fairly sophisti
ated limit �! 0 with� � T=� = 
onst, # � �=� = 
onst. For the allowedtransitions, the parameters � and # are analogous to Tand �.Solving the regularized T=� boundary value prob-lem allows 
onstru
ting a single solution for given Eand N . On the other hand, for � = 0, there are more
lassi
al over-barrier solutions: they form a 
ontinu-ous family labeled by the initial os
illator phase. Thus,taking the limit � ! 0 gives a subset of over-barriersolutions, whi
h should therefore obey some additional
onstraint. It is almost obvious that this 
onstraintis that the intera
tion time Tint, Eq. (15), is minimal.This is shown in Appendix B.The subset of 
lassi
al over-barrier solutions ob-tained in the �! 0 limit of the regularized T=� pro
e-dure extends to the boundary of the region of 
lassi
allyallowed transitions. We now 
onsider what happens asthis boundary is approa
hed from the �
lassi
ally al-lowed� side. At the boundary E0(N), the unregular-ized solutions tend to ex
ited sphalerons, and the inter-a
tion time Tint is therefore in�nite. This is 
onsistentwith (18) and (19) only if � and # be
ome in�nite at the948
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0Fig. 8. The phase of the tunneling 
oordinate in the 
omplex time plane at three points of the 
urve � = 380, # = 130.Figures a, b, and 
 
orrespond to � = �a = 0:01, � = �b = 0:0048, and � = �
 = 0 respe
tively. The asymptoti
s X ! �1and X ! +1 
orrespond to argX = � and 0. The 
ontour in the time plane is plotted with the white lineboundary. Hen
e, to obtain a point of the boundary,we takes the further limit,�E0(N); N� = lim�=#=
onst�!+1 �E(�; #); N(�; #)�:Di�erent values of �=# 
orrespond to di�erent pointsof the line E0(N). We thus �nd the boundary of theregion of 
lassi
ally allowed transitions without initi-al-state simulation.We have 
he
ked this pro
edure numeri
ally. Thelimit � ! 0 exists indeed � the values of E and Ntend to the point of the EN plane that 
orrespondsto the 
lassi
ally allowed transition. The phase of the

tunneling 
oordinate X(t) in the 
omplex time planeis shown in Fig. 8 for the three points (Figs. a, b, and
) of the 
urve � � T=� = 380, # � �=� = 130. Pointa lies deep inside the tunneling region, Ea < E1(Na),point 
 
orresponds to the over-barrier solution withT = 0, � = 0, � = 0, and point b is in the middle of the
urve. The bran
h points of the solution, the 
uts, andthe 
ontour are 
learly seen on these graphs6).It is worth noting that the left bran
h points movedown as T and � approa
h zero. Solutions 
lose enough6) The phase of the tunneling 
oordinate 
hanges by � aroundthe bran
h point. The points where the phase of the tunneling
oordinate 
hanges by 2� 
orrespond to zeroes of X(t).949
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h point inthe lower 
omplex half-plane, see Fig. 8. Therefore, the
orresponding 
ontour 
an be 
ontinuously deformed tothe real time axis. These solutions still satisfy the re-ality 
onditions asymptoti
ally (see Fig. 6), but shownontrivial 
omplex behavior at any �nite time.The regularized T=� pro
edure allows approa
hingthe boundary of the region of 
lassi
ally allowed transi-tions from both sides. The points at this boundary areobtained by taking the limits T ! 0; T=� = 
onst ofthe tunneling solutions and � ! +1, �=# = 
onst ofthe 
lassi
ally allowed ones. Be
ause �� � �=# = T=�by 
onstru
tion, the lines �� = 
onst are 
ontinuous atthe boundary E0(N), although may have dis
ontinu-ity of the derivatives. The variable �� 
an be used toparameterize the 
urve E0(N).4. CONCLUSIONSWe 
on
lude that 
lassi
al solutions des
ribingtransmissions of a bound system through a potentialbarrier with di�erent values of the energy and the ini-tial os
illator ex
itation number form three bran
hes.These bran
hes merge at bifur
ation lines E0(N) andE1(N). Solutions from di�erent bran
hes des
ribephysi
ally di�erent transition pro
esses. Namely, solu-tions at low energies E < E1(N) des
ribe the 
onven-tional potential-like tunneling. At E > E0(N), they
orrespond to unsuppressed over-barrier transitions.At intermediate energies, E1(N) < E < E0(N), phys-i
ally relevant solutions des
ribe transitions on top ofthe barrier. This bran
h stru
ture is shown in Fig. 9a,where the period T = �F=�E obtained numeri
allyfor solutions from the di�erent bran
hes is plotted as afun
tion of energy for N = 0:1.We note that the qualitative stru
ture of bran
hesin the model with internal degrees of freedom is similarto the stru
ture of bran
hes in one-dimensional quan-tum me
hani
s (see Appendix C). The latter is shownin Fig. 9b. The features of solutions in both 
ases aresimilar, although the solutions ending up on top of thebarrier are degenerate in energy in the one-dimensional
ase, and hen
e are not physi
ally interesting.In this paper, we introdu
ed the regularizationte
hnique that allows smoothly 
onne
ting solutionsin di�erent bran
hes. Its advantage is that it au-tomati
ally 
hooses the physi
ally relevant bran
h.This te
hnique is parti
ularly 
onvenient in numeri
alstudies: we have seen that it allows 
overing the wholeinteresting region of the parameter spa
e. We appliedthis te
hnique to baryon number violating pro
esses inele
troweak theory [16℄.
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ien
e Foundation (grant� 7SUPJ062239). APPENDIX AT=� boundary value problemThe semi
lassi
al method for 
al
ulating the prob-ability of tunneling from a state with a few parameters�xed was developed in [13�15; 32℄ in the 
ontext of �eldtheory models and in [3�5; 11; 12℄ in quantum me
han-i
s. Here, we outline the method adapted to our modelof two degrees of freedom.1. Path integral representation of thetransition probabilityWe begin with the path integral representation forthe probability of tunneling from the asymptoti
 re-gion X ! �1 through a potential barrier. Let thein
oming state jE; Ni have �xed energy and os
illatorex
itation number, and have support only for X � 0,well outside the range of the potential barrier. The in-
lusive tunneling probability for states of this type isgiven byT (E;N) = limtf�ti!1( +1Z0 dXf +1Z�1 dyf �� ���hXf ; yf j exp(�iĤ(tf � ti))jE;Ni���2); (A.1)where Ĥ is the Hamiltonian operator. This probability
an be reexpressed in terms of the transition amplitudesAfi = hXf ; yf j exp(�iĤ(tf � ti))jXi; yii (A.2)and the initial-state matrix elementsBii0 = hXi; yijE; NihE; N jX 0i ; y0ii (A.3)asT (E; N) = limtf�ti!1( +1Z0 dXf 0Z�1 dXi dX 0i �� +1Z�1 dyi dy0i dyf AfiA�i0fBii0): (A.4)

The transition amplitude and its 
omplex 
onjugatehave the familiar path integral representationAfi = Z [dx℄����� x(ti)=xix(tf )=xf exp(iS[x℄);A�i0f = Z [dx0℄����� x0(ti)=x0ix0(tf )=xf exp(�iS[x0℄); (A.5)where x = (X; y) and S is the a
tion of the model.To obtain a similar representation for the initial-statematrix elements, we rewrite Bii0 asBii0 = hXi; yijP̂E P̂N jX 0i ; y0ii; (A.6)where P̂N and P̂E denote the proje
tors onto the re-spe
tive states with the os
illator ex
itation number Nand the total energy E. It is 
onvenient to use the 
o-herent state formalism for the y-os
illator and 
hoosethe momentum basis for the X-
oordinate. In this rep-resentation, the kernel of the proje
tor operator P̂E P̂Nbe
omeshq; bjP̂E P̂N jp; ai = 1(2�)2 Z d� d� �� exp��iE��iN�+ i2p2�+exp(i!�+i�)�ba� Æ(q�p);where jp; ai is the eigenstate with the respe
tive eigen-values p and a of the 
enter-of-mass momentum p̂X andthe y-os
illator annihilation operator â. It is straight-forward to express this matrix element in the 
oordi-nate representation using the formulashyjai = 4r!� exp��12a2 +p2!ay � 12!y2� ;hX jpi = 1p2� exp(ipX):Evaluating the Gaussian integrals over a, b, p, and q,we obtainBii0 = Z d� d� exp��iE� � iN� � i2 (Xi �X 0i)2� ++ !1� exp(�2i!� � 2i�) �� �y2i + y02i2 (1 + exp(�2i!� � 2i�)) �� 2yiy0i exp(�i!� � i�)��; (A.7)where we omit the pre-exponential fa
tor depending on� and �. For the subsequent formulation of the bound-ary value problem, it is 
onvenient to introdu
e thenotation T = �i�; � = �i�:951
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ombining integral representations (A.7)and (A.5) and res
aling the 
oordinates, energy,and ex
itation number as x ! x=p�, E ! E=�,N ! N=�, we �nally obtainT (E; N) = limtf�ti!1( +i1Z�i1 dT d� Z [dx dx0℄�� exp�� 1�F [x; x0; T; �℄�); (A.8)whereF [x; x0; T; �℄ = �iS[X; y℄ + iS[X 0; y0℄��ET �N� +Bi(xi;x0i;T; �): (A.9)Here, the nontrivial initial term Bi isBi = (Xi �X 0i)22T � !1� exp(2!T + 2�) �� �12(y2i + y0i2)(1 + exp(2!T + 2�))�� 2yiy0i exp(!T + �)�: (A.10)In (A.8), x and x0 are independent integration vari-ables, while x0f � xf , see Eq. (A.5).2. The boundary value problemFor small �, path integral (A.8) is dominated by astationary point of the fun
tional F . Therefore, to 
al-
ulate the tunneling probability exponent, we extrem-ize this fun
tional with respe
t to all the integrationvariables X(t), y(t), X 0(t), y0(t), T , and �. We notethat be
ause of the limit tf � ti ! +1, the varia-tion with respe
t to the initial and �nal values of the
oordinates leads to boundary 
onditions imposed atasymptoti
 t ! �1, rather than at �nite times ti; tf .We also note that the stationary points may be 
om-plex.Variation of fun
tional (A.9) with respe
t to the
oordinates at intermediate times gives se
ond-orderequations of motion, in general 
omplexi�ed,ÆSÆX(t) = ÆSÆy(t) = ÆS0ÆX 0(t) = ÆS0Æy0(t) = 0: (A.11a)The boundary 
onditions at the �nal time tf ! +1are obtained by extremization of F with respe
t toXf � X 0f and yf � y0f . These are_Xf = _X 0f ; _yf = _y0f : (A.11b)

It is 
onvenient to write the 
onditions at the initialtime (obtained by varying Xi, yi, X 0i , and y0i) in termsof the asymptoti
 quantities. At the initial time instantti ! �1, the system moves in the region X ! �1,well outside the range of the potential barrier. Equa-tions (A.11a) in this region des
ribe free motion of de-
oupled os
illators, and the general solution takes theform X(t) = Xi + pi(t� ti);y(t) = 1p2! [a exp(�i!(t� ti)) + �a exp(i!(t� ti))℄ ;and similarly for X 0(t) and y0(t). For the moment,a and �a are independent variables. In terms of theasymptoti
 variables Xi, pi, a, �a, the initial boundary
onditions be
omepi = p0i =� Xi �X 0iiT ;a0 + �a0 =a exp(!T + �) + �a exp(�!T � �);a+ �a =a0 exp(�!T � �) + �a0 exp(!T + �): (A.11
)Variation with respe
t to the Lagrange multipliers Tand � gives the relation between the values of E, N , andthe initial asymptoti
 variables (where we use bound-ary 
onditions (A.11
)),E = p2i2 + !N;N = a�a: (A.11d)Equations (A.11a)�(A.11d) 
onstitute the 
omplete setof saddle-point equations for the fun
tional F .The variables X 0 and y0 originate from the 
onju-gate amplitude A�i0f (see Eq. (A.5)), whi
h suggeststhat they are 
omplex 
onjugate to X and y. Indeed,the ansatz X 0(t) = X�(t), y0(t) = y�(t) is 
ompatiblewith boundary value problem (A.11). The Lagrangemultipliers T and � are then real, and problem (A.11)may be 
onveniently formulated on the 
ontour ABCDin the 
omplex time plane (see Fig. 2).We now have only two independent 
omplex vari-ables X(t) and y(t), whi
h have to satisfy the 
lassi
alequations of motion in the interior of the 
ontour,ÆSÆX(t) = ÆSÆy(t) = 0: (A.12a)The �nal boundary 
onditions (see Eq. (A.11b)) be-
ome the reality 
onditions for the variables X(t) andy(t) at the asymptoti
 part D of the 
ontour,ImXf = 0; Im yf = 0;Im _Xf = 0; Im _yf = 0; t! +1: (A.12b)952



ÆÝÒÔ, òîì 125, âûï. 4, 2004 Dynami
al tunneling of bound systems : : :Seemingly 
ompli
ated initial 
onditions (A.11
) sim-plify when written in terms of the time 
oordinatet0 = t+iT=2 running along the part AB of the 
ontour.We again write the asymptoti
 form of a solution, butnow along the initial part AB of the 
ontour,X = X0 + p0(t0 � ti);y = 1p2! [u exp(�i!(t0 � ti)) + v exp(i!(t0 � ti))℄ :In terms of X0, y0, u, and v, boundary 
ondi-tions (A.11
) be
omeImX0 = 0; Im p0 = 0; (A.12
)v = u�e�:Finally, we write Eqs. (A.11d) in terms of the asymp-toti
 variables along the initial part of the 
ontour,E = p202 + !N;N = !uv: (A.13)These equations determine the Lagrange multipliers Tand � in terms of E and N . Alternatively, we 
an solveproblem (A.12) for given values of T and � and �ndthe values of E and N from Eqs. (A.13), whi
h is more
onvenient 
omputationally.Given a solution to problem (A.12), the exponentF is the value of fun
tional (A.9) at this saddle point.We thus obtain expression (8) for the tunneling expo-nent. The exponent F is now expressed in terms of S0in Eq. (9), the a
tion of the system integrated by parts.The nontrivial boundary term Bi, Eq. (A.10), is 
an-
eled by the boundary term 
oming from integration byparts. We note that we did not use 
onstraints (A.13)to obtain formula (8), and we therefore still have toextremize (8) with respe
t to T and � (see dis
ussionin Se
. 2.2).Classi
al problem (A.12) is 
onveniently 
alledthe T=� boundary value problem. Equations (A.12b)and (A.12
) imply eight real boundary 
onditionsfor two 
omplex se
ond-order di�erential equa-tions (A.12a). However, one of these real 
onditions isredundant: Eq. (A.12b) implies that the (
onserved)energy is real, and therefore the 
ondition Im p0 ! 0is automati
ally satis�ed (we note that the os
illatorenergy Eos
 = !uv = !e�uu� is real). On the otherhand, system (A.12) is invariant under time trans-lations along the real axis. This invarian
e is �xed,e.g., by requiring that ReX takes a pres
ribed valueat a pres
ribed large negative time t00 (we note thatother ways may be used instead; in parti
ular, for

E < E1(N), it is 
onvenient to impose the 
onstraintRe _X(t = 0) = 0). Together with the latter require-ment, we have exa
tly eight real boundary 
onditionsfor the system of two 
omplexi�ed (i.e., four real)se
ond-order equations.APPENDIX BA property of solutions of the T=� problem inthe 
ase of over-barrier transitionsFor given E and N , there is only one over-barrier
lassi
al solution, whi
h is obtained in the limit � ! 0of the regularized T=� pro
edure. To see what singlesout this solution, we analyze the regularized fun
tionalF�[q℄ = F [q℄ + 2�Tint[q℄; (B.1)where q denotes the variables x(t); x0(t) and T; � to-gether. The unregularized fun
tional F has a valley ofextrema qe(') 
orresponding to di�erent values of theinitial os
illator phase '. Clearly, at small �, the ex-tremum of F� is 
lose to a point in this valley with thephase extremizing Tint[qe(')℄,dd'Tint[qe(')℄ = 0: (B.2)Hen
e, the solution qe� of the regularized T=� boundaryvalue problem tends to the over-barrier 
lassi
al solu-tion, with Tint extremized with respe
t to the initialos
illator phase.Be
ause Uint(x) > 0, Tint is a positive quantitywith at least one minimum. In normal situation, thereis only one saddle point of F�, and hen
e solving theT=� boundary value problem gives the 
lassi
al solutionwith the time of intera
tion minimized.APPENDIX CClassi
ally allowed transitions: aone-dimensional exampleThe di�
ulties with bifur
ations of 
lassi
al solu-tions emerge in quite a general 
lass of quantum me-
hani
al models. To illustrate this statement, we 
on-sider one-dimensional quantum me
hani
s, where theresult is given by the well-known WKB formula. Weshow that the origin of the above di�
ulties 
an alsobe seen in one-dimensional model. Implementationof the regularization te
hnique is expli
it in the one-dimensional 
ase. This makes it easy to see how ourte
hnique allows us to smoothly join the 
lassi
al solu-tions relevant to the tunneling and allowed transitions.953
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hani
s of one degree of freedom in-volves only one variable X(t) that des
ribes motion ofa parti
le with mass m = 1 through a potential barrierU(X). The motion is free in the asymptoti
 regionsX ! �1. The semi
lassi
al 
al
ulation of the tun-neling exponent is performed by solving the 
lassi
alequation of motion ÆSÆX(t) = 0on the 
ontour ABCD in the 
omplex time plane, withthe 
ondition that the solution is real in the asymptoti
past (region A) and asymptoti
 future (region D). Therelevant solutions tend to X ! �1 and X ! +1 inregions A and D, respe
tively. The auxiliary param-eter T is related to the energy of the in
oming stateby the requirement that the energy of the 
lassi
al so-lution equals to E. The exponent for the transitionprobability is F = 2 ImS �ET: (C.1)We note that these boundary 
onditions resemblethe ones on the tunneling 
oordinate X in the two-dimensional system.In quantum me
hani
s of one degree of freedom, the
ontour ABCD may be 
hosen su
h that the points Band C are the turning points of the solution. Thenthe solution is also real at the part BC of the 
ontour.Indeed, a real solution at the part BC of the 
ontouros
illates in the upside-down potential, T=2 is equal tothe half-period of os
illations, and the points B and Care the two di�erent turning points, _X = 0. Continua-tion of this solution from the point C to the positive realtimes in a

ordan
e with the equation of motion 
orre-sponds to real-time motion, with zero initial velo
ity,towards X ! +1; the 
oordinate X(t) stays real onthe part CD of the 
ontour. Likewise, the 
ontinuationba
k in time from the point B leads to a real solutionin the part AB of the 
ontour. The reality 
onditionsare thus satis�ed at A and D. The only 
ontribution toF 
omes from the Eu
lidean part of the 
ontour, andit 
an be 
he
ked that expression (C.1) redu
es toF (E) = 2 XCZXB p2(U(X)�E) dX; (C.2)whi
h is the standard WKB result.The solutions appropriate for the 
lassi
ally forbid-den and 
lassi
ally allowed transitions apparently be-long to di�erent bran
hes. As the energy approa
hesthe height of the barrier U0 from below, the ampli-tude of the os
illations in the upside-down potential

de
reases, while the period T tends to a �nite value de-termined by the 
urvature of the potential at its max-imum. On the other hand, the solutions for E > U0always run along the real time axis, and hen
e the pa-rameter T is always zero. Therefore, the relevant so-lutions do not merge at E = U0, and T (E) has a dis-
ontinuity at E = U0. The regularization te
hnique ofSe
. 3.1 removes this dis
ontinuity and allows smoothtransitions through the point E = U0. The only dif-feren
e with quantum me
hani
s of multiple degrees offreedom is that in the latter 
ase, bifur
ation points ex-ist not only at the boundary of the region of 
lassi
allyallowed transitions, but also well inside the region of
lassi
ally forbidden transitions (but still at E > ES ,see the Introdu
tion and Se
. 2.3).To illustrate the situation, we 
onsider an exa
tlysolvable model withU(X) = 1
h2X :We implement our regularization te
hnique by formally
hanging the potentialU(X)! e�i�U(X); (C.3)whi
h leads to the 
orresponding 
hange of the 
lassi-
al equations of motion. Here, � is a real regularizationparameter, the smallest parameter in the model. Atthe end of the 
al
ulations, we take the limit �! 0.We do not 
hange the boundary 
onditions in ourregularized 
lassi
al problem, i.e., we still require X(t)to be real in the asymptoti
 future on the real timeaxis and X(t0) to be real as t0 ! �1 on part A of the
ontour ABCD. Then the 
onserved energy is real.The sphaleron solution X(t) = 0 now has a 
omplexenergy (be
ause the potential is 
omplex). Hen
e, thesolutions of our 
lassi
al boundary value problem ne
-essarily avoid the sphaleron, and we 
an expe
t thatthe solutions behave smoothly in energy.The general solution of the regularized problem isr Ee�i� �E shX = � 
h�p2E(t� t0)� ;where t0 is the integration 
onstant. The value of Im t0is �xed by the requirement that ImX = 0 at positivetime t! +1,Im t0 = T2 � 12p2E arg[e�i� �E℄:The residual parameter Re t0 represents the real-timetranslational invarian
e present in the problem. The
ondition that the 
oordinate X is real on the initial954
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al tunneling of bound systems : : :part AB of the 
ontour gives the relation between Tand E, T2 = 1p2E �� + arg �e�i� �E�	 : (C.4)For � = 0 and E < 1, the original unregularized resultT=2 = �=p2E is reprodu
ed.We now analyze what happens in the regularized
ase in the vi
inity of the would-be spe
ial value of en-ergy, E = ES � 1. It is 
lear from Eq. (C.4) that Tis now a smooth fun
tion of E. Away from E = 1,Eq. (C.4) 
an be written asT2 == 8>><>>: �p2E ; forbidden region, 1�E � ��p2E(E � 1) ; allowed region, E�1� �: (C.5)Deep enough in the region of forbidden transitions,where 1� E � �, the argument in Eq. (C.4) is nearlyzero and we return to the original tunneling solution.When E 
rosses the region of size of the order of �around E = 1, the argument rapidly 
hanges from O(�)to ��, and hen
e T=2 
hanges from �=p2 to nearlyzero. Thus, at E > 1, we obtain a solution that isvery 
lose to the 
lassi
al over-barrier transition, andthe 
ontour is also very 
lose to the real axis. Thisis shown in Fig. 9. We 
on
lude that at small but �-nite �, the 
lassi
ally allowed and 
lassi
ally forbiddentransitions merge smoothly.For E < 1, the limit � ! 0 is straightforward. ForE > 1, a somewhat more 
areful analysis of the limit�! 0 is needed. It follows from Eq. (C.5) that thelimit �! 0 with a 
onstant �nite T < �p2 leads tosolutions with E = 1. Classi
al over-barrier solutionsof the original problem with E > ES � 1 are obtainedin the limit �! 0 if T also tends to zero while � = T=�is kept �nite. Di�erent energies 
orrespond to di�er-ent values of � . This is what one expe
ts � 
lassi
alover-barrier transitions are des
ribed by the solutionson the 
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