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A model is developed for electromagnetic form factor of the pion. One-loop corrections are included in the linear
o-model. The p-meson contribution is added in an extended VMD model. The form factor, calculated with-
out fitting parameters, is in a good agreement with experiment for space-like and time-like photon momenta.

Loop corrections to the two-pion hadronic contribution a

(had,m)
i

to the muon anomalous magnetic moment are

calculated. The optimal value of the o-meson mass appears to be very close to the p-meson mass.

PACS: 12.39.Fe, 12.40.Vv, 13.40.Gp

1. INTRODUCTION

It has recently been understood that the pion elec-
tromagnetic form factor is a very important physical
quantity that plays a key role in the test of the Stan-
dard model at the electroweak precision level. The rea-
son is that at low energies, the production cross section

<1_

where s is the squared total energy in center-of-mass
system, a is the fine structure constant, and m; is the
pion mass, dominates over the other hadronic chan-
nels and accounts for more than 70% of the total
hadronic contribution to the muon anomalous magnetic
moment (AMM)
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The recent measurement of a, from Brookhaven E821
experiment [1] has boosted the interest in a renewed
theoretical calculation of this quantity [2].

The main ingredient of the theoretical prediction of
a,, which is responsible for the bulk of the theoretical
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error, is the hadronic contribution to the vacuum po-
larization. The contribution of the #* 7~ channel to
the electron—positron annihilation process can be writ-
ten in terms of the form factor Fy(s) via the dispersion
integral [3]

o
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where m,, is the muon mass.

Conventional strategy of the model-independent
evaluation of this integral consists in utilization of
precise experimental data (at least at low energies,
where perturbative QCD cannot be reliably applied).
However, the announced accuracy, which is to be
reached soon in E821 experiment, requires calculation
of electromagnetic radiative corrections to cross section
(1) |4]. Apart from the pure 7™ 7~ events, electromag-
netic radiative corrections include the 77~ process
where the photon is radiated from the final pions. In
the current experiments at ® and B factories, based
on the radiative return method [5], this contribution
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cannot be extracted in a model-independent way!) and
the corresponding procedure requires model-dependent
approaches. This, in turn, stimulates development and
study of different theoretical models of the pion—photon
interaction. The simplest one is the point-like scalar
quantum electrodynamics (sQED) [7] joined with the
standard vector meson dominance (VMD) model (see,
e.g., |8]) for description of the v* — 77~ transition
form factor in the p-resonance region. Such a model
was used in Ref. [4] for construction of the Monte Carlo
event generator.

In the present paper, we consider a modification
of the pion electromagnetic form factor in the linear
o-model [9] with spontaneously broken chiral symme-
try, which includes the nucleon sector. The p-meson
contribution is added following Refs. [10, 11]. In par-
ticular, the p coupling to the pion and nucleon is intro-
duced through gauge-covariant derivatives, while the
direct vp coupling has an explicitly gauge-invariant
form. We calculate the pion form factor in the one-
loop approximation in the strong interaction and com-
pare Fy(s) with the precise data obtained from elastic
e~ w7t scattering and et e~ annihilation in the pion pair.

We take the loop corrections to a,(lhadﬂr) into ac-
count. In general, because the o-model Lagrangian
contains the sQED Lagrangian as a constituent part,
one can expect that the difference between the predic-
tions of o-model+VMD and sQED + VMD is small.
Indeed, it follows from our calculation that the loop
corrections increase the low-energy part of the right-
hand side of Eq. (2) by about 2 per cent, as compared
with sQED + VMD.

2. FORMALISM
2.1. Lagrangian
The Lagrangian of the model consists of two parts,
L=LY 423,

The first one is the Lagrangian of the chiral linear
o-model [9] with an explicit symmetry-breaking term
c¢. After spontaneous breaking of chiral symmetry and
redefinition of the scalar field via

=0+,

where v = (¢) is the vacuum expectation value, the
Lagrangian takes the form

D Even in direct scanning experiments, a model-independent
treatment of the 717~ events suggested in [6] seems too com-
plicated to be used in the near future.

LY = N(@i — mn)N + % [(80) - m(2,02] +
]- =\ 2 2 =2
+ 3 {(8#) —miT ] -

where N, 7, and o are the respective fields of the nu-
cleon, pion, and meson with vacuum quantum numbers,
g is the coupling constant, A is parameter of the meson
potential, and

P = 0"y,

etc. All parameters of the model are related via

(80)* = o*ody,o,

my = grv, m2 =2 >+m2, m2= % (4)
Moreover, in the tree-level approximation, v = f;,
where f, = 93.2 MeV is the pion weak decay constant.
More details on the o-model can be found, e.g., in [12,
Ch. 5, Sec. 2.6].

The second part of the Lagrangian includes coup-
ling to the electromagnetic field A* and the field p* of
the neutral p-meson. This coupling can be obtained
using the minimal substitutions

1473
2

oHr® — oM + (eA* + gpp“)s?’abﬁb, (5)
a,b=1,23,
oMo — oo,

OM'N — <8" + ie AF 4 igp;—3p“> N,

where e is the proton charge, g, is the coupling con-
stant, and 73 is the third component of the Pauli vec-
tor 7 = (11,72, 73). In addition, we include the direct
coupling of the photon to the p-meson in the version of
VMD model from Refs. [10, 11]. We thus obtain

1 11 .
E(Q) = Em?,pupu - ZPWP“ - ZFuyFu —

— (eAy + gopu) (7 X 0" F)y+(eAu+gopu) (72 —72)—
1+7, e

NA,—— p, F*, (6
2 1 2fp pu ( )

_gpN’YM%NPu_eN’Yu
where

F,uv = auAu - avA,ua Puv = 8,upu - 8vp,u7

and f, determines the vp coupling. In Eq. (6), we as-
sume equal coupling constants of p to the pion and the
nucleon in accordance with the universality hypothesis
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of Sakurai (see, e.g., [12, Ch. 5, Sec. 4]. At the same
time, the yp coupling constant f, does not necessar-
ily coincide with g,. Lagrangian (6) is gauge-invariant
because of the form of the yp coupling. We mention
that the nucleon contribution is also included in La-
grangian (6), contrary to [10, 11].

2.2. Counterterms and renormalization

Because one of the purposes of the present paper
is to take loop corrections to the pion electromagnetic
vertex into account, we need to specify the way of renor-
malization of the parameters. We use the conventional
approach and assume that Lagrangians (3) and (6) in-
volve the «bare» fields, coupling constants and masses,
to be marked by the subscript «0». The bare fields
require rescaling,

(ﬁg,ag):\/zﬂ(ﬁ:,a)., N():\/ZNN,
ph =\ Zpp", Aj = ZsA",

where Z; Zn,Z,, and Z, are the respective wave-
function renormalization constants for the pion (or
sigma), nucleon, rho, and photon. The procedure for
obtaining the counterterm Lagrangian is known (see,
e.g., [13, Ch. 10]). For £, the corresponding coun-
terterm Lagrangian is given by

(1)

ct

L =65, NipN—5, vNN—6, N (o+iv,77) N+

+ %5Zﬂ {(67?)2 + (60)2] -
1

2

- iéx(ﬁq +02)7 = 5y (072 + 0%) —

(B 3030%) 0 = 2 (5 + 630%) 7° -

— [(64 + 6xv*) v — 6. 0 + const. (7)

There are six constants dz,,0zy,0u,0x, g, .d., which
can be fixed by imposing six conditions on the Green’s
functions in general. In the calculation of the pion elec-
tromagnetic vertex, only one constant §z_ is needed
(see Sect. 2.3).

For Lagrangian (6), we can first define the physical
values of the electric charge

e=eg\/Za
and the p coupling

9p = 9po/ Z,.

It is also convenient to introduce

mp =/ mep(]
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(the p-meson mass in the absence of coupling to pions).
The counterterm Lagrangian can be written as

£(2) - _

1 14 1 14
ct 074 ZFWFH _52,, ZPWPH -

— 0z, (eAu + gppu) (B x O'T)5 +
+0z, (eAu + gppu)2 - 7732) -

1
%NAH_

T

T
_ T _

- 6ZNgPN7H33NpH - 6ZN6N7H

€ v
—6fp§p,“,Fu . (8)
It follows that we in general need three additional con-

stants 6z, , 0z,, and dy,, once 0z, and dz, are fixed.
Finally, the total Lagrangian is the sum?®

L=LD 4?40+ 5. (9)

2.3. Contribution to the pion electromagnetic
form factor from the o-model sector

Feynman rules for Lagrangian (9) are obtained ac-
cording to the standard prescriptions [14]. The coun-
terterm constants can be found by imposing the follow-
ing constraints on the respective self-energy operators
of the pion, sigma-meson, and nucleon:

Sa(m2) = 25507 =S (md) =0
zN@)‘ - Lovw =0 "
p=mn dIﬂ p=mn

These conditions imply that the respective pole po-
sitions of the pion, nucleon, and sigma propagators
are located at the physical mass of the pion, nucleon,
and sigma. In addition, the residue of the pion and
nucleon propagators is unity, ensuring the absence of
renormalization for the external pion and nucleon (but
not for the external sigma-meson). We also impose the
condition {¢), which is ensured by requiring that the
so-called tadpole diagrams vanish. Correspondingly,
the tandpole diagrams do not contribute to the quan-
tities calculated below.

In calculation of the loop integrals, we use the di-
mensional regularization method (see, e.g., [13, Ap-
pendix A. 4]. Exploiting conditions (10), we find the
constant dz_:

2) The mass m,, in £(?) is replaced by ni,.
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Fig.1. One-loop diagrams contributing to the pion electromagnetic form factor in the o-model. Dashed lines depict pion,
dotted lines — sigma, solid lines — nucleon, and wavy lines — photon. Small crossed circle denotes the counterterm.
Diagram a corresponds to the pion form factor in sSQED

g2 L Ans with scalar functions F(p?,p3,q?) and G(p?},p3,q%).
0z, = —=75 / Ic —In 2T On the mass shell, p? = p3 = m?2, the function
0 G(m2,m2,¢?) drops out, while F'(m2,m2, ¢*) becomes
. m2z(1 — ) (mi _ m%) 2(1 - ) ; ) eque}l to Zhe piog fg)rrz?ft;)r fﬁ(qQ).ﬁV\;ith the loop cor-
- - z, o

Ans a2 Ao, rections denoted by (¢*), we fin

FO@) =14 AFO (@) 465, (14)
Anr =mi —miz(l —2),
(12) where the total correction is finite and is given by

Avog =m2z +m2(1 —x)2

. 1
In these equations, AFO) ()15, = ﬁ / <1 m3—m2x(1-x) ~
2 T 4g? m3,—¢*x(1—x)
I. = - —vg +Indn, 0
2 2 242
e=4-D—0, —z(1—2x) Am]\jw + (1;1;1?\,22) ) dx+
where D is the space-time dimension, yg ~ 0.5772 is 11
the Euler constant, and A is an arbitrary scale mass, n // < y*m?
which drops out in the physical observables. , ANnz(y, )

The one-loop contributions to the pion electromag-
netic vertex coming from the o-model are shown in
Fig. 1. Using the isospin structure of the vertices, or
negative charge-conjugation parity of the photon, one
can show that diagrams e, f, and g vanish. Countert-
erm h cancels the divergences coming from loop contri-
butions b and ¢, while contribution d is finite.

In the general case of the off-mass-shell pions, the
electromagnetic vertex I'%, (p1, pa, ) for the process

v (@) = 7 (p1) + 7" (p2)

has the form

—iT! (p1,p2,q) = 3 [F(p.p3,a*) (p2 — p1)"'+
+ G(p1.p3.¢")(p2 +p1)"], (13)
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y(1—y)(mg —m;

4m?\/A7ra (y7 1‘)

)2>dx dy] ,  (15)

ANTI'(y'/x) = m%\f - q2y2x(1 - 33) - m?ry(l - y)a

A'/ra(y'/x) = m2 (1 - y) - y2(q2$(1 - l‘) - m?r),

[oa

(16)
with Ay, and A, defined in Eq. (12).

2.4. Contribution to the pion electromagnetic
form factor from the p-meson

The contribution to the pion electromagnetic form
factor from the p-meson can be written in the compact
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form with
F) (%) = Ay =mi — z(1 —2), Ay =m2 —¢’z2(1 — ).
_ _gp(q2) q* + AF(pm)(qQ). (17) The self-energy has a logarithmic divergence and re-
fol@®) @ =y —Tl,p(q) " quires renormalization. The authors of Ref. [11] renor-

This expression includes several effects coming from the
loop corrections shown in Fig. 2.

1) The ¢?-dependent vertex g,(¢?) describes loop
corrections to the prm coupling that originate from the
o-model (Fig. 2, diagrams a). These corrections have
not been included in Ref. [11]. We can write

gp(qQ) =g,[1+ AF(U)(QQ) +0z,] (18)

It is seen that the expression in the square brackets is
the same as in Eq. (14) and is finite. From Eq. (18),
we obtain

1+ AF) (¢?) 464,
14+ AF@(m2) + 6z,

90(¢%) = gp(m3) (19)
in terms of the constant g,(m2). From the ex-
perimental width of the p — #nm decay, I'poyrr =
= 150.7 MeV [15], we have [g,(m2)| = 6.05. To find
the real and imaginary part of gp(m%), we can use the
relations

1
2 2
Regp(mp) = 1+ )\2 |gp(mp)‘7
A (20)
2y 2
Imgﬂ(mp) - 1 + /\2 ‘gp(mp)|'/

A =ImAF“) (m2)[1 + Re AF ) (m2) + 7,1 "
2) The p-meson self-energy has the structure
5" (q) = (9" — ¢"¢" /a*)1,(¢?)

and corresponds to the diagrams shown in Fig. 2b. Tt
leads to the following exact propagator of the p-meson
(Fig. 2, diagrams c):

gt
a*1my’

9" = q"q" | ¢
q> —m2 —T,(q?)

G (q) = —i (21)

Calculation of the loop integrals in Fig. 2b results in
I, (¢*) = ¢*w(@®) — dz,);

2
g
w(q®) = 16;2

(22)

[~ 1 + I(qz)]a

2x) lnﬁ X

1
A
I(q2)=2/ [2x1nA—]2V—|—(1— 13
0

x (1 —z)de, (23)

malized the self-energy by applying a dispersion rela-
tion with two subtractions. We prefer an alternative
method of counterterms, which is expressed in Eq. (22)
through the constant 62‘,. We can fix the latter from
the constraint on the self-energy at the physical mass
m,, of the p-meson,

d
d—quer(q2)‘q2:m§ =0 = (24)

8z, = Z,—1=Rew(m}) + m,Rew'(m?2),  (25)

where J
Rew'(¢?) = i Rew(q?).

It is seen from Eqs. (22) and (25) that the self-energy
I,(¢*) = ¢*[w(¢*) — Rew(m}) — mj Rew'(m} )]
is finite. Near the physical mass, it has the expansion

Rell,(¢*) = —mp Rew'(m3) + O((¢* —m3)*), (26)

and therefore the coupling g, is not renormalized due
to self-energy loops [11]. There is also a finite mass
shift

m’ — 1, = —mj Rew'(m?). (27)
For the definition of 72,, see the paragraph before
Eq. (8).

Above the two-pion threshold, the self-energy ac-
quires an imaginary part coming from the pion loop
(the third diagram in Fig. 2b). Namely, at ¢*> < 4m?%,,
the imaginary part and the ¢>-dependent p — 77 decay
width are given by the respective expressions

487 q?
T,(q%) = —TmTI(¢?)//q>

3) Closely related to the self-energy are loop cor-
rections to the vp coupling constant, shown in Fig. 2d.
The sum of all contributions is proportional to the ten-
sor gt — gtq”/q?, similarly to the tree-level term. In-
troducing the ¢>-dependent vertex, we obtain

1 1 w(d®

B e (2)

2 9 9\ 3/2
9,1 dm,
ImIl(¢°) = —=2— (1 - ) 0(q° —4m2), (28)
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Fig.2. Diagrams a show 7, o, and N loop corrections to the prm vertex; diagrams b show the m and N loop corrections to
the self-energy of the p-meson; diagrams ¢ graphically represent the equation for the exact p-meson propagator; diagrams

d represent the m and N loop corrections to the yp vertex.

Double-wavy lines depict the p-meson. The corresponding

counterterms are indicated by crossed circles

where dy, can be fixed by requiring that on the
mass shell ¢> = m>, the coupling f,(m}) is related
to the p — ete™ decay width. The experimental
width T4~ = 6.77 keV [15] is reproduced with
| fp(m3)| & 5.03. From Eq. (29), we find

1 1 1 _—
1@~ f,(m2) + ;[W(mp) ()],

(30)

where the real part of the constant f,(m?) is deter-
mined from |f,(m3)| and from the imaginary part,

Im f,(my) = | f,(m3)[* Imw(m})/g,.

It is seen from (30) that the effective yp vertex is finite.
A similar procedure for this vertex was used in [11], al-
though only the real part of f,(m?) was taken from
experiment.

We also mention that in calculating II,(¢*) and
fo(q?), we used |g,(m2)] instead of g, in order to obtain
the correct width of the p-meson.

4) The last term in Eq. (17) describes the p—w inter-
ference due to electromagnetic effects [8]. The explicit

form of the contribution to the pion form factor can be
taken from Ref. [16],

2

AFP) () = —¢,, 92 a 31
™ (Q) ‘SP fw qz_ma_l_imwl—\w ( )
I,
= 32
R T T T Pl M
where I', = 8.43 MeV is the full decay width

of the w-meson with mass m,, f, = 17.05 is
the yw coupling constant, which is fixed from the
w — ete™ decay width T'_.+.- = 0.6 keV [15], and
,, ~ —3.8-1073 GeV? is the mixed p — w self-energy.

3. RESULTS AND DISCUSSION

We first specify the parameters of the model.
The constant g, is determined from the tree-level
Goldberger—Treiman relation

9r :mN/fﬂ'

(the first equation in (4)), while g,(m2) and f,(m?)
are fixed from experiment, as described in Sec. 2.4.
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Table 1. Two-pion contribution aff““i’") to the muon anomalous magnetic moment (in units 107'"). The upper

integration limit in Eq. (2) is 0.8 GeV?

sQED o-model sQED o-model o-model Ref. [2]
+ VMD + VMD + VMD (f, = g,)

525 753 4667 4763 4745 4774 £ 51

Table 2.  Dependence of a{**™ on the mass of o-meson
me, GeV 04 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
a,(lhadﬂr)., 1011 4546 4583 4640 4710 4788 4867 4946 5024 5099

The o mass is chosen equal to the p mass, m, = m,,
in line with Ref. [17], where o and p are assumed
degenerate.  Furthermore, m, = 768.5 MeV and
m,, = 782.57 MeV [15].

It is interesting to note that calculation of the self-
energy of the p-meson gives m, = 795 MeV. This value
is rather close to the physical mass m,. In this connec-
tion, we note that the authors of [11] fitted 1, from
the w7 scattering and obtained 810 MeV. The differ-
ence in the above values of 1, is partially due to our
taking the nucleon loop into account, which was not
considered in [11].

As mentioned in Sec. 2.4, both the real and imagi-
nary parts of the coupling constants g,(m) and f,(m?)
have been included. The calculation yields

Reg,(m?) = 6.036, Img,(m>) = 0.405,

Re fo(m2) = 4.96, Im f,(m>) = —0.82.

Taking the imaginary parts into account leads to a
small correction to the results obtained with

Im gp(m%) = Im fp(mi) =0.

Our main results are demonstrated in Fig. 3 and
Tables 1 and 2. The calculated pion form factor
|Fr (q?)]? for space-like and time-like values of ¢? is pre-
sented in Fig. 3. Apparently, the agreement with the
data [18] from elastic electron—pion scattering and the
data [19] from e~ e annihilation in two pions is quite
good. We emphasize that there are no fitting or tuning
parameters in our approach.

There is a strong interference of the two contribu-
tions, F,Sa) and FT(rp), in the total form factor. In Fig. 3,
we show the contribution F,Sa) separately. It follows
from Eqs. (17) and (18) that the p contribution also

265

includes m, o, and N loops coming from the o-model.
Switching off these corrections, i.e., putting

AF(U)(QQ) +d7, =0,
we obtain

9p 2

F(SQED+VMD) 2y 1— — +
i (@) fo(@?) ¢ —m3 — T ,(q%)
+AFP) (¢%). (33)

Here, the first term corresponds to sSQED, and the sec-
ond and the third terms are the p-meson contributions.
We note that Eq. (33) corresponds to the extended
version of VMD in Ref. [11]; in the «standard» VMD
model [8], one has the dependence

2
m,

my —¢* —im,Lp(q%)

Our calculation shows that the difference be-
tween the form factor calculated in o-model + VMD
(Egs. (14) and (17)), and that in sQED + VMD
(Eq. (33)) is small, and therefore the results for sQED
+ VMD are not plotted in Fig. 3. Nevertheless, the dif-
ference may show up in the integrated quantity aLh“d’”)
for the muon AMM.

The calculated values of a,(lhadﬂr)
ble 1. In general, loop corrections are important in the
o-model (compare the first and the second columns).
Their role is however diminished in the full calculation,
which includes the dominant p-meson contribution (the
third and the fourth columns in Table 1). The differ-
ence between o-model+VMD and sQED + VMD cal-
culations is about 2 %.

In this connection, our result can be used to es-
timate the size of radiative corrections due to final-
state-photon radiation in the ete™ — 7T 7~ process.

are shown in Ta-
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Fig.3. The pion electromagnetic form factor for space-like ¢* (a) and time-like ¢> (b). Experimental data are from [18]
and [19] respectively. Solid lines — o-model + VMD, dotted lines — o-model

The corresponding contribution to the muon AMM,
™) ig calculated in [4] in the sQED + VMD

framework. In general, the ratio

+ + +

olete™ = ntan™y)/o(ete” = ntr7)
is of the order . We expect that the model depen-

dence of a{"**™) is similar to that of a**®™ . There-
(had:m) caleulated in SQED +
VMD from a&had’ﬁw in a more realistic model, for ex-
ample, in o-model + VMD, is about 2 %. The overall
model-dependent effect in the contribution a{"**™ to
the muon AMM is of the order a- 2% = 0.015 % and
is therefore negligible.

In the fifth column, we show the result obtained
it we put f, = g, in Lagrangian (6). This approxi-
mation corresponds to the full universality of Sakurai.
In this case, the renormalization procedure for the vp
vertex changes and dy, in Eq. (8) is equal to 0z, /g,.
The numerical results for the form factor and a!/"**™ .
however, change very little, e.g., by about 0.4 % for the
integral.

As mentioned above, we chose the mass m, = m,
for the o-meson in the calculation. This particle is as-
sociated with the f5(400—1200)-meson in [15]. In view
of its undetermined status, we study the dependence of
the calculated integral a/"**™ on m, in Table 2. As
can be seen from Table 2, the integral varies consider-
ably. We take the value 4774 £+ 51 from [2] as a very
accurate fit to the experimental integral. Then, for the
indicated error bars, we obtain the mass of ¢ in the in-

terval from 720 to 850 MeV. The central value 785 MeV

fore, the deviation of a
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is surprisingly close to the p-meson mass. Therefore,
our calculation agrees with the hypothesis in Ref. [17]
about degeneracy of - and p-mesons.

In the calculations, we took only the diagrams with
the p-meson entering on the tree level into account. In
particular, the loops with an intermediate p-meson for
the yr ™7~ and pr ™7~ vertices are left out. Such con-
tributions can be consistently considered in the models
in which the p-meson is included together with its chi-
ral partner, the axial-vector a;-meson, for example, in
the so-called gauged o-model [20] or chiral quantum
hadrodynamics [21, 22]. This work requires further in-
vestigation.

4. CONCLUSIONS

We developed a model for the electromagnetic ver-
tex of the pion. The model is based on the linear o-
model, which generates the loops with the intermedi-
ate pion, sigma, and nucleon. The p-meson is included
in line with the extended VMD model [11]. The cou-
pling of p to the pion and nucleon is introduced through
gauge-covariant derivatives, and the direct vp coupling
has a gauge-invariant form. The p-meson self-energy
and the modified vp vertex are generated by the pion
and nucleon loops. The renormalization is consistently
performed using the method of counterterms without
cut-off parameters.

The pion electromagnetic form factor calculated in
the one-loop approximation in the strong interaction
is in good agreement with the precise data obtained
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from elastic e~ 7" scattering and eTe™ annihilation
into 7t 7~. The effect of the o-model loops turns out
to be small.

We calculated the contribution of the ete™ —
— 77 process to the muon AMM, a{"**™ . The

calculation agrees quite well (by 0.15%) with the re-
cent very accurate fit in Ref. [2]. The contribution of
the o-model loops to a&had’") is about 2 %.

We also estimated the size of the model-dependent
effects in a***™) the contribution to the muon
AMM from final-state-photon radiation the
ete™ — wtm ™y process. It is about a - 2% ~ 0.015%
and is therefore negligible. Hence, our calculation
does not contradict the conclusion in Ref. [4] that the
final-state radiative process ete™ — w77~y can be
evaluated in scalar QED supplemented with the VMD
model.

The only free parameter of the model, which is not
fixed from the experiment, is the o-meson mass. Com-
parison with the fit in Ref. [2] strongly indicates that
the value of this mass is close to the mass of the p-
This conclusion is consistent with Ref. [17],
where the mesons ¢ and p are assumed to be degener-
ate.

in

meson.
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