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MODULATIONAL INSTABILITIESIN NEUTRINO�ANTINEUTRINO INTERACTIONSM. Marklund a*, P. K. Shukla b;, G. Betshart a;d,L. Sten�o , D. Anderson a, M. Lisak aaDepartment of Eletromagnetis, Chalmers University of TehnologySE-412 96, Göteborg, SwedenbInstitut für Theoretishe Physik IV, Fakultät für Physik und Astronomie, Ruhr-Universität BohumD-44780, Bohum, GermanyDepartment of Plasma Physis, Umeå UniversitySE-901 87, Umeå, SwedendDepartment of Mathematis and Applied Mathematis, University of Cape Town7701, Rondebosh, Cape Town, South AfriaSubmitted 13 January 2004Using a semilassial approah, we analyze the olletive behavior of neutrinos and antineutrinos in a densebakground. Applying the Wigner transform tehnique, we show that the interation an be modeled by aoupled system of nonlinear Vlasov-like equations. From these equations, we derive a dispersion relation forneutrino�antineutrino interations on a general bakground. The dispersion relation admits a novel modula-tional instability. Moreover, we investigate the modi�ations of the instability due to thermal e�ets. Theresults are examined, together with a numerial example, and we disuss the indued density inhomogeneitiesusing parameters relevant to the early Universe.PACS: 13.15.+g, 14.60.Lm, 97.10.Cv, 97.60.Bw1. INTRODUCTIONNeutrinos have fasinated people ever sine theywere �rst introdued by Pauli in 1931. Sine then,neutrinos have gone from hypothetial to an extremelypromising tool for analyzing astrophysial events, andneutrino osmology is one of the hottest topis in mod-ern time due to the disovery that neutrinos may bemassive [1℄. Beause of its weak interation with otherpartiles, neutrinos an travel great distanes withoutbeing a�eted appreiably by material obstales. Theyan therefore give us detailed information about eventstaking plae deep within, e.g., supernovæ. Further-more, beause the neutrinos deoupled from matter ata redshift z of the order 1010, as ompared to z � 103for photons, it is possible that neutrinos ould give us*E-mail: marklund�elmagn.halmers.se

a detailed understanding of the early Universe, if suha signal ould be deteted [2℄. Massive neutrinos havealso been a possible andidate for hot dark matter ne-essary for explaining ertain osmologial observations,suh as rotation urves of spiral galaxies [3℄. There-fore, massive neutrinos ould have a profound in�ueneon the evolution of our Universe. Unfortunately, dueto the Tremaine�Gunn bound [4℄, the neessary massof the missing partiles (if these are fermions) for ex-plaining the formation of dwarf galaxies seems to makeneutrinos of any speies unlikely single andidates fordark matter. As a remedy to this problem, interatinghot dark matter has been suggested [5, 6℄, beause theinteration prevents free-streaming smoothing of small-sale neutrino inhomogeneities. Thus, dark matter inastrophysis not only is a mystery but also plays anessential role in determining the dynamis of the Uni-verse, its large-sale strutures, the galaxies and super-lusters. However, so far, the suggested �stiky� neu-14



ÆÝÒÔ, òîì 126, âûï. 1 (7), 2004 Modulational instabilities in neutrino�antineutrino interationstrino models have not been suessful in dealing withthe dwarf galaxy problem [5℄.A �rst suessful indiation that neutrinos have anonzero mass ame in 1998 through laboratory ex-periments of atmospheri neutrinos and their osilla-tions [7℄. Although the allowed neutrino masses en-ompass a wide range1), it is urrently believed thatneutrinos have masses below 2 eV. This onlusion isfurther supported by independent osmologial obser-vations (see, e.g., [9℄). Thus, the masses of neutri-nos are indeed very small, and the lassial analysisby Tremaine and Gunn would therefore indiate thatneutrinos an in no way be onsidered a sole andi-date for dark matter. This onlusion is reanalyzed inthis paper within the eletro-weak framework, whereneutrino�neutrino interations our as a natural on-sequene of the theory.We thus onsider the nonlinear interation betweenneutrinos and antineutrinos in the lepton plasma of theearly Universe, adopting a semilassial model. Neu-trinos and antineutrinos interat with dense plasmasthrough the harged and neutral weak urrents aris-ing from the Fermi weak nulear interation fores.Charged weak urrents involve the exhange of theharged vetor bosons assoiated with the proessesinvolving interations between leptons and neutrinosof the same �avor, while neutrino weak urrents in-volve the exhange of the neutral vetor bosons assoi-ated with proesses involving neutrinos of all types in-terating with arbitrary harged and neutral partiles.Asymmetri �ows of neutrinos and antineutrinos in theearly Universe plasma may be reated by the pondero-motive fore of nonuniform intense photon beams or byshok waves. Here, using an e�etive �eld theory ap-proah, a system of oupled Wigner�Moyal equationsfor nonlinearly interating neutrinos and antineutrinosis derived, and it is shown that these equations admit amodulational instability. We then disuss the relevaneof our results in the ontext of the dark matter prob-lem, and it is moreover suggested that the nonlinearlyexited �utuations ould be used as a starting pointfor obtaining a better understanding of the proess ofgalaxy formation. It turns out that the short-time evo-lution of the primordial neutrino plasma medium in thetemperature range 1MeV < T < 10MeV is governedby ollisionless olletive e�ets involving relativistineutrinos and antineutrinos.1) Some estimates even support the notion that neutrinos mayontribute up to 20% of the matter density of the Universe [8℄.

2. DISPERSION RELATION AND THEMOTION OF NEUTRINO BUNCHESAs a primer, we study the impliation of theknown dispersion of neutrinos on a thermal neu-trino/antineutrino bakground, using the eikonal rep-resentation and the WKBJ approximation.We suppose that a single neutrino (or antineu-trino) moves in a fermioni sea omposed of neutrino�antineutrino mixture. The energy E of the neutrino(antineutrino) is then given by (see, e.g., [10, 11℄)E =pp22 +m24 + V�(r; t); (1)where p is the neutrino (antineutrino) momentum, the speed of light in vauum, and m is the neutrinomass. The e�etive potential for a neutrino moving ona bakground of its own �avor and in thermal equilib-rium is given by [10℄ (see also [12�15℄)2)V�(r; t) = �2p2GF (n� �n); (2a)while the potential for a neutrino moving on a bak-ground of a di�erent �avor isV�(r; t) = �p2GF (n� �n); (2b)where GF(~)3 � 1:2 � 10�5GeV�2;GF is the Fermi onstant, n (�n) is the density of thebakground neutrinos (antineutrinos), and + (�) rep-resents the propagating neutrino (antineutrino). Ex-pressions (2) are valid in the rest frame of the bak-ground. As seen from (1) and (2), while neutrinosmoving in a bakground of neutrinos and antineutrinoshange their energy by an amount � GF (n��n), the an-tineutrinos hange their energy by � �GF (n� �n) [16℄.The extra fator of 2 in (2a) ompared to (2b) omesfrom exhange e�ets between idential partiles [13℄.Relation (1) an be interpreted as a dispersion rela-tion for relativisti and nonrelativisti neutrinos, withthe identi�ations E = ~! and p = ~k, i.e.,! = rk2 + m22~2 + V�~ ; (3)where ~ is the Plank onstant divided by 2�. FromEq. (3), using the eikonal representationE ! ~!0 � i~��t ; p! ~k0 + i~r2) For a more detailed desription of the potential, see the nextsetion.15



M. Marklund, P. K. Shukla, G. Betshart et al. ÆÝÒÔ, òîì 126, âûï. 1 (7), 2004and the WKBJ approximation [17, 18℄�����	�t ����� !0j	j; jr	j � jk0jj	j;we obtain a Shrödinger equation for slowly varyingneutrino (antineutrino) wave pakets 	(r; t) modu-lated by long-sale density �utuations (i.e., neutrinobunhes)3)i� ��t + vg � r�	++ ~22E0 �r2��1�m24E20 � (n0 � r)2�	�V�~ 	 = 0; (4)where vg = k0(k20 +m22=~2)�1=2is the group veloity4) of relativisti neutrinos andantineutrinos, whih have similar energy spetra, E0is the neutrino energy in the absene of interations,n0 = k0=jk0j, and k0 is the vauum wavevetor. Wenow suppose that the neutrino bunhes themselves arenearly in thermal equilibrium (to be quanti�ed in thenext setion). Then, we have the ase of self-interatingneutrinos and antineutrinos, and the densities in thepotential V� are given in terms of the sumsn = MXi=1 ni = MXi=1hj	i+j2i;�n = NXi=1 �ni = NXi=1hj	i�j2i; (5)where 	i+ and 	i� are the neutrino and antineutrinowave pakets respetively (with i numbering the wavepakets) and the angular braket denotes the ensem-ble average. In this ase, the relativisti neutrino andantineutrino wave pakets are omoving with the bak-ground, and Eq. (4) thus yieldsi�	i��t + ~22E0 �r2? + m24E20 r2jj�	i� �� V�~ 	i� = 0; (6)3) See also Ref. [16℄ for a similar treatment of neutrino�eletroninterations.4) We note that when the salelength of the density inho-mogeneity is omparable to the wavelength of the modulatedneutrino wave pakets, we must modify the oupled Shrödingerequations to aount for di�ering group veloities of neutrinosand antineutrinos in a fermioni sea. We expet a shift in themomentum of Eq. (13) and a slower growth rate of the modula-tional instability of neutrino quasipartiles involving short-saledensity inhomogeneities.

wherer2? = r2 � (n0 � r)2 and r2jj = (n0 � r)2:Expressions (2a) and (5) reveal that self-interationsbetween relativisti neutrinos and antineutrinos pro-due a nonlinear asymmetri potential in Eq. (6). Byfurther resaling the oordinate along n0, Eq. (4) an�nally be written as the oupled systemi�	i��t + �2r2	i� � �(n� �n)	i� = 0; (7)where � = ~2E0 ; � = 2p2GF~for neutrinos moving on the same �avor bakground.Equation (7) shows that this approah an leadto some interesting e�ets. The ase of a single self-interating neutrino bunh shows that the formationof dark solitary strutures is possible. Furthermore,the slightly more ompliated ase of two interatingbunhes, of either the neutrino�neutrino or neutrino�antineutrino type, an result in splitting and fousingthe wave pakets [19℄.3. KINETIC DESCRIPTIONIn the preeding setion, we investigated the aseof a neutrino bunh lose to thermal equilibrium. Ingeneral, this may of ourse not be the ase, and Eq. (2)must be modi�ed. The more preise form of the po-tential V� for equal speies due to neutrino forwardsattering is given by [20℄V�(t; r;p; fi�) = �2p2GF Z dq (1� p̂ � q̂)�� " MXi=1 fi+(t; r;q) � NXi=1 fi�(t; r;q)# ; (8)where hatted quantities denote the orresponding unitvetors and fi+(t; r;q) (fi�(t; r;q)) is the neutrino(antineutrino) distribution funtion orresponding tobunh i. The distribution funtions are taken to benormalized suh thatni(t; r) = Z dq fi+(t; r;q);�ni(t; r) = Z dq fi�(t; r;q); (9)16



ÆÝÒÔ, òîì 126, âûï. 1 (7), 2004 Modulational instabilities in neutrino�antineutrino interationswhere ni (�ni) is the number density of the ith neutrino(antineutrino) bunh.We �rst note that when the distribution is thermal,potential (8) redues exatly to (2a). Seond, when theneutrinos have an almost thermal distribution, i.e., theorresponding distribution funtion an be expressedas (dropping the indies for notational simpliity)f(t; r;p) = f0(p) + Æf(t; r;p); jÆf j � jf0j;we obtain the following form of the potential:V�(t; r;p; fi�) = �2p2GF"(n� �n)�� Z dq (p̂ � q̂) MXi=1 Æfi+ � NXi=1 Æfi�!#: (10)The last term is small and may therefore be negleted,and we obtainV�(t; r) � �2p2GF (n� �n);in aordane with expressions (2a), thus justifyingequation of motion (7).Now, we de�ne a distribution funtion for the ol-letive neutrino states by Fourier transforming the two-point orrelation funtion for 	�, aording to [21℄fi�(t; r;p) = 1(2�~)3 Z dy exp(ip � y=~)�� h	�i�(t; r+ y=2)	i�(t; r� y=2)i; (11)where p represents the momentum of the neutrino (an-tineutrino) quasipartiles (we note that the ensembleaverage was not present in the original de�nition [21℄,but has important onsequenes when the wave pakethas a random phase). With de�nition (11), it followsthat hj	i�(t; r)j2i = Z dp fi�(t; r;p): (12)Thus, using (11) and (6) together with potential (8),we obtain the generalized Wigner�Moyal equation forfi�,�fi��t + 2pE0 � �fi��r �� 2V�~ sin"~2   ���r � �!��p � ���p � �!��r!# fi� = 0; (13)

where the sin operator is de�ned in terms of its Taylorexpansion, and the arrows denote the diretion of op-eration. In the ase of potential (2a), the last term inthe sin operator drops out, and Eq. (13) redues to thestandard Wigner�Moyal equation [21℄. Equation (13)was obtained in Ref. [20℄ using the density matrix ap-proah.Retaining only the lowest-order terms in ~ (i.e., ta-king the long-wavelength limit), we obtain the oupledVlasov equations� ��t +�2pE0 + �V��p � � ��r� fi� �� �V��r � �fi��p = 0: (14)The term �V�=�p represents the group veloity.While higher-order group veloity dispersion is presentin (13), this is not the ase in (14). Thus, informa-tion is partially lost by using Eq. (14). Furthermore,while Eq. (14) preserves the number of quasipartiles,Eq. (13) shows that this onlusion is in general nottrue, i.e., the partile number in a phase-spae volumeis not onstant, and the higher-order terms �nV�=�rnmay moreover ontain vital short-wavelength informa-tion. Equations similar to (14) have been used to studyneutrino�eletron interations in astrophysial ontexts[11℄.We now suppose that we have small amplitude per-turbations on a bakground of onstant neutrino andantineutrino densities ni = ni0 and �ni = �ni0, respe-tively,fi�(t; r;p) = fi0�(p) ++ Æfi�(p) exp[i(K � r�
t)℄; (15)and jÆfi�j � jfi0�j, where K and 
 are the pertur-bation wavevetor and frequeny, respetively. Thus,Eqs. (13) givei"
�2p �KE0 �2i~ V0� sin � i~2  ���p �K!# Æfi�++ 2~ÆV� sin i~2 K � �!��p! fi0� = 0; (16)where ÆV� = V�(t; r;p; Æfi�) and V0� == V�(t; r;p; fi0�) from Eq. (8). Eliminating Æfi�from (16), using ÆV� = �ÆV+, we have2 ÆÝÒÔ, âûï. 1 (7) 17



M. Marklund, P. K. Shukla, G. Betshart et al. ÆÝÒÔ, òîì 126, âûï. 1 (7), 2004ÆV+(p) = 4p2 iGF~ Z dq (1� p̂ � q̂) ÆV+(q)�� 266664 MXi=1 sin i~2 K � �!��q! fi0+(q)
�2q �KE0 �2i~ V0+(q) sin i~2  ���q �K! + NXi=1 sin i~2 K � �!��q! fi0�(q)
�2q �KE0 �2i~ V0�(q) sin i~2  ���q �K!377775 : (17)Assuming that Æfi�(p) is a symmetri funtion of p, whih is a reasonable physial restrition, implies that ÆV�is independent of p, and Eq. (17) simpli�es to the dispersion relation1 = 4p2 iGF~ Z dq 2664 MXi=1 sin� i~2 K � ��q� fi0+(q)
� 2q �KE0 � 2i~ sin� i~2 K � ��q�V0+(q)++ NXi=1 sin� i~2 K � ��q� fi0�(q)
� 2q �KE0 � 2i~ sin� i~2 K � ��q�V0�(q)3775 ; (18)where we have dropped the arrows indiating the diretion of operation. We note that if the bakground distri-bution is thermal, V0� is independent of p, and the last term in the denominators of Eq. (18) vanishes.3.1. The one-dimensional aseThe simplest way to analyze dispersion relation (18) is to redue the dimensionality of the problem. Wetherefore �rst onsider the one-dimensional ase, where we may use the identity2 sin� i~K2 ��p�h(p) = i �h�p+ ~K2 �� h�p� ~K2 ��in order to rewrite dispersion relation (18) as1 = �2p2GF~ Z dq( MXi=1 fi0+(q + ~K=2)� fi0+(q � ~K=2)
� 2qK=E0 +�+(q) + NXi=1 fi0�(q + ~K=2)� fi0�(q � ~K=2)
� 2qK=E0 +��(q) ) ; (19)where we have introdued ��(q) � 1~ �V0� �q + ~K2 �� V0� �q � ~K2 �� :In the ase of monoenergeti beams, i.e.,fi0+(p) = ni0Æ(p� pi0); fi0�(p) = �ni0Æ(p� �pi0);18



ÆÝÒÔ, òîì 126, âûï. 1 (7), 2004 Modulational instabilities in neutrino�antineutrino interationsEq. (19) redues to1 = �2p2GF~ ( MXi=1 ni0 ��~2K2E0 +�+�pi0 + ~K2 ���+�pi0 � ~K2 ���� ��
� 2pi0KE0 �2 ��~2K22E0 �2 +�
� 2pi0KE0 ���+�pi0 + ~K2 �+�+�pi0 � ~K2 ��++ ~2K22E0 ��+�pi0 + ~K2 ���+�pi0 � ~K2 ��+�+�pi0 + ~K2 ��+�pi0 � ~K2 ���1 ++ NXi=1 �ni0 ��~2K2E0 +����pi0 + ~K2 ������pi0 � ~K2 ���� ��
� 2�pi0KE0 �2 ��~2K22E0 �2 +�
� 2�pi0KE0 ������pi0 + ~K2 �+����pi0 � ~K2 ��+~2K22E0 �����pi0 + ~K2 ������pi0 � ~K2 ��+����pi0 + ~K2 �����pi0 � ~K2 ���1); (20)where V0�(p) = �2p2GF "(n0 � �n0)� sgnp MXi=1 ni0 sgnpi0 � NXi=1 �ni0 sgn�pi0!# (21)by Eq. (8).We onsider the simplest ase of interating neutrinos and antineutrinos with M = N = 1. We assume thatthey have equal densities n0 = �n0 and are ounter-propagating, i.e., p0 = ��p0 > 0. From (21), we then obtain thepotential V0�(p) = �4p2GF sgnpn0; (22)while Eq. (20) yields��~2K2E0 � 2�"�8<:"�
� 2p0KE0 �2 ��~2K22E0 �2 � 2�"��
� 2p0KE0 �� ~2K22E0 �#�1 ++ "�
 + 2p0KE0 �2 ��~2K22E0 �2 + 2�"��
 + 2p0KE0 �+ ~2K22E0 �#�19=; = 1; (23)where � = 2p2GFn0~ ;" = 1� sgn(p0 � ~K) =8><>: 0; p0 > ~K;1; p0 = ~K;2; p0 < ~K:Thus, for " = 0, the growth rate is given by (see Figs. 1 and 2)�2K2 =s4v2�~2K2E0 �2 + 4v2v2F + v4F � v2 � v2F ��~2K2E0 �2 ; (24)
19 2*



M. Marklund, P. K. Shukla, G. Betshart et al. ÆÝÒÔ, òîì 126, âûï. 1 (7), 2004where � = �i
 is the instability growth rate andv2F � 2p2GFn02=E0:We also note that as expeted, the instability disap-pears in the limit v ! 0, just stating the well-knownfat that there must be a nonzero relative veloity be-tween the beams in order for the instability to our.Beause �2 is positive, we have� vvF �2 � 2 < � ~2K2E0vF �2 < � vvF �2 ; (25)i.e., `0 < ` < `0(1� 2v2F =v2)�1=2; (26)where we have introdued the length sales` = 2�K ; `0 = ~22E0v :Thus, a higher neutrino momentum an retain a smallerinstability length sale. It is lear from (24) that (i) theinstability remains for arbitrary veloities (see Figs. 1and 2), and (ii) the higher the neutrino veloity, thesmaller the orresponding instability length sale `.3.2. Partial inoherene and thermal e�etsPartial inoherene an in general lead to a lowergrowth rate, similar to the inverse Landau damping.We onsider the following example of the results ofstohasti e�ets (e.g., thermal �utuations). Let theindeterminay of the neutrino olletive state manifestitself in a random phase '(x) of the bakground wavepaket, with the width �p de�ned aording tohexp(�i'(x+y=2)) exp(i'(x�y=2))i = exp(��pjyj=~):Due to this random spread, the modulational instabil-ity is damped, as we show below. The Wigner funtionorresponding to the random phase assumption is givenby the Lorentz distributionf0(p) = n0� �p(p� p0)2 +�p2 : (27)With this, we obtain Eq. (24) with�! �D +�2pK=E0;where �D is the redued growth rate. Thus, we see thatthe broadening tends to suppress the growth. More-over, a positive growth rate �D requires that2v�p~� < `̀0 ; (28)

where � is given by Eq. (24). Hene, the general prop-erty of a spread in momentum spae, here exempli�edby a random phase, is to put bounds on the modula-tional instability length sale `.Inoherent e�ets among the neutrinos and antineu-trinos an also be approahed for a bakground obeyingthe Fermi�Dira statistis, i.e.,f0�(p) = n0ln 4kBT� �1 + exp� jpjkBT����1 ; (29)where we set M = N = 1 and assume n0 = �n0. Here,we have negleted the mass of the neutrinos (whihleads to the orret result to the lowest order). Forsimpliity, we assume that T� = T , and therefore dis-persion relation (19) takes the form1 = �4p2 GFn0ln 4~kBT 1Z�1 dp �
� 2pKE0 ��1 �� "�1 + exp�jp+ ~K=2jkBT ���1++�1 + exp�jp� ~K=2jkBT ���1# : (30)Dispersion relation (30) annot be solved analytially,but it an be expressed as1 = �Q [P(I(
n;Kn)) + i�g(
n;Kn)℄ ; (31)where P(I(
n;Kn)) is the prinipal value of the inte-gralI = 1Z0 dx (1 + ex)�1 ��� 
n+K2n(
n+K2n)2�K2nx2+ 
n�K2n(
n�K2n)2�K2nx2 � ; (32)and g = g+ + g�, whereg�(
n;Kn) = 
n �K2n1 + exp(j
n �K2nj=p2Kn) ; (33)Q � 4ln 4 2p2GFn0kBT E0kBT ;and we have introdued the dimensionless variables
n � ~E0(kBT )2
; Kn � ~p2 kBT K:The onstant Q gives the ratio of the potential energyontribution of the bakground and the individual neu-trino energy to the thermal energy of the bakground.20
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an be expressed as (with the value at 
n0 denotedby 0)�n == � �Q�1+P(I0)� (�g=�
n0)�g0(�P(I)=�
n0)�2 (�g=�
n0)2+(�P(I)=�
n0)2 (34)to the �rst order around (
n0;Kn0). Therefore, �n > 0if �Q�1 +P(I0)� �� ln g�
n0� > �P(I)�
n0 :Moreover, using values given in Se. 4, one an showthat Q�1 � 3 �109. Thus, Q�1 dominates the ontribu-tion to the growth/damping rate over a wide range of21
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n0 > 0.4. APPLICATIONSAs a model for hot dark matter, massive neutrinoshave for some time been one of the prime andidates,but as suh they have faed the problem of the saleof the inhomogeneities that they an support. Due tothe onservation of phase-spae density, the Tremaine�Gunn limit onstrains the neutrino mass for isother-mal spheres of a given size. For dwarf galaxies, forwhih there is ample evidene of dark matter [23℄, theneessary mass of the neutrino is unomfortably large[4, 24℄. On the other hand, as pointed out in [5℄, in-terating dark matter an in priniple hange this pi-ture. Here we see from Eq. (26) that as the neutrinomomentum inreases, the typial length sale ` of theinhomogeneity that an be supported by the modula-tional instability derease. From the de�nition of `0,we note that as v tends to , `0 ! 0, and due toEq. (26), the allowed sale of inhomogeneity beomes

squeezed between two small values. On the other hand,if v � vF (a ondition stating that the neutrino numberdensity must reah extreme values), the upper inhomo-geneity sale limit diverges. A minimum requirementfor the e�et to be of importane is that the instabil-ity growth rate is larger than the Hubble parameterH . An estimate of the growth rate an be obtainedas follows. At the onset of �free streaming� of neutri-nos (i.e., their deoupling from matter and radiation)at z � 1010, the neutrino number density an be es-timated as n0 � 2:1 � 1038m�3 (see, e.g., [25℄). Fur-thermore, we assume that the neutrino mass is in therange m � 1 eV, and �nd vF � 9 �10�4E�1=20 m=s. Thetemperature of the neutrinos, given byT� = (4=11)1=3T0(1 + z)at neutrino deoupling (with T0 being the present dayCMB temperature) [25℄ is T� � 2 � 1010K. Thus,the thermal energy is roughly �ve orders of magnitudegreater than the assumed rest mass of the neutrino,and in this sense the neutrinos an be well approxi-mated as ultra-relativisti. In this ase, using values of22
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Fig. 3. A ontour plot of the Cauhy prinipal value P(I(
n; Kn)) as a funtion of the dimensionless variables 
n andKn. We note that P(I(
n; Kn)) � 0, being largest for small 
n and Kn, and approahing zero at in�nity. The uppermostontour has P(I(
n; Kn)) = 0(~2K=2E0vF )2 in the middle range of inequality (25),we obtain from Eq. (24) that� � 2p2GFn0~ � 16 � 1010 s�1for the values spei�ed above. With the ritial densityassumed for the Universe, the Hubble time beomesH�1 � H�10 (1 + z)�3=2 � 5 � 102 sat the redshift 1010, and therefore �=H � 1.Although the two-stream instability may seem on-trived as a osmologial appliation, the important is-sue displayed by this example is the nongravitationalgrowth of inhomogeneities, given a small perturbationof a homogeneous, although anisotropi, bakground.The ritiism of neutrinos as dark matter andidatesis in partiular based on the fat that they are ultra-relativisti for long times, with free-streaming smooth-ing as a result [4℄. Aording to this, we would have toaept a top-down senario for struture formation, ifneutrinos would indeed be the missing dark matter [15℄.These arguments are presented with the prerequisitethat only gravitational instabilities are of importane

after neutrino deoupling. Other instabilities, suh asthe one presented in this work, ould in priniple alterthis piture, loosening the bounds set by the Tremaine�Gunn limit. The fat that the growth rate exeeds theinverse of the Hubble time by many orders of magni-tude makes it lear that the mehanism may be of someimportane. Moreover, the analogous estimate for theFermi�Dira bakground, although done in a simplis-ti manner, indiates that the growth of the large-Kperturbations may be of importane. Furthermore, al-though we here have used parameters relevant to a os-mologial setting, it ould also be of interest to usethe urrent formalism as a tool to investigate neutrinointerations within supernovæ, where the two-streaminstability senario may our as a more natural ingre-dient than perhaps within osmology.5. CONCLUSIONWe have onsidered the nonlinear oupling betweenneutrinos and antineutrinos in a dense plasma. Wehave found that their interations are governed by asystem of Wigner�Moyal equations, whih admit a23
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n; Kn) of the poles to integral (30) as a funtion of the dimensionless variables
n and Kn. The darker areas represent negative values, the lighter positive values, and g is zero on the ontour emanatingfrom (
n; Kn) = (0; 1:8)modulational instability of the neutrino/antineutrinobeams against large-sale (in omparison with theneutrino wavelength) density �utuations. Physially,the instability arises beause interpenetrating neutrinoand antineutrino beams are like quasipartiles, arry-ing free energy that an be oupled to inhomogeneitiesdue to a resonant quasipartile�wave interation thatis similar to the Cherenkov interation. Nonlinearlyexited density �utuations an be assoiated with thebakground inhomogeneity of the early Universe, andpossibly ounterat the free-streaming smoothing ofthe small-sale primordial �utuations, thus makingmassive neutrinos plausible as a andidate for hot darkmatter.This researh was partially supported by theSida/NRF grant � SRP-2000-041, the Swedish Re-searh Counil through Contrat � 621-2001-2274,and the Deutshe Forshungsgemeinshaft through theSonderforshungsbereih 591.REFERENCES1. Q. R. Ahmad et al., Phys. Rev. Lett. 89, 011301(2002).
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