ПОВЕДЕНИЕ ДИНАМИЧЕСКОЙ МАГНИТНОЙ ВОСПРИИМЧИВОСТИ КВАЗИОДНООСНЫХ ФЕРРОМАГНИТНЫХ ПЛЕНОК ПРИ СПОНТАННЫХ ФАЗОВЫХ ПЕРЕХОДАХ

И. Е. Дикштейн, Ф. В. Лисовский^{*}, Е. Г. Мансветова

Институт радиотехники и электроники Российской академии наук 141120, Фрязино, Московская обл., Россия

Поступила в редакцию 18 ноября 2003 г.

Представлены результаты исследования поведения магнитной восприимчивости квазиодноосных пленок ферромагнетиков в окрестности точки Кюри с учетом периодической пространственной неоднородности распределения вектора намагниченности для произвольных значений частоты ω внешнего переменного магнитного поля. Установлено, что в присутствии постоянного поля подмагничивания \mathbf{H}_0 действительная и мнимая компоненты восприимчивости в общем случае могут обладать как частотно-независимыми (по температурному положению) экстремумами, так и множественными дополнительными экстремумами, характер и положение которых на оси температур T зависят от частоты.

PACS: 75.70.Kw

1. ВВЕДЕНИЕ

Несмотря на то что первые работы по исследованию аномалий магнитной восприимчивости при ориентационных и спонтанных фазовых переходах в магнитоупорядоченных средах появились более полувека назад (см., например, монографии [1, 2] и ссылки в них), интерес к этому вопросу не ослабевает и в настоящее время. При теоретическом анализе проблемы обычно используют приближение безграничной среды (или приближение массивного образца), что дает возможность не учитывать доменную структуру. Реальные же образцы всегда имеют ограниченные размеры, в связи с чем отсутствие в них доменов является скорее исключением, чем правилом. Поэтому попытки интерпретации экспериментов на основе использования теоретических расчетов, выполненных в монодоменном приближении, довольно часто не приводят к желаемым результатам. В последние годы ограниченность традиционного подхода, игнорирующего роль дальнодействующего диполь-дипольного взаимодействия в формировании поведения магнитной восприимчивости в окрестности линий фазовых переходов, все глубже осознается теоретиками (см., например, [3–5]), поскольку существование доменной структуры в магнетиках, находящихся в критическом состоянии, приводит не только к тривиальным последствиям (например, к сдвигу экстремума восприимчивости относительно положения, предсказываемого теорией для безграничной среды), но и к качественно новым явлениям [4, 6].

Для фазовых переходов второго рода в магнитоодноосных пленках в рамках теории Ландау [7] удается выполнить достаточно полный анализ поведения магнитной восприимчивости с учетом флуктуаций, доменной структуры и возможности аморфизации последней за счет образования магнитных дислокаций и дисклинаций. Такой подход был использован в работе [8] применительно к статической дифференциальной ($\omega = 0$) магнитной восприимчивости при спонтанных и ориентационных переходах второго рода. Было установлено, что в образцах конечных размеров сдвиг точки перехода второго рода за счет возникновения доменной структуры и обусловленный последней вклад в магнитную восприимчивость делают невозможным определение критических индексов по традиционно используемой методике.

^{*}E-mail: lisf@dataforce.net

В настоящей работе представлены результаты исследования поведения динамической магнитной восприимчивости квазиодноосных пленок ферромагнетиков в окрестности точки Кюри T_C с учетом периодической пространственной неоднородности распределения вектора намагниченности **M** для произвольных значений частоты ω внешнего переменного магнитного поля.

2. ОБЩИЕ ПОЛОЖЕНИЯ

Приводимые в настоящем разделе расчеты, строго говоря, относятся к ферромагнитным пленкам с ромбической анизотропией, плотность энергии которой описывается выражением

$$f_a = -\beta_u \left(\mathbf{M} \cdot \mathbf{n}_u \right)^2 + \beta_p \left(\mathbf{M} \cdot \mathbf{n}_p \right)^2, \qquad (1)$$

где $\beta_u > 0$ и β_p (любого знака) — константы анизотропии, удовлетворяющие условию $\beta_u \gg |\beta_p|$, а \mathbf{n}_u и \mathbf{n}_n — орты вдоль взаимно перпендикулярных осей анизотропии ($\mathbf{n}_u \perp \mathbf{n}_p$). Введение слабой «ромбической компоненты» анизотропии, как было показано в [9], снимает многократное вырождение состояний в точке спонтанного перехода в отсутствие поля подмагничивания ($H_0 = 0$), расщепляя соответствующую мультикритическую точку на диаграмме состояний в координатах (T, H_0) на две трикритические точки, соединенные линией фазовых переходов второго рода (критической параболой) из парамагнитного состояния в полосовую доменную структуру. Происходящий на этой линии переход в слабых полях подмагничивания ($|\mathbf{H}_0| < H_{cr}$) принадлежит ко второму роду; при $|\mathbf{H}_0| > H_{cr}$ имеет место фазовый переход первого рода [9].

Если предположить, что ось легкого намагничивания (коллинеарная орту \mathbf{n}_u) ориентирована вдоль нормали \mathbf{n} к поверхностям пленки, то в декартовой системе координат с ортами $\{\mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z\} = \{\mathbf{n}_p, \mathbf{n}_u \times \mathbf{n}_p, \mathbf{n}_u\}$ свободную энергию системы в присутствии направленного вдоль нормали внешнего магнитного поля $\mathbf{H} = H\mathbf{e}_z$ можно представить в виде

$$F = \frac{M_s^2}{2} \int dv \left[\alpha \left(\nabla_i m_k \right)^2 - \xi m^2 + \frac{1}{2} \delta m^4 + \beta_u m_\perp^2 + \beta_p m_x^2 - 2\mathbf{h} \cdot \mathbf{m} - \mathbf{h}_m \cdot \mathbf{m} \right], \quad (2)$$

где

$$\mathbf{m} = \frac{\mathbf{M}}{M_s} = \mathbf{m}_{\perp} + m_z \mathbf{e}_z, \quad \mathbf{h} = \frac{\mathbf{H}}{M_s}, \quad \mathbf{h}_m = \frac{\mathbf{H}_m}{M_s},$$

 δ и $\alpha \sim \delta a^2$ — константы соответственно однородного и неоднородного обмена (a — параметр решетки), \mathbf{M} — вектор намагниченности; $M_s = M (T = 0)$, \mathbf{H}_m — магнитостатическое поле; $\xi (T) \leq 4\pi$ — функция, определяющая температурную зависимость модуля вектора намагниченности. В области температур T, близких к температуре Кюри T_0 безграничной среды (в отсутствие поля подмагничивания), для функции $\xi (T)$ можно использовать линейную аппроксимацию $\xi (T) = c_0 (T_0 - T)$, где положительная константа $c_0 = -\partial \xi / \partial T |_{T=T_0}$ [10]. Значение $\xi = 4\pi$ соответствует температуре Кюри T_f монодоменной ферромагнитной пленки (при $H_0 = 0$), т.е. $T_f = T_0 - 4\pi/c_0$.

Зависимость вектора намагниченности в пленке от пространственных координат и времени определяется уравнением Ландау–Халатникова

$$\eta_1 \frac{d^2 \mathbf{M}}{dt^2} + \eta_2 \frac{d \mathbf{M}}{dt} = -\frac{\delta F}{\delta \mathbf{M}},\tag{3}$$

где η_1 и η_2 — кинетические коэффициенты, и уравнениями магнитостатики

$$\operatorname{rot} \mathbf{H}_m = 0, \quad \operatorname{div} \left(\mathbf{H}_m + 4\pi \mathbf{M} \right) = 0 \tag{4}$$

при учете граничных условий на поверхностях пленки $z = \pm L/2$ (L — толщина пленки):

$$\nabla_z \mathbf{M} = 0, \quad \mathbf{H}_{m\perp}^{(i)} = \mathbf{H}_{m\perp}^{(e)}, H_{mz}^{(i)} + 4\pi M_z = H_{mz}^{(e)}.$$
(5)

Здесь $\mathbf{H}_{m\perp} = H_{mx}\mathbf{e}_x + H_{my}\mathbf{e}_y$, $\mathbf{H}_m^{(i)}$ — магнитостатическое поле внутри пленки (поле размагничивания), а $\mathbf{H}_m^{(e)}$ — магнитостатическое поле в свободном пространстве (поле рассеяния).

Далее ограничимся рассмотрением статических и динамических свойств возможных распределений вектора намагниченности в достаточно толстых $(L \gg \sqrt{\alpha})$ пленках с сильной $(\beta_u \gg 4\pi)$ одноосной анизотропией в малой окрестности точки Кюри, т. е. при $|\xi| \ll \beta_u^{(1)}$. Будем считать, что на пленку действует однородное гармоническое магнитное поле

$$\tilde{\mathbf{H}}(t) = \tilde{H}(t)\mathbf{e}_z = \left(\tilde{H}e^{-i\omega t} + \tilde{H}^*e^{i\omega t}\right)\mathbf{e}_z \qquad (6)$$

с амплитудой, малой по сравнению с модулем напряженности поля подмагничивания $\mathbf{H}_0 = \mathbf{H}_{\parallel} =$

¹⁾ Первое из ограничений дает возможность не учитывать вклад поверхностных мод в свободную энергию пленки, второе и третье (вместе с ранее введенными условиями) позволяют при построении теории использовать метод разложения по малым параметрам ξ/β_u , $4\pi/\beta_u$ и β_p/β_u .

= $H_{\parallel} \mathbf{e}_{z} = H_{0} \mathbf{e}_{z}$, т.е. $|\tilde{h}| = |\tilde{H}|/M_{s} \ll |h_{0}| = |H_{0}|/M_{s} \ll \beta_{u}^{-2}$. Тогда распределение вектора намагниченности в пленке в общем случае можно описать формулой

$$\mathbf{m}(\mathbf{r},t) = \mathbf{m}(\mathbf{r}) + \tilde{\mathbf{m}}(\mathbf{r},t), \tag{7}$$

где $\mathbf{m}(\mathbf{r})$ представляет собой статическую компоненту намагниченности, а

$$\tilde{\mathbf{m}}(\mathbf{r},t) = \tilde{\mathbf{m}}(\mathbf{r})e^{-i\omega t} + \tilde{\mathbf{m}}^*(\mathbf{r})e^{i\omega t}$$

— динамическую компоненту, возникающую под действием переменного магнитного поля. В приближении малых амплитуд, используемом в данной работе, динамический отклик системы линейно связан с внешним воздействием и является гармоническим, а динамическая магнитная восприимчивость системы на частоте ω представляет собой тензорную величину, равную

$$\chi_{ij}(\omega) = \chi'_{ij}(\omega) + \chi''_{ij}(\omega) = \tilde{m}_i(\omega)/\tilde{h}_j, \qquad (8)$$

где $\tilde{\mathbf{m}}(\omega)$ — комплексная амплитуда гармонической компоненты вектора намагниченности, усредненная по всему объему магнетика. В дальнейшем нас будет интересовать лишь одна компонента тензора восприимчивости, а именно $\chi_{zz}(\omega)$, поскольку в рамках принятых в настоящей работе приближений доминирующей компонентой вектора намагниченности является m_z (см. также [11, 12]).

Поведение величины $m_z(\mathbf{r},t)$, согласно уравнению (3), в общем случае описывается уравнением

$$\eta_{1} \frac{d^{2}m_{z}(\mathbf{r},t)}{dt^{2}} + \eta_{2} \frac{dm_{z}(\mathbf{r},t)}{dt} = h_{0} + \tilde{h} + h_{mz}^{(i)}(\mathbf{r},t) + \\ + \alpha \frac{\partial^{2}m_{z}(\mathbf{r},t)}{\partial x^{2}} + \alpha \frac{\partial^{2}m_{z}(\mathbf{r},t)}{\partial z^{2}} + \\ + \xi m_{z}(\mathbf{r},t) - \delta m_{z}^{3}(\mathbf{r},t), \quad (9)$$

где $h_{mz}^{(i)} = H_{mz}^{(i)}/M_s$ — нормированная *z*-компонента размагничивающего поля.

3. ДИНАМИЧЕСКАЯ ВОСПРИИМЧИВОСТЬ В ОДНОРОДНОЙ ФАЗЕ

Для пленки без доменной структуры в отсутствие переменного магнитного поля $m_z(\mathbf{r},t) = m_0 =$ = const, $h_{mz}^{(i)} = -4\pi$ и из уравнения (9) следует, что

$$(4\pi - \xi + \delta m_0^2) m_0 = h_0, \qquad (10)$$

т. е.

$$m_0 = 2\sqrt{p} \operatorname{sh}\left(\frac{1}{3}\operatorname{arsh}\frac{h_0}{2\delta p\sqrt{p}}\right),$$
 (11)

где $p = (4\pi - \xi)/3\delta$. Заметим, что $\partial m_0/\partial T < 0$, а $\partial^2 m_0/\partial T^2 > 0$ в области применимости теории.

В присутствии слабого переменного магнитного поля

$$m_z(t) = m_0 + \tilde{m}_0(t),$$

где $|\tilde{m}_0(t)| \ll m_0$, и уравнение (9) с точностью до членов первого порядка малости сводится к виду

$$\eta_1 \frac{d^2 \tilde{m}_0}{dt^2} + \eta_2 \frac{d \tilde{m}_0}{dt} + \left(4\pi - \xi + 3\delta m_0^2\right) \tilde{m}_0 = \tilde{h}.$$
 (12)

Отсюда следует, что действительная и мнимая части комплексной магнитной восприимчивости

$$\chi_{zz}^{(0)}\left(\omega\right) = \chi_{zz}^{(0)\prime}\left(\omega\right) + i\chi_{zz}^{(0)\prime\prime}\left(\omega\right) = \tilde{m}_{0}\left(\omega\right)/\tilde{h}$$

определяются выражениями

$$\chi_{zz}^{(0)'}(\omega) = \frac{\omega_0^2 - \omega^2}{\eta_1 \left[(\omega_0^2 - \omega^2)^2 + \omega_\eta^2 \omega^2 \right]}, \qquad (13)$$

$$\chi_{zz}^{(0)\,\prime\prime}(\omega) = \frac{\omega\omega_{\eta}}{\eta_1 \left[\left(\omega_0^2 - \omega^2 \right)^2 + \omega_{\eta}^2 \omega^2 \right]} \,. \tag{14}$$

Здесь $\omega_0^2 = (4\pi - \xi + 3\delta m_0^2) \eta_1^{-1}$ — частота «мягкой» моды³⁾, а $\omega_\eta = \eta_2/\eta_1$ — частота релаксации. Явное выражение для температурной зависимости частоты «мягкой» моды имеет вид

$$\omega_0 = \sqrt{\frac{p\delta}{\eta_1} \left\{ 2 \operatorname{ch} \left[\frac{1}{3} \operatorname{arch} \left(1 + \frac{27h^2}{2\delta^2 p^3} \right) \right] - 1 \right\}}.$$
 (15)

При выводе уравнений (13) и (14) учитывалось, что в магнетиках с большой одноосной анизотропией поперечная компонента вектора намагниченности по модулю является малой по сравнению с продольной компонентой, т.е.

$$\mathbf{m}_{\perp}| = |m_x \mathbf{e}_x + m_y \mathbf{e}_y| \sim |m_z| \,\beta_u^{-1} \ll |m_z|$$

Заметим, что магнитная восприимчивость в рассматриваемой ситуации зависит не только от частоты, но и от температуры и поля подмагничивания,

²⁾ Альтернативное обозначение H_{\parallel} для компоненты внешнего постоянного магнитного поля вдоль нормали к поверхности введено для облегчения сопоставления с результатами работы [8].

³⁾ Кавычки здесь употреблены для того, чтобы подчеркнуть тот факт, что однородная мода (с волновым вектором $\mathbf{k} = 0$) в рассматриваемой ситуации не является мягкой: при снижении температуры из области $T > T_0$ гораздо раньше становится мягкой и замораживается неоднородная мода (с $\mathbf{k} \neq 0$), приводящая к возникновению доменной структуры, см. далее.

т. е. $\chi_{zz}^{(0)} = f(\omega, T, h_0)$. Частотные зависимости восприимчивости при T = const и $h_0 = \text{const}$ имеют вид, типичный для резонансных диспергирующих сред, и поэтому здесь подробно обсуждаться не будут; температурные же зависимости величин $\chi_{zz}^{(0)'}$ и $\chi_{zz}^{(0)''}$ обладают рядом особенностей, о которых пойдет речь далее. Для облегчения восприятия основные выводы теории будут иллюстрироваться расчетными кривыми для физической модели ферромагнетика со следующими параметрами (изменения оговариваются особо):

$$\delta = 4 \cdot 10^5, \quad \eta_1 = 10^{-11}, \quad \eta_2 = 2 \cdot 10^{-8}, \quad \omega_\eta = 2 \cdot 10^3.$$

Такие параметры являются типичными для ряда ферромагнетиков, например для сплавов типа пермаллоя ($M_s \approx 100$ Гс, $T_0 \approx 600$ K) [1, 13].

Результаты использования стандартной процедуры нахождения точек температурных экстремумов действительной и мнимой компонент восприимчивости при $\omega = \text{const}$ и $h_0 = \text{const}$, а также определения знаков вторых производных $\partial^2 \chi_{zz}^{(0)''}/\partial T^2$ и $\partial^2 \chi_{zz}^{(0)''}/\partial T^2$ в таких точках показывают, что в общем случае восприимчивость обладает основным и дополнительными экстремумами. Для основного экстремума, существующего при любом значении ω , положение отображающей точки на плоскости (h_0, T) не зависит от частоты и определяется уравнением

$$\frac{\partial(\omega_0^2)}{\partial T} = \frac{1}{\eta_1} \frac{\partial}{\partial T} \left(4\pi - \xi + 3\delta m_0^2\right) = 0, \qquad (16)$$

которое может быть представлено в виде

$$T^{(m)} = T_f + \frac{3}{2c_0} \left(\frac{\delta H_0^2}{2M_s^2}\right)^{1/3}$$
(17)

или

$$4\pi - \xi^{(m)} = \frac{3}{2} \left(\frac{\delta h_0^2}{2}\right)^{1/3},\tag{18}$$

где $T^{(m)} = T_0 - \xi^{(m)}/c_0$ и $\xi^{(m)}$ — значения соответственно температуры и функции $\xi(T)$ в точке основного экстремума. При увеличении напряженности поля подмагничивания основные экстремумы смещаются в сторону более высоких температур.

Из выражения (16) следует, что температурное положение основного экстремума соответствует минимуму частоты $\omega_0^{(m)}$ «мягкой» моды, который также достигается при $\xi = \xi^{(m)}$. Температурная зависимость частоты «мягкой» моды в модельной пленке для значения $h_0 = 0.002$ представлена средней

Рис.1. Температурные зависимости характерных частот для однородно намагниченной ферромагнитной пленки (параметры см. в тексте)

кривой на рис. 1 (используются отрицательные значения ξ , чтобы положительное направление оси абсцисс соответствовало увеличению температуры). В точке минимума (точка A на рис. 1) для модуля вектора намагниченности и частоты «мягкой» моды справедливы соотношения

$$m_0^{(m)} = \left(\frac{h_0}{4\delta}\right)^{1/3}, \quad \omega_0^{(m)} = \sqrt{\frac{3}{\eta_1}} \left(\frac{\delta h_0^2}{2}\right)^{1/6},$$

а значения действительной и мнимой компонент восприимчивости определяются по формулам (12) и (13) при $\omega_0 = \omega_0^{(m)}$. Для выбранных параметров пленки минимальная частота «мягкой» моды равна $\omega_0^{(m)} = \omega(A) = 5.27727 \cdot 10^5 \text{ c}^{-1}$ и достигается при $\xi^{(m)} = 11.1739$. При $\omega \to 0$ значение мнимой компоненты восприимчивости в точке экстремума стремится к нулю, а значение действительной компоненты — к величине $(1/3)(2/\delta h_0^2)^{1/3}$; при $\omega \to \infty$ обе компоненты намагниченности становятся исчезающе малыми.

Для действительной компоненты восприимчивости основной экстремум является минимумом при $\omega_0^{(1)} < \omega < \omega_0^{(2)}$, где

$$\omega_0^{(1,2)} = \sqrt{\omega_0^2 + \frac{\omega_\eta^2}{4}} \mp \frac{\omega_\eta}{2},$$
 (19)

и максимумом для значений частоты вне указанного интервала. Мнимая часть восприимчивости в точке основного экстремума достигает максимума, если $\omega < \omega_0$, и минимума, если $\omega > \omega_0$. Абсолютные максимум и минимум величины $\chi_{zz}^{(0)\prime}$, равные

 $(2\omega_0^{(1m)}\eta_2)^{-1}$ и $-(2\omega_0^{(2m)}\eta_2)^{-1},$ наблюдаются соответственно на частотах $\omega=\omega_0^{(1m)}$ и $\omega=\omega_0^{(2m)},$ где величины

$$\omega_0^{(1m,2m)} = \sqrt{\omega_0^{(m)2} + \frac{\omega_\eta^2}{4}} \mp \frac{\omega_\eta}{2}$$

представляют собой минимально возможные значения характерных частот $\omega_0^{(1)}$ и $\omega_0^{(2)}$, достигаемые при $\xi = \xi^{(m)}$ (см. формулу (18)). Абсолютному максимуму величины $\chi_{zz}^{(0)''}$, равному ($\omega_0^{(m)} \eta_2$)⁻¹, соответствует значение частоты $\omega = \omega_0^{(m)}$. Температурные зависимости частот $\omega_0^{(1)}$ и $\omega_0^{(2)}$ представлены соответствующими кривыми на рис. 1; буквами *C* и *D* обозначены точки минимальных значений указанных частот,

$$\begin{split} & \omega_0^{(1m)} = \omega(C) = 5.26727 \cdot 10^5 \ \mathrm{c}^{-1}, \\ & \omega_0^{(2m)} = \omega(B) = 5.28727 \cdot 10^5 \ \mathrm{c}^{-1}. \end{split}$$

Обратимся теперь к анализу дополнительных экстремумов восприимчивости, которые существуют для $\chi_{zz}^{(0)'}$ только при выполнении условия $(\omega_0^2 - \omega^2)^2 = \omega_\eta^2 \omega^2$ (т. е. при $\omega = \omega_0^{(1)}$ или $\omega = \omega_0^{(2)}$), а для $\chi_{zz}^{(0)''}$ — только при выполнении условия $\omega = \omega_0$. В точках дополнительного экстремума мнимая часть восприимчивости всегда достигает максимума; для действительной части это имеет место лишь при $\omega < \omega_0$, а при обратном знаке неравенства наблюдается минимум. В точках максимума и минимум азначения $\chi_{zz}^{(0)'}$ составляют соответственно $(2\omega\eta_2)^{-1}$ и $-(2\omega\eta_2)^{-1}$; абсолютные максимум и минимум наблюдаются соответственно при $\omega = \omega_0^{(1m)}$ и $\omega = \omega_0^{(2m)}$. Мнимая часть восприимчивости в сответственно точках максимума равна $(\omega\eta_2)^{-1}$, что в точка абсолютного максимума $(\xi = \xi^{(m)}, \omega = \omega_0^{(m)})$ соответствует значению $(\omega_0^{(m)}\eta_2)^{-1}$.

Таким образом, на низких частотах (линия $\omega = \text{const}$ на рис. 1 проходит ниже точки C) для обеих компонент восприимчивости существуют только основные максимумы. При превышении первой критической частоты (точка C на рис. 1) для $\chi_{zz}^{(0)'}$ появляются два дополнительных максимума, а основной максимум становится минимумом. Для мнимой части восприимчивости такое же явление наблюдается на более высоких частотах (при $\omega = \omega_0^{(m)}$, т.е. выше точки A на рис. 1); дальнейшее увеличение частоты к появлению новых и изменению характера существующих экстремумов не приводит. Для действительной части восприимчивости существует второе критическое значение частоты (точка B на рис. 1), после превышения

которого основной экстремум снова становится максимумом, а между ним и дополнительными максимумами появляются два дополнительных минимума. Из рис. 1 следует также, что с ростом частоты «правые» и «левые» дополнительные экстремумы монотонно удаляются от основного.

Модификацию вида температурных зависимостей экстремумов действительной и мнимой компонент восприимчивости при изменении частоты иллюстрируют серии кривых, построенные на рис. 2. Значения $\omega \cdot 10^{-5}$ на кривых 1–11 составляют 5.2; 5.25; 5.2665; 5.2715; 5.2765; 5.281; 5.2868; 5.294; 5.31; 5.35 и 5.4 с⁻¹ (кривая 1 на рис. 26 не приведена, так как для используемого масштаба она практически сливается с осью абсцисс). Приведенные кривые дают достаточно наглядное представление о процессах возникновения и модификации различных экстремумов магнитной восприимчивости и в дополнительных пояснениях не нуждаются. Заметим лишь, что столь драматические изменения температурного спектра восприимчивости разыгрываются при ничтожно малом (около 2%) относительном изменении частоты.

Для определения вида кривых, отображающих положение дополнительных экстремумов на плоскости (T, H_0) (или $(-\xi, h_0)$) при $\omega = \text{const}$, можно воспользоваться функциональной связью между характерной частотой ω_0 и нормированным полем подмагничивания h_0 , которая, как следует из уравнения состояния (10), описывается выражением

$$h_0 = \frac{1}{3}\sqrt{\frac{1}{3\delta} \left(C_{\omega}^3 + 3\Delta C_{\omega}^2 - 4\Delta^3\right)},$$
 (20)

где $C_{\omega} = \eta_1 \omega_0^2$, а $\Delta = 4\pi - \xi$. Подстановка в (20) условия $\omega_0 = \omega$ дает выражение, описывающее положение отображающих точек на плоскости (T, H_0) для дополнительного максимума мнимой части восприимчивости, а подстановки условий $\omega_0^2 = \omega^2 + \omega \omega_\eta$ и $\omega_0^2 = \omega^2 - \omega \omega_\eta$ — аналогичные выражения соответственно для дополнительного максимума и дополнительного минимума действительной части восприимчивости. Полученные кривые $h_{0i} = f_i(-\xi_i)$ (i = 1, 2, 3) обладают температурными максимумами в точках $-\xi_t = C_{\omega i}/2 - 4\pi$, где

$$\mathbf{C}_{\omega} = \eta_1(\omega^2; \omega^2 + \omega \omega_{\eta}; \omega^2 - \omega \omega_{\eta}),$$

причем соответствующие значения нормированного поля подмагничивания составляют $h_{0i} = \sqrt{2C_{\omega i}^3/27\delta}$.

Таким образом, дополнительные температурные экстремумы магнитной восприимчивости могут наблюдаться только в том случае, если напряженность

Рис.2. Температурные зависимости действительной (*a*) и мнимой (*б*) частей восприимчивости для однородно намагниченной ферромагнитной пленки на различных частотах (значения частот для кривых 1–11 см. в тексте)

поля подмагничивания не превышает определенного значения, зависящего от частоты. Области определения функций $h_{0i} = f_i(-\xi_i)$, задающие диапазон существования дополнительных экстремумов в отсутствие поля подмагничивания, лежат в пределах

$$-4\pi < -\xi < C_{\omega i}/2 - 4\pi$$

(напомним, что значения $\xi = 0$ и $\xi = 4\pi$ соответствуют температуре Кюри T_0 для безграничной среды и температуре Кюри T_f монодоменной пленки при $H_0 = 0$). Существование низкотемпературного предела в приведенной цепочке неравенств обусловлено исключительно используемой в настоящей работе линейной аппроксимацией функции $\xi(T)$. Более точные оценки можно получить, аппроксимируя температурную зависимость намагниченности, например, функцией Бриллюэна. Возможность наблюдения дополнительных экстремумов восприимчивости увеличивается с ростом частоты переменного магнитного поля; при $\omega \to 0$ область их существования на плоскости (H, T) стягивается в точку.

Наглядное представление о характере изменения положения температурных максимумов восприимчивости под действием поля дают рис. 3 и 4. На первом из них представлены зависимости $h(-\xi)$ для основного (частотно-независимого) экстремума (кривая 0) и для дополнительных экстремумов мнимой части восприимчивости (кривые 1–3) соответственно на частотах $\omega \cdot 10^{-6}$, равных 1.4, 1.05, 0.545 с⁻¹. Аналогичные кривые для дополнительных экстремумов действительной части восприим-

Рис.3. Зависимости $h_0(-\xi)$ для основного экстремума (кривая θ) и дополнительных максимумов мнимой части восприимчивости (кривые 1-3) для однородно намагниченной ферромагнитной пленки на различных частотах (значения частот для кривых 1-3 см. в тексте). Штрихами показано положение кривой потери устойчивости однородного состояния относительно возникновения доменной структуры в пленке толщиной 2 мкм

чивости при выбранных значениях параметров пленки практически сливаются с кривыми $\chi_{zz}^{(0)''}(-\xi)$, поэтому верхняя часть рисунка в другом масштабе изображена на рис. 4, где кривые 1' и 1'' относятся соответственно к дополнительным максимумам и до-

Рис.4. Зависимости $h_0(-\xi)$ для основного экстремума (кривая 0), дополнительных максимумов мнимой части восприимчивости (кривая 1) и дополнительных максимумов (кривая 1') и минимумов (1'') действительной части восприимчивости для однородно намагниченной ферромагнитной пленки на частоте $1.4 \cdot 10^6$ с⁻¹

полнительным минимумам для $\chi^{(0)\prime}_{zz}$. Цифрой 0, как и на предыдущем рисунке, обозначена кривая для основного (частотно-независимого) экстремума. На рис. 3 и 4 приведен лишь первый квадрант декартовой системы координат, поскольку кривые для отрицательных значений h_0 получаются просто зеркальным отражением относительно оси абсцисс. Штриховой кривой на рис. З показано положение линии потери устойчивости однородного состояния относительно возникновения доменной структуры (см. следующий раздел) для пленки толщиной 2 мкм. К значениям поля подмагничивания и температуры, находящимся внутри области, ограниченной этой кривой и осью абсцисс, результаты выполненного в данном разделе анализа неприменимы. Поэтому на низких частотах (кривая 3 на рис. 3) из всех экстремумов восприимчивости в однородно намагниченном состоянии будет наблюдаться только основной — в области выше точки пересечения кривой 0 с линией потери устойчивости однородного состояния, что обычно и наблюдается в экспериментах (см., например, [8]).

4. ДИНАМИЧЕСКАЯ ВОСПРИИМЧИВОСТЬ ПЛЕНКИ С ДОМЕНАМИ

Известно, что при понижении температуры из области значений $T > T_0$ в присутствии поля подмагничивания однородное состояние пленки (парафаза) теряет устойчивость относительно образования полосовой доменной структуры с волновым вектором $k_c = 2\pi \left(4\pi\mu\alpha L^2\right)^{-1/4}$ при значениях *T* и H_0 (или ξ и h_0), связанных уравнением (см., например, [8])

$$T^{(ud)}(H_0) = T_C - \frac{3\delta}{c_0} \left(\frac{H_0}{4\pi M_0}\right)^2,$$
 (21)

или

$$\xi^{(ud)}(h_0) = \xi_c + 3\delta(h_0/4\pi)^2, \qquad (22)$$

где $\xi_c = (4\pi/L)\sqrt{\pi\alpha/\mu}, T_C = T_0 - \xi_c/c_0$ — температура Кюри пленки (температура зарождения доменной структуры при $H_0 = 0$),

$$\mu = \begin{cases} 1 + 4\pi\beta_u^{-1} \mod \beta_p < 0, \\ 1 + 4\pi (\beta_u + \beta_p)^{-1} \mod \beta_p > 0 \end{cases}$$

От знака β_p зависит ориентация волнового вектора \mathbf{k}_c зарождающейся полосовой доменной структуры ($\mathbf{k}_c \parallel \mathbf{e}_x$ при $\beta_p > 0$ и $\mathbf{k}_c \parallel \mathbf{e}_y$ при $\beta_p < 0$); отличием μ от единицы при $\beta_u \gg 4\pi$ в обоих случаях можно пренебречь.

Как следует из уравнения (9), в отсутствие переменного магнитного поля распределение нормальной компоненты намагниченности в пленке с доменной структурой,

$$m_z(\mathbf{r}) = m_d(\mathbf{r}) = m_{d0} + m_{dr}(\mathbf{r}),$$

в рамках принятых приближений описывается уравнением

$$h_0 + h_{md}^{(i)} + \alpha \frac{\partial^2 m_d}{\partial x^2} + \alpha \frac{\partial^2 m_d}{\partial z^2} + \xi m_d - \delta m_d^3 = 0.$$
(23)

Следуя работе [14], решение уравнения (23) в окрестности линии фазового перехода с учетом граничных условий (5) будем искать в виде двумерного ряда:

$$m_d(\mathbf{r}) = m_{d0} + \left(A_{11}^{(0)} \cos qz + A_{13}^{(0)} \cos 3qz\right) \cos kx + \left(A_{20}^{(0)} + A_{22}^{(0)} \cos 2qz\right) \cos 2kx + \left(A_{31}^{(0)} \cos qz + A_{33}^{(0)} \cos 3qz\right) \cos 3kx, \quad (24)$$

где m_{d0} — постоянная (пространственно-однородная) составляющая *z*-компоненты намагниченности, $q = \pi/L$, а коэффициенты $A_{ij}^{(0)}$ представляются в следующей форме:

$$A_{11}^{(0)} = (\lambda a), \quad A_{13}^{(0)} = \delta a_3 (\lambda a)^3,$$
$$A_{20}^{(0)} = \delta b_0 m_{0d} (\lambda a)^2, \quad A_{22}^{(0)} = \delta b_2 m_{0d} (\lambda a)^2, \quad (25)$$

$$A_{31}^{(0)} = \delta c_1 (\lambda a)^3, \quad A_{33}^{(0)} = \delta c_3 (\lambda a)^3.$$

Здесь (λa) — формальный малый параметр, характеризующий степень близости к линии фазового перехода. Явные выражения для коэффициентов a_3 , b_0 , b_2 , c_1 и c_3 , приведенные в [14], в дальнейших рассуждениях не используются.

Подставляя разложение (24) в уравнение (23) и выполняя отбор членов с одинаковой пространственной зависимостью, получаем рекуррентную систему уравнений (ввиду громоздкости не приводится), связывающих величину m_{d0} с коэффициентами A_{ij}^0 . Анализ этой системы показывает, что с точностью до членов второго порядка малости по (λa)

$$\left[4\pi - \xi + \delta m_{d0}^2 + \frac{3}{4}\delta \left(A_{11}^{(0)}\right)^2\right]m_{d0} = h_0.$$
 (26)

Действие слабого переменного магнитного поля на пленку с доменами приводит к тому, что возникают малые переменные добавки к каждому члену ряда (24), т. е.

$$m_z(\mathbf{r},t) = m_d(\mathbf{r}) + \tilde{m}_d(\mathbf{r},t) =$$

= $m_{d0} + \tilde{m}_{d0}(t) + m_{dr}(\mathbf{r}) + \tilde{m}_{dr}(\mathbf{r},t),$ (27)

где

$$\tilde{m}_{dr}(\mathbf{r},t) = \left(\tilde{A}_{11}(t)\cos qz + \tilde{A}_{13}(t)\cos 3qz\right)\cos kx + \left(\tilde{A}_{20}(t) + \tilde{A}_{22}(t)\cos 2qz\right)\cos 2kx + \left(\tilde{A}_{31}(t)\cos qz + \tilde{A}_{33}(t)\cos 3qz\right)\cos 3kx.$$
(28)

Здесь $|\tilde{A}_{ij}| \ll |\tilde{m}_{d0}| \ll |m_{d0}|$. Подставляя выражение (27) в уравнение (9) и учитывая, что статическая часть $m_d(\mathbf{r})$ намагниченности удовлетворяет уравнению (23), находим, что поведение динамической части $\tilde{m}_d(\mathbf{r}, t)$ описывается уравнением

$$\eta_1 \frac{d^2 \tilde{m}_d}{dt^2} + \eta_2 \frac{d \tilde{m}_d}{dt} - \alpha \frac{\partial^2 \tilde{m}_d}{\partial x^2} - \alpha \frac{\partial^2 \tilde{m}_d}{\partial z^2} + \left(4\pi - \xi + 3\delta m_d^2\right) \tilde{m}_d = \tilde{h}, \quad (29)$$

откуда с учетом (24) и (28) следует, что изменение однородной части динамического отклика пленки с доменной структурой на однородное переменное поле с точностью до членов порядка $(\lambda a)^2$ описывается соотношением

$$\eta_1 \frac{d^2 \tilde{m}_{d0}}{dt^2} + \eta_2 \frac{d \tilde{m}_{d0}}{dt} + \left[4\pi - \xi + 3\delta m_{d0}^2 + \frac{3}{4}\delta \left(A_{11}^{(0)} \right)^2 \right] \tilde{m}_{d0} = \tilde{h}.$$
 (30)

Сопоставление уравнений (10) и (12) для однородно намагниченного состояния с аналогичными уравнениями (26) и (30) для доменной фазы показывает, что первые переходят в последние, если провести замены

$$m_0 \to m_{d0}, \quad \tilde{m}_0 \to \tilde{m}_{d0}, \quad \xi \to \xi^*,$$

где

$$\xi^* = \xi - \frac{3}{4}\delta \left(A_{11}^{(0)}\right)^2 = \xi - \frac{3}{4}\delta \left(\lambda a\right)^2.$$
(31)

Это дает возможность не анализировать заново поведение восприимчивости в доменной фазе, а просто использовать ранее полученные в предыдущем разделе для однородно намагниченного состояния результаты, выполнив приведенные выше замены. При этом, однако, следует иметь в виду, что в отличие от параметра ξ , который зависит только от температуры, параметр ξ^* , в выражение для которого входит амплитуда изменения намагниченности в доменах, (λa) = $f(h_0)$, зависит также и от поля подмагничивания, т. е. $\xi^* = f(T, h_0)$.

Функциональная зависимость $(\lambda a) = f(h_0)$ для термодинамически устойчивых полосовых доменных структур (с $k = k_c$) вблизи линии фазового перехода с критической точкой

$$h_{cr} = \pi \sqrt{3\xi_c/\delta}, \quad \xi_{cr} = \xi^{(ud)}(h_{cr})$$

была определена в [14]. Было установлено, в частности, что вид функции $(\lambda a) = f(h_0)$ для фазовых переходов второго рода $(|h_0| < h_{cr})$ зависит от того, в какой интервал изменения попадают значения ξ , а именно: при $\xi_d \ll \xi_c |1 - h_0^2 / h_{cr}^2|$, где $\xi_d = \xi - \xi^{(ud)}(h_0)$, имеет место соотношение

$$(\lambda a) = \frac{4}{3} \sqrt{\frac{\xi_d}{\delta |1 - h_0^2 / h_{cr}^2|}},$$
 (32)

которое при $\xi_c |1-h_0^2/h_{cr}^2| \ll \xi_d \ll \xi_c$ заменяется на

$$(\lambda a) = \frac{5}{4} \xi_d^{1/4} \left(\frac{\xi_c}{\delta}\right)^{1/2}.$$
 (33)

Далее мы ограничимся рассмотрением только первой ситуации, так как анализ второго случая не представляет никаких затруднений и к новым качественным особенностям в поведении магнитной восприимчивости не приводит.

Используя выражения (31) и (32), находим, что

$$\xi^* = \frac{-\xi \left(1 + 3h_0^2/h_{cr}^2\right) + 4 \left(\xi_c + 3\delta h_0^2/16\pi^2\right)}{3|1 - h_0^2/h_{cr}^2|}, \quad (34)$$

откуда следует, что в доменной фазе знак производной $\partial \xi^* / \partial T$ противоположен знаку $\partial \xi / \partial T$. Вследствие этого, как нетрудно убедиться прямым дифференцированием соотношения (26), производная $\partial m_{d0} / \partial T$ становится положительной, т.е. постоянная составляющая m_{d0} намагниченности убывает при отходе от линии потери устойчивости однородного состояния в сторону более низких температур⁴. Поскольку в доменной фазе изменяют знак обе производные ($\partial \xi^* / \partial T$ и $\partial m_{d0} / \partial T$), это не сказывается на характере экстремумов магнитной восприимчивости

$$\chi_{zz}^{(d0)}\left(\omega\right) = \chi_{zz}^{(d0)\prime}\left(\omega\right) + i\chi_{zz}^{(d0)\prime\prime}\left(\omega\right) = \tilde{m}_{d0}\left(\omega\right)/\tilde{h},$$

действительная и мнимая части которой, в соответствии с приведенными выше соображениями, определяются выражениями

$$\chi_{zz}^{(d0)\prime}(\omega) = \frac{\omega_{d0}^2 - \omega^2}{\eta_1 \left[(\omega_{d0}^2 - \omega^2)^2 + \omega_\eta^2 \omega^2 \right]}, \qquad (35)$$

$$\chi_{zz}^{(d0)\prime\prime}(\omega) = \frac{\omega\omega_{\eta}}{\eta_1 \left[\left(\omega_{d0}^2 - \omega^2 \right)^2 + \omega_{\eta}^2 \omega^2 \right]}, \qquad (36)$$

где $\omega_{d0}^2 = (4\pi - \xi^* + 3\delta m_{d0}^2) / \eta_1$, а m_{d0} удовлетворяет уравнению (26), которое можно записать в несколько ином виде, а именно

$$\left(4\pi - \xi^* + \delta m_{d0}^2\right) m_{d0} = h_0. \tag{37}$$

Как и в случае однородно намагниченного состояния, тип основного (частотно-независимого) экстремума восприимчивости, а также тип и температурное положение дополнительных экстремумов в доменной фазе при фиксированной напряженности поля подмагничивания зависят от соотношения между частотой переменного магнитного поля и тремя характерными частотами: ω_{d0} , $\omega_{d0}^{(1)}$ и $\omega_{d0}^{(2)}$, где

$$\omega_{d0}^{(1,2)} = \sqrt{\omega_{d0}^2 + \frac{\omega_{\eta}^2}{4} \mp \frac{\omega_{\eta}}{2}}.$$
 (38)

Рис.5. Температурные зависимости характерных частот, определяющих тип и положение экстремумов действительной и мнимой частей магнитной восприимчивости для модельной пленки толщиной 2 мкм

Зависимости частот $\omega_0, \omega_0^{(1,2)}$ и $\omega_{d0}, \omega_{d0}^{(1,2)}$ от температуры при $h_0 = 0.002$ представлены на рис. 5 для модельной пленки со следующими параметрами:

$$\delta = 4 \cdot 10^5, \quad \eta_1 = 10^{-11}, \quad \eta_2 = 2 \cdot 10^{-8}, \quad \omega_\eta = 2 \cdot 10^3,$$

$$L = 10^{-3}$$
 cm, $\beta_u = 100$, $\beta_p \ll \beta_u$.

За нуль отсчета температурной шкалы взята точка $\xi^{(ud)}(0.002) = 1.008006$, соответствующая зарождению доменной структуры при выбранном поле подмагничивания. Минимальные характерные частоты, достигаемые в этой точке на линии фазового перехода, имеют следующие значения:

$$\begin{split} \omega_{0min} &= \omega_{d0min} = \omega_A = 1.073434 \cdot 10^6 \text{ c}^{-1}, \\ \omega_{0min}^{(1)} &= \omega_{d0min}^{(1)} = \omega_C = 1.072435 \cdot 10^6 \text{ c}^{-1}, \\ \omega_{0min}^{(2)} &= \omega_{d0min}^{(2)} = \omega_B = 1.074434 \cdot 10^6 \text{ c}^{-1}, \end{split}$$

а критическая точка на плоскости (ξ, h_0) имеет координаты

$$\xi_{cr} = 1.04966, \quad h_{cr} = 0.008815.$$

Пересечение линии местоположения основного (частотно-независимого) температурного экстремума (кривая *0* на рис. 3) с линией фазового перехода

⁴⁾ Этот результат является следствием учета квадратичной по (λa) поправки в уравнении (26) для определения m_{d0} . В [14] указанная поправка игнорировалась и постоянная составляющая намагниченности рассчитывалась с помощью уравнения (10), что было вполне оправданным для преследуемых работой целей. В нашем случае такое приближение недопустимо, так как все особенности поведения восприимчивости в доменной фазе обусловливаются исключительно пропорциональными $(\lambda a)^2$ поправками в уравнении движения вектора намагниченности.

(штриховая кривая на рис. 3) имеет место при $\xi^{(cp)} = 5.3248, h_0^{(cp)} = 0.02372$ (точка *D* на рис. 3)⁵⁾, поэтому этот экстремум наблюдаться не будет (см. замечание в конце настоящего раздела).

Рисунок 5 иллюстрирует сильное различие скорости изменения характерных частот в однородной и доменной фазах при варьировании температуры (в выбранном масштабе кривые для однородной фазы идут практически горизонтально, хотя на самом деле они обладают заметным отрицательным наклоном). Это означает, что экстремумы магнитной восприимчивости в двух фазах должны обладать существенно разной температурной чувствительностью. При $\xi - \xi^{(ud)} = 0$ (точка фазового перехода) все три кривые на рис. 5 обладают минимумом, что влечет за собой появление локализованного в этой точке, т.е. не зависящего от частоты, экстремума (далее — дополнительный частотно-независимый экстремум)⁶.

Поведение дополнительных температурных экстремумов действительной и мнимой частей восприимчивости при изменении частоты и $h_0 = \text{const}$ легко может быть проанализировано с помощью рис. 5 (по аналогии с разд. 3), а также рис. 6 (для действительной части восприимчивости) и рис. 7 (для мнимой части восприимчивости). На парных рисунках использованы разные температурные шкалы, так как отобразить в одном и том же масштабе экстремумы восприимчивости в однородной и доменной фазах невозможно. Дальнейшее изложение относится к случаю $h_0 = 0.002$; рассмотрение ситуаций для других значений h₀ затруднений не вызывает. Значения частоты $\omega \cdot 10^{-6}$ для кривых 1–10 на рис. 6, 7 составляют соответственно 1.06, 1.07, 1.0725, 1.07305, $1.0735, 1.0745, 1.078, 1.082, 1.094, 1.13 c^{-1}.$

Самым простым является поведение мнимой части восприимчивости: для $\omega < \omega_A$ существует лишь дополнительный частотно-независимый максимум (в точке фазового перехода), амплитуда которого

плавно нарастает с увеличением частоты (кривые 2–4 на рис. 7). При превышении частоты ω_A (см. рис. 5), для которой мнимая часть восприимчивости достигает абсолютного максимума, дополнительный частотно-независимый экстремум становится минимумом и одновременно появляются два частотно-зависимых максимума (один в однородной фазе, а другой в доменной), которые с ростом частоты монотонно удаляются в разные стороны от точки фазового перехода (кривые 5–9 на рис. 7).

Для действительной части восприимчивости на частотах $\omega < \omega_C$ наблюдается только дополнительный частотно-независимый максимум (в точке фазового перехода); значение χ' плавно нарастает с увеличением частоты, достигая максимального (положительного) значения при $\omega = \omega_A$ (кривые 1, 2 на рис. 6). Дальнейшее увеличение частоты (в интервале $\omega_B > \omega > \omega_A$) приводит к трансформации этого экстремума в минимум и к возникновению двух частотно-зависимых максимумов (в однородной и в доменной фазах; кривые 3–5 на рис. 6). С ростом ω значение χ' в точке дополнительного частотно-независимого минимума монотонно убывает, становится отрицательным и при $\omega = \omega_B$ достигает минимального (отрицательного) значения. После этого (для $\omega > \omega_B$) дополнительный частотно-независимый экстремум вновь становится максимумом и в дополнение к двум частотно-зависимым максимумам возникают два частотно-зависимых минимума (в однородной и в доменной фазах); см. кривые 6-10 на рис. 6.

Заметим, что существование основного (частотно-независимого) экстремума вблизи линии фазового перехода из однородно намагниченного состояния в состояние с доменной структурой вполне возможно при других параметрах пленки и (или) при других значениях напряженности поля подмагничивания, отличающихся от использованных выше. Однако для расчета температурного положения такого экстремума внутри области существования доменной структуры необходимо в выражении (18) заменить $\xi^{(m)}$ на $\xi^{(m)} - (3/4)(\lambda a)^2$ в соответствии с формулой (31) и воспользоваться аналитической зависимостью $(\lambda a) = f(h_0)$, справедливой в выбранном для расчета интервале изменения поля подмагничивания при данных параметрах пленки. Так, например, если формально предположить, что функция $(\lambda a) = f(h_0)$ вблизи линии фазового перехода всюду описывается выражением (32), то кривая $\xi^{(m)}(h_0)$ внутри области существования доменов на плоскости (ξ, h_0) будет иметь вид, показанный на рис. 3 штриховой линией 0'.

⁵⁾ Абсцисса $\xi^{(cp)}$ точки пересечения является действительным корнем уравнения $\xi^3 - 12\pi\xi^2 + 57\pi^2 - (9\xi_c + 64\pi)\pi^2 = 0$, а ордината определяется выражением $h_0^{(cp)} = 4\pi\sqrt{(\xi^{(cp)} - \xi_c)/3\delta}$.

⁶⁾ К количественным результатам, относящимся к дополнительному частотно-независимому экстремуму, следует относиться с осторожностью, поскольку линия фазового перехода второго рода располагается в центре флуктуационного интервала, где теория Ландау неприменима [15]. В работе [8], посвященной анализу поведения дифференциальной магнитной восприимчивости, было показано, что учет флуктуаций приводит к появлению дополнительного флуктуационного максимума восприимчивости на линии фазового перехода, поэтому в экспериментах будет наблюдаться суммарный отклик.

Рис.6. Температурные зависимости действительной части восприимчивости для ферромагнитной пленки в однородной и доменной фазах на различных частотах в случаях, когда температурная шкала растянута (*a*) и не растянута (*б*); значения частот для кривых 1–10 см. в тексте

Рис.7. Температурные зависимости мнимой части восприимчивости для ферромагнитной пленки в однородной и доменной фазах на различных частотах в случаях, когда температурная шкала растянута (*a*) и не растянута (*б*); значения частот для нумерованных кривых те же, что и на рис. 6 (кривая *1* не показана, так как она практически сливается с осью абсцисс)

Степень отклонения этой линии от линии 0, соответствующей расчету для однородно намагниченного состояния, безусловно будет зависеть от конкретного вида функции (λa) = $f(h_0)$, однако в качественном отношении это мало что может изменить, так как вблизи линии фазового перехода величина (λa), т. е. амплитуда изменения *z*-компоненты намагниченности в доменах, монотонно нарастает при отходе от линии фазового перехода. Поэтому положение основного (частотно-независимого) экстремума, который чаще всего является единственным экспериментально наблюдаемым, на плоскости (H_0, T) не может быть описано одной и той же функцией. Это обстоятельство может быть наиболее вероятной причиной расхождения между теоретическими и опытными значениями критических индексов для магнитной восприимчивости в окрестности точки Кюри (см., например, [8]).

5. ЗАКЛЮЧЕНИЕ

Выполненный анализ показывает, что температурная зависимость магнитной восприимчивости ферромагнитных пленок в окрестности точки Кюри в общем случае является достаточно сложной. Теория предсказывает, в частности, возможность существования множественных экстремумов действительной χ' и мнимой χ'' частей магнитной восприимчивости, а также различие функциональных зависимостей, описывающих положение этих экстремумов на плоскости (T, H) в однородной и доменной фазах.

Поскольку рассмотрение особенностей поведения магнитной восприимчивости в окрестности точки Кюри проводилось в рамках теории фазовых переходов Ландау, полученные количественные результаты формально неприменимы к области температур, лежащих внутри флуктуационного интервала $(\Delta\xi)_f$. Для реальных ферромагнетиков ширина этого интервала сопоставима со значением ξ_c , которое определяет диапазон температур, где применима теория Ландау ($\xi \ll \xi_c$). Это, однако, не лишает полученные в настоящей работе результаты практической ценности, так как основные качественные выводы из теории Ландау — существование температурного минимума для однородных мод колебаний магнитного момента (ω_0 и ω_{d0}) вблизи точки Кюри и различие функциональных зависимостей $\omega_0(\xi)$ для однородной фазы и $\omega_{d0}(\xi)$ для доменной фазы — остаются справедливыми и для значений $\xi > \max\{\xi_c, (\Delta\xi)_f\}.$

В пользу этого утверждения свидетельствует тот факт, что многие из предсказываемых теорией Ландау особенностей поведения магнитной восприимчивости вблизи Т_C (существование основного частотно-независимого экстремума, наличие скачка восприимчивости на линии фазового перехода из однородного состояния в доменную фазу и др.) неоднократно наблюдались в экспериментах (см., например, [2,8,16-18]). Более того, в некоторых сегнетоэлектриках (например, в $RbHSO_4$), поведение которых в окрестности точки Кюри описывается аналогичными уравнениями (см., например, [19]), на частотах выше 455 МГц удалось обнаружить (наряду с основным частотно-независимым экстремумом) два дополнительных экстремума действительной части диэлектрической проницаемости, которые смещались в противоположных направлениях от T_C с ростом частоты внешнего переменного электрического поля до 9.5 ГГц (см. [20], а также монографию [19], где цитируется данная работа). Заметим, что в ферромагнетиках (в отличие от сегнетоэлектриков) для наблюдения подобных эффектов необходимо проводить эксперименты в чрезвычайно узком интервале частот и использовать стабилизированные по частоте источники переменного магнитного поля (см. разд. 3 и 4).

ЛИТЕРАТУРА

- 1. К. П. Белов, *Магнитные превращения*, Физматгиз, Москва (1959).
- 2. К. П. Белов, Ферриты в сильных магнитных полях, Наука, Москва (1972).
- E. Frey and F. Schwabl, Z. Phys. B: Condens. Matter 71, 355 (1988).
- A. Berger, A. W. Pang, and H. Hopster, J. Magn. Magn. Mat. 137, L1 (1994).
- 5. R. Arias and H. Suhl, Phys. Rev. B 51, 979 (1995).
- N. Vukadinovic, A. Serraj, H. Le Gall, and J. Ben Youssef, Phys. Rev. B 58, 385 (1998).
- 7. Л. Д. Ландау, ЖЭТФ 7, 819 (1937).
- И. Е. Дикштейн, Ф. В. Лисовский, Е. Г. Мансветова, Е. С. Чижик, ЖЭТФ 90, 614 (1986).
- 9. И. Е. Дикштейн, Ф. В. Лисовский, Е. Г. Мансветова,
 В. В. Тарасенко, ЖЭТФ 86, 1473 (1984).
- В. В. Тарасенко, Е. В. Ченский, И. Е. Дикштейн, ЖЭТФ 70, 2178 (1976).
- Л. Н. Булаевский, В. Л. Гинзбург, ЖЭТФ 45, 772 (1963).
- 12. В. Г. Барьяхтар, В. Ф. Клепиков, Письма в ЖЭТФ
 15, 411 (1972).
- **13.** С. В. Вонсовский, *Магнетизм*, Наука, Москва (1971).
- 14. В. В. Тарасенко, ФТТ 22, 504 (1980).
- **15**. В. Л. Гинзбург, ФТТ **2**, 1031 (1960).
- К. П. Белов, Н. В. Шебалдин, Письма в ЖЭТФ 7, 268 (1968).
- 17. С. А. Полтинников, ФТТ 10, 3687 (1968).
- 18. И. Д. Лузянин, В. П. Хавронин, ЖЭТФ 87, 2129 (1984).
- 19. Б. А. Струков, А. П. Леванюк, Физические основы сегнетоэлектрических явлений в кристаллах, Наука, Москва (1995).
- 20. T. Ozaki, J. Phys. Soc. Jpn. 49, 234 (1980).