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The relativistic quantum theory of cyclotron resonance in a medium with arbitrary dispersive properties is pre-
sented. The quantum equation of motion for a charged particle in the field of a plane electromagnetic wave and
in the uniform magnetic field in a medium is solved in the eikonal approximation. The probabilities of induced
multiphoton transitions between the Landau levels in a strong laser field are calculated.

PACS: 03.65.Pm, 71.70.Di, 52.25.0s, 42.50.Hz

1. INTRODUCTION

Ag is known, if a charged particle moves in the
field of a transverse electromagnetic (EM) wave in the
presence of a uniform magnetic field directed along the
wave propagation vector, a resonant effect of the wave
on the particle motion is possible. If the interaction
takes place in the vacuum, this is the well-known phe-
nomenon of autoresonance [1-3], when the ratio of the
Doppler-shifted wave frequency w’ to the cyclotron fre-
quency ) of the particle is conserved, w'/Q = const,
and the resonance created at the initial moment auto-
matically holds in the course of interaction. But if the
interaction takes place in a medium where the phase
velocity of an EM wave is larger (plasma-like medium)
or smaller (dielectric medium) than the light speed in
the vacuum, the picture of the wave—particle interac-
tion is essentially changed. In particular, the autoreso-
nance phenomenon is violated in the medium because
of a nonequidistant Stark shift of magnetic sublevels of
an electron (Landau levels) in the electric field of an
EM wave. As a result, the intensity effect of the wave
governs the resonance characteristics, and the particle
state essentially depends on the initial conditions and
the wave field magnitude at which the nonlinear reso-
nance is achieved [4]. The cyclotron resonance (CR) in
a medium was first investigated in the scope of classical
theory in papers [3,5], where oscillating solutions for
the particle energy were obtained. However, such be-
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havior is valid only for the EM wave intensity less than
some critical value. As shown in [4], at the intensities
above that critical value, a nonlinear resonance phe-
nomenon of a threshold nature — the so-called «elec-
tron hysteresis» — occurs (the EM wave is turned on
adiabatically). If the intensity peak of an actual wave
pulse exceeds the mentioned critical value, then signif-
icant acceleration of charged particles can be achieved
(it is clear that the medium must be plasma-like for
this purpose) [6].

Below the threshold intensity of the electron hys-
teresis, when the linear CR occurs in a medium [3, 5],
the free electron laser version has been proposed, based
on the combined scheme of CR and Cherenkov radia-
tion in a dielectric-gaseous medium [7].

We note that classical equations of motion for this
process in a medium allow an exact solution only in a
particular case where the initial velocity of a particle
is parallel to the wave propagation direction and the
wave has a circular polarization (namely, the electron
hysteresis phenomenon has been obtained in this case).

Concerning the quantum description of CR, the rel-
ativistic quantum equation of motion allows exact so-
lution only for CR in the vacuum [8] (see [9] and refer-
ences therein for the description of related quantum
electrodynamic processes, such as electron—positron
pair production, nonlinear Compton scattering in the
presence of uniform magnetic field, etc., by this wave
function). We note that the configuration of EM fields
with a uniform magnetic field directed along the prop-
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agation of the transverse wave is one of the exotic cases
where the relativistic quantum equation of motion in
the vacuum allows an exact solution. In a medium,
even in the absence of a uniform magnetic field, the rel-
ativistic quantum equation of motion for the particle—
monochromatic wave interaction reduces to the Math-
ieu type (in general, Hill type) equation, the exact so-
lution of which is unknown. In this case, obtaining an
approximate analytic solution describing the nonlinear
process of particle-wave interaction is already problem-
atic [10-12].

The purpose of this paper is to obtain a nonlinear
(in the field) approximate solution of the relativistic
quantum equation of motion for a charged particle in
the plane EM wave in a medium in the presence of a
uniform magnetic field, a solution that sufficiently well
describes the quantum picture of cyclotron resonance
in a medium at high intensities of the external radiation
field, in particular, multiphoton stimulated transitions
between the Landau levels.

In what follows, the wave function of a charged par-
ticle moving in a medium in the field of a transverse
EM wave in the presence of a uniform magnetic field
directed along the wave propagation direction is ob-
tained. Then the multiphoton CR in a medium is con-
sidered and the probabilities of induced multiphoton
transitions in a strong circularly polarized EM wave
are calculated.

2. WAVE FUNCTION OF A CHARGED
PARTICLE IN THE PLANE
ELECTROMAGNETIC WAVE IN A MEDIUM
IN THE PRESENCE OF A UNIFORM
MAGNETIC FIELD

Let a charged particle move in a medium in the field
of a coherent EM wave and a uniform magnetic field
along the wave propagation direction (chosen as the z
axis). The four-vector potential of this configuration of
the EM field can be represented as

Ap(@) = A1) + Au(r), (1)
where
Au(l‘l) = (0,$1H0,0./0) (2)

is the four-vector potential of the uniform magnetic
field with the strength Hy and

Au(r) = {A1 (t - n%) Ay (t - n%?’) ,o,o} (3)

is the four-vector potential of a plane transverse EM
wave, z is the four-component radius vector, and

T=t—nxzs/c

is the plane wave coordinate. For four-component vec-
tors, we chose the metric a = (a,iag). In (3), n = n(w)
is the refractive index of the medium and ¢ is the light
speed in the vacuum. Hereafter, we take the EM wave
to be laser radiation that is quasimonochromatic with
high accuracy (Aw <« w, where w is the carrier fre-
quency),

n(w) & n = const.

We assume that the EM wave is switched on/off
adiabatically, and therefore, for the vector potential
A, (1), we have that

Ay (r) =0 att=Foc.

Because we assume the coherent EM wave to be
a laser radiation one for which the photon energy is
negligibly small compared with the relativistic electron
energy, we can neglect the spin interaction, and the
Dirac equation in the quadratic form therefore reduces
to the Klein—Gordon equation for a charged particle in
field (1)

3

{(mau + ZAu(x)f + m2c2} T(z) =0, (4)

where m and e are the particle mass and charge, respec-
tively (we assume e < 0, with the electron in mind),
and

0
E7
denotes the first derivative of a function over the four-
component radius vector x.

The particle quantum motion at ¢ — —oo, when
A, (1) =0, is well known and has been the subject of
numerous studies (see, e.g., [13]). In the uniform mag-
netic field, the particle motion is separated into the
cyclotron (x1,22) and the longitudinal (x3) degrees of
freedom. Because the coordinate x5 is cyclic in this case
(also in the presence of an EM wave; see (2) and (3)),
the cyclotron motion is described by the set of quantum
characteristics of the state {l,p2}, where the number [
labels Landau levels (I = 0,1,2,...) and p» is the
component of the generalized momentum. The longi-
tudinal motion at ¢ — —oo is then described by the
p3 component of the particle initial momentum. Con-
cerning the particle transverse initial state, we assume
that at t = —oo, the particle is in the [ = s Landau
level. Therefore, the wave function of the particle at

0, = n=1,234,
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t — —oo is given by the known formula [13] (with the
spin interaction neglected)

|t—>—oo -

= Nexp [%(prS - Es(pS)t):| (bs,pg (l‘l)v (5)

U(z)

where N is the normalization constant,
= {1‘1, T2, 07 0}, and

Ty
xr +p2a2/h
a b

i
D, p, (1) =exp <ﬁp25€2> Us [

he
e| Hy’

(6)

is the wave function corresponding to the cyclotron part
of motion. Here, U, are the Hermit functions and the
dispersion law for the particle energy—momentum is

1
E2(p3) = m*c* + c*p3 + 2|e| cHoh <s+ 5) . (D

Because the EM wave field depends only on the re-
tarded coordinate 7, it is more convenient to pass from
the space-time coordinates x3,t to the wave coordi-
nates

T=t—nxs3/c, n=t+nzs/c

Then, due to the existence of a certain direction of the
wave propagation, the variable n becomes cyclic, and
hence the momentum conjugate to the coordinate 7 is
conserved,

1

— (Es(pg) — %pg) = A = const.

. ®)

This is the known integral of motion in this process
according to the classical electrodynamics [4].

The particle wave function can then be sought in
the form

iAn - % (Es(ps) + %ps) T} flzi,7), (9)

:exp[ 5

where the unknown function f(z,,7) of the variable
7 is assumed slowly varying compared with the expo-
nential function of 7 in (9). This approximation cor-
responds to the known eikonal approximation for the
particle wave function, in which one can neglect the sec-
ond derivative of f(z,7) with respect to 7 compared
with the first-order derivative in the equation of mo-
tion (4), which for the function f(z,,7) has the form
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{Z—z(nQ - 1)53—7_22+2(3L5117787— (ih8j+§Au(x))2 +
T LT R
Here,
O ={01,0:.0,0}, E = Ey(ps) — cnp;.

We note that Eq. (10) is already a Hill-type equa-
tion even in the absence of a uniform magnetic field,
and its exact solution is unknown. We therefore ap-
ply the «eikonal approximation», considering f(z,,T)
a slowly varying function of 7 in Eq. (10) (the term with
the second derivative of f(x,,7) describes the quan-
tum recoil in the interaction of a particle with the EM
wave), which is valid under the condition

‘h(n -1)
2F

Such an approximate solution describes the mul-
tiphoton interaction of particles with EM fields suffi-
ciently well (for the electron—strong wave interaction

in a medium, see [14]). Under condition (11), Eq. (10)
implies the following equation for the function f(z,,7):

2ih ) e 2
{—Ea (maj + EAu(x)) +
EZ(ps)

+ ‘°'c—2— 2 —p2isf=0. (12)
In Eq. (12), the transverse and longitudinal mo-
tions are not separated. But after a certain unitary
transformation, the variables are separated [9]. The

corresponding unitary transformation operator is
S = exp {iKM(T)ﬁLu} ) (13)

P, = —iho) — EAu(xl),

K’u (T) = {Krl (T)7 I(2 (T)7 07 0}7

where K, (7) is chosen to separate the cyclotron and
longitudinal motions and to satisfy initial condition (5),
which is equivalent to the condition

Ki+iKy = —exp [—ie—fHoT} X
E
ec ec
X — (A1 (") +iAs (7)) ex |:ZTH T’:| dr'. (14
[ ) wis (e [ g (14)

— o0
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For the transformed wave function f: §f(a/:l,7'), we
then have the equation

5o Ei(ps)
{Pfu - 562 +p3 +m?c?—
2hE,  eW’E_  dK,
—i O - g PR+

+ <%FMK,, - ZAH(T)>2} flzr.7) =0, (15)

where F),,, is the EM field tensor corresponding to the
uniform magnetic field Hy. In Eq. (15), the variables
are separated; by means of the inverse transformation
f = S*f(z.,7), we then obtain the solution of the
initial equation (4) (taking Eq. (9) into account)

3

U(z) =
|-z' i ,]
= Nexp Lﬁ(psﬂﬁs — Es(ps3)t) — 7 Q(r )dTJ X
X exp |:iEH0[X’2(l‘1 — Ekrl)] X
c 2
X @S,p2 ($1 — h}-ﬁrl,‘fg — hIX’Q), (16)
where
2 eh e 2
o0 = = | (FRuK. - S4,00) -
eER? . dK,
-3 F,, K, o (17)

The obtained wave function (16) is valid under
condition (11), which means that the particle total
energy/momentum exchange occuring as a result of
the multiphoton interaction with the strong EM wave
at the CR in a medium is much smaller than the
initial energy/momentum of the particle. This en-
ergy /momentum exchange is determined by the full
phase of wave function (16) with expressions (6), (14),
and (17), which are found and estimated in the next
section.

3. THE PROBABILITIES OF MULTIPHOTON
TRANSITIONS BETWEEN LANDAU
LEVELS

Although the particle motion in a uniform magnetic
field is separated into cyclotron (z1,z2) and longitudi-
nal (z3) degrees of freedom, Eq. (5), these motions are
not separated in the energy scale due to relativistic ef-
fects (7). For not very strong magnetic fields, however,
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we can separate the energies of longitudinal (E)) and
cyclotron motions,

1
Es(p3) = E| + hQ <S + 5) , shQ < E, (18)

Q= |e| CHO/EH, EH =/m2ct + Cng.

We now consider the concrete case of a circularly
polarized quasimonochromatic EM wave with the main
frequency w and the average value A of the slowly vary-
ing envelope,

A, (1) = {—Asin(wr), gA cos(wT),0,0} , (19)

which is in resonance with the particle, i.e., the
Doppler-shifted wave frequency is close to the cyclotron
one,

w'=(1—nv3/c)w ~ g9, (20)

where vg is the particle initial longitudinal velocity.
In (19), the respective values g = £1 correspond to the
right- and left-hand circular polarizations of the wave.
After the interaction (¢ — 40c), under resonance con-
dition (20), we have from Eq. (14) that

AcT
Ky + ik, = - 2=

exp(igwt), (21)
where T is the coherent interaction time (for a quasi-
monochromatic wave, T — oo, and for actual laser
radiation, T' is the pulse duration).

The final state of the particle after the interaction
is described by the wave function

i

T,(z) = Nexp {h

(P33 + paa — Es(ps)t)] X

eAcT

(
<a/:1 + p27f;2> sin(wr)

Expanding wave function (22) in terms of the complete
basis of particle eigenstates (5),

x Us {xl + cos(wr)] X
eAcT

2hE

.egHyh

—1

2
X exp > sin(2wT)+

c

AOTE
+ieg il

hcE

(22)

Uy(z) = /dplzdpé Z Css (p,27pl3)l/)5,aplgapé (z) (23)

we find the probabilities of multiphoton induced tran-
sitions between the Landau levels.
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To calculate the expansion coefficients Csqr (ph, Dh),
we use the result of the integration

/ dzexp(—ikz)Us(a 'z 4+ ab)Ug (a 'z + ab') =

= exp {Zlu + i(S - 3,)/\} Iss (C)/ (24)

where I44 (C) is the Lagger function and the character-
istic parameters are determined by

ka2(b+ 1) Lk
I
2 Y
CZGQk +(l; b)‘

We then obtain the transition amplitudes
Css (D, 05) = 8(pa—p5)d(p3—py—(s—s")gwnhe ) x
i
exp { =4 () = Bu(45) = (s = g |

X Iss’ [C] )

where 6(p) is the Dirac d-function expressing the mo-
mentum conservation law and the argument of the Lag-
ger function is

(25)

GQZQTQQEH
2hE?

According to (25), the transition of the particle from
an initial state {s,p2,ps} to a state {s',ph,p4} is ac-
companied by emission or absorption of s — s’ photons.
Consequently, substituting Eq. (25) in Eq. (23) and in-
tegrating over the momentum, we can rewrite the par-
ticle wave function in another form,

Vy(z) =N I () x

X exp{—

h
i

T

(Es(ps) — (s — s")gwh) t +

)
(ps — (s — s')gwnhe ")zs + Epﬂz} X

¥ Uy (21). (27)

The probability of the induced transition s — s’ bet-
ween the Landau levels is ultimately determined from
formula (27):

eQZQTQQEH
wsy = I | ———=— (28)
2hE?
Matching resonance condition (20) with for-

mula (27) shows that in the field of a strong EM wave,
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the Landau levels are excited at the absorption of the
wave quanta if 1 —nwvz/c > 0 and g = 1, corresponding
to the normal Doppler effect, while in the case where
1 —nvg/c < 0 and g = —1, which is possible in the
refractive medium (n > 1), the Landau levels are
excited at the emission of the wave quanta due to the
anomalous Doppler effect.

We now estimate the average number of emit-
ted (absorbed) photons by the electron at the CR in
a medium for high excited Landau levels (s > 1).
In accordance with the chosen approximation, the
most probable number of photons in the strong
EM wave field corresponds to the semiclassical limit
(s —s'| > 1), in which multiphoton processes domi-
nate and the nature of the interaction process is very
close to the classical one. In this case, the argument of
the Lagger function can be represented as

(

Here, AE,; is the amplitude of the energy change of the
particle according to the classical perturbation theory,
£ is the amplitude of the electric field strength of the

EM wave, and
V] R Cy/ QH,SQ/E(]H

is the particle mean transverse velocity. The Lagger
function is maximal at

C—>Co=<\/§—\/§)

exponentially falling beyond (.
s — §' with |s — s'| < s, we have

(s =)
4s

Comparison of this expression with (28) and (29) shows
that the most probable transitions are
AECl

hw
in accordance with the correspondence principle. Using
Eqs. (27) and (30), we can now represent the condition
for the eikonal approximation in Eq. (11) as

1
T 4s

AE‘cl
hw

efv T
|1 —nvs/c|’

2
C ) s AE‘cl = (29)

2
For the transition

Co~

~

(30)

|s — s'| ~

Eg(p3) — cnps

AEC[<<2‘ O

This condition actually restricts the intensity of the
EM wave field in accordance with Eq. (29). However,
the above condition is practically very weak, and the
wave function obtained in (16) describes multiphoton
transitions at the CR in strong laser fields with great
accuracy.
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4. CONCLUSION

In the scope of relativistic quantum theory, a non-
linear (in the field) wave function of the eikonal type
of a charged particle in the plane EM wave and a uni-
form magnetic field in a medium has been obtained
neglecting spin interaction and, consequently, quan-
tum recoil of photons (in accordance with the eikonal
approximation applied). The eikonal approximation
practically does not restrict the applicability of such
a wave function in the actual cases of strong radiation
fields that are laser fields (with the photon energy much
smaller than the electron energy). This wave function
well enough describes the quantum picture of CR in
a medium at high intensities of the external radiation
field, in particular, multiphoton stimulated transitions
between the Landau levels.

With this wave function, one can treat a large
class of nonlinear quantum electrodynamic processes in
strong EM fields with the modifications that a medium
brings (e.g., the anomalous Doppler effect), including
astrophysical applications, where CR plays a significant
role [15]. In addition, one of the advantages of CR in
a dielectric medium is that for a moderate relativistic
particle beam, one can achieve the CR in the optical
region (close to the Cherenkov resonance) by current
lasers and existing uniform magnetic fields (~ 10* Gs),
while in the vacuum, the CR with radio frequencies is
possible at the same parameters. Finally, the obtained
wave function is especially important for the descrip-
tion of the radiation process by a charged particle at
the CR in gaseous media consisting of a superposition
of Compton, Cherenkov, and synchrotron radiations.

We note that radiation of a particle at laser-assisted
multiphoton transitions at the CR between Landau lev-
els has already been investigated and will be presented
elsewhere.
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