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A semiclassical method of complex trajectories for the calculation of the tunneling exponent in systems with
many degrees of freedom is further developed. It is supplemented with an easily implementable technique that
enables one to single out the physically relevant trajectory from the whole set of complex classical trajectories.
The method is applied to semiclassical transitions of a bound system through a potential barrier. We find
that the properties of physically relevant complex trajectories are qualitatively different in the cases of potential
tunneling at low energy and dynamical tunneling at energies exceeding the barrier height. Namely, in the case
of high energies, the physically relevant complex trajectories describe tunneling via creation of a state close to
the top of the barrier. The method is checked against exact solutions of the Schrédinger equation in a quantum

mechanical system of two degrees of freedom.

PACS: 03.65.Sq, 03.65.-w, 03.65.Xp

1. INTRODUCTION

Semiclassical methods provide a useful tool for the
study of nonperturbative processes. Tunneling phe-
nomena represent one of the most notable cases where
semiclassical techniques are used to obtain otherwise
unattainable information on the dynamics of the transi-
tion. A standard example of the semiclassical technique
is the WKB approximation to tunneling in quantum
mechanics of one degree of freedom. In this case, solu-
tions S(q) of the Hamilton—Jacobi equation are purely
imaginary in the classically forbidden region. There-
fore, the function S(¢) can be obtained as the action
functional on a real trajectory ¢(7), which is a solu-
tion of the equations of motion in the Euclidean time
domain,

t=—ir,

with the real Euclidean action

Sg = —iS.
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This simple picture of tunneling is no longer valid
for systems with many degrees of freedom, where solu-
tions S(q) of the Hamilton—Jacobi equation are known
to be generically complex in the classically forbidden
region (see Refs. [1, 2] for a recent discussion). This
leads to the concept of «mixed» tunneling, as opposed
to «pure» tunneling where S(q) is purely imaginary.
«Mixed» tunneling cannot be described by any real
tunneling trajectory. However, it can be related to a
complex trajectory, in which case the function S(q)
(and therefore the exponential part of the wave func-
tion) is calculated as the action functional on this com-
plex trajectory.

A particularly difficult situation arises when one
considers transitions of a nonseparable system with a
strong interaction between its degrees of freedom, such
that the quantum numbers of the system change con-
siderably during the transition. Methods based on the
adiabatic expansion are not applicable in this situation,
while the method of complex trajectories proves to be
extremely useful.

The method of complex trajectories in the form
suitable for the calculation of S-matrix elements was
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formulated and checked by direct numerical calcula-
tions in Refs. [3, 4, 5] (see Ref. [6] for a review). Further
studies [7-12] showed that this method can be general-
ized to the calculation of the tunneling wave functions
and tunneling probabilities, energy splittings in double-
well potentials, and decay rates from metastable states.
Similar methods were successful in the study of tun-
neling in high-energy collisions in field theory [13-16],
where one considers systems with a definite particle
number (N = 2) in the initial state, and in the study
of chemical reactions and atom ionization processes,
where the initial bound systems are in definite quan-
tum states [6, 17, 18], etc. The main advantage of the
method of complex trajectories is that it can be easily
generalized and numerically implemented in the cases
of a large and even infinite (field theory) number of the
degrees of freedom, in contrast to other methods such
as the Huygens-type construction in Refs. [1, 2] and the
initial value representation (IVR) in Refs. [3,19-23].

In this paper, we develop the method of complex
trajectories further. Namely, we concentrate on the fol-
lowing problem. It is known [3] that a physically rele-
vant complex trajectory satisfies the classical equations
of motion with certain boundary conditions. However,
this boundary value problem generically has also an
infinite, although discrete, set of unphysical solutions.
In one-dimensional quantum mechanics, all solutions
can easily be classified. In systems with many degrees
of freedom, such a classification is extremely difficult,
if at all possible. In the case of a small number of
the degrees of freedom (realistically, N = 2), one can
scan over all solutions and find the solution giving the
largest tunneling probability [3, 9, 10], but in systems
with a large or infinite number of the degrees of free-
dom, the problem of choosing the physically relevant
solution becomes a formidable task.

The problem of choosing the appropriate solution
becomes even more pronounced when the qualitative
properties of the relevant complex trajectory are dif-
ferent in different energy regions. This may happen
when the physically relevant classical solution «meets»
an unphysical one at some energy value E = FEy, or
in other words, when solutions of the boundary value
problem, viewed as functions of the energy, bifurcate
at £ = El.

In this paper, we give an example of this type, which
appears to be fairly generic (see also [11, 12, 24, 15, 16]).
We then develop a method that allows choosing the
phyisically relevant solution automatically, implement
it numerically, and check this method against the nu-
merical solution of the full Schrédinger equation.

We study inelastic transitions of a bound system
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through a potential barrier. To be specific, we consider
a model with one internal degree of freedom in addi-
tion to the center-of-mass coordinate. We consider a
situation where the spacing between the levels of the
bound system is small compared to the height of the
barrier, and assume a sufficiently strong coupling be-
tween the degrees of freedom, to make sure that the
quantum numbers of the bound system change consid-
erably during the transition process. This is precisely
the situation in which the method of complex trajecto-
ries shows its full strength.

Transitions of bound systems involve a particular
energy scale, the barrier height V. At energies below
V4. classical over-barrier transitions are forbidden ener-
getically; the corresponding regime is called «potential
tunneling». For E > Vj, it is energetically allowed for
the system to evolve classically to the other side of the
barrier. However, over-barrier transitions may be for-
bidden dynamically even at £ > V4. Indeed, inelastic
interactions of a bound system with a potential bar-
rier generally lead to the excitation of the internal de-
grees of freedom with the simultaneous decrease of the
center-of-mass energy, which may prevent the system
from the over-barrier transition. The tunneling regime
at energies exceeding the barrier height is called «dy-
namical tunneling» ).

Examples of dynamical tunneling are well-known in
scattering theory [4]. This type of tunneling between
bound states was discovered in Ref. [25], and the gen-
erality of dynamical tunneling in large molecules was
stressed in Refs. [26, 27]. Dynamical tunneling is of
primary interest in our study.

We observe a novel phenomenon that dynamical
tunneling at E 2> Vj (more precisely, at E > E;, where
E, is somewhat larger than Vj) occurs in the follow-
ing way: the system jumps on top of the barrier and
restarts its classical evolution from the region near the
top. From the physical standpoint, this is not quite
what is normally meant by «tunneling through a bar-
riery. Yet the transitions remain exponentially sup-
pressed, but the reason is different: to jump above the
barrier, the system has to undergo considerable rear-
rangement, unless the incoming state is chosen in a

1) 1t is clear that the properties of transitions of a bound Sys-
tem at E > Vp depend on the choice of the initial state. Namely,
there always exists a certain class of states transitions from which
are not exponentially suppressed. To construct an example, one
places the bound system on top of the barrier and evolves it
classically backwards in time to the region where the interaction
with the barrier is negligibly small. On the other hand, even at
E > Vp, there are states transitions from which are exponentially
suppressed (dynamical tunneling).
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special way (see footnote 1). This rearrangement costs
an exponentially small probability factor. We note that
a similar exponential factor was argued to appear in
various field theory processes with multi-particle final
states [28-31].

We find that the new physical behavior of the sys-
tem is related to a bifurcation of the family of com-
plex-time classical solutions, viewed as functions of en-
ergy. This is precisely the bifurcation mentioned above.
Our method of dealing with this bifurcation is to regu-
larize the boundary value problem such that the bifur-
cations disappear altogether (at real energies), and the
only solutions recovered after removing the regulariza-
tion are physical ones.

This paper is organized as follows. The system to
be discussed in what follows is introduced in Sec. 2.1.
In Sec. 2.2, we formulate the boundary value prob-
lem for the calculation of the tunneling exponent. In
Sec. 2.3, we then examine the classical over-barrier so-
lutions and find all initial states that lead to classically
allowed transitions. In Sec. 2.4, we present a straight-
forward application of the semiclassical technique out-
lined in Sec. 2.2 and find that it ceases to produce rel-
evant complex trajectories in a certain region of initial
data, namely, at £ > E;. In Sec. 3, we introduce our
regularization technique and show that it indeed en-
ables us to find all the relevant complex trajectories,
including those with E > E; (Sec. 3.1). We check
our method against the numerical solution of the full
Schrodinger equation in Sec. 3.2. In Sec. 3.3 and Ap-
pendix C, we show how our regularization technique
is used to smoothly join the «classically allowed» and
«classically forbidden» families of solutions in the re-
spective cases of two- and one-dimensional quantum
mechanics.

2. SEMICLASSICAL TRANSITIONS
THROUGH A POTENTIAL BARRIER

2.1. The model

The situation discussed in this paper is a transition
through a potential barrier of the bound system con-
sidered in Refs. [11, 12], namely the system made of
two particles of identical masses m, moving in one di-
mension and bound by a harmonic oscillator potential
of frequency w (Fig. 1). One of the particles interacts
with a repulsive potential barrier. The potential bar-
rier is assumed to be high and wide, while the spacing
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Fig.1. An oscillator hitting a potential barrier, with
only the «dark» particle interacting with the barrier

between the oscillator levels is much smaller than the
barrier height V5. The Hamiltonian of the model is

i

+ Vpexp ( 5,2

).
where the conditions on the oscillator frequency and
potential barrier are

hw < Vo,
g > h/\/ ng.

Because the variables do not separate, this is certainly
a nontrivial system.

We choose units with 2z = 1, m = 1. It is also
convenient to treat the frequency w as a dimensionless
parameter, such that all physical quantities are dimen-
sionless. In our subsequent numerical study, we use the
value w = 0.5, but keep the notation «w» in formulas.
The system is semiclassical, i.e., conditions (2) are sat-
isfied, if we choose ¢ = 1/v/2X and Vj = 1/), where
A is a small parameter. At the classical level, this pa-
rameter is irrelevant: after rescaling the variables?) as

(2)

21 = 2 VN, 19— 22V,

the small parameter enters only through the overall
multiplicative factor 1/A in the Hamiltonian. There-
fore, the semiclassical technique can be developed as
an asymptotic expansion in .

The properties of the system are made clearer by re-
placing the variables 21 and x5 with the center-of-mass
coordinate

2) To keep the notation simple, we use the same symbols 21, 2

for the rescaled variables.
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r1 + T2
V2

and the relative oscillator coordinate

X =

Tr1 — T2
ﬂ .

In terms of these variables, the Hamiltonian becomes
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vanishes in the asymptotic regions X — 400 and de-
scribes a potential barrier between these regions. At
X — +oo, Hamiltonian (3) corresponds to an oscilla-
tor of the frequency w moving along the center-of-mass

coordinate X. The oscillator asymptotic state is char-
acterized by its excitation number N and total energy

(ro8)

We are interested in the transmissions through the po-
tential barrier of the oscillator with given initial values
of E and N.
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2.2. T/6 boundary value problem

The probability of tunneling from a state with a
fixed initial energy F and oscillator excitation number
N from the asymptotic region X — —oo to any state
in the other asymptotic region X — +oc is given by

T(E,N) =
S [(flexp (=it (ty = ) 1B, N)
f

lim
ty—t;—oc

(4

‘2
where it is implicit that the initial and final states have
support only well outside the range of the potential,
with X < 0 and X > 0, respectively. Semiclassical
methods are applicable if the initial energy and excita-
tion number are parametrically large,

E=E/\, N=N/\
where E and N are kept constant as A — 0. The tran-
sition probability has the exponential form

).

L, m)

T = Dexp (‘X (5)
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Fig.2. Contour in the complex time plane

where D is a pre-exponential factor, which is not con-
sidered in this paper. Our purpose is to calculate the
leading semiclassical exponent F(E,N). The expo-
nent for tunneling from the oscillator ground state is
obtained in [11-13,32] by taking the limit N — 0 in
F(E,N).

In what follows, we rescale the variables as

X—>X/\/X., y—)y/\/X

and omit the tilde over the rescaled quantities F and N.

The exponent F(E, N) is related to a complex tra-
jectory that satisfies a certain complexified classical
boundary value problem. We present the derivation of
this problem in Appendix A. The outcome is as follows.
There are two Lagrange multipliers T and 6, which are
related to the parameters E and N characterizing the
incoming state. The boundary value problem is conve-
niently formulated on the contour ABCD in the com-
plex time plane (see Fig. 2), with the imaginary part
of the initial time equal to 7//2. The coordinates X (¢)
and y(t) must satisfy the complexified equations of mo-
tion in the interior points of the contour, and must be
real in the asymptotic future (region D):

0S 0S
5X(0 ~ 5D (6
tmy(t) =0, as t — +oc. (6b)
Im X (t) = 0,

In the asymptotic past (region A of the contour, where
t =t +1iT/2, t' is real negative), the interaction poten-
tial U;,: can be neglected and the oscillator decouples,

1 . / . /
= —— (uexp(—iwt' ) + vexp(wwt')) .
v =~ (wexp(iot!) + vexp(ict)
The boundary conditions in the asymptotic past,
t' — —oo, are that the center-of-mass coordinate X
must be real, while the complex amplitudes of the de-
coupled oscillator must be linearly related,

ImX — 0,
as t' — —oo0. (6¢)
v — efu*,
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Boundary conditions (6b) and (6¢) in fact make eight
real conditions (because, e.g., Im X (') — 0 implies
that both Im X and Im X tend to zero), and completely
determine the solution, up to the time translation in-
variance (see the discussion in Appendix A).

It is shown in Appendix A that a solution of this
boundary value problem is an extremum of the func-
tional

F[X'/y;X*ay*;T?e] = _ZS[X/y] +ZS[X*/y*] -

— ET — N6 + Boundary Terms. (7)

The value of this functional at the extremum gives the
exponent for the transition probability (up to the large
overall factor 1/, see Eq. (5)),

F(E, N)=2ImS,(T, §) — ET — N§,  (8)

where Sg is the action of the solution, integrated by
parts,

e

1

d>X
X2 2

dt?

Here, the integration runs along the contour ABCD.
The values of the Lagrange multipliers T" and 6 are re-
lated to the energy and excitation number as

E(T,) = %QIm So(T,6), (10)

N(T,6) = %QImSO(T,H). (11)

Using Eq. (8), it is also straightforward to verify the
inverse Legendre transformation formulas

T(E, N)= L F(E, N), (12)
0(E, N) = —aiNF(E, N). (13)

It can also be verified that the right-hand side of
Eq. (10) coincides with the energy of the classical solu-
tion and the right-hand side of Eq. (11) is equal to the
classical counterpart of the occupation number,

"2

E:X—+wN, N = uw.

- (14)

Therefore, we can either seek the values of T" and 6 that
correspond to given E and N, or, following a compu-
tationally simpler procedure, solve the boundary value
problem (6) for given T' and # and then find the corre-
sponding values of E and N from Eq. (14). We note
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that initial conditions (6¢) complemented by Eqs. (14)
are equivalent to the initial conditions in Refs. [3-5],
the latter being expressed in terms of action—angle vari-
ables. The boundary conditions in the asymptotic fu-
ture, Eq. (6b), are different from those in Refs. [3-5],
because we consider inclusive, rather than fixed, final
state.

We now discuss some subtle points of boundary
value problem (6). First, we note that the asymptotic
reality condition in (6b) does not always coincide with
the reality condition at finite time. Of course, if the so-
lution approaches the asymptotic region X — 400 on
the part CD of the contour, asymptotic reality con-
dition (6b) implies that the solution is real at any
finite positive t. Indeed, the oscillator decouples as
X — +oo, and therefore condition (6b) means that
its phase and amplitude, as well as X (¢), are real as
t — 4o00. Due to the equations of motion, X (¢) and
y(t) are real on the entire C'D part of the contour. This
situation corresponds to the transition directly to the
asymptotic region X — +o00. However, the situation
can be drastically different if the solution on the final
part of the time contour remains in the interaction re-
gion. For example, we can imagine that the solution
approaches the saddle point of the potential X = 0,
y =0 ast — +oo. Because one of the perturbations
around this point is unstable, there may exist solutions
that approach this point exponentially along the un-
stable direction, i.e.,

X(t), y(t) oc exp(—const - )

with possibly complex prefactors. In this case, the so-
lution may be complex at any finite time, and become
real only asymptotically, as ¢ — 400. Such a solu-
tion corresponds to tunneling to the saddle point of
the barrier, after which the system rolls down classi-
cally towards X — +oo (with probability of the order
of 1, inessential for the tunneling exponent F'). We see
in Sec. 3.1 that the situation of this sort indeed occurs
for some values of the energy and excitation number.

Second, because the interaction potential disap-
pears at large negative time (in the asymptotic region
X — —o0), it is straightforward to continue the asymp-
totic form of the solution to the real time axis. For
solutions satisfying (6¢), this gives

y(t) = \/% <uexp (-%) exp(—iwt)+
+ u* exp (a + %) exp(iwt)) ,

T
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at large negative time. We see that the dynamical
coordinates on the negative side of the real time axis
are generally complex. For solutions approaching the
asymptotic region X — 400 as t — +00 (such that X
and y are exactly real at finite ¢ > 0), this means that
there should exist a branch point in the complex time
plane: the contour A’ABC in Fig. 2 winds around this
point and cannot be deformed to the real time axis.
This argument does not work for solutions ending in
the interaction region as t — 400, and hence branch
points between the AB part of the contour and the real
time axis may be absent. We see in Sec. 3.1 that this
is indeed the case in our model in a certain range of £
and N.

2.3. Over-barrier transitions: the region of
classically allowed transitions and its
boundary Eg(N)

Before studying the exponentially suppressed tran-
sitions, we consider the classically allowed ones. For
this, we study the classical evolution (real time, real-
valued coordinates) such that the system is initially
located at large negative X and moves with a positive
center-of-mass velocity towards the asymptotic region
X — +4oo. The classical dynamics of the system is
specified by four initial parameters. One of them (e.g.,
the initial center-of-mass coordinate) fixes the invari-
ance under time translations, while the other three are
the total energy F, the initial excitation number of the
y-oscillator, defined in classical theory as N = E,./w,
and the initial oscillator phase ;.

Any initial quantum state of our system can be fully
determined by the energy E and the initial oscillator
excitation number N; we can represent each state by
a point in the EN plane. There is, however, one ad-
ditional classically relevant initial parameter, the os-
cillator phase ¢;. An initial state (E, N) leads to un-
suppressed transmission if the corresponding classical
over-barrier transitions® are possible for some value(s)
of ¢;. These states form some region in the EN plane,
which is to be found in this section.

For given N, at sufficiently large E. the system can
certainly evolve to the other side of the barrier. On
the other hand, if E is smaller than the barrier height,
the system definitely undergoes reflection. Thus, there
exists some boundary energy Eo(N) such that classi-
cal transitions are possible for E > Ey(N), while for

3) We note that the corresponding classical solutions obey
boundary conditions (6b) and (6¢) with T = § = 0, i.e., they
are solutions to boundary value problem (6).

N ' '
0.6}
Z
Epi(N)
0.2} J
E1(N o(NV)
0 0.5 Es=1 1.5 FE
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Fig.3. The boundary Eo(IV) of the region of classically
allowed transitions, the bifurcation line E1(IN), and the
line of the periodic instantons Ep;(N)

E < Ey(N) they do not occur for any initial phase ;.
The line Eq(N) represents the boundary of the region
of classically allowed transitions. We have calculated
Eo(N) numerically: the result®) is shown in Fig. 3.

An important point of the boundary Ey(N) cor-
responds to the static unstable classical solution
X(t) = y(t) = 0. In the field theory context, such
a solution is called «sphaleron» [33], and we keep this
terminology in what follows. This solution is the saddle
point of the potential

U(X,y) =w’y?/2+ Ui (X, y)

and has exactly one unstable direction, the neg-
ative mode (see Fig. 4). The sphaleron energy
Es =U(0,0) = 1 determines the minimum value of the
function Eg(N). Indeed, classical over-barrier transi-
tions with £ < Eg are impossible, but the over-barrier
solution with a slightly higher energy can be obtained
as follows: a momentum along the negative mode is
added at the point X = y = 0, «pushing» the system
towards X — +o0. Continuing this solution backwards
in time shows that the system tends to X — —oo for
large negative time and has a certain oscillator excita-
tion number. Solutions with the energy closer to the
sphaleron energy correspond to a smaller «push» and
thus spend longer time near the sphaleron. In the lim-
iting case where the energy is equal to Eg, the solution
spends an infinite time in the vicinity of the sphaleron.
This limiting case has a definite initial excitation num-
ber Ng, such that Eg(Ns) = Es (see Fig. 3). The

4) We note that the boundary Eo(N) of the region of classi-
cally allowed transitions can be extended to N > Ng. Because
E = Eg is the absolute minimum of the energy of classically al-
lowed transitions, the function Eq(N) grows with N at N > Ng.
In fact, it tends to the asymptotics E§® = wN as N — +oc0. In
what follows, we are not interested in transitions with N > Ng,
and therefore this part of the boundary Eg(N) is not shown in
Fig. 3.
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Fig.4. The potential (dotted lines) in the vicinity of
the sphaleron (X =0, y = 0) (marked by the point),
the excited sphaleron (thick line) corresponding to the
point (E, N) = (1.985, 3.72) at the boundary of the re-
gion of classically allowed transitions, and the trajectory
of the solution that is close to this excited sphaleron

(thin line). The asymptotic regions X — oo are

along the diagonal

value of Ng is unique because there is exactly one neg-
ative direction of the potential in the vicinity of the
sphaleron.

In complete analogy to the features of the over-
barrier classical solutions near the sphaleron point
(Es, Ng), we expect that as the values of E and N
approach any other boundary point (Eq(N), N), the
corresponding over-barrier solutions spend more and
more time in the interaction region, where U, # 0.
This follows from a continuity argument. Namely, we
first fix the initial and final times, ¢; and t;. If within
this time interval a solution with the energy E; evolves
to the other side of the barrier and a solution with the
energy F» and the same oscillator excitation number is
reflected, there exists an intermediate energy at which
the solution ends up at ¢ = f; in the interaction re-
gion. Taking the limit as t; — +o0c and E; — Ey — 0,
we obtain a point at the boundary Ep(N) and a solu-
tion tending asymptotically to some unstable time-de-
pendent solution that spends infinite time in the inter-
action region. We call the latter solution the excited
sphaleron; it describes some (in general, nonlinear) os-
cillations above the sphaleron along the stable direc-
tion in the coordinate space. Therefore, every point
of the boundary (Eg(N), N) corresponds to some ex-
cited sphaleron. In the phase space, solutions tending
asymptotically to the excited sphalerons form a sur-
face (separatrix) that separates regions of qualitatively
different classical motions of the system.

In Fig. 4, we display a solution, found numerically in

our model, that tends to an excited sphaleron. We see
that the trajectory of the excited sphaleron is, roughly
speaking, orthogonal to the unstable direction at the
saddle point (X =0,y = 0).

2.4. Suppressed transitions: bifurcation
line E;(N)

We now turn to classically forbidden transitions and
consider the boundary value problem in Eq. (6). It is
relatively straightforward to obtain solutions for § = 0
numerically. In this case, boundary conditions (6b)
and (6¢) take the form of reality conditions in the
asymptotic future and past. It can be shown [34] that
the physically relevant solutions with § = 0 are real on
the entire contour ABCD in Fig. 2 and describe non-
linear oscillations in the upside-down potential on the
Euclidean part BC' of the contour. The period of the
oscillations is equal to 7', and hence the points B and
C are two different turning points where X =g=0.
These real Euclidean solutions are called periodic in-
stantons. A practical technique for obtaining these so-
lutions numerically on the Euclidean part BC' consists
in minimizing the Euclidean action (for example, with
the method of conjugate gradients, see Ref. [11, 12] for
the details). The solutions on the entire contour are
then obtained by solving the Cauchy problem numeri-
cally, forward in time along the line CD and backward
in time along the line BA. From the solution in the
asymptotic past (region A), we then calculate its en-
ergy and excitation number (14). The solutions of this
Cauchy problem are obviously real, and hence bound-
ary conditions (6b) and (6¢) are indeed satisfied for
6 = 0. It is worth noting that solutions with § = 0 are
similar to the ones in quantum mechanics of one degree
of freedom. The line of periodic instantons in the EN
plane in our model is shown in Fig. 3.

Once the solutions with # = 0 are found, it is nat-
ural to try to cover the entire region of classically for-
bidden transitions in the EN plane with a deformation
procedure, by moving in small steps in 8 and 7. The
solution of the boundary value problem with (T"+ AT,
6 + Af) may be obtained numerically, by applying an
iteration technique, with the known solution at (7', 6)
serving as the initial approximation®. If the solutions
end up in the correct asymptotic region at each step,
i.e., X = 400 on part D of the contour, the solutions
obtained by this procedure of small deformations are
physically relevant. But the method of small defor-

5 In practice, the Newton—Raphson method is particularly
convenient (see Refs. [11, 12, 14, 15]).

944



MITD, Tom 125, BBIm. 4, 2004

Dynamical tunneling of bound systems ...

Re X

20} -
Physical . - -

—_ao0l Reflected

—40

=20 -0 0 10 20
Ret

Fig.5. The dependence of the tunneling coordinate X
on time for two solutions with nearly the same energy
The physical solution
tunnels to the asymptotic region X — 400, while the
unphysical one is reflected to X — —oo. The physi-
cal solution has E = 1.028, N = 0.44, while the un-
physical one has E = 1.034, N = 0.44. These two
solutions are close to the point on the bifurcation line
Ei(N = 0.44) = 1.031

and initial excitation number.

mations fails to produce relevant solution if there are
bifurcation points in the EN plane, where the physi-
cal branch of solutions merges to an unphysical branch.
Because there are unphysical solutions close to physical
ones in the vicinity of bifurcation points, the procedure
of small deformations cannot be used near these points.

We have found numerically that in our model, the
method of small deformations produces correct solu-
tions of the T'/6 boundary value problem in a large
region of the EN plane where E < E;(N). How-
ever, at sufficiently high energy E > E;(N), where
E,(N) 2 Eg, the deformation procedure generates so-
lutions that bounce back from the barrier (see Fig. 5),
i.e., have a wrong «topology». This occurs deep inside
the region of classically forbidden transitions, where the
suppression is large, and one naively expects the semi-
classical technique to work well. Clearly, solutions with
a wrong topology do not describe the tunneling transi-
tions of interest. Therefore, if the semiclassical method
is applicable in the region Ey(N) < E < Eg(N) at all,
there exists another, physical branch of solutions. In
that case, the line E;(N) is the bifurcation line where
the physical solutions «meet» the ones with a wrong
«topology». Walking in small steps in # and T is use-
less in the vicinity of this bifurcation line, and a special
trick is required to find the relevant solutions beyond
that line. The bifurcation line E; (N) for our quantum
mechanical problem of two degrees of freedom is shown
in Fig. 3.

The loss of topology beyond a certain bifurcation
line in the EN plane is by no means a property of
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our model only. This phenomenon has been observed
in field theory models, in the context of both induced
false vacuum decay [14] and baryon-number violating
transitions in gauge theory [15] (in field theory models,
the parameter N is the number of incoming particles).
In all cases, the loss of topology prevented one from
computing the semiclassical exponent for the transi-
tion probability in the interesting region of relatively
high energies.

Returning to quantum mechanics of two degrees of
freedom, we point out that the properties of tunnel-
ing solutions with different energies approaching the
bifurcation line Ei(N) from the left of the EN plane
are in some sense similar to the properties of tunnel-
ing solutions in one-dimensional quantum mechanics
whose energy is close to the barrier height, see Ap-
pendix C. Again by continuity, these solutions of our
two-dimensional model spend a long time in the inter-
action region; this time tends to infinity on the line
E,(N). Hence, at any point of this line, there is a so-
lution that starts in the asymptotic region left of the
barrier and ends up on an excited sphaleron. Such be-
havior is indeed possible because of the existence of an
unstable direction near the (excited) sphaleron, even
for complex initial data. In the next section, we sug-
gest a trick to deal with this situation — this is our
regularization technique.

3. REGULARIZATION TECHNIQUE

In this section, we develop our regularization tech-
nique and find the physically relevant solutions between
the lines Fi(N) and Ey(N). We see that all solutions
from the new branch (and not only on the lines Eo (V)
and Ej(N)) correspond to tunneling onto the excited
sphaleron («tunneling on top of the barriers). These
solutions would be very difficult, if at all possible, to ob-
tain directly, by numerically solving the nonregularized
classical boundary value problem (6): they are complex
at finite times and become real only asymptotically as
t — 400, whereas numerical methods require working
with finite time intervals.

Ag an additional advantage, our regularization tech-
nique allows obtaining a family of over-barrier solu-
tions that covers all the region of the initial data cor-
responding to classicaly allowed transitions, including
its boundary. This is of interest in models with a large
number of the degrees of freedom and in field theory,
where finding the boundary Eg(N) by direct methods
is difficult (see e.g., Ref. [35] for a discussion of this
point).
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3.1. Regularized problem: classically forbidden
transitions

The main idea of our method is to regularize the
equations of motion by adding a term proportional to
a small parameter € such that configurations staying
near the sphaleron for an infinite time no longer exist
among the solutions of the T'/6 boundary value prob-
lem. After performing the regularization, we explore all
the region of classically forbidden transitions without
crossing the bifurcation line. Taking the limit € — 0,
we then reconstruct the correct values of F', E, and N.

In formulating the regularization technique, it
is more convenient to work with the functional
F[X,y; X* y*;T,0], Eq. (7), itself rather than with
the equations of motion. We prevent F' from being
extremized by configurations approaching the ex-
cited sphalerons asymptotically. To achieve this, we
add a new term of the form 2€Tj,; to the original
functional (7), where Tj,; estimates the time that
the solution «spends» in the interaction region. The
regularization parameter € is the smallest one in the
problem, and hence any regular extremum of the
functional F (the solution that spends finite time
in the region U;,; # 0) changes only slightly after
the regularization. At the same time, the excited
sphaleron configuration has 7j,; = oo, which leads to
the infinite value of the regularized functional

F. = F + 2eT.

Hence, the excited sphalerons are not stationary points
of the regularized functional.

For the problem under consideration, U;p; ~ 1 in
the interaction region, and Tj,; can be defined as

Tins = { / 0t Usni (X, ) + / dt Umt<X*,y*>] L (15)

We note that Tj,; is real and that the regularization is
equivalent to the multiplication of the interaction po-
tential with a complex factor,
Uint = (1 —i€)Uint = € “Usns + O(€). (16)
This results in the corresponding change of the classical
equations of motion, while boundary conditions (6b)
and (6¢) remain unaltered.
We still have to understand whether solutions with
€ # 0 exist at all. The reason for the existence of such

solutions is as follows. We consider a well-defined (for
€ > 0) matrix element

946

T. =

tffi?ioozf: \m exp [(—iH—eUmt)(tf—ti)] x
2

< [E.N)|
where, as before, |E, N) denotes the incoming state
with given energy and oscillator excitation number.
The quantity 7, has a well-defined limit as ¢ — 0, equal
to tunneling probability (4). Because the saddle point
of the regularized functional F; gives the semiclassical
exponent for the quantity 7., we expect that such a
saddle point indeed exists.

Therefore, the regularized T/6 boundary value
problem is expected to have solutions necessarily
spending finite time in the interaction region. By conti-
nuity, these solutions do not experience reflection from
the barrier if the procedure of small deformations start-
ing from solutions with the correct «topology» is used.
The line E;(N) is no longer a bifurcation line of the
regularized system, and the procedure of small defor-
mations therefore enables us to cover the entire region
of classically forbidden transitions. The semiclassical
suppression factor of the original problem is recovered
in the limit e — 0.

It is worth noting that the interaction time is Le-
gendre conjugate to e,

10
2 de
This equation can be used as a check of numerical cal-
culations.

We implemented the regularization procedure nu-
merically. To solve the boundary value problem, we use
the computational methods described in Ref. [11, 12].
To obtain the semiclassical tunneling exponent in the
region between the bifurcation line E;(N) and the
boundary of the region of classically allowed transitions
Eo(N), we began with a solution to the nonregularized
problem deep in the «forbidden» region of the initial
data (i.e., at E < E1(N)). We then increased the value
of € from zero to a certain small positive number, keep-
ing T and 6 fixed. We next changed T" and # in small
steps, keeping € finite, and found solutions of the reg-
ularized problem in the region Ei(N) < E < Eg(N).
These solutions had the correct «topology», i.e., they
indeed ended up in the asymptotic region X — +o0.
Finally, we lowered € and extrapolated F', E/, and N to
the limit € — 0.

We now consider the solutions in the region
Ei{(N) < E < Ey(N), which we obtain in the
limit € — 0, more carefully. They belong to a new
branch, and may therefore exhibit new physical
properties. Indeed, we found that as the value of €

Tint = F.(E,N,e). (17)
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Fig.6. Large-time behavior of a solution with e = 0 at

(E =1.05, N = 0.43). The coordinates X and y are

decomposed in the basis of the eigenmodes near the
sphaleron. We note that Imcy =0

decreases to zero, the solution at any point (E,N)
with E1(N) < E < Ey(N) spends more and more
time in the interaction region. The limiting solution
corresponding to € = 0 has infinite interaction time: in
other words, as t — 400, it tends to one of the excited
sphalerons. The resulting physical picture is that at a
sufficiently large energy (i.e., at E > E;(N)), the sys-
tem prefers to tunnel exactly onto an unstable classical
solution, excited sphaleron, that oscillates about the
top of the potential barrier. To demonstrate this, we
have plotted in Fig. 6 the solution x(t) = (X (), y(t))
at large times, after taking the limit ¢ — 0 numerically.
To understand this figure, we recall that the potential
near the sphaleron point X = y = 0 has one positive
mode and one negative mode. Namely, introducing
new coordinates ¢4, c_ as

X =cosacy +sinac_,

Yy = —siha cqy +cosac_,
2
w
ctg2a = ——,
g 5

we write, in the vicinity of the sphaleron,

where

2 4
wi:i<—1+%>+\/l+%>0.

Because the solutions of the T'/6 boundary value prob-
lem are complex, the coordinates c; and c_ are also
complex. In Fig. 6, we show real and imaginary parts
of cy and c_ at a large real time ¢ (part C'D of the con-
tour). We see that while Re ¢ oscillates, the unstable
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coordinate ¢_ asymptotically approaches the sphaleron
value: ¢- — 0 as t — +oo0. The imaginary part of
c_ is nonzero at any finite time. This is the reason
for the failure of straightforward numerical methods in
the region E > E;(N): the solutions from the physical
branch do not satisfy the reality conditions at any large
but finite final time. We have pointed out in Sec. 2.2
that this can happen only if the solution ends up near
the sphaleron, which has a negative mode. This is pre-
cisely what happens: for e = 0 at asymptotically large
t, our solutions are real and oscillate near the sphaleron,
remaining in the interacton region.

3.2. Regularization technique versus exact
quantum mechanical solution

Quantum mechanics of two degrees of freedom is a
convenient testing ground for checking the semiclassi-
cal methods and, in particular, our regularization tech-
nique. We have found solutions of the full stationary
Schréodinger equation and exact tunneling probability
T by applying the numerical technique in Refs. [11, 12].
Our numerical calculations were performed for several
small values of the semiclassical parameter A\, namely,
for A = 0.01-0.1. Transitions through the barrier for
these values of the semiclassical parameter are well sup-
pressed. In particular, for A\ = 0.02, the tunneling prob-
ability 7 is of the order e~ ™. To check the semiclassi-
cal result with better precision, we have calculated the
exact suppression exponent

FQM(/\) = —)\logT

(cf. (5)) for A = 0.09,0.05,0.03,0.02 and extrapolated
Foum to A =0 by polynomials of the third and fourth
degree. The extrapolation results are independent of
the degree (3 or 4) of polynomials with the precision
1%. The extrapolated suppression exponent Fgas(0)
corresponds to infinite suppression and must exactly
coincide (up to numerical errors) with the correct semi-
classical result.

We performed this check in the region £ > Eg =1,
which is most interesting for our purposes. The results
of the full quantum mechanical calculation of the sup-
pression exponent Fgjs in the limit A — 0 are repre-
sented by points in Fig. 7. The lines in that figure rep-
resent the values of the semiclassical exponent F(E, N)
for constant N, which we obtain in the limit ¢ — 0 of
the regularization procedure. In practice, instead of
taking the limit ¢ — 0, we calculate the regularized
functional

F.(E.N) = F(E,N) + O(e)

16*
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Fig.7. The tunneling exponent F(E, N) in the region
E > Es = 1. The lines show the semiclassical results
and the dots represent exact ones, obtained by solving

the Schrédinger equation. The lines across the plot
are the boundary of the region of classically allowed
transitions Eo(NN) and the bifurcation line E{(N)

for sufficiently small e. We used the value e = 1076, and
the value of the suppression exponent was then found
with the precision of the order 107°. We see that in
the entire region of classically forbidden transitions (in-
cluding the region E > E;(N)), the semiclassical result
for F' coincides with the exact one.

3.3. Classically allowed transitions

We now show that our regularization procedure al-
lows obtaining a subset of classical over-barrier solu-
tions existing at sufficiently high energies. This subset
is interesting because it extends to the boundary of the
region of classically allowed transitions, E = Eg(N).
In principle, finding this boundary is purely a problem
of classical mechanics; indeed, in the mechanics of two
degrees of freedom, this boundary can be found numer-
ically by solving the Cauchy problem for given E and
N and all possible oscillator phases, see Sec. 2.3. But
if the number of the degrees of freedom is much larger,
this classical problem becomes quite complicated, be-
cause a high-dimensional space of Cauchy data has to
be spanned. As an example, a stochastic Monte Carlo
technique was developed in Ref. [35] to deal with this
problem in the field theory context. The approach be-
low is an alternative to the Cauchy methods.

We first recall that all classical over-barrier solu-
tions with given energy and excitation number satisfy
the T'/6 boundary value problem with 7' = 0, § = 0.
We cannot reach the «allowed» region of the EN plane
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without regularization, because we have to cross the
line Ey(N) corresponding to the excited sphaleron con-
figurations in the final state. But the excited sphalerons
no longer exist among the solutions of the regularized
boundary value problem at any finite value of €. This
suggests that the regularization allows entering the re-
gion of classically allowed transitions and, after taking
an appropriate limit, obtaining classical solutions with
finite values of £ and N.

By definition, the classically allowed transitions
have F' = 0. We therefore expect that in the «allowed»
region of the initial data, the regularized problem has
the property that

F.(E,N)=¢f(E,N)+ O(¢).

In view of the inverse Legendre formulas (12) and (13)
the values of T" and 6 must be of the order of ¢,

3

T=er(E,N), 6=ed(E,N)

3

where the quantities 7 and ¢ are related to the initial
energy and excitation number (see Eqs. (12), (13)) as

9 F 10

T = —EI_I}(I]a—E? - _5 8_ETmt(E7N)a (18)
9 F 19

ﬁ—-!l_r)l(l]a—N?—_Ea_NTznt(E'/N)v (19)

where we have used Eq. (17). We thus expect that
the region of classically allowed transitions can be in-
vaded by taking a fairly sophisticated limit € — 0 with
T = T/e = const, ¥ = 6/e = const. For the allowed
transitions, the parameters 7 and ) are analogous to T
and 6.

Solving the regularized T'/f boundary value prob-
lem allows constructing a single solution for given FE
and N. On the other hand, for ¢ = 0, there are more
classical over-barrier solutions: they form a continu-
ous family labeled by the initial oscillator phase. Thus,
taking the limit ¢ — 0 gives a subset of over-barrier
solutions, which should therefore obey some additional
constraint. It is almost obvious that this constraint
is that the interaction time Tj,:, Eq. (15), is minimal.
This is shown in Appendix B.

The subset of classical over-barrier solutions ob-
tained in the e — 0 limit of the regularized T'/6 proce-
dure extends to the boundary of the region of classically
allowed transitions. We now consider what happens as
this boundary is approached from the «classically al-
lowed» side. At the boundary Ey(N), the unregular-
ized solutions tend to excited sphalerons, and the inter-
action time Tj,; is therefore infinite. This is consistent
with (18) and (19) only if 7 and ¥ become infinite at the



MITD, Tom 125, BBIm. 4, 2004

Dynamical tunneling of bound systems ...

Fig.8. The phase of the tunneling coordinate in the complex time plane at three points of the curve 7 = 380, ¥ = 130.
Figures a, b, and ¢ correspond to € = ¢, = 0.01, € = ¢, = 0.0048, and € = ¢, = 0 respectively. The asymptotics X — —o¢
and X — +o0o correspond to arg X = 7 and 0. The contour in the time plane is plotted with the white line

boundary. Hence, to obtain a point of the boundary,
we takes the further limit,
(EO (N)v N) =

lim (E(r,9),N(1,9)).

7 /9=const
T— 400

Different values of 7/9 correspond to different points
of the line Ey(N). We thus find the boundary of the
region of classically allowed transitions without initi-
al-state simulation.

We have checked this procedure numerically. The
limit ¢ — 0 exists indeed — the values of £ and N
tend to the point of the EN plane that corresponds
to the classically allowed transition. The phase of the
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tunneling coordinate X (¢) in the complex time plane
is shown in Fig. 8 for the three points (Figs. a, b, and
¢) of the curve 7 = T'/e = 380, ¥ = 0/e = 130. Point
a lies deep inside the tunneling region, E, < E;i(N,),
point ¢ corresponds to the over-barrier solution with
T=0,0=0,e=0,and point b is in the middle of the
curve. The branch points of the solution, the cuts, and
the contour are clearly seen on these graphs®).

It is worth noting that the left branch points move
down as T and 6 approach zero. Solutions close enough

6) The phase of the tunneling coordinate changes by 7 around
the branch point. The points where the phase of the tunneling
coordinate changes by 27 correspond to zeroes of X (t).
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to the boundary Ey(N) have the left branch point in
the lower complex half-plane, see Fig. 8. Therefore, the
corresponding contour can be continuously deformed to
the real time axis. These solutions still satisfy the re-
ality conditions asymptotically (see Fig. 6), but show
nontrivial complex behavior at any finite time.

The regularized T'/6 procedure allows approaching
the boundary of the region of classically allowed transi-
tions from both sides. The points at this boundary are
obtained by taking the limits 7' — 0, T'/# = const of
the tunneling solutions and 7 — +00, 7/9 = const of
the classically allowed ones. Because 7 = 7/9 = T'/6
by construction, the lines 7% = const are continuous at
the boundary Eg(NN), although may have discontinu-
ity of the derivatives. The variable 7* can be used to
parameterize the curve Eg(N).

4. CONCLUSIONS

We conclude that classical solutions describing
transmissions of a bound system through a potential
barrier with different values of the energy and the ini-
tial oscillator excitation number form three branches.
These branches merge at bifurcation lines Ey(N) and
Ey(N). Solutions from different branches describe
physically different transition processes. Namely, solu-
tions at low energies E < E;(N) describe the conven-
tional potential-like tunneling. At E > Eo(N), they
correspond to unsuppressed over-barrier transitions.
At intermediate energies, E1(N) < E < Eg(N), phys-
ically relevant solutions describe transitions on top of
the barrier. This branch structure is shown in Fig. 9a,
where the period T = 9F/OFE obtained numerically
for solutions from the different branches is plotted as a
function of energy for N = 0.1.

We note that the qualitative structure of branches
in the model with internal degrees of freedom is similar
to the structure of branches in one-dimensional quan-
tum mechanics (see Appendix C). The latter is shown
in Fig. 9b. The features of solutions in both cases are
similar, although the solutions ending up on top of the
barrier are degenerate in energy in the one-dimensional
case, and hence are not physically interesting.

In this paper, we introduced the regularization
technique that allows smoothly connecting solutions
in different branches. Its advantage is that it au-
tomatically chooses the physically relevant branch.
This technique is particularly convenient in numerical
studies: we have seen that it allows covering the whole
interesting region of the parameter space. We applied
this technique to baryon number violating processes in
electroweak theory [16].
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Fig.9. The dependence of the parameter
T = —0F/OFE on the energy for (a) the two-

dimensional model with fixed N = 0.1 and (b) the

one-dimensional model (see Appendix C). Different

lines correspond to different branches of classical

solutions of the T'/# boundary value problem. The

branches labeled «reflection» end up on the wrong

side of the barrier. Figure b also contains a line with
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APPENDIX A

T /6 boundary value problem

The semiclassical method for calculating the prob-
ability of tunneling from a state with a few parameters
fixed was developed in [13-15, 32] in the context of field
theory models and in [3-5,11,12] in quantum mechan-
ics. Here, we outline the method adapted to our model
of two degrees of freedom.

1. Path integral representation of the
transition probability

We begin with the path integral representation for
the probability of tunneling from the asymptotic re-
gion X — —oo through a potential barrier. Let the
incoming state |E, N) have fixed energy and oscillator
excitation number, and have support only for X < 0,
well outside the range of the potential barrier. The in-
clusive tunneling probability for states of this type is
given by

“+oc “+oc
T(E,N)= lim {/de/dny
0 —oC

ty—ti—o0
A 2
X <Xf7yf‘exp(_iH(tf _tl))|E/N>‘ }7 (Al)

where H is the Hamiltonian operator. This probability
can be reexpressed in terms of the transition amplitudes

Api = (Xp, ylexp(—iH(ty — )Xo yi)  (A2)
and the initial-state matrix elements

as
“+00 0
T(E, N)=lim {/de/dXingx
ty—t;—oc
0 —00

+0oo
X / dy; dy; dyf AfiA:rfBii/ } (A.4)

— 00

The transition amplitude and its complex conjugate
have the familiar path integral representation

Ajpi = /[dx]
by = [lax)

where x = (X,y) and S is the action of the model.
To obtain a similar representation for the initial-state
matrix elements, we rewrite B;; as

B = (X;, yi| PePx| X}, yl)

exp(iS[x]),
*(t;)=x;

x(tf)=xs

(A5)
exp(_is[xl])-,

’ 7
x' (t;)=x]

x’(tf):Xf

(A.6)

3

where PN and PE denote the projectors onto the re-
spective states with the oscillator excitation number N
and the total energy E. It is convenient to use the co-
herent state formalism for the y-oscillator and choose
the momentum basis for the X-coordinate. In this rep-
resentation, the kernel of the projector operator PpPy
becomes

PN 1
(0. WPePrlp, o) = s [ dcn x

X exp <—iE§—iNn+%p2§+ exp(iw§+in)l_)a> d(q—p),

where |p, a) is the eigenstate with the respective eigen-
values p and a of the center-of-mass momentum px and
the y-oscillator annihilation operator a. It is straight-
forward to express this matrix element in the coordi-
nate representation using the formulas

w 1 1
(yla) = ¢/ — exp <—§a2 +V2way — Ewy2> ,

(X|p) = \/% exp(ipX).

Evaluating the Gaussian integrals over a, b, p, and g,
we obtain

. L {2
By = /dg dnexp{—iEg—iNn— % % +

w
X
T exp(—2iwt — 2i)

2 12
« |:yz +yi (
2

1+ exp(—2iwé — 2in)) —

— 2y;y; exp(—iwé — in)} } (A.7)

where we omit the pre-exponential factor depending on
n and £. For the subsequent formulation of the bound-
ary value problem, it is convenient to introduce the
notation
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Then, combining integral representations (A.7)
and (A.5) and rescaling the coordinates, energy,
and excitation number as x — x/V\, E — FE/\,
N — N/, we finally obtain

+ioco
T(E, N)=lim { / dT dt‘)/ [dx dx'] x
ty—ti—oc
]' !
X exp —XF[X, x'; T, 0] , (A.8)
where

F[X, xl; T7 9] = _ZS[Xay] +ZS[XI7 yl] -

— ET — N6 + Bi(xi, x;; T,0). (A.9)
Here, the nontrivial initial term B; is
oy
B, = X=X w y
2T 1 — exp(2wT + 20)
1
X 5(%2 + 7Y (1 + exp(2wT + 26)) —
— 2yiyjexp(wT +6)|. (A.10)

In (A.8), x and x' are independent integration vari-

3

ables, while x; = x;, see Eq. (A.5).

2. The boundary value problem

For small A, path integral (A.8) is dominated by a
stationary point of the functional F'. Therefore, to cal-
culate the tunneling probability exponent, we extrem-
ize this functional with respect to all the integration
variables X (t), y(t), X'(¢), ¢'(t), T, and . We note
that because of the limit ¢ty — ¢; — +o0, the varia-
tion with respect to the initial and final values of the
coordinates leads to boundary conditions imposed at
asymptotic ¢ — +oo, rather than at finite times ¢;,¢;.
We also note that the stationary points may be com-
plex.

Variation of functional (A.9) with respect to the
coordinates at intermediate times gives second-order
equations of motion, in general complexified,

dS 4S 55’ 55’

X oty axXm oy

(A.11a)

The boundary conditions at the final time ¢y — +oc
are obtained by extremization of F' with respect to
Xy =X} and yy =y} These are

X=X} yr=y, (A.11D)
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It is convenient to write the conditions at the initial
time (obtained by varying X;, y;, X!, and y}) in terms
of the asymptotic quantities. At the initial time instant
t; — —oco, the system moves in the region X — —o0,
well outside the range of the potential barrier. Equa-
tions (A.11a) in this region describe free motion of de-
coupled oscillators, and the general solution takes the
form

X(t) = Xi +pi(t — t3),

y() [a exp(—iw(t = t;)) + aexp(iw(t — £:))],

1
V2w
and similarly for X'(¢) and y'(¢). For the moment,
a and a are independent variables. In terms of the
asymptotic variables X;, p;, a, a, the initial boundary
conditions become

Xi - X!
T
a' +a' =aexp(wT + 0) + aexp(—wT —6),
a+a=a exp(—wT —0) + a exp(wT + ).

pi=p;=—
(A.11c)

Variation with respect to the Lagrange multipliers T
and # gives the relation between the values of E, N, and
the initial asymptotic variables (where we use bound-
ary conditions (A.11c)),

2
E="L 4N,

p T (A.11d)
N = aa.

Equations (A.11a)—(A.11d) constitute the complete set
of saddle-point equations for the functional F'.

The variables X' and y’ originate from the conju-
gate amplitude A7, (see Eq. (A.5)), which suggests
that they are complex conjugate to X and y. Indeed,
the ansatz X'(t) = X*(t), y'(t) = y*(¢) is compatible
with boundary value problem (A.11). The Lagrange
multipliers 7" and 6 are then real, and problem (A.11)
may be conveniently formulated on the contour ABC'D
in the complex time plane (see Fig. 2).

We now have only two independent complex vari-
ables X (¢) and y(t), which have to satisfy the classical
equations of motion in the interior of the contour,

05 05

_ = = 0

6X (1) oy(t)
The final boundary conditions (see Eq. (A.11b)) be-
come the reality conditions for the variables X (¢) and
y(t) at the asymptotic part D of the contour,

(A.12a)

ImX; =0, Imys=0,

t— 400.  (A.12b)

ImX; =0, Img;=0,
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Seemingly complicated initial conditions (A.11c) sim-
plify when written in terms of the time coordinate
t' = t+iT/2 running along the part AB of the contour.
We again write the asymptotic form of a solution, but
now along the initial part AB of the contour,

X = Xo +po(t' —t;)

3

—iw(t' — t;)) +vexp(iw(t' —t;))].

1
y= Nem [uexp(

In terms of Xy, yo, u, and v, boundary condi-
tions (A.11c) become
ImXy =0, Impy=0, (A.12¢)
v=u"e.

Finally, we write Eqs. (A.11d) in terms of the asymp-
totic variables along the initial part of the contour,

2

Po
E == N

p TWN (A.13)
N = wuv.

These equations determine the Lagrange multipliers 7'
and 6 in terms of E and N. Alternatively, we can solve
problem (A.12) for given values of T' and 6 and find
the values of E and N from Eqs. (A.13), which is more
convenient computationally.

Given a solution to problem (A.12), the exponent
F is the value of functional (A.9) at this saddle point.
We thus obtain expression (8) for the tunneling expo-
nent. The exponent F' is now expressed in terms of Sy
in Eq. (9), the action of the system integrated by parts.
The nontrivial boundary term B;, Eq. (A.10), is can-
celed by the boundary term coming from integration by
parts. We note that we did not use constraints (A.13)
to obtain formula (8), and we therefore still have to
extremize (8) with respect to T' and 6 (see discussion
in Sec. 2.2).

Classical problem (A.12) is conveniently called
the T'/6 boundary value problem. Equations (A.12b)
and (A.12c¢) imply eight real boundary conditions
for complex second-order differential equa-
tions (A.12a). However, one of these real conditions is
redundant: Eq. (A.12b) implies that the (conserved)
energy is real, and therefore the condition Impy — 0
is automatically satisfied (we note that the oscillator
energy Fose = wuv = weluu* is real). On the other
hand, system (A.12) is invariant under time trans-
lations along the real axis. This invariance is fixed,
e.g., by requiring that Re X takes a prescribed value
at a prescribed large negative time ¢{ (we note that
other ways may be used instead; in particular, for

two
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E < E;(N), it is convenient to impose the constraint
ReX(t =0) = 0). Together with the latter require-
ment, we have exactly eight real boundary conditions
for the system of two complexified (i.e., four real)
second-order equations.

APPENDIX B

A property of solutions of the T'/6 problem in
the case of over-barrier transitions

For given F and N, there is only one over-barrier
classical solution, which is obtained in the limit € — 0
of the regularized T'/6 procedure. To see what singles
out this solution, we analyze the regularized functional

Felq] = Flq] + 2€Tipulql, (B.1)

where ¢ denotes the variables x(t), x'(t) and T, 6 to-
gether. The unregularized functional F' has a valley of
extrema ¢°(yp) corresponding to different values of the
initial oscillator phase ¢. Clearly, at small €, the ex-
tremum of F is close to a point in this valley with the
phase extremizing Tint[q(¢)],

d

dngmt [¢°(¥)] = 0. (B.2)
Hence, the solution ¢¢ of the regularized T'/6 boundary
value problem tends to the over-barrier classical solu-
tion, with Tj,; extremized with respect to the initial
oscillator phase.

Because Ujpi(x) > 0, Tipe is a positive quantity
with at least one minimum. In normal situation, there
is only one saddle point of F,, and hence solving the
T /6 boundary value problem gives the classical solution

with the time of interaction minimized.

APPENDIX C

Classically allowed transitions: a
one-dimensional example

The difficulties with bifurcations of classical solu-
tions emerge in quite a general class of quantum me-
chanical models. To illustrate this statement, we con-
sider one-dimensional quantum mechanics, where the
result is given by the well-known WKB formula. We
show that the origin of the above difficulties can also
be seen in one-dimensional model. Implementation
of the regularization technique is explicit in the one-
dimensional case. This makes it easy to see how our
technique allows us to smoothly join the classical solu-
tions relevant to the tunneling and allowed transitions.



F. Bezrukov, D. Levkov

MITD, Tom 125, BhIm. 4, 2004

Quantum mechanics of one degree of freedom in-
volves only one variable X (¢) that describes motion of
a particle with mass m = 1 through a potential barrier
U(X). The motion is free in the asymptotic regions
X — £oo. The semiclassical calculation of the tun-
neling exponent is performed by solving the classical
equation of motion

4S

30X (1)

on the contour ABCD in the complex time plane, with
the condition that the solution is real in the asymptotic
past (region A) and asymptotic future (region D). The
relevant solutions tend to X — —oo and X — 400 in
regions A and D, respectively. The auxiliary param-
eter T is related to the energy of the incoming state
by the requirement that the energy of the classical so-
lution equals to E. The exponent for the transition
probability is

F=2ImS — ET. (C.1)

We note that these boundary conditions resemble
the ones on the tunneling coordinate X in the two-
dimensional system.

In quantum mechanics of one degree of freedom, the
contour ABC'D may be chosen such that the points B
and C are the turning points of the solution. Then
the solution is also real at the part BC' of the contour.
Indeed, a real solution at the part BC' of the contour
oscillates in the upside-down potential, T'/2 is equal to
the half-period of oscillations, and the points B and C'
are the two different turning points, X = 0. Continua-
tion of this solution from the point C' to the positive real
times in accordance with the equation of motion corre-
sponds to real-time motion, with zero initial velocity,
towards X — +oo; the coordinate X (t) stays real on
the part C'D of the contour. Likewise, the continuation
back in time from the point B leads to a real solution
in the part AB of the contour. The reality conditions
are thus satisfied at A and D. The only contribution to
F' comes from the Euclidean part of the contour, and
it can be checked that expression (C.1) reduces to

Xc

F(E) =2 /\/Q(U(X) —E)dX,

XB

which is the standard WKB result.

The solutions appropriate for the classically forbid-
den and classically allowed transitions apparently be-
long to different branches. As the energy approaches
the height of the barrier Uy from below, the ampli-
tude of the oscillations in the upside-down potential

(C.2)
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decreases, while the period T tends to a finite value de-
termined by the curvature of the potential at its max-
imum. On the other hand, the solutions for E > Uy
always run along the real time axis, and hence the pa-
rameter 7' is always zero. Therefore, the relevant so-
lutions do not merge at E = Uy, and T(E) has a dis-
continuity at E = Uy. The regularization technique of
Sec. 3.1 removes this discontinuity and allows smooth
transitions through the point £ = Uy. The only dif-
ference with quantum mechanics of multiple degrees of
freedom is that in the latter case, bifurcation points ex-
ist not only at the boundary of the region of classically
allowed transitions, but also well inside the region of
classically forbidden transitions (but still at E > Eg,
see the Introduction and Sec. 2.3).

To illustrate the situation, we consider an exactly
solvable model with

1

UX .
( ch? X

)
We implement our regularization technique by formally
changing the potential

U(X) = e “U(X), (C.3)
which leads to the corresponding change of the classi-
cal equations of motion. Here, € is a real regularization
parameter, the smallest parameter in the model. At
the end of the calculations, we take the limit ¢ — 0.

We do not change the boundary conditions in our
regularized classical problem, i.e., we still require X (t)
to be real in the asymptotic future on the real time
axis and X (') to be real as ' — —oo on part A of the
contour ABCD. Then the conserved energy is real.
The sphaleron solution X (¢) = 0 now has a complex
energy (because the potential is complex). Hence, the
solutions of our classical boundary value problem nec-
essarily avoid the sphaleron, and we can expect that
the solutions behave smoothly in energy.

The general solution of the regularized problem is

\/e_iﬁI_EshX:—ch (\/ﬁ(t—to)),

where tq is the integration constant. The value of Im ¢
is fixed by the requirement that Im X = 0 at positive
time ¢ — 400,

1
2V2E

The residual parameter Retg represents the real-time
translational invariance present in the problem. The
condition that the coordinate X is real on the initial

T .
Imty = 3 argle ' — EJ.
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part AB of the contour gives the relation between T
and F,

1

V2E

For e = 0 and E < 1, the original unregularized result
T/2 = w/\/2E is reproduced.

We now analyze what happens in the regularized
case in the vicinity of the would-be special value of en-
ergy, E = Eg = 1. Tt is clear from Eq. (C.4) that T
is now a smooth function of E. Away from F = 1,
Eq. (C.4) can be written as

{r+arg(e ™ —E)}. (C.4)

T —
5 =
™
—, forbidden region, 1—F > €
V2E &
- €
—— allowed region, F—1 > e.
V2E(E — 1) &

(C.5)

Deep enough in the region of forbidden transitions,
where 1 — E > ¢, the argument in Eq. (C.4) is nearly
zero and we return to the original tunneling solution.
When E crosses the region of size of the order of e
around E = 1, the argument rapidly changes from O(e)
to —m, and hence T/2 changes from 7/v/2 to nearly
Thus, at £ > 1, we obtain a solution that is
very close to the classical over-barrier transition, and
the contour is also very close to the real axis. This
is shown in Fig. 9. We conclude that at small but fi-
nite €, the classically allowed and classically forbidden
transitions merge smoothly.

For E < 1, the limit € — 0 is straightforward. For
E > 1, a somewhat more careful analysis of the limit
€ — 0 is needed. It follows from Eq. (C.5) that the
limit € — 0 with a constant finite T < 7v/2 leads to
solutions with £ = 1. Classical over-barrier solutions
of the original problem with E > Eg = 1 are obtained
in the limit € — 0 if T" also tends to zero while 7 = T'/e
is kept finite. Different energies correspond to differ-
ent values of 7. This is what one expects — classical
over-barrier transitions are described by the solutions
on the contour with 7' = 0.

Zero.
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