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The Josephson qubit based on a superconducting single charge transistor inserted in a low-inductance super-
conducting loop is considered. The loop is inductively coupled to a radio-frequency driven tank circuit enabling
the readout of the qubit states by measuring the effective Josephson inductance of the transistor. The effect
of qubit dephasing and relaxation due to electric and magnetic control lines as well as the measuring system is
evaluated. Recommendations for the qubit operation with minimum decoherence are given.
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1. INTRODUCTION

The superconducting quantum bit (qubit) circuits
comprising mesoscopic Josephson tunnel junctions have
recently demonstrated remarkable quantum coherence
properties and are now considered promising elements
for a scalable quantum computer [1]. But the readout
of macroscopic quantum states of a single qubit or a
system of coupled qubits with the minimum decoher-
ence caused by the detector remains one of the most
important engineering issues in this field.

The Josephson qubits are commonly subdivided
into flux, phase, charge and charge-phase qubits. The
design of charge and charge-phase qubits is based on
a Cooper pair box [2] in which a small superconduct-
ing island with significant Coulomb energy is charged
through a small Josephson junction (charge qubit) or a
miniature double-junction SQUID (charge-phase). The
distinct quantum states of the box generated by signals
applied to a gate are associated with different observ-
able charges on the island. This makes it possible to
read out the qubit state by discriminating the island
charge. Probing this charge can be done either by single
quasiparticle tunneling across a small auxiliary tunnel
junction attached to the island [3] or by a capacitively
coupled electrometer [4]. In the charge-phase qubits,
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the quantum states of the box involve the phase co-
ordinate of the SQUID loop, and hence discriminating
these states can also be done by measuring the persis-
tent current circulating in the loop at an appropriate
dc flux bias. Such a measurement was performed in the
experiment of the Saclay group [5]. In their setup, nick-
named «Quantroniumy, the circulating current passed
through a larger auxiliary (third) junction was read out
by measuring the switching current of this junction.

The persistent current is not the only phase-
dependent quantity characterizing the quantum state
of the charge-phase qubit. Another useful quantity is
the Josephson inductance of the double junction, which
can be probed by small radio-frequency oscillations in-
duced in the qubit. Recently, we proposed a transis-
tor configuration of the Cooper pair box (see Fig. 1)
in which the macroscopic superconducting loop clos-
ing the transistor terminals is inductively coupled to
a radio-frequency tank circuit [6]. Similar to the rf-
SQUID-based method of measurement of the Joseph-
son junction impedance [7], this setup makes it possi-
ble to measure the rf impedance (more specifically, the
Josephson inductance) of the system of two small tun-
nel junctions connected in series, and in doing so, to
probe the macroscopic states of the qubit.

On one hand, the advantage of this method con-
sists in an effective decoupling between the qubit and a
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Fig.1. a) The electric circuit diagram of the charge-flux qubit inductively coupled to a tank circuit by the mutual induc-

tance M. The macroscopic superconducting loop of inductance L is interrupted by two small Josephson tunnel junctions

positioned close to each other and forming a single-charge transistor; the capacitively coupled gate polarizes the island of

this transistor. The qubit is controlled by the charge Qo generated by the gate and the flux ®,, induced by coil L,,. The

tank circuit, which is either of a parallel (b) or a serial (¢) type, is driven by a harmonic signal (I, s or V., respectively) of
the frequency w, s = wo, the resonant frequency of the uncoupled tank circuit

measurement device, which reduces the decoherence of
the qubit. Moreover, the loop design of the qubit has a
potential to perform data readout in a nondestructive
way [8]. On the other hand, due to the selective char-
acteristic of the tank, the bandwidth of this setup is
rather narrow, and therefore the optimum relation be-
tween the relaxation time of the qubit and the time of
measurement becomes an issue. Furthermore, the driv-
ing rf signal may induce appreciable frequency modu-
lation and dephasing of the qubit during its evolution
(performance of the quantum operations). Switching
the oscillations off and on is, however, possible only on
a relatively long-time scale of a transient process in the
tank.

In this paper, we address the problem of decoher-
ence induced in the charge-flux qubit by the classical
resonance tank circuit. In addition, we propose a mea-

surement strategy and optimize the regime of qubit op-
eration for typical parameters of the circuit.

2. BACKGROUND

The small tunnel junctions of the charge-flux qubit
are characterized by self-capacitances C; and Cy and
the Josephson coupling strengths E;; and Ej5. These
junctions with a small central island in-between and a
capacitively coupled gate therefore form a single-charge
transistor connected in our network as the Cooper pair
box (see Fig. 1). The critical currents of the junctions
are equal to

2T

Icl,c2 - (}TE‘H’J%
0
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where &g = h/2e is the flux quantum, and their mean

value is .
IcO = E(Icl + Ic2)~

The design enables magnetic control of the Josephson
coupling in the box in a de SQUID manner. The sys-
tem therefore has two parameters, the total Josephson
phase across the two junctions ¢ = 1 + @y = 27d /P,
controlled by the flux ® threading the loop and the gate
charge @)y set by the gate voltage V,. The geometri-
cal inductance L of the loop is assumed to be much
smaller than the Josephson inductance of the junctions
Ljo = ®0/(27m10),
Br=L/Lj < 1. (1)
Neglecting the magnetic energy term associated
with the current through the small inductance L, we
can express the Hamiltonian of the autonomous qubit
circuit as

(2en — Qp)?

Hy =
0 20

— E;(¢) cosx. (2)
The second term in Eq. (2) originates from the total
Josephson energy equal to —FEj; cosyp; — Ej2 cosys.
The effective Josephson coupling strength is

Ey(¢) = (B3, + B3 + 2E;1Epycos9)'> . (3)

d
|Ejn—Ej2| < Ej(¢) < En+Ejp =2E) = ?0 0

with the phase variable x = ¢ + v(¢). The angle v is
given by

(4)

where the dimensionless Josephson energies are
Ji2 = Eji.72/(2Ej) with j; + jo = 1. The phase
difference ¢ = %(p1 — ¢2) is a variable conjugate to
the island charge 2en = —Zei% and n is the operator
of the number of excess Cooper pairs on the island.
This charge enters the charging energy (first) term
in Eq.(2), in which C is the total capacitance of the
island, ¢ = Cy + Cy + Cy = C1 + O, and the gate
capacitance €y < Cp. The characteristic charging
energy E. = €2/2C is assumed to be of the order of
the Josephson coupling energies Ej; ~ Ejo > kpT.
The Schrédinger equation corresponding to the
Hamiltonian in Eq. (2) is the Mathieu equation [9]. The
eigenenergies form Bloch bands and the eigenfunctions
In, q) are the Bloch wave functions of a particle in the
periodic (Josephson) potential with «quasimomentumy
(here, quasicharge) ¢. Its value is the charge provided

tgy = (j1 — j2) tg(e/2),

14 ZKSBT®, Brim. 6

by the gate source to the island, i.e., ¢ = Qo = CyVj.
Each of such eigenfunctions can be represented as a
coherent superposition of plane waves,

lg,n) = ZC,(#) exp [z (% —l—m) X] ,

where m = 0,+1,42,... is the number of the excess

Cooper pairs on the island [10, 11]. The weights of
)‘2

(5)

these coherent contributions |Cr(,? depend on ¢, the
band index n, and the characteristic ratio

A=Ej(¢)/E.. (6)

The lowest two energy levels E,(q, ¢), i.e., n = 0 and

1 (see their dependences on ¢ and ¢ in Fig. 2) form

the basis {|0), |1)} suitable for qubit operation. In this

basis, Hamiltonian (2) is diagonal,
1

HO = —5€0z,

. (7

where o; with ¢ = x,y, z is the Pauli spin operator. The
general state of the qubit is
W) = al0) +b]1), (8)
with |a|?+]b[? = 1. It is remarkable that the level spac-
ing €(q,¢) = Q) = E1(q,¢0) — Eo(q, ¢), and therefore
the transition frequency 2 are efficiently controlled by
two knobs, i.e., by varying the parameters ¢ and ¢ (or,
equivalently, Qo and ®)").
The idea underlying the measurement of this
charge-flux qubit is based on inducing radio frequency
oscillations in the tank circuit of frequency w, ; < Q [6].
Due to inductive coupling M, these oscillations cause
oscillations of the corresponding flux ® (see Fig. 1a)
and therefore of the total phase,

2T

(b:%

(B + @) = Pg sin(wy st + 0) + do. (9)
If the rf drive signal is sufficiently weak, the amplitude
¢, of these oscillations is relatively small, ¢, < w. In
this linear regime, the Josephson inductance is given
by

27\ ? 0%E,.(q,
_W) (,9) (10)

Lo = () o

It is therefore determined by the local curvature of the
energy surface E,. For example, for Ejo = 2E. (see

1) In fact, the energy spectrum of this system is similar to
that of Quantronium [5], having one additional large Josephson
junction in the loop.
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Fig.2. Shape of the energy bands Eo and E; in the charge-flux qubit calculated for the mean Josephson coupling

Ejo=(Ej1+Ej2)/2 = 2E. and the Josephson coupling asymmetry parameter |j1 —j2| = (Ej1—Ej2)/(Es1+Ej2) = 0.1,

Black (hollow) circles on the zero (excited) band surface mark the locations of magic points A (A'), B (B’), and C'(C") and
the avoided level crossing point D (D)

Fig. 2) at ¢ ~ 0, the respective estimates within the  nance frequency wo = (L7C7) '/ of the tank circuit,

zeroth and first bands are i.e., wh(n) = wo + dwo(n), where
L7'(0,0,¢) ~ 0.4L7 cos ¢ (11) dwo(n) = Jk?ﬁiwo. (14)
2 LJ(n7Q7¢)
and Here,
L7'(1,0,¢) ~ 0.1L7, cos ¢. (12) o M <1 (15)

VvV LrL

is the dimensionless coupling coefficient. The resonance
frequency shift dwg(n) carrying information about the
qubit state |n) is found from the amplitude or/and

In the vicinity of the avoided crossing point, ¢ = e and
¢ = 7 (marked as D-D’ in Fig. 2), the inverse induc-
tances can increase significantly,

(_1>n+1 phase of forced oscillations in the tank. For achieving
L;*(n,0,m)~ ———L;3, n=0and1, (13) sufficient resolution in such measurements, the quality
4)j1 — Jal .
factor of the tank circuit @ should be about or larger
because of a small asymmetry of the transistor param-  than the ratio wo/[dwo(0) = dwo(1)].

eters, |j; — jo| < 1. For example, in the case presented
in Fig. 2, [j1 — jo| = 0.1 and L;' = F2.5L7, for the

. . 3. INHERENT AND EXTERNAL SOURCES OF
zeroth and first band, respectively. At the points C

) DECOHERENCE
and C', the absolute values |L;"| are smaller but the
signs for n = 0 and 1 are still different. In our consideration, we neglected the quasiparticle
Coupling to the qubit causes a shift of the reso- tunneling that inevitably causes dissipation of energy.
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Even rare tunneling of individual quasiparticles across
the tunnel junctions, i.e., on and from the island, can
decohere the qubit and completely destroy the read-
out regime described above. These processes lead to a
sudden change of the operation point, ¢ — ¢ = e and,
possibly, of the energy band index, i.e., cause relaxation
1—=0.

The processes of single quasiparticle tunneling
across a small Josephson junction have been studied
by Averin and Likharev in Refs. [12,13]. They general-
ized the orthodox theory of single electron tunneling to
the case of a finite Josephson coupling, E; # 0, taking
into account the dynamics of the essential phase fac-
tors exp(+iy/2) in the electron tunneling terms added
to the Hamiltonian of type (2). These factors are the
operators of a single-electron transfer and their nonzero
matrix elements in our basis are

et (n,q|exp(Eix/2)|q +e,n').

nn'

(16)

The rates of transitions |¢,n) — |¢xe,n’) are given by

+
+ 2I¢1p(enn’/e)
nn' e

e:l: 1
X {1 — exp <—k”—”T>
B

In our case, I;,(U) is the quasiparticle current—voltage
dependence of the network of two tunnel junctions of
the qubit connected in parallel. Because the energy sur-
faces are 2e-periodic, the corresponding energy gains
are identical,

Fj:

nn' X

= ‘e
—1

(17)

GZn’ = er:n’ = En(q7 ¢) - En' (q + €, ¢)7 (18)

and their value depends on the operation point {Qq, ®}
(see Fig. 2).

The relation between this energy and the super-
conductor energy gap Ag. is important for making the
quasiparticle transitions infrequent or even eliminating
them. First, if the voltage is U = efn,/e < 2Ag./e, the
quasiparticle current I,,(U) entering Eq. (17) is expo-
nentially small, i.e., ~ I.q exp(—Asc/kBT)2). At larger
voltages, U > 2A,./e, the current I, is enormously
large, > 2I.9. Therefore, in order to prevent inten-
sive tunneling of quasiparticles, the energy gain eﬁn,
must never exceed 2A,.. Second, if this gain is smaller
than Ag., then infrequent quasiparticle tunneling can,
in principle, be blocked by the gap energy associated

2) See, for example, a simple approximation formula in
S. Ramo, J.R. Whinnery and T. van Duzer, Fields and Waves
in Communication Electronics, John Wiley and Sons, New York
(1965), p. 211.
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with one unpaired electron in the superconducting is-
land (the so-called even-odd parity effect)®).
Suppression of quasiparticle transitions within the
zero energy band in superconducting Al single-charge
transistors and Cooper pair boxes was extensively in-
vestigated experimentally. Depending on experimen-
tal skill and luck (see, e.g., [14-17]), the inspected de-
vices often exhibited pure Cooper pair behavior when
their charging energy E. was not larger than ~ 100 pueV
~ 0.5A ], where Ay is the superconductor energy gap
of aluminium. Because the energy gain for transitions
in the Cooper pair boxes and low-voltage-biased tran-
sistors, egto, is less than E, for any Ej, the condition
E. < Ag. can ensure suppression of quasiparticle tun-
neling in the ground state in a «good» qubit sample.
For quasiparticle transitions from the excited state,
this condition is clearly insufficient. For example, for
small E; (corresponding to the flux value & = &4/2,
Eq. (3)), the energy gain values are between about E.
(for the process D' — A, see Fig. 2) and 4E, (for the
processes A’ — D" and A" — D). At larger E;, both
the minimum and maximum energy gain values are
even larger. For example, for E; = 4E, (i.e., ® = 0),
the transitions C' — B and B’ — C correspond to
the respective energies ~ 4F, and ~ 5F,. Because the
first factor in the expression for the resulting relaxation
rate,

[P =T + Ty &

+

~ (et + lerol?) 12090 (19)
is nonzero for any Qo and ® (see the plots of the two
quantities in Fig. 3), only the condition E. < A,./5
can ensure suppression of these transitions at an arbi-
trary operation point of our qubit. An insufficiently
small value of E. was possibly the reason of a very
short relaxation time (tens of ns) in the recent experi-
ment with a charge qubit by Duty et al. [17]. Their Al
Cooper pair box had E. ~ 0.8A,. and E; ~ 0.4E,,
and therefore the energy gain in the chosen opera-
tion point (Qg = 0.4e) was too large, i.e., about
22E. ~ 1.8A,, > A, (although in the ground state,
this sample nicely showed the pure Cooper pair char-
acteristic).

Moreover, there are several sources of decoherence
due to coupling of the qubit to the environmental de-
grees of freedom. For evaluating the effect of these

3) As follows from the entropy consideration, the threshold
value is somewhat smaller than Ag. for finite volume of is-
land and nonzero temperature, see, for details M. T. Tuominen,
J.M. Hergenrother, T.S. Tighe and M. Tinkham, Phys. Rev.
Lett. 69, 1997 (1992).
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Fig.3. Off-diagonal matrix elements of the single

quasiparticle transfer operators exp(=+iy/2) computed

for different values of the equivalent Josephson cou-

pling set by the flux ® = ®¢/2 (solid lines), ®o/4

(dashed lines), and 0 (dotted lines). The qubit param-
eters are the same as in Fig. 2

sources on the qubit, the coupling Hamiltonian term
Heoupt = ng) + H,Sm) is included in the total Hamilto-
nian of the system,

H = Hy + Hcoupl + Hbath7 (20)
where Hyqsp, is a bath operator, and H.SE) and H.Sm) are
the electric control line term and the magnetic coupling
term respectively. The latter is associated with both
the flux control line and the tank circuit. Fluctuations
originating from the sources of gate- and flux-control
lines can, in principle, lead to a significant decoherence
of the qubit. As was shown in Ref. [18] and demon-
strated in experiments [3-5], these effects can, however,
be minimized by choosing the appropriate (minimum)
coupling. On the other hand, the decoherence caused
by the tank-circuit-based readout system requires spe-
cial analysis, because weakening this coupling results
in reducing the input signal. Below, we start with the
sources of decoherence associated with the control lines
and then analyze the effect of the tank circuit and am-
plifier.

4. COUPLING TO THE CHARGE CONTROL
LINE

The coupling of the charge-phase qubit to the elec-
tric control line is actually similar to that of the gate
coupling in the ordinary Cooper pair box [18]. How-
ever, we here assume that the Josephson coupling pa-
rameter A is not necessarily small, as is usually assumed
in the analysis of charge qubits. This generalization
of the model is essential because the external flux ®,,
changes the effective Josephson energy (3) of the qubit

over a wide range. The assumption that A is not small
implies that the eigenstates of our system, Eq. (5), are
generally composed of several (not only two) plane-
wave states.

The coupling term can be represented as
H) = —2endV,, (21)

c

where §V, is the operator of voltage fluctuations on the
island in the absence of the Josephson coupling. The
charge operator is equal to 2en = Qo — CV7 and there-
fore the essential part of the coupling Hamiltonian is

H®) = CVeV,. (22)

The voltage operator is given by

o P P (. Oy | _ Do
V_2ﬁ90_27r<x 3(;5)_ A (23)

2
Here, we assume slow variation of the total phase ¢,
Eq. (9). The voltage operator V is similar to the ve-
locity operator of an electron in the periodic electric
potential of a crystal lattice [19], and its interband ma-
trix elements are
0E, E,-F

Vnn’ - —6n,n’ +1i - D) o Xnn’(]- -
e

8q 6n,n’)7 (24)

where §), »/ is the Kroneker delta and x,,’ are the ma-
trix elements of the phase operator y [11].

Finally, the coupling Hamiltonian, Eq. (22), takes
the form

Hc(e) = (0, sinne + 0. cosne) Xe, (25)
where we introduce the operator
Xe =C|[V]loVe (26)
with
IVIi= 2/ Ve T4Vl (20
and
e = (Vj“fnvoo) (28)

(The plots of the terms entering Eqs. (27) and (28)
obtained by numerical calculations are presented in
Fig. 4.) Thus, X, = >, C,x, can be considered as
an operator of the bath [20] with the Hamiltonian

2 2.2
e Y2 MmaeWy Ty,
1Y =S < + et > (29)

2my,
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Fig.4. Terms composed of diagonal (a) and off-dia-

gonal (b) matrix elements of the operator V entering

Eqgs. (27) and (28) are represented for different values

of the dimensionless flux ®. for the given qubit param-
eters (see the caption of Fig. 2)

and the spectral density ng)(w) = CQ||V||QS€,E) (w) =
= Je(w)O(w,T)/w. Here, the oscillator energy func-
tion is

and
™ C?
Jo(w) = 5 Z ma%a(w — Wa). (31)

With Cy assumed to be small, the spectral density S‘(/e)
of the fluctuations of §V, is given by

@2 (G
Sy (w)=—={—=] ReZi(w)O(w,T), (32)
m\ C
where Z; = (iwC, + Z;')~' is determined by

the parallel connection of the qubit capacitance
C,C/(Cy + C) ~ C, and the gate line impedance
Zg(w) ~ Rigo = 100Q. Therefore, for frequencies up
to wy = (Ri00Cy) ! > €/, i.e., at all characteristic

frequencies of the system, Re Z; = Ryg9. This is the
case of linear damping in the Caldeira—Leggett model,

gaehw, (33)

with the dimensionless factor

— CQHVH 2]%100 < & 2R100
ae(Q7¢) - < e —RQ N C RQ , (34)

Je(w) =

where Rg = h/4e* ~ 6.45k(Q, the resistance quantum.
The estimate similar to the last expression in Eq. (34)
was given in Ref. [18] for small A.

Relaxation and dephasing caused by the charge con-
trol line can therefore be described by the spin-boson
model with linear damping [21]. The corresponding
rates are given by the expressions

(797! = ra, sin® . Qcth (35)

hQ
2kpT’
and

2kpT
[ = 207" + ma cos® e k% (36)

One can see that in accordance with the conclusions in
Refs. [18,22], reducing the coupling coefficient a,. by a
small factor (Cy/C)? < 1 can significantly depress the
decoherence rates.

5. COUPLING TO THE FLUX CONTROL LINE

The inductive coupling of the qubit loop to the con-
trol and readout circuits is described by the Hamilto-
nian

H™ = —[,(6®,, + 6®7), (37)

c

where I, is the operator of the current circulating in the
qubit loop, §®,,, = M,,01,,, the bath operator (propor-
tional to fluctuations of the current §1,, in the control
inductance L,,); 0®7 = MJI is the operator of the flux
associated with current fluctuations in the tank circuit.

To specify the coupling, we represent the operator
I, in the eigenbasis (5), i.e., we find the matrix elements

(n|Isn"y, n,n" =0, 1. (38)
In the general case, I, is given by the expression
Iy = £1Q1 + k20, (39)

with the dimensionless factors k1 2 = Cs,1/C such that
K1 + ko = 1. The quantities

Q12 = —2ei

3991,2
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are the respective charges on the first and second junc-
tion, and their time derivatives are the Josephson su-
percurrents,

Qip= ﬁ[QLz-,Ho] = Ic1,c28in 01 2. (40)

Using the identity

wgzgiwzgix¢7

and Eq. (4), we can represent the circulating current as

Iy = I1 () cos x + I(¢) sin x. (41)
The respective amplitudes of these two components are

_ 2T EJlEJ2

I, = — ———=sin¢g, 42
YT Bie) e
and
b=( _‘)(K.+R.)8_7r E%,
2 =\J1 —J2 1J1 272 o, EJ(¢)

Ar EjEgs cos? ¢
by E;(0) 2°

Because the Hamiltonian in Eq. (2) is an even func-
tion of x, the operators cos y and sin x entering Eq. (41)
are diagonal and off-diagonal, respectively. The ampli-
tude Iy is merely the classical Josephson current across
two large-capacitance junctions, expressed as a func-
tion of the overall phase difference ¢, while the diagonal
term cos x describes the suppression of this current due
to the charging effect (E. # 0) (see, e.g., Ref. [23]). The
second, off-diagonal term in Eq. (41) is due to asym-
metry of the transistor; it gives rise to the interband
transitions 0 < 1. Using the notation

+ (k1 — K2) (43)

coo = (0] cos x|0), ¢11 = (1] cosx|1) (44)
and
so1 = [(0] sin x[1)], (45)

for the nonzero values of the corresponding matrix ele-
ments, we obtain the coupling Hamiltonian in Eq. (37)
in the form

H§m> = (oy sinnm + 0, cos ) (X + X7), (46)
where

Xm,T = _||I|| 6(I>m,T-, (47)

1 = 2/ler — )P + BBl (49)

PR ST T S '
0.5 1.0
Charge Qo/e

Fig.5. The terms composed of diagonal (a) and off-

diagonal (b) matrix elements of the operator cos x and

sin , respectively, calculated for different values of the

dimensionless flux ®. for the given qubit parameters
(see the caption of Fig. 2)

250115

Ci1 — COO)Il '
(see the plots of the terms entering these expressions
in Fig. 5).

We first omit the term X7 associated with fluc-
tuations of the tank circuit in Eq. (46) and focus
on the effect of fluctuations in the flux control line
0®,, = M;6I,. Assuming real impedance of the
flux control line, Z,, ~ Rigp, we obtain the spec-
tral density of the operator X,, o 6I,, in the form
SY (W) = MZIIIPSI™ (W) = Jm(w)O(w, T)/w. At
frequencies below w,, = Rioo/Lm, the function J,, is
linear,

Tm(w) = gamhw (50)
with the dimensionless coupling factor
2Mm||f||>2 Rg
am(q, 9) = . 51
o = () e e

At higher frequencies, w > w,,, the effective damping
decays as (wp, /w)?.
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In fact, Eq. (51) describes the effect of coupling to
the control flux in the general case. An estimate of the
coupling factor based on the evaluation

1
1| ~ -
17l = 5

0E;
£t (52)

which is valid for a symmetric transistor (Io = 0) with
small E;, was made in [18]. Small mutual inductance
My, [18,22] leads to small o, and therefore causes sig-
nificant depression of the corresponding relaxation rate,

B ) hQ
[7{™]7" = 7y, sin® n, Qeth UepT (53)
and dephasing rate,
2kpT
[Tém)]fl = 277 4 mag, cos? g, 2. (54)

So far, we have considered the effects of decoherence
due to the charge and flux control lines as two indepen-
dent effects. They must actually be described together
using a multibath model [18]. If either of these deco-
herence effects is small, i.e., the so-called Hamiltonian-
dominated regime is realized, the total rates due to
contributions of the two control lines are given by

()7 = (O] ), (55)

() = A0+ O ) (56)

In our model, we assume that such a regime is realized
and, moreover, the resulting rates in Eqs. (55) and (56)
can be made negligibly small. Below, we focus on the
effect of the readout circuit, whose coupling strength
has to be optimized.

6. DECOHERENCE DUE TO THE READOUT
SYSTEM

In contrast to control lines, coupling to a readout
device (in our case, the tank circuit with an amplifier)
cannot be made arbitrarily small in order to reduce the
decoherence. This coupling should ensure sufficiently
strong signals at the amplifier input in order to per-
form a measurement with a reasonable signal-to-noise
ratio on a time scale shorter than that determined by
other factors, namely ngc). Moreover, without an ef-
ficient switch (see a possible design of such a switch,
e.g., in Ref. [24]), such a coupling may cause significant
dephasing of the qubit during quantum gate manipu-
lation.

The inductive qubit coupling to the tank circuit is
described by the Hamiltonian in Eq. (46). The spec-
tral density of fluctuations of the corresponding vari-
able X7 oc 6®7 = M61 is expressed as

O(w,T™) (57)

SO (w) = %M 21112857 (w) = Jr(w)
where S§T) (w) is the spectral density of the noise cur-
rent 61 across the inductance L. Because the cold
(superconducting) tank circuit itself presumably has
very low losses, a back-action noise 61 of the ampli-
fier is dominating. It is associated with the input real
impedance, modeled by R, or R for parallel and se-
rial configurations, respectively (see Fig. 1). T™* is the
effective temperature associated with this impedance.

The spectral density S§T) and the function Jr(w)
can be found from a network consideration. With the
small detuning dwg < wg neglected, in the case of the
parallel network (Fig. 1b), the spectral function Jr is
given by the expression

2 W
I () = ;aphw O iw%mﬁ.,

(58)

o, = (PMITIN* Rq _ 280 TP oo
P (b() Rp 7TQ QWOICO

and with the quality factor @ = woCrR, = R,/woLT.
For the serial network shown in Fig. 1¢, we have

2 2
(s) _ 2 Ww=Wy
Jr'(w) = ;ashw @ =2 + P20 2 (60)
with
2M||11\* RoRs
= 61
s < P (woL)? (61

and Q = (woC7Rs)™" = woL1/Rs.

In contrast to the linear spectral functions for the
control lines, Eqs. (33) and (50), the functions given by
Eqs. (58) and (60) describe a structured bath, i.e., they
both are of a Lorentzian (resonance) shape. A similar
situation emerges, for example, in the case of the flux
qubit with readout using a C-shunted dc SQUID [22].
The spin-boson model with a structured bath was ana-
lyzed theoretically in [25] on the basis of the flow equa-
tions. If the coupling is weak, as in our case, only the
high frequency (w ~ Q) and low frequency (w — 0) be-
haviors of J(w) account for relaxation and dephasing,
respectively [22, 26, 27].

Because the frequency € is typically about tens of
GHz and the distance between the qubit and the am-
plifier presumably exceeds the wavelength, the effective
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real admittance of the parallel circuit at these frequen-
cies is equal to Rjpy and the impedance of the serial
circuit is &~ Rjgg. Therefore, the relaxation rates in-
crease by the respective factors g, = R,/ Ri00 > 1 and
gs = Rigo/Rs > 1.

For the parallel tank circuit, the relaxation and de-
phasing rates (presumably, < wy) are equal to

4 hQ
D11 = rgay s m (£2) et L
[TP)] TGpQip SN 1, ( ) ) Qcth epT*’ (62)
and
[Tép)]—l _ [27.7(17)]—1 + may, c0s” N Qk?iT ) (63)

respectively. The relaxation rate is dramatically sup-
pressed due to the small frequency ratio, (wy/Q) < 1.
For the serial configuration, the corresponding rates are

()1 — 2 (“9)’ Qeth L
[T:%] TsQlg SIN” Ny ( a ) Qcth T (64)
P =279 (65)

The dephasing rate is determined by the rate of relax-
ation, because at low frequency, w < wq, the function
I8 (w) o w? [21]. Due to weaker decay of the serial
circuit impedance at high frequencies, w > wq, the re-
laxation rate is, however, substantially higher than in
the case of the parallel circuit configuration. We there-
fore focus our further consideration only on the paral-
lel tank circuit as the more favorable (allowing longer
measuring time).

7. MAGIC POINTS AND SOME ESTIMATIONS

The analysis of the coupling between the qubit and
the tank circuit, Eqs. (46)—(49) and Fig. 5, shows that
its strength X7 o ||I]| and mixing angle 7,, can be sig-
nificantly varied by choosing an appropriate operation
point. For example, as can be seen from Eq. (42), the
diagonal component of Xp (o I), which essentially
causes pure dephasing of the qubit, is zero, i.e., the
mixing angle n,,, = 7/2, at the phase values ¢ = 0 and
m. The derivatives 0Eg 1/0¢ and therefore the circu-
lating supercurrent are zero. Moreover, as illustrated
in Fig. 5b, if the gate charge Qo ~ 0 (i.e., deriva-
tives 0Eg1/0Q¢ = 0), then |sg1| and hence Xp are
minimum. In particular, at the bias flux ®,, = ®,/2
or, equivalently, ¢ = 7 (this point is marked as A in
Fig. 2), E;(¢) = |Ej1 — Ej2| < E,, and we can there-
fore use the explicit expressions for the wave functions,
Eqs. (A.11) and (A.12) in Ref.[11], and obtain

1 FE I — Jo| F
‘801| — J(¢) — ‘.]1 .72‘ Jo (66)

16v2 E. 8/2 E.°

Then the value of ||I]| given by (48) is

l71 — j2| Ejo
8v2 E.

where we have taken into account that k1 ~ ko ~ 0.5
and the second term in Eq. (43), o (k1 — k2), vanishes
because cos(¢/2) = 0. At the point Qp = 0,¢ = 0
(marked as B in Fig. 2), the Josephson energy
Ej(¢) = 2Ej0 and 2|se1| is approximately equal to
(1/8V2)E 0/ E., and therefore

||I||A = 2‘801”2 ~ ICO7 (67)

|71 — J2 + K1 — k2| Ejo

8v2 E.
while for Qg = e (point C' in Fig. 2), |se1]| = 0.5 and

11llz ~

Ieo, (68)

e~ |j1 — j2 + k1 — Ka|leo. (69)

It is remarkable that the effect of asymmetry in criti-
cal currents and capacitances of the junctions can, in
principle, cancel if (j1 — j2) = —(k1 — k2). In prac-
tice, however, the signs of (j; — j2) and (k; — ko) are
normally similar because the critical current and capac-
itance are both proportional to the junction area and
such cancelling does not occur.

Comparing Eqs. (67), (68), and (69), we can see that
under the assumption of small asymmetry of the tran-
sistor, j1 & jo & K1 & k2 ~ 0.5, the coupling strength
ap at the points A (Qo =0, ¢ =7), B(Qo =0, ¢ =0),
and C(Qo = e, ¢ = 0) is rather small, but it is sig-
nificant at the point D (Qo = e, ¢ = 7), where the
parameter |sp1| &~ 0.5 and

Il p & L. (70)

To illustrate this behavior, the coupling strength eval-
uated for typical parameters of the system is presented
in the Table.

From the standpoint of operation with a minimum
dephasing rate, the «magic» points A, B, and C at
which the supercurrent I; = 0 (see Eq. (42)) are clearly
preferable to other points in the QQg—® plane. There-
fore, manipulation of the qubit can, in principle, be
performed at any of these points. The estimated val-
ues of the corresponding fidelity factor for quantum
manipulation, @, = Qn(,p)., given in the Table, are suf-
ficiently high. For example, in the case of preparation
of the qubit at point A, the manipulation can be per-
formed by means of a dc pulse applied to the transistor
gate 3,4, 17]. This pulse (with short rise and fall times)
can rapidly switch the qubit, for example, to point D
and back to A causing its evolution (although with sig-
nificant dephasing) during the pulse span. Our qubit
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Evaluated qubit parameters derived under the assumption that Ejo = 2E. = 80ueV (i.e.,, I.o =~ 40nA and

5E. = Aa1 =~ 200 peV, the energy gap of Al) and ji — jo = k1 — k2 = 0.1. The tank circuit quality factor Q = 100,

frequency wo = 27 - 100 MHz, (L7/Cr)Y/? =100Q, k*QBA¢

= 20 and temperature 7" = 1K > T ~ 20 mK. As long as

the dephasing rate at the magic points is nominally zero, a 0.1% inaccuracy of the adjustment of the values ¢ = 7 and

0 was assumed

Operation point: A-A' B-B' c-¢' D-D'
Frequency /27, GHz 39 50 36 4
Coupling strength a, 2.1072 1072 4-1072 1

Qubit fidelity factor @, 3104 2-10° 104 < 30
Relaxation time 7”), s 8.102 1071 6103 1077

prepared in the ground state at point A or B or C' can
be (preferably) manipulated by a pulse of microwave
frequency, ~ Q, applied to the gate. For example, the
Quantronium qubit in the experiment by Vion et al. [5]
was manipulated by microwave pulses at point C.

For reading out the final state, the qubit dephasing
is of minor importance, while the requirement of a suf-
ficiently long relaxation time is decisive. Moreover, the
relaxation rate may somewhat increase due to oscilla-
tions in the tank induced by a drive pulse (see Fig. 6),
which leads to the development of oscillations around a
magic point along the ¢ axis, Eq. (9). If the frequency
of these oscillations is sufficiently low, w,; < Q, they
result only in a slow modulation of the transition fre-
quency €. The increase of the amplitude of steady
oscillations up to ¢, ~ /2 (determined by the am-
plitude of the drive pulse and detuning) yields a large
output signal and still ensures the required resolution
in the measurement provided the product k2QAr > 1is
sufficiently large. (At larger amplitudes ¢,, the circuit
operates in a nonlinear regime probing the averaged
reverse inductance of the qubit whose value, as well
as the produced frequency shift dwg, is smaller [28].)
Because points A and B lie on the axis Qg = 0 and
are both characterized by a sufficiently long relaxation
time, reading-out of the qubit state with the rf oscil-
lation span +7/2 is preferable at either point. In the
case of operation point C, the limited amplitude of the
oscillations does not significantly reduce the relaxation
time either. Significant reduction of the relaxation time
occurs in the vicinity of point D. Because of this prop-
erty, which is due to the dependence of the transversal
coupling strength on ¢, Eqs. (43)—-(49), the measure-
ment of the Quantronium state using a switching cur-
rent technique was possible in the middle of segment
CD (see Fig. 2), where the maximum values of the cir-
culating current in the excited and ground states were

of different signs [5].

In the vicinity of level crossing point D, in which
the gap between the zeroth and the first excited states
is minimum, hQ = 2|j; — j2|E o, oscillations of ¢ may
cause the Landau—Zener transitions [0) ¢ |1) [29]. The
probability of a such transition per single sweep,

(j1 — j2)?Ejo
¢ahwrf '

can be appreciable in a sufficiently symmetric transis-
tor and/or at a high driving frequency w, s, i.e., when
g1 = jo| < (hwep/Ejo)t/?. These transitions lead
to unwanted mixing of the qubit states [30]. In the
vicinity of point A’, where the gap between the first
and the second (not shown in Fig. 2) energy bands is
smaller [9], hQs = (j1 — j2)*>E%,/2E,, the Landau-
Zener transitions |1) < |2) are more probable. Fortu-
nately, the second energy band has a positive curvature,
0?FE5(0,¢ = m)/0¢* > 0, and therefore the mixing of
these states might even improve the distinguishability
of signals from the ground and excited states. More rig-
orous analysis of this effect on operation of the qubit
at point A is needed, however.

We finally evaluate the time of measurement re-
quired for the resolution of the states n = 0 and
n = 1 at the most favorable magic points A and B.
As schematically shown in Fig. 6, an rf drive pulse is
applied to the tank circuit just after manipulation of
the qubit (¢ = 0) and induces growing oscillations in
the tank. The amplitude of the oscillations of voltage
V' approaches a steady value Ag (A1) forn =0 (n=1)
after the time ¢,.;5 & 2m(Q)/wg. Assuming a correspond-
ing amplitude of oscillations of the phase ¢, = /2, we
obtain the amplitudes

pLz = exp [—27 (71)

A0:¢a

(I)O wLT _ <71'(I)00.)Rp[co

1/2
— ~ 2
o M 8k2Qf1 ) suv (72)
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Fig.6. The principle of narrow-band radio-frequency
readout of the qubit. (a) The resonance curves of the
uncoupled tank circuit (dotted line) and the tank cir-
cuit coupled to the qubit biased at operation point A
in the excited state (dashed line) and in the ground
state (solid line). (b) Driving pulse applied to the tank
circuit (top curve) and the response signal of the tank
in resonance (the ground qubit state, bottom curve)
and outside resonance (excited state, middle curve). A
smooth envelope of the driving pulse is used to suppress
transient oscillations and has a small effect on the rise
time of the response signal. For clarity, the curves are
shifted vertically

and A; &~ 1 uV for the parameters in the Table.

Assuming that the equivalent noise
semiconductor-based amplifier referred to the in-
put is of the order of the Johnson voltage noise across
R, ~ 10k} at ambient temperature 7" ~ 2K, i.e.,
5‘1,/2 ~ 1nV/\/E, we can express the signal-to-noise
ratio as

SNR = (Ao = AD)VEmeas o 10*\/timeas /15, (73)

S/?

of a

where t,,04s 1S the time of measurement. This time

should clearly be much shorter than the relaxation time
P (evaluated as ~ 0.1s, see the Table) and exceed
the rise time of the oscillations in the tank t,;s. & 1 us
(the latter condition nicely agrees with the requirement
SNR > 1). Thus, a drive pulse duration of ~ 10 us en-
suring tmeqs ~ 10 us seems to be a good choice because
it yields the sufficiently high value of SNR &~ 6. The lat-
ter (as well as the quantum fidelity factor @),,) can be
substantially improved using a SQUID-based low-noise
amplifier [31].

8. CONCLUSION

We have demonstrated that both manipulation and
readout of the charge-phase qubit coupled to a tank
circuit is, in principle, possible. More specifically, the
decoherence effect of the electric and magnetic control
lines can seemingly be minimized by reducing coupling
to the qubit. The readout system based on the parallel
tank circuit and cold amplifier can ensure sufficiently
weak dephasing in the regime without an rf drive. The
dephasing rate strongly depends on the accuracy of ad-
justing the offset flux bias ®,, = 0 or ¥, = ®;/2
corresponding to operation at the magic points. High
symmetry of the Josephson junction parameters may
further improve the coherence characteristics of the
qubit. Because the LC resonance tank circuit intro-
duces only small noise at the high transition frequency
of the qubit, 2 > wq, the rate of relaxation can also be
made sufficiently small. Applying an rf drive pulse of
limited span allows a readout of the qubit state in the
regimes of single and repeated measurements.

Other problems in engineering Josephson qubits
with weak decoherence are the 1/f noise of crit-
ical currents of Josephson junctions [32] and the
1/f background noise coupled to the charge vari-
able [33], which have not been addressed in this
paper but are equally important. Hopefully, in the
given system, these effects might not be as strong
as in «traditional» tunnel-junction devices like dc
SQUIDs and single-electron transistors operating at
nonzero voltage bias. Due to perfect decoupling of the
superconducting loop with the single-charge transistor
from dc bias lines and due to the coherent nature
of the Josephson current in the zero voltage bias
regime, one could expect a minor back-action effect
of the zero-bias operating transistor on its critical
current noise and charge noise, which dramatically
depend on the current fed (see, for example, Ref. [34]).
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