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DYNAMICS OF JUMP-WISE TEMPERATURE PITCH VARIATIONSIN PLANAR CHOLESTERIC LAYERS FOR FINITE STRENGTHOF SURFACE ANCHORINGV. A. Belyakov *a, I. W. Stewart b, M. A. Osipov baLandau Institute for Theoretial Physis117334, Mosow, RussiabDepartment of Mathematis, University of StrathlydeGlasgow G1 1XH, Great BritainSubmitted 15 September 2003The dynamis of pith jumps in holesteri layers with �nite surfae anhoring strength at temperature vari-ations is investigated theoretially. General expressions are presented that onnet the dynamis of the pithjumps with the parameters that determine the proess, suh as the visosity, the spei� form of the anhoringpotential, and the dimensionless parameter Sd = K22=Wd, where W is the depth of the anhoring potential,K22 is the twist elasti modulus, and d is the layer thikness. It is found that the shape of the anhoringpotential essentially in�uenes the temporal behavior of the holesteri helix in the proess of a pith jump.To illustrate this revealed dependene of the pith jump dynamis on the shape and strength of the anhoringpotential, the problem was investigated for two di�erent models of the surfae anhoring potential for a jumpmehanism onneted with the slipping of the diretor at the surfae over the barrier of the anhoring potential.Calulations for the unwinding (winding) of the helix in the proess of the jump were performed to investigatethe ase of in�nitely strong anhoring on one surfae and �nite anhoring on the other, whih is important inappliations. The results show that an experimental investigation of the dynamis of the pith jumps will allowone to distinguish di�erent shapes of the �nite strength anhoring potential, and in partiular, will provide ameans for determining whether the well-known Rapini�Papoular anhoring potential is the best suited potentialrelevant to the dynamis of pith jumps in holesteri layers with �nite surfae anhoring strength. The optimalonditions for the experimental observation of the phenomena disussed here are brie�y onsidered.PACS: 61.30.-v, 68.15.+e1. INTRODUCTIONReent investigations of the temperature pith vari-ations in planar holesteri layers and of the in�ueneof �nite surfae anhoring and thermodynamial �u-tuations on these variations [1, 2℄ have revealed somenovel e�ets that are interesting in the general ontextof the physis of liquid rystals and in the pratial ap-pliations of liquid rystals. Similar investigations ofpith variation under the in�uene of applied external�elds have also been arried out [3, 4℄. Some exper-imental and applied aspets of pith variations in ex-ternal �elds have been onsidered in [5℄. It has beenknown for quite some time that the temperature evolu-*E-mail: bel�landau.a.ru

tion of a holesteri liquid rystal (CLC) struture [6, 7℄in samples with a �nite surfae anhoring energy maybe ontinuous in some ranges of the temperature withjump-wise hanges at de�nite temperature points, witha strong hysteresis e�et ourring when the diretionof the temperature variations is hanged [8�10℄. Thisproblem has been reently investigated in [1, 2℄. Butonly thermodynami equilibrium states of holesterilayers were studied in these theoretial papers and theproblem of the dynamis of jump-wise transitions wasnot onsidered. Nevertheless, the dynamis of liquidrystals in restrited geometries present general phys-ial interest and is of espeially great onern in liq-uid rystal appliations [6℄. For example, the swithingtime between two bistable states studied experimen-89



V. A. Belyakov, I. W. Stewart, M. A. Osipov ÆÝÒÔ, òîì 126, âûï. 1 (7), 2004tally in [11, 12℄, as was shown theoretially [13℄, is di-retly onneted to the liquid rystal dynamis in theorresponding restrited geometry. In this artile, thedynamis of the aforementioned jump-wise transitionsis studied. We begin with the simplest ases that re-veal jump-wise transitions, namely, theoretial inves-tigations of the dynamis of the temperature-induedjump-wise variations of the holesteri pith and dire-tor distribution in a planar layer of CLC with in�nitelystrong anhoring at one of its boundary surfaes andanhoring of a �nite strength at its other boundarysurfae. We note that the dynamis of suh jump-wisetransitions is diretly dependent on both the visosityproperties of liquid rystals and the harateristis ofthe surfae anhoring potential. This is the motiva-tion for introduing and onsidering di�erent modelsfor the surfae anhoring potential. In addition to thewell-known Rapini�Papoular anhoring potential, an-other possible model for the anhoring potential, theB-potential, is used in the alulations presented be-low. 2. SOME RESULTS OF EQUILIBRIUMINVESTIGATIONSWe present some results on the temperature behav-ior of the holesteri helix in a planar holesteri layerof �nite thikness having �nite strength of anhoring atone of its surfaes and in�nite anhoring at the other, asdepited in Fig. 1. We �rst restrit the analysis of thetemperature variations of the diretor on�guration inthe layer by assuming that the pith-jump mehanismis onneted with overoming the anhoring barrier bythe diretor at the surfae and, moreover, that any liq-uid rystal (LC) thermal �utuations may be negleted.Below, we follow the approah and investigationsreported earlier [1, 2℄, and onentrate on the transi-tions between N and N + 1 half-turns of the diretorin the layer, whih proeed without strong loal distur-banes of the diretor on�guration. Suh a transitionis unique if the �nite anhoring at the seond surfae
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d ϕ2Fig. 1. The ase of nonidential anhoring at the sur-faes of a holesteri layer (for in�nitely strong anho-ring at the bottom surfae '2 = 0)

is su�iently weak, i.e., the dimensionless parameterSd = K22=Wd > 1=2�, whereW is the depth of the an-horing potential, K22 is the twist elasti onstant, andd is the layer thikness. The ase of small Sd < 1=2�has been studied numerially in [9℄.We start by �nding the temperature behavior of', the angle of deviation of the diretor from thealignment diretion orientation at the surfae of theholesteri layer with �nite anhoring, see Fig. 1. Fol-lowing [6℄, we an write the free energy of the layer asF (T ) = Ws(') + 12K22d � 2�pd(T ) � 2�p(T )�2 ; (1)where Ws(') is the surfae anhoring potential, K22 isthe elasti twist modulus, d is the layer thikness, p(T )is the natural pith value in an in�nite sample of theholesteri liquid rystal, and pd(T ) is the orrespond-ing pith value in the layer.Beause the pith value pd(T ) in the layer is deter-mined by the angle ' and the natural pith p(T )may beexpressed via the angle '0(T ), the angle of the diretordeviation from the alignment diretion at the surfaeswith �nite anhoring in the absene of any anhoringfores, expression (1) for the free energy is readily rep-resented as a funtion of these angles, namely,F (T ) =Ws(') + 12K22d ['� '0(T )℄2 : (2)We note that Eq. (2) is obtained from Eq. (1) using asimple hange of variables ' = qd, where q = 2�=p andz = 0 at the surfae with in�nite anhoring. The angle' an be found from the ondition for a minimum ofthe free energy in Eq. (2). Consequently, ' must satisfythe equation �Ws�' + K22d ['� '0(T )℄ = 0: (3)Analysis of Eq. (3) reveals that a smooth hange ofthe diretor deviation angle ' is possible when ' isless than some ritial angle '. As ' ahieves theritial value ', a jump-like hange of the pith o-urs. For Sd > 1=2�, the transition to the unique newon�guration of the helix, di�ering by one in the num-ber of half-turns N , ours. In this ase, it is possi-ble to restrit the range of values of ' to the interval[��=2; �=2℄ using the formula ' = N�+' 0, where theintegerN = Int['=�℄ is the number of half-turns withinthe layer thikness. In the ase where Sd > 1=2�, allsolutions for ' 0 �t into the interval [��=2; �=2℄. In therest of the paper, we only use the variable ' 0, with theprime dropped for simpliity. The ritial value of the90



ÆÝÒÔ, òîì 126, âûï. 1 (7), 2004 Dynamis of jump-wise temperature pith variations : : :diretor deviation angle ' orresponds to the on�gu-ration with N diretor half-turns in the layer when itis at an instability point.The pith in the layer just before the jump andthe orresponding natural pith are expressed through' aspd(T) = 2dN + '=� ; p(T) = 2dN + '0(T)=� ; (4)where T is the jump temperature. The angle '0(T)(the natural one at the jump point temperature) isgiven by '0(T) = ' + dK22 ��Ws(')�' �'=' : (5)The value of ' after the jump, denoted by 'j , whihis basially onneted to the pith pdj(T) in the layerafter the jump, is determined by the solution of theequation�Ws(')�' + K22d ['� '0(T) + �℄ = 0; (6)where '0(T) is determined by Eq. (5). As has beendetermined previously [1, 2℄, the variations of the pithin the layer and, in partiular, the hysteresis are deter-mined by the dimensionless parameter Sd = K22=Wd,where W is the depth of the anhoring potential, andare rather universal phenomena beause they are notdiretly dependent on the sample thikness. Thismeans that for every spei� form of the anhoring po-tential, expressions (3)�(6) an be transformed to formsthat inlude the parameters of the problem, namely, d,K22, andW , whih only appear in ombinations redu-ing to the dimensionless parameter Sd.3. MODEL ANCHORING POTENTIALSTo obtain some quantitative preditions, we mustassume some spei� form of the anhoring potential.We use the widely known Rapini�Papoular (RP) an-horing model potential [6, 14℄Ws(') = �W2 os2 ': (7)For this potential, the ritial angle ' = �=4 when theanhoring is idential at both surfaes of the layer. Theanalysis in [1, 2℄ demonstrated that the essential fea-tures of the diretor temperature variations are diretlydependent on the partiular shape of the anhoring po-tential. It is therefore quite natural to perform similaralulations for a potential that di�ers from the RP
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Fig. 2. Qualitative plots of RP potential (7) and B-po-tential (8)model anhoring potential. The seond model poten-tial to be investigated, whih we all the B-potential,is given by the expression (see Fig. 2)Ws(') = �W �os2 '2 � 12� ; ��2 < ' < �2 ; (8)whih is ontinued periodially for j'j > �=2 in a-ordane with the relation Ws(') = Ws(' � �). Thebehavior of potential (8) is similar to the ase of theRP potential for small '. However, it di�ers essen-tially from the RP model when ' is lose to �=2. Inpartiular, for idential anhoring at both surfaes, theritial angle ' for potential (8) is independent of thestrength of the anhoring (via the parameter Sd) and isequal to �=2. Beause there are too many parametersin the general ase for di�erent anhoring at the twosurfaes, we onsider a spei� ase in detail, namely,the ase where there is in�nitely strong anhoring onone surfae and �nite anhoring on the other surfae ofa layer.4. INFINITELY STRONG ANCHORING ATONE SURFACEWe now apply the above general expressions to thespei� ase where in�nitely strong anhoring is as-sumed at one of the layer surfaes and �nite anhoring,desribed by the potential Ws('), at the other, whereWs(') is either of the two �nite anhoring potentialsmentioned above.91



V. A. Belyakov, I. W. Stewart, M. A. Osipov ÆÝÒÔ, òîì 126, âûï. 1 (7), 20044.1. The Rapini�Papoular potentialFor the RP potential (7), the free energy given byEq. (2) beomesF (T )W = 12 h� os2 '+ Sd ('� '0(T ))2i : (9)The angle of the diretor deviation at the surfae, ', isdetermined bysin(2') + 2Sd ('� '0(T )) = 0; (10)while the ritial angle ' is determined by the relationos(2') + Sd = 0, that is,' = 12 aros(�Sd): (11)Equation (11) shows that the ritial angle ' dependson the parameter Sd, in ontrast to the ase where theanhoring is idential at both surfaes [1, 2℄. It hangesfrom �=4 at Sd = 0 to �=2 at Sd = 1.The value of the pith for a bulk sample, or the al-ternative desription involving the free rotation angle'0(T) orresponding to the jump point, is determinedfrom Eq. (10) as'0(T) = ' + 12Sd sin(2'): (12)The solution of Eq. (11) exists only for 0 < Sd < 1.This means that for weak anhoring (or thin layers),jump-wise hanges of the diretor on�guration in thelayer may be absent. But it should be mentioned thatbeause Eq. (11) for the ritial angle was obtained forthe RP anhoring model potential, the previous state-ment is model-dependent. Therefore, experimental in-vestigations of jump-wise hanges of the diretor on-�guration in a layer may be used for determining theshape of the atual anhoring potential and its devi-ations from the RP anhoring model potential. Thevalue of 'j , or its equivalent in terms of the pithpdj (T) in a layer after the jump, is determined by thesolution ofsin(2'j) ++2Sd�'j�12 [aros(�Sd)℄� sin(2')2Sd +�� = 0: (13)4.2. The B-potentialWhen the �nite anhoring potential is taken as theB-potential in Eq. (8), the expression for the free en-ergy given by Eq. (2) beomesF (T )W = 12 h�2 os2 '2 + 1 + Sd ('� '0(T ))2i : (14)
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Fig. 3. The dependene of the post-jump angle 'j andthe angular width �' of the jump on the dimensionlessparameter Sd for the RP potentialThe angle ' of the diretor deviation is determinedfrom the relationsin'+ 2Sd ('� '0(T )) = 0: (15)The ritial angle ' for the B-potential is givenby �=2 for any value of Sd (see Fig. 2), as in the asefor idential anhoring at both surfaes. The value ofthe pith for a bulk sample, or its equivalent in termsof the free rotation angle '0(T) orresponding to thejump point, is determined from Eq. (15) as'0(T) = �2 + 12Sd : (16)The value of 'j , equivalent to the knowledge of thepith in a layer after the jump at pdj (T), is determinedby the solution of the equationsin'j + 2Sd�'j � 12Sd + �2� = 0: (17)The values given above for the angles of the dire-tor deviation just before and after the jump, equivalentto knowing the values of the pithes in the layer andthe orresponding value of the pith in a bulk sample,ompletely determine the initial and �nal states of thedynamial problem to be solved. As an example, 'jand the angular width of the jump, i.e., �' = 'j �',alulated versus Sd and the layer thikness d for theRP and B-potentials are presented in Figs. 3, 4 andFigs. 5, 6, respetively.92
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Fig. 4. The dependene of the post-jump angle 'j andthe angular width�' of the jump on the layer thikness(in units of the penetration length K22=W for �xed va-lues of K22 and W ) alulated for the RP potential
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Fig. 5. The dependene of the post-jump angle 'j andthe angular width �' of the jump on the dimensionlessparameter Sd for the B-potential5. JUMP DYNAMICSThe plane geometry of the problem under onsider-ation, and symmetry arguments, allow us to suppose, ina �rst approximation to the problem, that the hydrody-namial �ow during the pith jump motion in a planarholesteri layer is of minor signi�ane. We thereforeinitiate a study of the above problem by negleting thehydrodynamial �ow. Moreover, we also neglet the�uid and diretor inertial terms; this approah is usu-ally adopted in the theory of liquid rystals.In our approah, the diretor on�guration is spei-
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Fig. 6. The dependene of the post-jump angle 'j andthe angular width�' of the jump on the layer thikness(in units of the penetration lengthK22=W for �xed val-ues of K22 and W ) alulated for the B-potential�ed by one time-dependent variable '(t), i.e., by thediretor orientation at the surfae, whih, unlike inthe previous setions, is now time-dependent. The dy-namis of ' is in general desribed by the Landau�Khalatnikov equation [15℄ d'dt = ��F�' ; (18)where F = F (') is the total free energy and  is thekineti oe�ient. This equation an also be derivedusing the general ontinuum theory of liquid rystals,whih enables one to determine the parameter . Inthe absene of �ow and general external fores, it isknown from the general ontinuum theory of liquidrystals [16℄ that ddtF = � Z
 D d
; (19)where D is the Rayleigh dissipation funtion [17℄ and
 is the volume of the sample.5.1. Simpli�ed dynamial solutionsFor the further simpli�ation of the problem, weassume that the diretor distribution in the layer isquasi-stati. This means that the diretor orientationangle �(t; z) in the bulk of the sample an be easilyrelated to the above time-dependent orientation angle'(t) through the equation���t = zd d'dt ; (20)93



V. A. Belyakov, I. W. Stewart, M. A. Osipov ÆÝÒÔ, òîì 126, âûï. 1 (7), 2004a form that is motivated by the well-known twist solu-tion that ours in the isothermal situation of holester-is. This is a onsequene of assuming that the di-retor on�guration inside the layer at any given timet is quasi-stati, that is, the helial struture withinthe layer remains undistorted and orresponds to somevalue of the pith, whih is hanging with time; in-�nitely strong anhoring at one boundary then justi-�es the assumption made in Eq. (20). It follows fromEqs. (18) and (19) that for a sample of unit dimensionsin the x and y diretions,ddtF ('(t)) = � dZ0 D dz; (21)With the above assumptions on �ow, the dissipationfuntion in this ase is simply (f. [18, pp. 11�13℄and [19℄) D = 1����t �2 ; (22)where 1 > 0 is the twist visosity. BeausedFdt = d'dt dFd' ; (23)we an use relations (20) and (23) and insert D de�nedby Eq. (22) in Eq. (21) to �nd thatd'dt = � 11 3d dFd' : (24)This expression for the dynamis in the layer allows usto derive the solution for ' impliitly by integrationof (24) from time t = 0, where the diretor deviationangle at the surfae is equal to the ritial value, i.e.,'(0) = ', up to time t, where ' = '(t). The resultingsolution for ' ist = �1 d3 'Z' �dFdb'��1 db': (25)The solution ' must of ourse lie within the range' � ' < 'j , that is, between the initial and �nalstates identi�ed above in Se. 4. The values of ' and'j were disussed in Se. 4 and are learly dependent onthe spei� form of the anhoring potential and may bedependent on the value of the parameter Sd. The om-plete duration � of the pith jump is found by replaingthe upper limit in the integral in Eq. (25) by 'j .The solution in Eq. (25) also allows us to de�nethe relaxation time for the jump proess. For example,

the relaxation time tr may be de�ned as the derivativedt=d' evaluated at the middle-during-the-jump-valueof ' = (' + 'j)=2. Expliitly, we have from (25) thattr = �1 d3 �dFd'��1'=('+'j)=2 : (26)We now disuss the solutions for the RP and B-po-tentials separately.5.2. Rapini�Papoular potentialIn the ase of the RP potential, the pith jump onlyours when 0 < Sd < 1 (su�iently strong anhor-ing). The expliit form of the integral appearing in so-lution (25) an be obtained via Eqs. (2) and (7), withthe result that the solution an be written ast = �Sd 21d23K22 'Z' � sin(2b') ++ 2Sd�b'+ � � ' � sin(2')2Sd ���1 db'; (27)where the ritial angle ' is given by Eq. (11). Themaximum possible upper limit of integration is 'j ,whih is determined from Eq. (13) for a given valueof Sd.In the simple speial ase where Sd = 1=2, ' = �=3and the upper limit 'j is determined from the equationsin(2'j) + 'j + �3 = 0; (28)obtained from Eq. (13).5.3. The B-potentialFor the B-potential, the pith jump ours for0 < Sd < 1 (i.e., at any strength of anhoring) andthe expliit expression for the impliit solution is givenvia Eqs. (2), (8), and (25). The solution is given byt = �Sd 21d23K22 �� 'Z��=2 hsin b'� 1 + 2Sd �b'+ �2�i�1 db'; (29)where we reall that ' is always ��=2 for the B-potential. The upper limit of integration 'j is deter-mined from Eq. (17) for any given value of Sd. We notethat in this result, the form of the integrand and inte-gration limits are given for the diretor on�guration94



ÆÝÒÔ, òîì 126, âûï. 1 (7), 2004 Dynamis of jump-wise temperature pith variations : : :after the jump, that is, when N has hanged by 1, and,onsequently, '0(T) is replaed by '0(T)� �.As a simple example, we onsider the ase whereSd = 1=�. The impliit solution (29) for ' is thengiven byt = � 1� 21d23K22 'Z��=2 �sin b'+ 2 b'� ��1 db' ; (30)where the upper integration limit in the right-hand sideis formally zero, beause, 'j must be zero at Sd = 1=�by relation (17). We note that the integral in (30) di-verges logarithmially as ' approahes 'j = 0, whihindiates formally that the time taken to omplete thejump is in�nite. Nevertheless, there are physial meh-anisms that ensure a ut-o� to this limit suh that thisdivergene does not our in reality. For example, theut-o� may be due to thermal �utuations within theholesteri layer and a nonzero upper limit may thenbe determined by the temperature.6. GENERAL RESULTSWe now use solutions (27) and (29) for the RPand B-potentials, respetively. To simplify the resultsand give qualitative plots for data, we introdue thetimesale [6, p. 226℄ t = t�2K221d2 ; (31)whih is a typial kind of saling that ours in liquidrystal problems [16, 19℄.6.1. Rapini�Papoular potentialSolution (27) for the RP potential is given byt = �Sd �2 23 'Z' � sin(2b')++ 2Sd�b'+ � � ' � sin(2')2Sd ���1 db'; (32)where, by (11), ' = aros(�Sd)=2 and the relaxationtime is given, via (26), bytr = �Sd �2 23 � sin(2')++ 2Sd�'+ � � ' � sin(2')2Sd ���1'='��+'j2 ; (33)

with 'j obtained from Eq. (13). Figure 3 shows thedependene of 'j on Sd. It is also possible to de�nethe swithing time. We de�ne the swithing time ts asthe time taken for the orientation angle ' to hange bya half of the jump angle width, i.e., to hange from 'to (' � � + 'j)=2. It is given byts = �Sd �2 23 '��+'j2Z' � sin(2b')++ 2Sd�b'+ � � ' � sin(2')2Sd ���1 db': (34)The solution ', the relaxation time tr, and dependeneof the swithing time ts on Sd for the RP potential areshown in Figs. 7, 8, and 9.6.2. The B-potentialSolution (29) for the B-potential is given byt = �Sd �2 23 'Z��2 hsin b'�1+2Sd �b'+�2�i�1 db'; (35)and the relaxation time istr = �Sd�2 23 hsin'�1+2Sd �'+�2�i�1'='j��=22 ; (36)where 'j is alulated from Eq. (17). It is also possibleto de�ne a swithing time analogous to that for the RPpotential by the relationts = �Sd�2 23 �� 'j��=22Z��2 hsin b'� 1 + 2Sd �b'+ �2�i�1 db': (37)The solution ' and the relaxation time tr for the B-po-tential are shown in Figs. 10 and 11, while the depen-dene of the swithing time ts on Sd is shown in Fig. 12.We note that at the initial stage of the jump, thesurfae visosity (see, e.g., the introdution of the sur-fae visosity disussed in [13℄) may restrit the velo-ity of diretor rotation at the layer surfae. It may betaken into aount by adding the surfae visosity terms(d'=dt)2 to Eq. (21). The orresponding additionalterm may play a role in very thin layers and may inpriniple be deteted by experiment.95



V. A. Belyakov, I. W. Stewart, M. A. Osipov ÆÝÒÔ, òîì 126, âûï. 1 (7), 20047. CONCLUSIONThe results obtained above reveal the qualitativelyimportant physial properties of jump dynamis. Forinstane, suh dynamis have a diret dependene onthe strength and shape of the anhoring potential. Al-though the spei� alulations of the jump dynam-is were performed under the simplifying assumptionsmentioned above, there is no doubt that the qualitativefeatures of jump dynamis remain valid in general forthe phenomenon as a whole. It is therefore interestingto disuss under whih irumstanes the solutions de-sribed above are quantitatively valid, and what mod-i�ations to these solutions would be required underother onditions in order to obtain a further quantita-tive desription of pith jump dynamis.We onsider the quasi-stati approximation to thedynamis of the pith jump. It may work quantitativelyif the time of propagation of the disturbane betweenthe surfaes of the layer is smaller than the harateris-ti time of the jump. Estimating the veloity of pertur-bation propagation in the holesteri as vp = K22=1p,where p is the holesteri pith, we �nd that the per-turbation propagation time is p=d, in the de Gennesunits of time used in the alulations (f. Eq. (31)),and is therefore small if p=d is small. Examination ofFigs. 7�12 allows us to determine in whih range of theparameter Sd and for whih potential the aepted ap-proximations are valid. In any ase, it is lear that ingeneral, the jump time (or the orresponding relaxationtime) is shorter for the B-potential ompared to the RPpotential, and therefore, as the values of Sd derease,the approximation beomes invalid for the B-potentialat larger values of Sd than for the RP potential. If weassume that p=d � 0:1, then the alulations presentedabove show that the obtained results are of quantitativemeaning for Sd > 0:1.As a �rst step in overoming the quasi-stati ap-proximation made here, we may regard solutions ofthe equations in the previous setion with a time-dependent spae sale and limit the integration inEq. (19) to the time t by the distane relation d(t) = vptif d(t) < d. Within this approah, a quantitative de-sription of the pith jump dynamis may be obtainedfor values of the parameter Sd not limited by the on-dition Sd > 0:1 above. However, one has to bear inmind that other mehanisms of the pith jumps maybe at work for smaller values of Sd. This is onnetedwith the fat that for values of Sd smaller than its rit-ial value 1=2� [1℄, along with the jumps orrespond-ing to a hange in the number N of half-turns at thelayer thikness by one (whih orrespond to the transi-
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