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QUANTUM LONG-RANGE INTERACTIONSIN GENERAL RELATIVITYI. B. Khriplovih *, G. G. Kirilin **Budker Institute of Nulear Physis Russian Aademy of Sienes630090, Novosibirsk, RussiaNovosibirsk University630000, Novosibirsk, RussiaSubmitted 11 February 2004We onsider one-loop e�ets in general relativity that result in quantum long-range orretions to the Newtonlaw, as well as to the gravitational spin-dependent and veloity-dependent interations. Some ontributions tothese e�ets an be interpreted as quantum orretions to the Shwarzshild and Kerr metris.PACS: 04.60.-m 1. INTRODUCTIONIt has been reognized long ago that quantum ef-fets in general relativity an generate long-range or-retions to the Newton law. Suh orretions due tothe photon and massless neutrino ontributions to thegraviton polarization operator were alulated in [1�4℄.The orresponding quantum orretion to the Newtonpotential between two bodies with massesm1 andm2 isU� = �4 +N�15� k2~m1m23r3 ; (1)where N� is the number of massless two-omponentneutrinos and k is the Newton gravitational onstant.The reason why the problem allows a losed solutionis as follows. The Fourier transform of 1=r3 isZ drexp(�iq � r)r3 = �2� ln q2: (2)This singularity in the momentum transfer q impliesthat the disussed orretion an be generated only bydiagrams with two massless partiles in the t-hannel.The number of suh diagrams of the seond order in kis �nite, and their logarithmi part in q2 an be alu-lated unambiguously.Analogous diagrams with gravitons and ghosts inthe loop, Fig. 1a, b, were onsidered in Refs. [1; 5�7℄.*E-mail: khriplovih�inp.nsk.su**E-mail: g_kirilin�mail.ru

a bFig. 1. Graviton loop(Here and below, wavy lines refer to quantum �utua-tions of metri, double wavy lines denote a bakgroundgravitational �eld; dashed lines here refer to ghosts.)Clearly, other diagrams with two gravitons in the t-hannel also ontribute to the disussed orretion pro-portional to 1=r3. This was pointed out long ago in [8℄,where all relevant diagrams were expliitly indiated.The problem of quantum orretions to the Newtonlaw is ertainly interesting from the theoretial stand-point. It was addressed later in [9�15℄. Unfortunately,as demonstrated in [16℄, none of these attempts wassatisfatory.The problem was then onsidered quantitatively inour previous paper [16℄. Therein, all relevant diagrams,exept one (see Fig. 4b below), were alulated or-retly. In a reent paper [17℄, this last diagram is al-1219
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cFig. 2. Gravitational vertiesulated orretly1), and our results for all other ontri-butions are on�rmed.The ontent of our present work is as follows. Us-ing the bakground �eld tehnique [7℄, we onstrutinvariant operators that desribe quantum power-laworretions in general relativity. In the limit as one ofthe interating partiles is heavy, some of the derivedorretions an be interpreted as quantum orretionsto the Shwarzshild and Kerr metris. Here our resultsdi�er essentially from those in [18℄.We also demonstrate in an elementary way thatto our auray, the spin-independent part of the dis-ussed orretions for spinor partiles oinides withthe orretions for salar partiles. In partiular, thisimplies that the obtained quantum orretions to theShwarzshild metri are universal, i.e., independentof the spin of the entral body. For some loop dia-grams relevant to the problem, the mentioned oini-dene of the spin-independent ontributions of spinorpartiles with the orresponding results for salar oneswas proved previously in [18℄ by diret alulation.With the e�etive operators onstruted, we notonly derive the orretions to the Newton law easily,but also obtain quantum orretions to other gravita-tional e�ets: spin-dependent and veloity-dependentinterations. In the present paper, we mainly onsiderthe ase of salar partiles. By spin, we therefore meanthe internal angular momentum of a ompound partilewith salar onstituents.We also omment on the problem of the lassialrelativisti orretions to the Newton law. Our onlu-sions here agree ompletely with the results in [19�21℄(see also the textbook [22, � 106℄), but on some pointwe disagree essentially with the statements in [17℄.1) Both previous results for this ontribution, by Donoghue [10℄and by us [16℄, were inorret.

2. PROPAGATORS AND VERTICESBelow, we use the units where  = 1 and ~ = 1.Our metri signature is diag(1;�1;�1;�1).The graviton operator h�� desribes quantum �u-tuations of the metri g�� in the bakground met-ri g0�� ,g�� = g0�� + {h�� ; {2 = 32�k = 32�l2p: (3)We use the gauge onditionh��;� � 12h��;� = 0 (4)for h�� , where the indies of h�� are raised with thebakground metri g0�� , and the ovariant derivativesare taken in the bakground �eld g0�� . The free gravi-ton propagator isD��;��(q) = i P��;��q2 + i0 ;P��;�� = 12 (Æ��Æ�� + Æ��Æ�� � Æ��Æ��): (5)The tensor P��;�� is onveniently represented as [7℄P��;�� = I��;�� � 12 Æ��Æ�� ;where I��;�� = 12 (Æ��Æ�� + Æ��Æ��)is a sort of unit operator with the propertyI��;��t�� = t��for any symmetri tensor t�� . We note the useful iden-tity P��;��P��;Æ = I��;Æ : (6)The propagators of salar and spinor partiles arethe usual ones,D(p) = i 1p2 �m2 + i0 and G(p) = i 1p̂�m+ i0respetively.1220



ÆÝÒÔ, òîì 125, âûï. 6, 2004 Quantum long-range interations in general relativityThe single-graviton vertex for both salar andspinor partiles (see Fig. 2a) are related to the energy-momentum tensor T��(p; p0) of the orresponding par-tile as V��(p; p0) = �i {2 T��(p; p0) : (7)The expliit expressions for the salar and spinor par-tile verties areV (0)�� (p; p0) = �i{2 �p�p0�+p0�p��Æ��(pp0�m2)� (8)andV (1=2)�� == � i{4 �u (p0) [I����P���Æ��(P̂�2m)℄u(p) (9)respetively; here, P = p+ p0.The ontat interation of a salar partile with twogravitons (see Fig. 2b) isV (0){�;�� = i{2 �I��;�ÆIÆ�;��(p�p0� + p0�p�)�� 12Æ��I��;�� + Æ��I��;��p�p0� ++ (p0 � p)24 �I��;�� � 12Æ��Æ���� : (10)To our auray, we an neglet the last term with(p0�p)2 = q2 in this expression, and rewrite the vertexonveniently asV (0){�;�� == i{2 �I{�;�ÆIÆ�;��T���14(Æ{�T��+Æ��T{�)� : (11)We use the two-graviton verties on mass shell only.Therefore, the terms with the Kroneker Æ entering theenergy-momentum tensor in the last expression are alsoproportional to q2, and hene an be negleted.The ontat two-graviton interation of a spinorpartile (see Fig. 2b) an be written on mass shell asV (1=2){�; �� = i{28 �32 (I{�; ��I��; �� + I��; ��I{�; ��)P���Æ{�I��; ��P� � Æ��I{�; ��P�� �u (p0)�u(p) == i{2 �34 I{�;�ÆIÆ�; ��T�� �� 14(Æ{�T�� + Æ��T{�)� : (12)

As regards the 3-graviton vertex (see Fig. 2), whihhas the most ompliated form, we follow [7, 17℄ in rep-resenting it asV��;��;Æ =� i {2 Xi iv��;��;Æ;1v��;��;Æ = P��;Æ �� �k�k�+(k�q)�(k�q)�+q�q��32Æ��q2� ;2v��;��;Æ == 2q{q�[I{�;��I��;Æ + I{�;ÆI��;�� �� I{�;��I��;Æ � I{�;��I��;Æ ℄;3v��;��;Æ = q{q�(Æ��I{�;Æ ++ ÆÆI{�;��) + q{q�(Æ��I{�;Æ + ÆÆI{�;��)�� q2(Æ��I��;Æ + ÆÆI��;��)�� Æ��q{q�(Æ��IÆ;{� + ÆÆI��;{�);4v��;��;Æ = 2q{ �� [I{�;��IÆ;��(k�q)�+I{�;��IÆ;��(k�q)��� I{�;ÆI��;��k� � I{�;ÆI��;��k� ℄ ++q2(I��;��IÆ;��+I��;��IÆ;��)++ Æ��q{q�(I��;{�I��;Æ + IÆ;{�I��;��);5v��;��;Æ = [k2+(k�q)2℄���I��;��IÆ;���12Æ��P��;Æ��� k2ÆÆI��;�� � (k � q)2Æ��I��;Æ :

(13)

In this vertex, we an also neglet the last struture5v��;��;Æ to our auray.3. UNIVERSALITY OF SPIN-INDEPENDENTEFFECTSWe �rst address the lowest-order s- and u-pole dia-grams for graviton sattering, presented in Fig. 3a, b.We start with a salar partile. The terms with theKroneker Æ in single-graviton verties (8) then an-el the s- and u-pole denominators. It an be easilydemonstrated that in the sum of the two diagrams, thearising ontat ontributions ombine intoV (0)0��; Æ = i {24 [Æ��(pp0Æ + p0pÆ) ++ÆÆ(p�p0�+p0�p�)℄ = i�24 (Æ��T (0)Æ +ÆÆT (0)�� ): (14)In the ourse of these transformations, we omit theterms with extra powers of the graviton momenta be-ause they do not lead to ln q2 after subsequent loop1221



I. B. Khriplovih, G. G. Kirilin ÆÝÒÔ, òîì 125, âûï. 6, 2004
p l

k

p′

k − q

αβ γδ

a

p l′ p′

k − qk

αβ γδ

b

p p′

k − qk

αβ γδ

cFig. 3. Pole diagramsintegration. Combining this indued term with (10),we obtain the total e�etive two-graviton vertex for asalar partile,V (0)eff{�;�� = i{2 I{�;�ÆIÆ�;��T (0)�� == i{22 I{�;�ÆIÆ�;��P�P� : (15)For spinor partiles, single-graviton verties (9) alsoontain terms with the Kroneker Æ. Proeeding herewith the s- and u-pole diagrams in the same way as inthe salar ase, we obtain the following orretion tothe two-graviton vertex:V (1=2)0��; Æ = i {24 (Æ��T (1=2)Æ + ÆÆT (1=2)�� ): (16)The total e�etive two-graviton vertex for a spinor par-tile is then given byV (1=2)eff{�;�� = i 34 {2 I{�;�ÆIÆ�;��T (1=2)�� : (17)If we are interested in spin-independent e�ets inthe graviton sattering o� a spinor partile, one morestep is possible. The spinor struture of the numera-tors in the s- and u-pole diagrams an be transformedas follows:�u(p0)�(l̂ +m)!u(p) = �u(p0)[l�! + l!� �� (l̂ �m)Æ�! + i5���!�l�� +m��! ℄u(p): (18)The term �u(p0)(l̂�m)u(p) in this expression, being av-eraged over spins, transforms to l2�m2 (here, we againomit a term proportional to q2). After anelation ofthe denominators, the sum of these terms in the s- andu-pole diagrams redues toV (1=2)00{�; �� = i{28 I{�; ��I��; ��P�P�: (19)Beause the spin-averaged energy-momentum tensorfor spinors oinides with the salar one, whih is equal

to P�P�=2, the spin-independent term in the sum of(17) and (19) redues to (15). In other words, fromthe fermion diagrams, we an single out the sum ofstrutures that oinides with the e�etive sea-gull fora salar partile after averaging over spins.Finally, it an be easily demonstrated that after av-eraging over the spins, all the other terms in the nu-merators of the s- and u-pole spinor diagrams oinidewith the orresponding terms in salar diagrams withthe required auray.For the diagram in Fig. 3, with the graviton pole inthe t-hannel, the oinidene between the salar andspin-averaged spinor ases is obvious.To summarize, the sum of salar and spin-averagedspinor tree amplitudes, and hene the sum of the or-responding loop diagrams, oinide with the requiredauray.4. SPIN-INDEPENDENT EFFECTIVEAMPLITUDESWe start the disussion of loops with the vauumpolarization diagrams, see Fig. 1. The ovariant e�e-tive Lagrangian orresponding to the sum of these loopswas derived in [7℄ with dimensional regularization. Itis given byLRR = � 1960�2(4� d) p�g �42R��R�� +R2� ; (20)where, as usual, g is the determinant of the metri ten-sor, R�� is the Rii tensor, and R = R��.For our purpose, Lagrangian (20) an be onve-niently rewritten as [9℄LRR = � 11920�2 ln jq2j �42R��R�� +R2� : (21)We are interested, in partiular, in the situation whereat least one of the partiles is onsidered in the stati1222
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a bFig. 4. Vertex diagramslimit. In this ase, j q2j ! q2, and in the oordinaterepresentation we obtainLRR = 13840�3r3 �42R��R�� +R2� : (22)The next set of diagrams, Fig. 4, refers to the vertexpart. The orresponding e�etive operator isLRT = � k8�2r3 (3R��T �� � 2RT ) ; T = T �� : (23)Here and below, T �� is the spin-independent part ofthe total energy-momentum tensor of matter.We �nally onsider the diagrams in Fig. 5. The �rsttwo of them, the diagrams in Fig. 5a, b, as well as thediagrams in Figs. 1 and 4, depend only on the momen-tum transfer t = q2. As regards the box diagrams inFig. 5, d, their ontribution is partly reduible to thesame struture as that of diagrams in Fig. 5a, b. Thesum of all these t-dependent e�etive operators origi-nating from the diagrams in Fig. 5 isLTT = k2�r3 T 2: (24)The irreduible ontribution of the s-hannel boxdiagram 5 isMs = k2[(s�m21 �m22)2 � 2m21m22℄2m21m22jq2j ln jq2j�2 �� 1q(s�m2�)(s�m2+) ln q(s�m2�)+q(s�m2+)q(s�m2�)�q(s�m2+) ; (25)where m1 and m2 are the partile masses,m� = (m1 �m2); s = (p1 + p2)2;and p1 and p2 are the inoming 4-momenta.The irreduible ontribution Mu of the u-hanneldiagram in Fig. 5d is obtained from formula (25) bythe substitutions! u = (p1 � p2 � q)2;

with the orresponding analyti ontinuation.The expressions for Ms and Mu onverge in the ul-traviolet sense, but diverge in the infrared limit, de-pending logarithmially on the �graviton mass� �. Asusual, suh behavior is diretly related to the neessityto anel the infrared divergene in the Bremsstrahlungdiagrams (evidently, the gravitational Bremsstrahlungin the present ase). The box diagrams in Fig. 5,d were onsidered previously in [23℄ from a di�erentstandpoint.As regards the three Lagrangians in Eqs. (22), (23),and (24), by virtue of the Einstein equationsR�� = 8�k�T�� � 12g��T� ; (26)they an be onveniently ombined intoLtot = � k260�r3 �138T��T�� � 31T 2� : (27)The irreduible amplitudes generated by the box di-agrams in Fig. 5, d depend nontrivially on s and u,respetively (in line with their simple dependene onln jq2j=jq2j). Therefore, they annot be redued to aprodut of energy�momentum tensors.5. QUANTUM CORRECTIONS TO METRICThe e�ets due to Lagrangian (27) an be onve-niently interpreted as generated by quantum orre-tions to metri. To obtain these orretions, we splitthe total energy�momentum tensor T�� into those of astati entral body and of a light probe partile, T 0��and t�� respetively. Varying the expression resultingin this way from (27) with respet to t�� , we then ob-tain a tensor that an be interpreted as a quantum or-retion h(q)�� to the metri reated by the entral body,h(q)�� = k215�r3 �138T 0�� � 31Æ��T 0� : (28)It follows immediately from this expression thath(q)00 = 10715 k2�r3 T 000 = 10715 k2M�r3 ; (29)where M is the mass of the entral body.For the spae omponents h(q)mn of the metri re-ated by a heavy body at rest, one might naively expetfrom formula (28) that they are given by3115 k2�r3 ÆmnT 000 = 3115 k2M�r3 Æmn:But the alulation of h(q)mn atually requires a modi�-ation of formula (28). The point is that we work with1223
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a b c dFig. 5. Sattering diagramsgauge ondition (4) for the graviton �eld. It is onlynatural to require that the resulting e�etive �eld h(q)mnshould satisfy the same ondition, whih now simpli�esto h(q)��;� � 12h(q)��;� = 0:The spae metri thus obtained ish(q)mn = k2M�r3 �3115 Æmn�� 7615 �rmrnr2 + ln� rr0��Æmn � 3 rmrnr2 ��� : (30)Tehnially, the expression in square braketsin (29) originates from the terms ontaining struturesof the type ��T�� . Generally speaking, they arisein alulating Lagrangians (23), (24), and (27), butare omitted there beause they vanish on mass shell.These terms are therefore absent in (28). But they anbe restored by rewriting the net result (27), by meansof Einstein equations (26), asLtot = � 13840�3r3 �138R��R�� � 31R2� ; (31)and then attahing energy-momentum tensors to thedouble wavy lines using graviton propagators (5). Thepresene of ln(r=r0), where r0 is some normalizationpoint, is quite natural here if we reall ln jq2j in themomentum representation. Fortunately, this term inthe square brakets does not in�uene physial e�ets.The obtained quantum orretions h(q)00 and h(q)mn tothe metri are universal, i.e., are the same when reatedby a spinless or spinning heavy point-like partile.Our results (29) and (30) di�er from the orres-ponding ones in [18℄. The main reason is that theontribution of operator (24) to the metri is absentin [18℄. This omission does not look logial to us: onmass shell, one annot distinguish this operator fromother ones (see (27), (31)). One more disagreement isperhaps due to the same inonsisteny: the ontribu-tion of operator (23) to the metri, as given in [18℄, istwo times smaller than ours.

In addition, the Fourier transformation of(qmqn=q2) lnq2 is performed in [18℄ inorretly,whih gives a wrong result ( rmrn=r2 only) for theterm in the square brakets in (30).In onlusion of this setion, we onsider the 0nomponent of tensor (28). It is given byh(q)0n = 465 k2�r3 T 00n = �465 k2Mv�r3 ; (32)where v is the veloity of the soure.We are interested in the situation orresponding toa ompound entral body rotating with the angularveloity !, but with its entre of mass being at rest.The veloity of a separate element of the body is thengiven by v = ! � �, where � is the oordinate of thiselement. In addition, we must shift r ! r + � in for-mula (32). Then, following [22, � 106, Problem 4℄, weobtain a quantum orretion to the Kerr metri,h(q)0n = 695 k2�r5 [S� r℄: (33)We emphasize that spin S involved here is in fat theinternal angular momentum of a rotating ompoundentral body with spinless onstituents. We annotsee any reason why this last quantum orretion (33)should be universal (as distint from h(q)00 and h(q)mn). Ifinstead of a ompound body disussed here, we dealwith a partile of spin 1=2, the general struture of h(q)0nis of ourse the same, but the numerial oe�ient anbe quite di�erent.The last problem, that of a quantum orretion tothe Kerr metri reated by a partile of spin 1=2, wasaddressed in [18℄. However, the treatment of this or-retion there raises the same objetions: the ontribu-tion of operator (24) to h(q)0n is missed at all, and theorresponding e�et of operator (23) is not taken intoaount properly.1224



ÆÝÒÔ, òîì 125, âûï. 6, 2004 Quantum long-range interations in general relativity6. QUANTUM CORRECTIONS TOGRAVITATIONAL EFFECTS. IWe start with the orretion to the Newton law. Asusual, it is generated by the 00 omponent of metri.Here, expression (29) givesU qr(r) = 10730 k2Mm�r3 : (34)However, in line with (29), we must now take the ir-reduible ontribution of the box diagrams in Fig. 5, dinto aount, whih annot be redued to metri. Hav-ing other appliations in mind, we write the sum of thetwo amplitudes, retaining in it the terms of not onlythe zeroth order in �2, but also the �rst order,Ms +Mu = �k2m1m2 ln(q2 � !2)�� 23 �23 + 5245 p1p2 �m1m2m1m2 � : (35)In the stati limit, ! ! 0, p1p2 ! m1m2, expres-sion (35) redues toMs +Mu ! �463 k2m1m2 lnq2: (36)Changing the sign (in passing from the amplitude tothe potential) and performing the Fourier transforma-tion, we obtain [16, 17℄Uqi(r) = �233 k2Mm�r3 : (37)Thus, the net orretion to the Newton law isU q(r) = �4110 k2Mm�r3 : (38)This result was also ross-heked and on�rmed bythe independent alulation in the standard harmonigauge, with the �eld variables �� = p�g g�� � Æ��and the gauge ondition�� �� = 0:We now onsider the quantum orretion to the in-teration of the orbital momentum l of a light partilewith its own spin s, i.e., to the gravitational spin�orbitinteration. It is most easily obtained with the generalexpression for the frequeny ! of the spin preession ina gravitational �eld derived in [24℄. For a nonrelativis-ti partile in a weak stati entrally symmetri �eld,this expression simpli�es to!i = 12 "imn(mnkvk + 0n0vm); (39)

wheremnk = 12(�mhnk � �nhmk); 0n0 = �12�nh00are the Rii rotation oe�ients and v is the partileveloity (the present sign onvention for ! is oppositeto that in [24℄). A simple alulation results inUqls(r) = �16920 k2�r5 Mm (l � s): (40)Finally, with formula (33), we easily derive thequantum orretion to the interation of the orbitalmomentum l of a light partile with the internal an-gular momentum (spin) S of a ompound entral body,i.e., to the Lense�Thirring e�et,U q;rLT (r) = �695 k2�r5 (l � S): (41)7. ASIDE ON CLASSICAL RELATIVISTICCORRECTIONSIn this setion, we �rst onsider the lassialveloity-dependent orretion to the Newton law. Onone hand, this is an introdution to the derivationof quantum veloity-dependent orretions in the nextsetion. On the other hand, this is neessary for thedisussion of another, veloity-independent relativistiorretion to the Newton law. The derivation of thelassial veloity-independent orretion via the dia-gram tehnique served in [16, 17℄ as a hek of al-ulations of quantum orretions to the Newton law.We onsider the Born sattering amplitude with thegraviton exhange in the harmoni gauge,MB = 8�k T 1�� T 2�� � (1=2)T 1�� T 2��q2 � !2 ; (42)where T 1;2�� are the energy-momentum tensors of parti-les with the respetive massesm1;2 and veloities v1;2.To the adopted auray, the numerator simpli�es to12 T 100 T 200 � 2T 10n T 20n = m1m22 (1� 4v1 � v2):We then expand the denominator to the �rst order in!2=q2, and thus arrive at the expression4�km1m2q2 �1� 4v1 � v2 + !2q2� :The term of the zeroth order in �2 in this formula,4�km1m2=q2, is obviously (after the neessary sign re-versal) the Fourier transform of the Newton potential.1225



I. B. Khriplovih, G. G. Kirilin ÆÝÒÔ, òîì 125, âûï. 6, 2004However, we are interested here in the terms of the �rstorder in �2. To transform !2=q2, we note that ! isin fat the energy di�erene between the initial and �-nal energies of a partile. The partiles an now beonsidered nonrelativisti, and this di�erene thereforetransforms (to the �rst order in p0 � p) as follows:"0 � " = (p0 � p) � v:Therefore, the terms of the �rst order in �2 are rewrit-ten as 4�km1m2q2 ��4v1 � v2 + (q � v1)(q � v2)q2 � :The Fourier transform of this expression, takenwith the opposite sign, is the well-known relativis-ti veloity-dependent orretion to the Newtonpotential [19, 20, 22℄U lvv = km1m22r [7v1 � v2 + (n � v1)(n � v2)℄;n = rr : (43)We here essentially follow the derivation by Iwasa-ki [21℄.At least equally simple is the derivation of the rela-tivisti veloity-independent orretion to the Newtonpotential. In the harmoni gauge, the metri reatedby a point-like mass m1 isds2 = r � km1r + km1 dt2 � r + km1r � km1 dr2 �� (r + km1)2(d�2 + sin2 �d�2): (44)In the expansion in rg of the lassial ation �m2 R dsfor a probe partile of mass m2, the seond-order termis �k2m21m2=2r2. Now, reversing the sign (to pass froma Lagrangian to a potential) and restoring the symme-try between m1 and m2, we arrive at the disussedorretion Ul = k2m1m2(m1 +m2)2r2 : (45)The lassial orretion (45) was found long agoin [19; 20℄ (see also the textbook [22, � 106℄), and wasderived later in [21℄ by alulating the orrespondingparts of the diagrams in Fig. 4b, and 5b, , d in the har-moni gauge. A subtle point of the last alulation [21℄refers to the box diagrams in Fig. 5, d. Obviously, thelassial �2 ontribution of these diagrams, in partiu-lar, ontains the result of iteration of the usual Newtoninteration and the veloity-dependent interation (43).

Therefore, the result of this iteration should be sub-trated from the sum of the ontributions of the dia-grams in Figs. 4b, and Figs. 5b, , d. This has beendone properly by Iwasaki [21℄).However, Bjerrum-Bohr, Donoghue, and Holsteinargue (see se. 2.1 in [17℄) that in the sattering prob-lem, as distint from the bound state one, this subtra-tion is unneessary. They laim that there is a di�er-ene between what they all �the lowest-order satter-ing potential� without this subtration, and the las-sial orretion U l, whih they all the bound statepotential. For our part, we do not see any di�er-ene of priniple between the bound state problem andthe sattering one2), and therefore believe that it isjust (45) whih should be onsidered as the relativistiorretion to the Newton law, both in the satteringand bound state problems.8. QUANTUM CORRECTIONS TOGRAVITATIONAL EFFECTS. IIWe now address the quantum orretion to the las-sial veloity-dependent gravitational interation (43).We start with the amplitude (27) written in the mo-mentum representation,Ltot = k230 ln jq2j �138T��T�� � 31T 2� : (46)Unlike with the previous quantum orretions, we herego beyond the stati approximation, and in the spiritof the previous setion, expandln jq2j = ln(q2 � !2)to the �rst order in !2. Following the same lines of rea-soning further, we easily obtain the quantum veloity-dependent orretionUq;rvv (r) = �k2m1m260�r3 �� [445(v1 � v2) + 321(n � v1)(n � v2)℄; n = rr : (47)With formula (47), we an derive (in the spiritof [22, � 106, Problem 4℄) the quantum orretion tothe spin�spin interation of ompound bodies 1 and 2rotating with the angular veloities!1 and!2, but withtheir entres of masses at rest. The veloity of a sepa-rate element of the body i is then given by vi = !i��i,where �i is the oordinate of this element ounted o�the enter of mass of this body. In formula (47), wherer = r1 � r2, we then shift2) For instane, the seond Born approximation to a satteringamplitude is as legitimate a notion as the seond-order orretionto a bound state energy.1226



ÆÝÒÔ, òîì 125, âûï. 6, 2004 Quantum long-range interations in general relativityr! r+ �1 � �2:Again following [22℄, we thus obtainUq;rss (r) = 6910 k2�r5 [3(S1 � S2)�5(n � S1)(n � S2)℄;n = rr ; (48)where Si are the internal angular momenta (spins) ofthe rotating ompound entral bodies.We note that quantum orretion (41) to the Lense�Thirring e�et an also be derived in the same way.We �nally onsider the orresponding orretionsindued by irreduible amplitude (35), whih is nowonveniently rewritten asMs +Mu = �k2m1m2 ln(q2 � !2)�� 23 �23� 5245 v1 � v2� : (49)This amplitude also generates quantum orretions tothe veloity-dependent, Lense�Thirring, and spin�spininterations. The alulations are pratially identialwith the previous ones, and give the respetive orre-tionsUq; irrvv (r) == k2m1m210�r3 [311(v1 � v2) + 115(n � v1)(n � v2)℄; (50)U q; irrLT (r) = 2625 k2�r5 (l � S); (51)Uq; irrss (r) == �1315 k2�r5 [3(S1 � S2)� 5(n � S1)(n � S2)℄: (52)Now, ombining these ontributions with those orig-inating from quantum orretions to the metri, we �-nally obtainUqvv(r) = U q;rvv (r) + U q; irrvv (r) == k2m1m260�r3 [1421(v1 � v2) + 369(n � v1)(n � v2)℄; (53)UqLT (r) = U q;rLT (r) + U q; irrLT (r) = 1935 k2�r5 (l � S); (54)Uqss(r) = U q;rss (r) + U q; irrss (r) == �19310 k2�r5 [3(S1 � S2)� 5(n � S1)(n � S2)℄: (55)We are grateful to N. G. Ural'tsev and A. I. Vain-shtein for useful disussions. This paper was supportedby the RFBR (grant � 03-02-17612).
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