ПОЛЯРИЗАЦИЯ ИЗЛУЧЕНИЯ, ПРОШЕДШЕГО ПОЛИМЕРНУЮ ПЛЕНКУ С НАНОРАЗМЕРНЫМИ КАПЛЯМИ ЖИДКОГО КРИСТАЛЛА

В. А. Лойко^{*}, А. В. Конколович

Институт физики им. Б. И. Степанова Национальной академии наук Беларуси 220072, Минск, Беларусь

Поступила в редакцию 2 марта 2004 г.

Разработан метод анализа состояния поляризации плоской волны, прошедшей через капсулированную полимером жидкокристаллическую (КПЖК) пленку с наноразмерными каплями жидкого кристалла (ЖК). Он основан на приближении анизотропного диполя для описания рассеяния на отдельной ЖК-капле и приближении Фолди-Тверского для описания распространения света в пленке. Получены уравнения, связывающие эллипсометрические параметры прошедшего через КПЖК-пленку когерентного (направленного) излучения с параметрами порядка, характеризующими морфологические и структурные свойства пленки. Исследованы эллиптическая и круговая поляризации, вращение плоскости поляризации прошедшей волны при нормальном освещении КПЖК-пленки линейно поляризованной плоской волной. Найдена зависимость параметров порядка КПЖК-пленки от управляющего поля при переходе частично ориентированной структуры оптических осей ЖК-капель в гомеотропную.

PACS: 42.25.Dd, 42.70.Df, 82.35.Np

1. ВВЕДЕНИЕ

Капсулированные полимером жидкокристаллические (КПЖК) пленки представляют собой полимерные пленки с внедренными в них каплями жидкого кристалла (ЖК), находящимися между двумя прозрачными пластинками с прозрачными электродами [1-5]. Такие пленки используются в устройствах отображения информации, управления и модуляции световых потоков в качестве дифракционных решеток, линз, поляризаторов, спектральных фильтров и т.д. [3-11]. Они имеют высокую светостойкость и механическую прочность, гибкость, низкую чувствительность к внешним воздействиям по сравнению с устройствами на основе однородных ЖК-слоев. Использование КПЖК-пленок позволяет увеличивать функциональные возможности оптических ЖК-элементов.

Новый тип КПЖК-пленок — это пленки с наноразмерными каплями ЖК [12–14]. Такие пленки обладают малым рассеянием и высоким пропусканием. Они могут быть использованы для модуляции фазы и поляризации излучения в системах телекоммуникаций [15]. Важной задачей при исследовании КПЖК-пленок с наноразмерными ЖК-каплями является разработка методов описания распространения света, позволяющих связать амплитуду, фазу, поляризацию прошедшей волны с морфологическими параметрами пленки.

В данной работе предложен метод анализа поляризации плоской волны, прошедшей через КПЖК-пленку с наноразмерными каплями нематического ЖК, обладающими осевой симметрией в распределении ЖК-молекул. Исследуются эллиптическая и круговая поляризации, вращение плоскости поляризации прошедшей волны при нормальном освещении КПЖК-пленки линейно поляризованной плоской волной. Вначале решается задача рассеяния на отдельной капле ЖК, а затем в приближении независимых рассеивателей на основании уравнения Фолди-Тверского определяется когерентное поле на выходе из плоскопараллельного КПЖК-слоя. Особенностью предложенного в работе подхода является использование параметров порядка [16–18], характеризующих ориентационную

^{*}E-mail: loiko@dragon.bas-net.by

⁹ ЖЭТ Φ , вып. 2 (8)

упорядоченность молекул ЖК внутри капель и оптических осей (директоров) капель в пленке. Такой подход существенно упрощает решение задачи.

В разд. 2 в приближении анизотропного диполя [19] находится усредненная по размерам капель ЖК и ориентации их оптических осей амплитудная матрица рассеяния.

В разд. 3 на основе обобщенного интегрального уравнения Фолди–Тверского [20] для векторного случая получены формулы для угла поворота плоскости поляризации и условий реализации круговой поляризации прошедшей волны.

В разд. 4 приведены результаты расчетов и анализ полученных результатов для пленок, в которых реализуется переход частично ориентированной структуры директоров нематических капель в гомеотропную. Дан вывод формул для описания параметров порядка слоя при такой ориентационной перестройке директоров капель в зависимости от управляющего поля. Результаты позволяют оценить значения величины управляющего напряжения, при которых можно реализовать эффективное преобразование поляризации.

2. АМПЛИТУДНАЯ МАТРИЦА РАССЕЯНИЯ. ПАРАМЕТРЫ ПОРЯДКА КАПЕЛЬ

Пусть поле внутри капли равно по амплитуде падающему и изменение фазы волны незначительно. Тогда для описания рассеяния на отдельной капле можно использовать приближение Рэлея [19]. Представим ЖК-каплю с цилиндрической симметрией в распределении молекул в виде анизотропного диполя. Наведенный дипольный момент **Р** такой капли не совпадает по направлению с электрическим вектором падающей волны **E**_i, т. е.

$$\mathbf{P} = \varepsilon_p \underline{\tilde{\alpha}} \mathbf{E}_i, \tag{1}$$

где ε_p — диэлектрическая проницаемость полимерной матрицы, <u> $\tilde{\underline{\alpha}}$ </u> — тензор поляризуемости ЖК-капли в системе координат $\mathbf{ee'e}_i$, жестко связанной с падающей волной (рис. 1).

На рис. 1 единичный вектор \mathbf{e}_i задает направление освещения в лабораторной системе координат xyz, волновой вектор падающей волны $\mathbf{k}_i = k\mathbf{e}_i$ $(k = 2\pi/\lambda_p, \lambda_p -$ длина волны падающего излучения в полимерной матрице). Единичный вектор \mathbf{e} определяет направление поляризации падающей волны ($\mathbf{E}_i = E_i \mathbf{e}, E_i -$ амплитуда падающей волны); единичный вектор \mathbf{e}' ортогонален плоскости поляриза-

Рис.1. Геометрия рассеяния на отдельной капле. Обозначения даны в тексте

ции падающей волны $\mathbf{e}_i \mathbf{e}$ и направлен вдоль векторного произведения $\mathbf{e}_i \times \mathbf{e}$; \mathbf{e}_s — единичный вектор, определяющий направление рассеяния ($\mathbf{k}_s = k\mathbf{e}_s$ — волновой вектор рассеянной волны); единичный вектор \mathbf{e}_d определяет направление оси симметрии распределения молекул ЖК внутри капли (оптической оси или директора капли [3, 4, 21]). Углы θ_i , θ_s , θ_d определяют ориентацию векторов \mathbf{e}_i , \mathbf{e}_s , \mathbf{e}_d относительно оси z; углы φ_i , φ_s , φ_d определяют ориентацию проекций векторов \mathbf{e}_i , \mathbf{e}_s , \mathbf{e}_d на плоскость xy относительно оси x. Напомним, что в рассматриваемых пленках направления $+\mathbf{e}_d$ и $-\mathbf{e}_d$ физически эквивалентны.

Запишем электрический вектор рассеянного поля \mathbf{E}_s в дальней зоне в направлении \mathbf{e}_s в виде [22]

$$\mathbf{E}_{s} = -\frac{\exp(ikr)}{ikr} \frac{ik^{3}}{4\pi\varepsilon_{p}} \mathbf{e}_{s} \times [\mathbf{e}_{s} \times \mathbf{P}], \qquad (2)$$

где *r* — расстояние от центра капли до точки наблюдения.

В прямоугольной декартовой системе координат $\mathbf{e}_{\parallel}\mathbf{e}_{\perp}\mathbf{e}_{d}$, где единичные векторы \mathbf{e}_{\perp} и \mathbf{e}_{\parallel} направлены вдоль $\mathbf{e}_{i} \times \mathbf{e}_{d}$ и $\mathbf{e}_{\perp} \times \mathbf{e}_{d}$, тензор диэлектрической проницаемости $\underline{\varepsilon}$ имеет диагональный вид:

$$\underline{\underline{\varepsilon}} = \begin{pmatrix} \varepsilon_{do} & 0 & 0\\ 0 & \varepsilon_{do} & 0\\ 0 & 0 & \varepsilon_{de} \end{pmatrix}, \qquad (3)$$

где ε_{do} и ε_{de} — эффективные значения диэлектрической проницаемости ЖК-капли для обыкновенной и необыкновенной волн. Чтобы найти диэлектрические проницаемости ЖК-капли, используем приближение эффективной среды, тогда [23]

$$\varepsilon_{do} = \varepsilon_{iso} - \frac{1}{3} \Delta \varepsilon SS_d, \tag{4}$$

$$\varepsilon_{de} = \varepsilon_{iso} + \frac{2}{3} \Delta \varepsilon SS_d. \tag{5}$$

Здесь

$$\varepsilon_{iso} = \frac{2\varepsilon_o + \varepsilon_e}{3}, \quad \Delta \varepsilon = \varepsilon_e - \varepsilon_o,$$

 ε_o и ε_e — диэлектрические проницаемости ЖК для обыкновенной и необыкновенной волн, S — молекулярный параметр порядка ЖК [3, 4, 21], S_d — параметр порядка ЖК-капли, характеризующий степень ориентационной упорядоченности осей молекул ЖК внутри капли. В изотропной фазе при хаотической ориентации молекул ЖК в капле параметр $S_d = 0$. При ориентации молекул в одном направлении $S_d = 1$.

Определим амплитудную матрицу рассеяния Sс элементам
и $S_j, \; j=1,2,3,4$ как

$$\begin{pmatrix} E_{\parallel}^{s} \\ E_{\perp}^{s} \end{pmatrix} = -\frac{\exp(ikr)}{ikr} \begin{pmatrix} S_{2} & S_{3} \\ S_{4} & S_{1} \end{pmatrix} \begin{pmatrix} E_{\parallel}^{i} \\ E_{\perp}^{i} \end{pmatrix}.$$
 (6)

Здесь $E_{\parallel}^{i}, E_{\perp}^{i}$ — компоненты электрического вектора прошедшей волны вдоль единичных векторов $\mathbf{e}_{\parallel}^{i}$ и \mathbf{e}_{\perp}^{i} ($\mathbf{e}_{\perp}^{i} \parallel [\mathbf{e}_{i} \times \mathbf{e}_{s}], \mathbf{e}_{\parallel}^{i} \parallel [\mathbf{e}_{\perp}^{i} \times \mathbf{e}_{i}]), E_{\parallel}^{s}, E_{\perp}^{s}$ — компоненты электрического вектора рассеянной волны вдоль единичных векторов $\mathbf{e}_{\parallel}^{s}$ и \mathbf{e}_{\perp}^{s} ($\mathbf{e}_{\perp}^{s} \parallel [\mathbf{e}_{i} \times \mathbf{e}_{s}]$). Отметим, что $\mathbf{e}_{\perp}^{i} = \mathbf{e}_{\perp}^{s}$.

["] На основе выражений (1), (2), (6) для элементов амплитудной матрицы рассеяния получим

$$S_1 = -\frac{ik^3}{4\pi} \mathbf{e}_{\perp}^s \underline{\underline{\tilde{\alpha}}} \mathbf{e}_{\perp}^i, \tag{7}$$

$$S_2 = -\frac{ik^3}{4\pi} \mathbf{e}_{\parallel}^s \underline{\tilde{\alpha}} \mathbf{e}_{\parallel}^i, \tag{8}$$

$$S_3 = -\frac{ik^3}{4\pi} \mathbf{e}^s_{\parallel} \underline{\underline{\tilde{\alpha}}} \mathbf{e}^i_{\perp}, \qquad (9)$$

$$S_4 = -\frac{ik^3}{4\pi} \mathbf{e}_{\perp}^s \underline{\underline{\tilde{\alpha}}} \mathbf{e}_{\parallel}^i. \tag{10}$$

Чтобы найти тензор поляризуемости $\underline{\tilde{\alpha}}$ в системе координат $\mathbf{ee'e_i}$, запишем матрицу перехода Aот базиса $\mathbf{ee'e_i}$ к базису $\mathbf{e_{\parallel}e_{\perp}e_d}$, в котором тензор поляризуемости имеет диагональный вид:

$$A = \begin{pmatrix} \mathbf{e}_{\parallel} \cdot \mathbf{e} & \mathbf{e}_{\parallel} \cdot \mathbf{e}' & \mathbf{e}_{\parallel} \cdot \mathbf{e}_{i} \\ \mathbf{e}_{\perp} \cdot \mathbf{e} & \mathbf{e}_{\perp} \cdot \mathbf{e}' & \mathbf{e}_{\perp} \cdot \mathbf{e}_{i} \\ \mathbf{e}_{d} \cdot \mathbf{e} & \mathbf{e}_{d} \cdot \mathbf{e}' & \mathbf{e}_{d} \cdot \mathbf{e}_{i} \end{pmatrix}.$$
 (11)

В приближении Рэлея для оптически мягкой ЖК-капли связь между тензором поляризуемости <u>а</u> и тензором диэлектрической проницаемости <u>е</u> в системе координат **е**_{||}**е**_⊥ **е**_d можно записать в виде

$$\underline{\underline{\alpha}} = v \left(\underline{\underline{\underline{\varepsilon}}}_{p} - \underline{\underline{I}} \right), \tag{12}$$

где v — объем капли, <u>I</u> — единичная матрица 3×3 .

Выделим в тензоре диэлектрической проницаемости <u>с</u>, определяемом выражением (3), изотропную и анизотропную составляющие [24]:

$$\underline{\underline{\varepsilon}} = \varepsilon_{iso}^{d} \underline{\underline{I}} - \frac{\Delta \varepsilon_{d}}{3} \underline{\underline{\beta}}, \tag{13}$$

где $\varepsilon_{iso}^d = (2\varepsilon_{do} + \varepsilon_{de})/3, \Delta \varepsilon_d = \varepsilon_{de} - \varepsilon_{do}$ — оптическая анизотропия ЖК-капли,

$$\underline{\underline{\beta}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}.$$
 (14)

Тогда в системе координат ее'е_i для тензора поляризуемости $\underline{\tilde{\alpha}}$, входящего в выражения (7)–(10), имеем

$$\underline{\tilde{\alpha}} = A^T \underline{\underline{\alpha}} A. \tag{15}$$

В силу ортогональности базисов $\mathbf{e}e'\mathbf{e}_i$ и $\mathbf{e}_{\parallel}\mathbf{e}_{\perp}\mathbf{e}_d$ вместо обратной матрицы A^{-1} в этой формуле используется транспонированная матрица A^T .

Выполнив необходимые математические преобразования, предварительно записав векторы $\mathbf{e}_{\perp}^{i,s}$, $\mathbf{e}_{\parallel}^{s}$, $\mathbf{e}_{\parallel}^{i}$, $\mathbf{e}_{\parallel}^{i}$ в базисе $\mathbf{ee'e}_{i}$, на основе соотношений (7)–(15) для элементов амплитудной матрицы, найдем:

$$S_{1} = -\frac{ik^{3}v}{4\pi} \left[\frac{\varepsilon_{do}}{\varepsilon_{p}} - 1 + \frac{\Delta\varepsilon_{d}}{\varepsilon_{p}} \left((\mathbf{e}_{d} \cdot \mathbf{e})(\mathbf{e}_{\perp}^{s} \cdot \mathbf{e}) + (\mathbf{e}_{d} \cdot \mathbf{e}')(\mathbf{e}_{\perp}^{s} \cdot \mathbf{e}') \right)^{2} \right], \quad (16)$$

$$S_{2} = -\frac{ik^{3}v}{4\pi} \left[\left(\frac{\varepsilon_{do}}{\varepsilon_{p}} - 1 \right) (\mathbf{e}_{i} \cdot \mathbf{e}_{s}) + \frac{\Delta\varepsilon_{d}}{\varepsilon_{p}} (\mathbf{e}_{i} \cdot \mathbf{e}_{s}) \left((\mathbf{e}_{d} \cdot \mathbf{e})(\mathbf{e}_{\perp}^{s} \cdot \mathbf{e}') - (\mathbf{e}_{d} \cdot \mathbf{e}')(\mathbf{e}_{\perp}^{s} \cdot \mathbf{e}) \right)^{2} + \frac{\Delta\varepsilon_{d}}{\varepsilon_{p}} (\mathbf{e}_{d} \cdot \mathbf{e}_{i}) (\mathbf{e}_{\parallel}^{s} \cdot \mathbf{e}_{i}) \left((\mathbf{e}_{d} \cdot \mathbf{e})(\mathbf{e}_{\perp}^{s} \cdot \mathbf{e}') - \left(\mathbf{e}_{d} \cdot \mathbf{e}')(\mathbf{e}_{\perp}^{s} \cdot \mathbf{e}) \right)^{2} \right], \quad (17)$$

9*

$$S_{3} = -\frac{ik^{3}v}{4\pi} \frac{\Delta\varepsilon_{d}}{\varepsilon_{p}} \left[(\mathbf{e}_{i} \cdot \mathbf{e}_{s}) \times \left\{ (\mathbf{e}_{\perp}^{s} \cdot \mathbf{e})(\mathbf{e}_{\perp}^{s} \cdot \mathbf{e}') \left((\mathbf{e}_{d} \cdot \mathbf{e})^{2} - (\mathbf{e}_{d} \cdot \mathbf{e}')^{2} \right) + \left(\mathbf{e}_{d} \cdot \mathbf{e})(\mathbf{e}_{d} \cdot \mathbf{e}') \left((\mathbf{e}_{\perp}^{s} \cdot \mathbf{e}')^{2} - (\mathbf{e}_{\perp}^{s} \cdot \mathbf{e})^{2} \right) \right\} + (\mathbf{e}_{d} \cdot \mathbf{e}_{i}) \times \left(\mathbf{e}_{\parallel}^{s} \cdot \mathbf{e}_{i}) \left((\mathbf{e}_{d} \cdot \mathbf{e})(\mathbf{e}_{\perp}^{s} \cdot \mathbf{e}')^{2} - (\mathbf{e}_{\perp}^{s} \cdot \mathbf{e})^{2} \right) \right\} + (\mathbf{e}_{d} \cdot \mathbf{e}_{i}) \times \left(\mathbf{e}_{\parallel}^{s} \cdot \mathbf{e}_{i}) \left((\mathbf{e}_{d} \cdot \mathbf{e})(\mathbf{e}_{\perp}^{s} \cdot \mathbf{e}') + (\mathbf{e}_{d} \cdot \mathbf{e}')(\mathbf{e}_{\perp}^{s} \cdot \mathbf{e}') \right) \right], \quad (18)$$

$$S_{4} = -\frac{ik^{3}v}{4\pi} \frac{\Delta\varepsilon_{d}}{\varepsilon_{p}} \times \left[\left((\mathbf{e}_{d} \cdot \mathbf{e})^{2} - (\mathbf{e}_{d} \cdot \mathbf{e}')^{2} \right) (\mathbf{e}_{\perp}^{s} \cdot \mathbf{e}) (\mathbf{e}_{\perp}^{s} \cdot \mathbf{e}') + \left((\mathbf{e}_{d} \cdot \mathbf{e}) (\mathbf{e}_{d} \cdot \mathbf{e}') \left((\mathbf{e}_{\perp}^{s} \cdot \mathbf{e}')^{2} - (\mathbf{e}_{\perp}^{s} \cdot \mathbf{e})^{2} \right) \right].$$
(19)

Уравнения (16)–(19) записаны в лабораторной системе координат *xyz* без каких-либо предположений о направлении освещения и ориентации капли.

При освещении пленки волной, распространяющейся параллельно оси z ($\theta_i = 0$, $\mathbf{e}_i \parallel z$), векторы \mathbf{e} и \mathbf{e}' лежат в плоскости xy. В лабораторной системе координат xyz элементы амплитудной матрицы рассеяния капли при фиксированной ориентации ее директора \mathbf{e}_d имеют вид

$$S_{1} = -\frac{ik^{3}v}{4\pi} \times \left[\frac{\varepsilon_{do}}{\varepsilon_{p}} - 1 + \frac{\Delta\varepsilon_{d}}{\varepsilon_{p}}\sin^{2}\theta_{d}\sin^{2}(\varphi_{d} - \varphi_{s})\right], \quad (20)$$

$$S_{2} = -\frac{ik^{3}v}{4\pi} \left[\left(\frac{\varepsilon_{do}}{\varepsilon_{p}} - 1 \right) \cos \delta + \frac{\Delta \varepsilon_{d}}{\varepsilon_{p}} \cos \delta \sin^{2} \theta_{d} \cos^{2}(\varphi_{d} - \varphi_{s}) - \frac{\Delta \varepsilon_{d}}{2\varepsilon_{p}} \sin \delta \sin(2\theta_{d}) \cos(\varphi_{d} - \varphi_{s}) \right], \quad (21)$$

$$S_{3} = -\frac{ik^{3}v}{4\pi} \frac{\Delta\varepsilon_{d}}{2\varepsilon_{p}} \left[\cos\delta\sin^{2}\theta_{d}\sin\left(2(\varphi_{d}-\varphi_{s})\right) - \sin\delta\sin(2\theta_{d})\sin(\varphi_{d}-\varphi_{s})\right], \quad (22)$$

$$S_4 = -\frac{ik^3v}{4\pi} \frac{\Delta\varepsilon_d}{2\varepsilon_p} \sin^2\theta_d \sin\left(2(\varphi_d - \varphi_s)\right).$$
(23)

Здесь δ — угол рассеяния, определяемый векторами \mathbf{e}_i и \mathbf{e}_s (рис. 1), φ_s — угол между плоскостью рассеяния $\mathbf{e}_i \mathbf{e}_s$ и плоскостью zx, угол φ_d определяет ориентацию главной плоскости $\mathbf{e}_i \mathbf{e}_d$ относительно плоскости zx.

Как правило, КПЖК-пленки состоят из полидисперсных ансамблей ЖК-капель. Поэтому для анализа когерентного поля, прошедшего через КПЖК-слой, необходимо знать усредненные элементы матрицы рассеяния. Усредним элементы матрицы рассеяния (20)–(23) по размеру и ориентации капель. Предполагая цилиндрическую симметрию распределения директоров капель, получим

$$\langle S_1 \rangle = -\frac{ik^3 \langle v \rangle}{4\pi} \left[\frac{\varepsilon_{do}}{\varepsilon_p} - 1 + \frac{\Delta \varepsilon_d}{3\varepsilon_p} \left(1 + 2S_x \sin^2 \varphi_s + 2S_y \cos^2 \varphi_s \right) \right],$$
 (24)

$$\langle S_2 \rangle = -\frac{ik^3 \langle v \rangle}{4\pi} \left[\left(\frac{\varepsilon_{do}}{\varepsilon_p} - 1 \right) \cos \delta + \frac{\Delta \varepsilon_d}{3\varepsilon_p} \left(1 + 2S_x \cos^2 \varphi_s + 2S_y \sin^2 \varphi_s \right) \cos \delta \right],$$
 (25)

$$\langle S_3 \rangle = \langle S_4 \rangle = 0. \tag{26}$$

Здесь угловые скобки $\langle \rangle$ обозначают усреднение по размеру капель и ориентации их директоров, $\langle v \rangle$ средний объем капли ЖК, S_x , S_y и S_z — параметры порядка, характеризующие степень ориентационной упорядоченности директоров ЖК-капель в системе координат xyz [16, 17]:

$$S_x = \frac{1}{2} \left(3 \langle \sin^2 \theta_d \cos^2 \varphi_d \rangle - 1 \right), \qquad (27)$$

$$S_y = \frac{1}{2} \left(3 \langle \sin^2 \theta_d \sin^2 \varphi_d \rangle - 1 \right), \qquad (28)$$

$$S_z = \frac{1}{2} \left(3 \langle \cos^2 \theta_d \rangle - 1 \right). \tag{29}$$

Величины S_x, S_y и S_z связаны соотношением

$$S_x + S_y + S_z = 0. (30)$$

Если $S_x = S_y$, то элементы усредненной амплитудной матрицы рассеяния (24) и (25) совпадают с элементами усредненной амплитудной матрицы рассеяния, полученными в работе [25].

Выведенные в данном разделе в приближении Рэлея формулы для элементов амплитудной матрицы рассеяния могут быть использованы для анализа прохождения света через пленки с частицами, рассеяние на которых описывается в приближении Рэлея–Ганса. Для этого каждый элемент матрицы рассеяния (16)–(19) следует умножить на соответствующий формфактор [19, 22].

3. ПРЕОБРАЗОВАНИЕ ПОЛЯРИЗАЦИИ. ОСНОВНЫЕ СООТНОШЕНИЯ

Рассмотрим КПЖК-слой при нормальном освещении линейно поляризованной плоской волной. Лабораторная система координат xyz показана на рис. 2. Ось z задает направление нормали к слою, плоскость xy совпадает с нижней границей слоя. Ось x выбрана так, чтобы средний по объему слоя директор капель $\langle \mathbf{d} \rangle$ находился в плоскости zx. Тогда волна, поляризованная вдоль оси x, будет необыкновенной, а волна, поляризованная вдоль оси y, — обыкновенной.

Используя уравнение Фолди–Тверского, найдем когерентное поле на выходе слоя [20, 22]. Запишем это уравнение для векторного случая в виде

$$\begin{pmatrix} \langle E_e \rangle \\ \langle E_o \rangle \end{pmatrix} = \\ = \begin{pmatrix} \psi_e(z)|_{z=l} & 0 \\ 0 & \psi_o(z)|_{z=l} \end{pmatrix} \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix} E_i. \quad (31)$$

Здесь $\langle E_o \rangle$ и $\langle E_e \rangle$ — обыкновенная и необыкновенная компоненты когерентного поля волны, прошедшей через КПЖК-пленку.

Функции $\psi_{e,o}(z)$ являются решениями интегральных уравнений:

Рис.2. Схематическое представление КПЖК-слоя и геометрии его освещения: \mathbf{e}_i — направление падающей волны, \mathbf{e} — направление поляризации падающей волны, α — угол поляризации, \mathbf{d}_j — директор j-й капли, $\langle \mathbf{d} \rangle$ — направление ориентации директоров капель, l — толщина слоя

$$\psi_{e,o}(z) = \exp(ikz) \times \left(1 - q\langle S_{e,o}(0)\rangle \int_{0}^{z} \exp(-ikz_{s})\psi_{e,o}(z_{s}) dz_{s}\right), \quad (32)$$

где $q = 2\pi k^{-2}N_v$, N_v — число капель ЖК в единице объема, $\langle S_{e,o}(0) \rangle$ — усредненные по размеру капель и ориентации их директоров амплитудные функции рассеяния, соответственно, необыкновенной и обыкновенной волн при нулевом угле рассеяния ($\delta = 0$).

Решение уравнения (32) имеет вид

$$\psi_{e,o}(z) = \exp(ik_{e,o}z). \tag{33}$$

Здесь k_e и k_o — постоянные распространения для необыкновенной и обыкновенной воли:

$$k_{e,o} = k + iq \langle S_{e,o}(0) \rangle. \tag{34}$$

Амплитудные функции рассеяния $S_e(0)$ и $S_o(0)$ найдены с использованием выражения (25):

$$\langle S_e(0) \rangle = \langle S_2 \rangle \Big|_{\varphi_s=0,\delta=0} = = -\frac{ik^3 \langle v \rangle}{4\pi} \left[\frac{\varepsilon_{do}}{\varepsilon_p} - 1 + \frac{\Delta \varepsilon_d}{3\varepsilon_p} (1+2S_x) \right], \quad (35)$$

$$\langle S_o(0) \rangle = \langle S_1 \rangle \Big|_{\varphi_s = 0, \delta = 0} =$$

$$= -\frac{ik^3 \langle v \rangle}{4\pi} \left[\frac{\varepsilon_{do}}{\varepsilon_p} - 1 + \frac{\Delta \varepsilon_d}{3\varepsilon_p} (1 + 2S_y) \right]. \quad (36)$$

На основе выражений (31)-(36) для компонент E_x и E_y , определяемых как действительные части необыкновенной и обыкновенной волн, нормированные на поле падающей волны,

$$E_{x,y} = \operatorname{Re} \frac{\langle E_{e,o} \rangle}{E_i \exp(ikl)},$$

найдем

 $E_x = t_e \cos \alpha \cos \Phi_e, \tag{37}$

$$E_y = t_o \sin \alpha \cos \Phi_o, \tag{38}$$

$$\Phi_{e,o} = q l \operatorname{Im} \langle S_{e,o}(0) \rangle =$$

= $-\pi \frac{l}{\lambda_p} c_v \left[\frac{\varepsilon_{do}}{\varepsilon_p} - 1 + \frac{\Delta \varepsilon_d}{3\varepsilon_p} (1 + 2S_{x,y}) \right], \quad (39)$

где $c_v = N_v \langle v \rangle$ — объемная концентрация капель ЖК в слое. Значения t_e и t_o определяются соотношениями

$$t_{e,o} = \exp\left(-\gamma_{e,o}l/2\right),\tag{40}$$

где γ_e и γ_o — показатели ослабления необыкновенной и обыкновенной волн:

$$\gamma_{e,o} = \sigma_{e,o} N_v, \tag{41}$$

$$\sigma_{e,o} = \frac{4\pi}{k^2} \operatorname{Re}\langle S_{e,o}(0) \rangle.$$
(42)

Отметим, что в приближении Рэлея для непоглощающих капель ЖК при нахождении полных сечений рассеяния σ_e и σ_o нельзя воспользоваться выражениями (42), поскольку действительные части амплитудных функций рассеяния $\langle S_e(0) \rangle$ и $\langle S_o(0) \rangle$ равны нулю [19, 22]. Поэтому необходимо интегрировать значения модулей квадратов элементов матрицы рассеяния по полному телесному углу $\Omega = 4\pi$. Учитывая, что амплитудная матрица рассеяния является диагональной и

$$\left. \left\langle S_2 \right\rangle \right|_{\varphi_s = 0, \delta = 0} = \left. \left\langle S_1 \right\rangle \right|_{\varphi_s = \pi/2},$$

$$\left. \left\langle S_1 \right\rangle \right|_{\varphi_s = 0} = \left. \left\langle S_2 \right\rangle \right|_{\varphi_s = \pi/2, \delta = 0},$$

для полных сечений рассеяния запишем

$$\sigma_e = \frac{1}{k^2} \int_{4\pi} \left(\left| \langle S_2 \rangle \right|_{\varphi_s = 0} \right|^2 + \left| \langle S_1 \rangle \right|_{\varphi_s = \pi/2} \right|^2 \right) \, d\Omega, \quad (43)$$

$$\sigma_o = \frac{1}{k^2} \int_{4\pi} \left(\left| \langle S_1 \rangle \right|_{\varphi_s = 0} \right|^2 + \left| \langle S_2 \rangle \right|_{\varphi_s = \pi/2} \right|^2 \right) \, d\Omega. \tag{44}$$

Для показателей ослабления сферических капель ЖК, γ_e и γ_o , на основе выражений (24), (25) и (41)–(44) получим

$$\gamma_{e,o} = \frac{8}{9} \langle x \rangle^4 c_v f \langle d \rangle^{-1} \left(\frac{\varepsilon_{do}}{\varepsilon_p} - 1 + \frac{\Delta \varepsilon_d}{3\varepsilon_p} (1 + 2S_{x,y}) \right)^2, \quad (45)$$

где $\langle x \rangle = \pi \langle d \rangle / \lambda_p$ — средний параметр дифракции, $\langle d \rangle$ — средний диаметр капель, f — отношение третьего момента распределения капель по диаметру к кубу среднего значения диаметра, $f = \langle d^3 \rangle / \langle d \rangle^3$. В случае гамма-распределения капель ЖК по размерам [26, 27] $f = (1+2/\mu)(1+1/\mu)$, где μ — параметр распределения.

Для анализа состояния поляризации прошедшего излучения найдем разность фаз $\Delta \Phi$ между обыкновенной и необыкновенной волнами. Используя выражения (4), (5), (13) и (39), получим

$$\Delta \Phi = \Phi_o - \Phi_e = \pi \frac{l}{\lambda_p} \frac{2\Delta\varepsilon}{3\varepsilon_p} SS_d(S_x - S_y).$$
(46)

Отсюда следует, что преобразование состояния поляризации возможно только в случае частичной ориентации директоров капель ($S_x \neq S_y$). При полной ориентации директоров капель (вдоль оси x) $S_x = 1$, $S_y = S_z = -1/2$ и разность $S_x - S_y = 3/2$ становится максимальной. Если $S_x = S_y$ (цилиндрическая симметрия в распределении директоров капель относительно оси z или хаотическое распределение директоров), то $\Delta \Phi = 0$, т. е. сохраняется исходное состояние поляризации. В этом случае задача распространения плоской волны через КПЖК-пленку при нормальном освещении может быть рассмотрена в скалярном приближении [25].

В выбранной нами системе координат имеет место соотношение $S_x > S_y$ (рис. 2). Значения параметров порядка S_x и S_y найдем на основе выражений (27)–(30):

$$S_x = \frac{1}{2} \left((1 - S_z)g - S_z \right), \tag{47}$$

$$S_y = \frac{1}{2} \left((S_z - 1)g - S_z \right), \tag{48}$$

$$S_x - S_y = g(1 - S_z), (49)$$

$$g = \langle \cos^2 \varphi_d \rangle - \langle \sin^2 \varphi_d \rangle. \tag{50}$$

Допустим, что имеет место равномерное распределение плотности вероятности по углу φ_d . Тогда имеем

$$g = \operatorname{sinc}(2\varphi_{dm}),\tag{51}$$

где φ_{dm} — максимальный угол отклонения директора капли от оси x.

Соотношения (47)-(51) позволяют анализировать состояние поляризации в зависимости от параметров порядка КПЖК-слоя при переходе частично ориентированной структуры директоров капель в гомеотропную, когда все директоры капель (с положительной анизотропией ЖК, $\Delta \varepsilon > 0$) выстраиваются вдоль управляющего поля (оси z). Направление усредненного директора капель $\langle d \rangle$ зависит от величины приложенного поля. С ростом величины приложенного поля угол между осью z и вектором $\langle \mathbf{d} \rangle$ уменьшается. В пределе он равен нулю. Переход частично упорядоченной структуры директоров капель в гомеотропную отличается от реализуемого в большинстве КПЖК-пленок перехода хаотической структуры в гомеотропную диапазоном изменения параметра порядка S_z. В первом случае $-1/2 \leq S_z \leq 1$, во втором — $0 \leq S_z \leq 1.$

Для анализа поляризационных характеристик прошедшего излучения запишем уравнение эллипса поляризации, используя выражения (37) и (38):

$$\frac{E_x^2}{a_e^2} - \frac{2E_x E_y}{a_e a_o} \cos \Delta \Phi + \frac{E_y^2}{a_o^2} = \sin^2 \Delta \Phi, \qquad (52)$$

где $a_e = t_e \cos \alpha$, $a_o = t_o \sin \alpha$. Полуоси эллипса поляризации A и B, угол ξ поворота осей эллипса поляризации относительно осей xy исходной лабораторной системы координат определяются выражениями

$$A^{2} = a_{e}^{2} \cos^{2} \xi + a_{o}^{2} \sin^{2} \xi + a_{e} a_{o} \sin(2\xi) \cos \Delta \Phi, \quad (53)$$

$$B^{2} = a_{e}^{2} \sin^{2} \xi + a_{o}^{2} \cos^{2} \xi - a_{e} a_{o} \sin(2\xi) \cos \Delta \Phi, \quad (54)$$

$$\operatorname{tg}(2\xi) = 2a_e a_o \frac{\cos \Delta \Phi}{a_e^2 - a_o^2} \,. \tag{55}$$

Соотношения (53)-(55) позволяют анализировать эллипсометрические параметры (азимут и эллиптичность) излучения, прошедшего через КПЖК-слой при переходе частично ориентированной структуры директоров капель в гомеотропную, определять направление вращения плоскости поляризации и условия образования круговой поляризации.

4. АНАЛИЗ РЕЗУЛЬТАТОВ

Определим азимут эллипса поляризации ξ_{ell} как угол между его большой осью, отсчитываемый против часовой стрелки со стороны положительного направления оси z, и положительным направлением оси x. Определим эллиптичность η как отношение малой и большой осей эллипса поляризации.

Рассмотрим пленки, в которых при переходе частично ориентированной структуры директоров капель в гомеотропную разность фаз $\Delta \Phi$ прошедшего излучения изменяется от π до нуля.

Из соотношений (53)-(55) следует, что при $\Delta \Phi = \pi$ излучение, вышедшее из слоя под углом β $(tg \beta = (t_o/t_e) tg \alpha)$, линейно поляризовано (прямая 1 на рис. 3). При $\Delta \Phi = 0$ сохраняется исходное состояние линейной поляризации падающей волны (прямая 5 на рис. 3). При $\pi > \Delta \Phi > 0$ образуется эллиптическая поляризация. Эллипс поляризации вращается по часовой стрелке при оптической анизотропии $\Delta \varepsilon > 0$ (эллипсы 2, 3, 4 на рис. 3). Наибольшая эллиптичность достигается при $\Delta \Phi = \pi/2$ (эллипс 3 на рис. 3). Если $\Delta \Phi = \pi/2$ и волна падает под углом α_o (tg $\alpha_o = t_e/t_o$), то образуется круговая поляризация ($\eta = 1$). На рис. 3 представлена схема вращения эллипса поляризации и плоскости поляризации прошедшего излучения для углов поляризации падающей волны $\alpha \neq \alpha_o$. Электрический вектор вращается по часовой стрелке со стороны положительного направления оси z (правая эллиптическая поляризация [19]).

Рис. 3. Схематическое представление формы и ориентации эллипса поляризации. Стрелки указывают направление вращения электрического вектора. Обозначения даны в тексте

Рис. 4. Зависимость азимута эллипса поляризации прошедшего излучения, ξ_{ell} , от параметра порядка S_z при разных значениях угла поляризации падающего линейно поляризованного излучения, $\alpha = 50^{\circ}$ (1), 60° (2), 70° (3), 80° (4). Параметры пленки указаны в тексте

Как следует из выражений (46), (49), разность фаз $\Delta \Phi$ является функцией параметра порядка S_z . Зависимости азимута эллипса поляризации ξ_{ell} и эллиптичности η как функции параметра порядка S_z

Рис. 5. Зависимость эллиптичности η от параметра порядка S_z при разных значениях угла поляризации $\alpha = 50^{\circ}$ (1), 60° (2), 70° (3), 80° (4). Параметры пленки указаны в тексте

(определяющего разность фаз $\Delta \Phi$) при разных значениях угла поляризации падающей волны α представлены на рис. 4, 5. Расчеты выполнены на основе выражений (46), (53)–(55) для показателей преломления ЖК $n_o = 1.511$, $n_e = 1.74$ ($n_o^2 = \varepsilon_o$, $n_e^2 = \varepsilon_e$), показателя преломления полимера $n_p = 1.524$, параметров порядка S = 0.6 и $S_d = 0.7$, максимального угла отклонения директора капли от оси $x \varphi_{dm} = 5^\circ$, среднего диаметра ЖК-капель $\langle d \rangle = 75$ нм, параметра гамма-распределения $\mu = 15$, объемной концентрации ЖК-капель $c_v = 0.075$, толщины пленки l = 41.3 мкм, длины волны падающего излучения $\lambda = 0.6328$ мкм, углов поляризации падающего излучения $\alpha = 50^\circ$, 60° , 70° , 80° .

Максимальный угол поворота плоскости поляризации определяется как разность азимутов эллипса поляризации для значений параметра порядка $S_z = -1/2, 1.$ Этим значениям параметра порядка в рассматриваемом нами случае соответствуют значения разности фаз $\Delta \Phi$ равные, соответственно, π и 0, при которых прошедшая волна сохраняет линейную поляризацию (рис. 5). Изменение разности фаз от π до нуля может быть достигнуто и при меньшем диапазоне изменения параметра порядка S_z . Это позволяет решить задачи оптимизации вращения плоскости поляризации при изменении структуры директоров капель в КПЖК-пленке.

Вывод выражения для параметра порядка S_z

В практических приложениях необходимо знать

зависимость параметра порядка S_z от управляющего поля. Для пленок, в которых хаотичная структура директоров капель переходит в гомеотропную, такие зависимости известны [4, 21].

Мы исследуем переход частично ориентированной структуры директоров ЖК-капель в КПЖК-слое в гомеотропную. Рассмотрим вывод выражения для параметра порядка в такой системе. Воспользуемся соотношениями

$$S_z = \frac{1}{4} + \frac{3}{4} \langle \cos(2\theta) \rangle, \tag{56}$$

$$\cos(2\theta) = \frac{E^2 - 1 + 2\cos^2\theta_0}{\sqrt{(E^2 - 1)^2 + 4E^2\cos^2\theta_0}}.$$
 (57)

Здесь E — управляющее электрическое поле, нормированное на пороговое значение, θ — угол между директором капли и осью z, вдоль которой приложено управляющее поле, θ_0 — угол между директором капли и осью z при E = 0, угловые скобки означают усреднение по углу θ_0 .

Пусть имеет место равномерное распределение директоров капель по углу в телесном угле $\Delta\Omega$, $-\varphi_{dm} \leq \varphi_d \leq \varphi_{dm}, \pi/2 - \theta_m \leq \theta_0 \leq \pi/2 + \theta_m, \varphi_{dm}$ и θ_m — соответственно, максимальные углы отклонения директоров капель от оси x в плоскости xy и xz. Тогда

$$\langle \cos(2\theta) \rangle = \frac{1}{4\varphi_{dm} \sin \theta_m} \times \\ \times \int_{-\varphi_{dm}}^{\varphi_{dm}} d\varphi \int_{\pi/2 - \theta_m}^{\pi/2 + \theta_m} \cos(2\theta) \sin \theta_0 d\theta_0.$$
 (58)

Выполнив интегрирование, получим

$$\langle \cos(2\theta) \rangle = a_1 + \frac{a_2 \ln a_3}{\sin \theta_m},$$
 (59)

$$a_1 = \frac{u}{4E^2},$$
 (60)

$$a_2 = \frac{3E^4 - 2E^2 - 1}{16E^3}, \qquad (61)$$

$$a_3 = \left| \frac{2E\sin\theta_m + u}{u - 2E\sin\theta_m} \right|,\tag{62}$$

$$u = \left((E^2 - 1)^2 + 4E^2 \sin^2 \theta_m \right)^{1/2}.$$
 (63)

Если $\theta_m = \pi/2$, то выражения (56), (59)–(63) для параметра порядка S_z переходят в известные соотношения [4,21], описывающие переход хаотической структуры директоров капель в гомеотропную.

Рис. 6. Зависимость параметра порядка S_z от нормированного управляющего поля E. Переход частично упорядоченной структуры директоров капель КПЖК-пленки в гомеотропную при $\theta_m = 5^\circ$ (1), 10° (2), 20° (3). Переход хаотической структуры директоров в гомеотропную, $\theta_m = 90^\circ$ (4)

Зависимости параметра порядка S_z от нормированного управляющего поля E при разных значениях углов θ_m представлены на рис. 6. Видно, что переход частично ориентированной структуры директоров капель в гомеотропную отличается более резкой зависимостью параметра порядка от управляющего поля и имеет больше возможностей для модуляции оптического излучения, чем переход хаотической структуры в гомеотропную.

5. ЗАКЛЮЧЕНИЕ

Предложенный метод позволяет анализировать состояние поляризации излучения, прошедшего через композитные жидкокристаллические системы, при нормальном падении плоской линейно поляризованной волны. Это могут быть капсулированные жидкокристаллические пленки с наноразмерными каплями нематика, полимерные сети, пористые стекла и другие структуры с жидкокристаллическими наноразмерными элементами [5, 28–32]. Он является развитием метода, изложенного авторами в работе [25], для описания поляризационно-независимой фазовой модуляции излучения [12], прошедшего через капсулированные полимером жидкокристаллические пленки.

Полученные результаты связывают морфологи-

ческие характеристики пленки и ее электрооптический отклик. Они представляют интерес при разработке новых типов электро- и магнитоуправляемых поляризаторов на основе композитных жидкокристаллических материалов.

ЛИТЕРАТУРА

- L. Lucchetti and F. Simoni, J. Appl. Phys. 88, 3934 (2000).
- K. Amudson, A. van Blaaderen, and P. Wiltzius, Phys. Rev. E 55, 1646 (1997).
- Г. М. Жаркова, А. С. Сонин, Жидкокристаллические композиты, Наука, Москва (1994).
- 4. F. Simoni, Nonlinear Optical Properties of Liquid Crystals and Polymer Dispersed Liquid Crystals, World Scientific, Singapore (1997).
- Liquid Crystals in Complex Geometries, ed. by G. P. Crawford and S. Zumer, Taylor & Francis, London (1996).
- V. Ya. Zyryanov, E. P. Pozhidaev, S. L. Smorgon et al., Liq. Cryst. 28, 433 (2001).
- R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan et al., Appl. Phys. Lett. 64, 1074 (1994).
- C. C. Bowllew, P. A. Kossyrev, G. P. Crawford et al., Appl. Phys. Lett. 79, 9 (2001).
- D. S. Wiersma, S. Gottardo, R. Sapienza, et al., in Proc. NATO ASI Science Series Wave Scattering in Complex Media: from Theory to Applications, ed. by B. A. van Tiggelen and S. E. Skipetrov, Kluwer Acad. Publ., Dordrecht (2003), p. 3-20.
- M. J. Sansone, G. Khanarian, and T. M. Leslie, J. Appl. Phys. 67, 4253 (1990).
- M. Jazbinsek, I. D. Olenik, M. Zgonik et al., J. Appl. Phys. 90, 3831 (2001).
- L. Lucchetta, R. Karopiran, A. Mann, and F. Simoni, J. Appl. Phys. 91, 6060 (2002).
- S. Matsumoto, K. Hirabayashi, S. Sakata et al., IEEE Photon. Tech. Lett. 11, 442 (1999).
- 14. S. Matsumoto, Y. Sugiyama, S. Sakata et al., Liq. Cryst. 27, 649 (2000).
- 15. W. A. Crossland, T. D. Wilkinson, I. G. Manolis, M. M. Redmond, and A. B. Davey, Mol. Cryst. Liq. Cryst. 375, 1 (2002).

- 16. Л. М. Блинов, Электро- и магнитооптика жидких кристаллов, Наука, Москва (1978).
- I.-C. Khoo, Liquid Crystals. Physical Properties and Nonlinear Optical Phenomena, J. Wiley& Sons, New York (1995).
- 18. S. Chandrasekhar, *Liquid Crystals*, Cambridge Univ. Press, Cambridge (1992).
- **19**. Д. Борен, К. Хафмен, Поглощение и рассеяние света мелкими частицами, Мир, Москва (1986).
- 20. А. Исимару, *Распространение и рассеяние волн в случайно-неоднородных средах*, Мир, Москва (1994), т. 2.
- 21. J. R. Kelly and P. Palffy-Muhoray, Mol. Cryst. Liq. Cryst. 243, 11 (1994).
- 22. Г. Ван де Хюлст, *Рассеяние света малыми частицами*, Изд-во иностр. лит., Москва (1961).
- 23. V. A. Loiko, A. V. Konkolovich, F. Simoni et al., in Proc. of 10th SID Symposium Advanced Display Technologies, Minsk (2001), p. 58.

- 24. S. Zumer and J. W. Doane, Phys. Rev. A 34, 3373 (1986).
- **25**. В. А. Лойко, А. В. Конколович, ЖЭТФ **123**, 552 (2003).
- 26. O. A. Afonin, Yu. V. Panina, A. B. Pravdin, and D. A. Yakovlev, Liq. Cryst. 15, 395 (1997).
- 27. V. A. Loiko and A. V. Konkolovich, J. Phys. D: Appl. Phys. 33, 2201 (2000).
- 28. T. L. Bunning, L. V. Natarajan, V. P. Tondiglia et al., Polymer 37, 3147 (1996).
- 29. D. R. Caims, C. C. Bowley, S. Danworaphong et al., Appl. Phys. Lett. 77, 2677 (2000).
- 30. S. D. Hudson, H.-T. Jung, P. Kewsuwan et al., Liq. Cryst. 26, 1493 (1999).
- 31. I. Dierking, M. A. Osipov, and S. T. Lagerwall, Eur. Phys. J. E 2, 303 (2000).
- 32. A. Glushchenko, H. Kresse, V. Reshetnyak, et al., Liq. Cryst. 23, 241 (1997).