МОДУЛИРОВАННАЯ МАГНИТНАЯ СТРУКТУРА РОМБОЭДРИЧЕСКИХ СЛАБЫХ ФЕРРОМАГНЕТИКОВ α -Fe₂O₃ : Ga И FeBO₃ : Mg

Б. Ю. Соколов*

Национальный университет Узбекистана им. Улугбека 700174, Вузгородок, Ташкент, Республика Узбекистан

Поступила в редакцию 6 января 2004 г.

Экспериментально исследовано влияние диамагнитных примесей на устойчивость однородного магнитного состояния ромбоэдрических антиферромагнетиков со слабым ферромагнетизмом, α -Fe $_2O_3$: Ga и FeBO₃ : Mg. Показано, что в некотором интервале температур при наложении внешнего магнитного поля в базисной плоскости исследованных кристаллов в направлении трудной оси намагничивания возникает магнитная сверхструктура, представимая в виде рипплонной фазы с осциллирующим около направления поля азимутом локального вектора ферромагнетизма. Изучены преимущественная ориентация обнаруженных модулированных структур относительно кристаллографических направлений в базисной плоскости α -Fe₂O₃ : Ga и FeBO₃ : Mg и зависимость пространственного периода сверхструктуры от величины прикладываемого магнитного поля и температуры. На основе термодинамического потенциала с градиентными членами проведено феноменологическое описание индуцированного магнитным полем перехода исследованных кристаллов из однородного в неоднородное магнитное состояние. При обсуждении физических причин, приводящих к модуляции магнитного параметра порядка в допированных диамагнитными ионами слабых ферромагнетиках, предпочтение отдается механизму, связанному с появлением в базисной плоскости кристалла вблизи примесей одноосных магнитных центров со случайным распределением азимутов легких осей. Предложена модель возникновения модулированного магнитного состояния в α -Fe₂O₃ : Ga и FeBO₃ : Mg, согласно которой в неоднородной магнитной фазе этих кристаллов конкуренция магнитоанизотропных и зеемановского взаимодействий приводит к периодическим отклонениям направления локального вектора ферромагнетизма от направления намагничивания.

PACS: 75.30.Kz, 75.60.Ch

1. ВВЕДЕНИЕ

Интенсивное исследование модулированных структур с различной природой параметра порядка в твердотельных средах связано как с изучением механизмов формирования таких структур, так и с поиском нетрадиционных явлений, перспективных в практических приложениях, в частности, в устройствах записи, обработки и хранения информации. Это относится, например, к диэлектрикам с дипольным и квадрупольным параметрами порядка, в которых особое внимание привлекают гистерезисные оптические и акустические эффекты; к одномерным проводникам, где обнаруживается значительная аномалия электропроводности после формирования волны зарядовой плотности и т. п. С этой точки зрения, немаловажный интерес представляют и магнетики, исследования модулированных магнитных структур которых являются традиционными, и поэтому относительно развитым считается понимание основных механизмов, приводящих к модуляции магнитного параметра порядка.

Установлено, что основными причинами неустойчивости однородного магнитного состояния магнитоупорядоченных диэлектриков являются либо обменные взаимодействия разных знаков между ближайшими атомными соседями и следующими за ближайшими, либо релятивистское взаимодействие

^{*}E-mail: optic@nuuz.uzsci.net

Дзялошинского-Мория. Возникающие в этих случаях длиннопериодические (несоизмеримые) модулированные магнитные структуры на сегодняшний день достаточно хорошо изучены как теоретически, так и экспериментально (см., например, [1]). Кроме того, известно, что при определенных условиях к модуляции магнитного параметра порядка среды может приводить и наличие случайного поля. По-видимому, впервые на такую возможность было указано в работе [2], где теоретически исследовалась неустойчивость однородного магнитного состояния ферромагнетика, связанная с присутствием незначительного по величине случайного поля, делающего энергетически выгодным состояние с неоднородной намагниченностью. Неожиданным было то, что наличие случайного поля могло приводить к возникновению длиннопериодических магнитных структур. Это сообщение явилось основой для серии работ, посвященных изучению эффектов случайного поля, модельной средой в которых служил одноосный изинговский антиферромагнетик со случайными связями между магнитоактивными ионами. Экспериментальные результаты в основном соответствовали теоретическим представлениям, что позволило определить критическую размерность, ниже которой в среде отсутствует дальний магнитный порядок [3], установить необычное влияние внешнего магнитного поля на критические параметры вблизи точек фазовых переходов [4], обнаружить наличие микромагнитной структуры в примесном одноосном антиферромагнетике MnF_2 : Zn [3, 5].

Возникновение неоднородной магнитной структуры также предсказывалось и для легкоплоскостных антиферромагнетиков. Так, в [6] теоретически было показано, что в легкоплоскостном антиферромагнетике, имеющем объемные или точечные дефекты кристаллической решетки, в зависимости от корреляционного радиуса случайных анизотропных полей может реализоваться как обычная доменная структура с однородным вектором антиферромагнетизма, так и структура, в которой вектор антиферромагнетизма непрерывно изменяет свою ориентацию, оставаясь в базисной плоскости. Возникающие при этом магнитные структуры в данном классе магнитных диэлектриков до настоящего времени остаются экспериментально почти не изученными.

Ниже приведены результаты исследований влияния примесных диамагнитных ионов на магнитное состояние легкоплоскостных антиферромагнетиков со слабым ферромагнетизмом, а также условий возбуждения и существования модулированных магнитных структур в этих кристаллах. На основе термодинамического потенциала с градиентными членами проведено феноменологическое описание обнаруженных магнитных сверхструктур и обсуждаются физические механизмы их возникновения.

2. ОБРАЗЦЫ И МЕТОДИКА ИЗМЕРЕНИЙ

Особое место среди легкоплоскостных антиферромагнетиков занимают слабые ферромагнетики, наличие ферромагнитного момента в которых позволяет управлять их магнитной структурой с помощью слабого магнитного поля, что в принципе дает возможность достаточно легко проследить за эффектами, связанными с наличием случайного поля (обусловленного, например, случайностью обмена или локальными вариациями величин конкурирующих анизотропных взаимодействий, ответственных за магнитное состояние среды). Поэтому в качестве объектов исследования были выбраны ромбоэдрические антиферромагнетики со слабым ферромагнетизмом (пространственная группа D_{3d}^6) — гематит α -Fe₂O₃ и борат железа FeBO₃, в состав которых для создания дефектов кристаллической решетки были допированы диамагнитные примеси. В качестве экспериментальной методики изучения магнитного состояния этих слабых ферромагнетиков применялся магнитооптический метод визуализации их доменной структуры.

Выбор объектов и методики исследования определялись в основном следующим: магнитные, оптические и магнитооптические свойства гематита и бората железа хорошо известны [7], а поведение их доменных структур во внешнем магнитном поле достаточно интенсивно изучалось [8-10]. Это позволяет тщательно проанализировать различия магнитного отклика номинально чистых (беспримесных) и разбавленных диамагнитной примесью кристаллов. Кроме того, слабые ферромагнетики с высокой температурой Нееля T_N являются перспективной средой для элементной базы различных высокочастотных устройств, и, с этой точки зрения, существующие строгие технологические критерии однородности макроскопических магнитных характеристик среды требуют выяснения возможных причин ее магнитной неоднородности.

При синтезе гематита и бората железа в шихту были добавлены соответственно окислы галлия и магния, составляющие около 0.5 % в весовом отношении к окиси железа. Синтезированные кристаллы FeBO₃ : Mg представляли собой плоскопараллельные пластинки толщиной 50-60 мкм с поперечными размерами примерно 3 × 3 мм². Главная ось симметрии кристалла (ось C_3) совпадала с нормалью к развитой плоскости пластинки. Поверхность кристаллов имела достаточно высокое оптическое качество и не подвергалась какой-либо дополнительной обработке. Из полученных монокристаллов α -Fe₂O₃ : Ga вырезались пластинки толщиной 200-300 мкм так, чтобы ось C₃ совпадала с нормалью к плоскости образцов. Полировкой алмазными пастами развитые поверхности образцов доводились до оптического качества. Для экспериментов отбирались кристаллы, имеющие в базисной плоскости форму, близкую к правильному шестиугольнику. В базисной плоскости образцы ориентировались (нахождение направлений осей C_2) по естественной огранке синтезированных кристаллов. С целью снятия механических напряжений и более равномерного распределения примесей по объему полученные образцы отжигались на воздухе. Из магнитных измерений нами установлено, что диамагнитные примеси практически не изменили температуру Нееля синтезированных образцов по сравнению с беспримесными α -Fe₂O₃ $(T_N \approx 950 \text{ K})$ и FeBO₃ $(T_N \approx 350 \text{ K})$, в то же время допирование гематита ионами галлия привело к смещению его температуры Морина ниже температуры кипения жидкого азота.

Доменные структуры в α -Fe₂O₃ : Ga и FeBO₃ : Mg наблюдались при помощи поляризационного микроскопа, снабженного электронно-оптическим преобразователем и телекамерой, состыкованной с компьютером. Исследования проводились в области максимальной оптической прозрачности гематита и бората железа (в области длин волн соответственно $\lambda \approx 1$ мкм и $\lambda \approx 0.5$ мкм) «на просвет» при нормальном падении света на плоскость образца в скрещенной геометрии осей системы поляризатор–анализатор.

Внешнее магнитное поле, используемое для изучения эволюции доменных структур образцов, создавалось двумя парами катушек Гельмгольца и прикладывалось в базисной плоскости кристаллов. Система намагничивания позволяла ориентировать вектор поля **H** вдоль любого направления в базисной плоскости образца при |**H**| = const. Исследуемые образцы размещались в оптическом криостате, позволяющем проводить измерения в температурном интервале 80–290 К. Во всех экспериментах плоскость образца ориентировалась перпендикулярно магнитному полю Земли.

При изучении пространственного распределения магнитного параметра порядка в легкоплоскостном

слабом ферромагнетике магнитооптическим методом необходимо установить взаимосвязь между интенсивностью света *I*, прошедшего через систему поляризатор-образец-анализатор, и ориентацией вектора ферромагнетизма т (или антиферромагнетизма l) в базисной плоскости кристалла. Наиболее удобно это сделать из анализа зависимости интенсивности I от ориентации направления внешнего магнитного поля, приложенного в плоскости образца. При этом величина прикладываемого магнитного поля должна быть такой, чтобы магнитное состояние образцов было однородным (монодоменным), т.е. при условии т || Н. Из измерений полевых зависимостей магнитооптического сигнала І было установлено, что последнее достигалось в полях H > 30 Э.

Учитывая, что в спектральной области максимальной оптической прозрачности при распространении света вдоль оси C_3 (вдоль оптической оси) кристалла основным магнитооптическим эффектом в борате железа является магнитный линейный дихроизм [11], а в гематите — магнитное линейное двулучепреломление [8, 12], в скрещенной геометрии осей пропускания поляризатора и анализатора интенсивность света на выходе системы поляризатор-образец-анализатор при исследованиях FeBO₃ : Mg можно представить в виде

$$I(\varphi) \approx I_0 S \sin 2(\varphi - \Psi), \tag{1}$$

а в случае, когда образцом является $\alpha\text{-}\mathrm{Fe}_2\mathrm{O}_3:\mathrm{Ga},$ записать как [12]

$$I(\varphi) \approx I_0 P \left[1 - \cos 4(\varphi + \Psi)\right],\tag{2}$$

где I_0 — интенсивность света, падающего на образец; Ψ — азимут оси пропускания поляризатора относительно оси x лабораторной системы координат, ось z которой параллельна оси C_3 ; φ — азимут вектора ферромагнетизма относительно той же оси в плоскости, перпендикулярной направлению распространения света (при этом считается, что $\mathbf{m}(Z) = \text{const}$); S — магнитооптический коэффициент, характеризующий магнитный линейный дихроизм, а P магнитное линейное двулучепреломление — эффект Коттона–Мутона.

Как показали наши измерения, изменение интенсивности света I в зависимости от ориентации вектора **H** (H > 30 Э) в базисной плоскости исследованных кристаллов происходило практически в соответствии с формулами (1) и (2) (для α -Fe₂O₃ : Ga зависимость $I(\varphi)$ аналогична приведенной в [13]).

Рис. 1. Изображения образца FeBO₃ : Mg, полученные в поляризованном свете при различных напряженностях поля $H: a - 0; \ b - 4.5 \ \exists; \ b - 5 \ \exists; \ c - 10 \ \exists \ (T = 80 \ K, поле \ H \ перпендикулярно оси \ C_2)$

Таким образом, анализируя локальные характеристики светового потока на выходе образца, на основе уравнений (1) и (2) можно судить о пространственных вариациях магнитного параметра порядка в FeBO₃ : Мg и α -Fe₂O₃ : Ga, положив угол φ функцией пространственных координат.

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Для изучения магнитного состояния кристаллов FeBO₃ : Mg и α -Fe₂O₃ : Ga в процессе намагничивания была визуализирована эволюция их доменных структур. В размагниченном состоянии исследованные образцы имели типичную для кристаллов бората железа и гематита (см., например, [8–10]) доменную структуру с ориентацией доменных границ в направлениях, близких к направлениям осей C_2 (изображения исследованных кристаллов, полученные в поляризованном свете при H = 0, приведены на рис. 1*a*, 2*a*). Процесс технического намагничивания образцов FeBO₃ : Mg и α -Fe₂O₃ : Ga про-

исходил обычным образом: с ростом поля площадь доменов, в которых вектор **m** составляет острый угол с вектором Н, увеличивалась за счет доменов с противоположной ориентацией т до тех пор, пока кристалл не переходил в монодоменное (однородное) состояние. Однако в некотором интервале температур при наложении магнитного поля в плоскости образцов в направлениях, перпендикулярных осям C₂ (т. е. вдоль трудных осей внутриплоскостной кристаллографической анизотропии [8–10]), сначала кристаллы монодоменизируются (рис. 1δ), а затем при увеличении поля на их изображении наблюдается появление полос с нечеткими границами (рис. 1 в, г, 2б-г). Было установлено, что наблюдаемая система полос различного магнитооптического контраста в α -Fe₂O₃ : Ga возникала в интервале полей 6 Э < Н < 16 Э и практически скачком исчезала при понижении температуры от комнатной до $T_k \approx 260$ К. В FeBO₃ : Mg система полос существовала ниже $T_k \approx 135~{\rm K}$ в некотором зависящем от Т интервале полей и визуально исчезала путем постепенного уменьшения магнитооптического кон-

Рис.2. Изображения образца α -Fe₂O₃ : Ga, полученные в поляризованном свете при T = 290 K: a - H = 0; $\delta - e - H = 7$ Э (на каждом кадре направление вектора H перпендикулярно одной из осей C_2)

траста между светлыми и темными полосами¹⁾. Отметим, что доменные структуры обоих кристаллов, наблюдаемые при H = 0, в интервале температур существования системы полос практически не зависят от T.

На рис. 3 показана экспериментально полученная диаграмма, указывающая области наблюдения квазипериодической системы полос различного магнитооптического контраста в зависимости от величины приложенного поля и его направления в базисной плоскости образца FeBO₃ : Mg (для α-Fe₂O₃ : Ga диаграмма направленности возникновения полос аналогична, с разницей лишь в интервалах полей и температур, в которых она реализуется [14]). Заштрихованные площади диаграммы соответствуют значениям поля и его азимута, при которых наблюдается модуляция контраста изображения образца в поляризованном свете. Направление штриховки соответствует направлению полос различного магнитооптического контраста.

Выяснилось, что величина среднего пространственного периода d возникающей системы полос зависела от напряженности приложенного поля, а для FeBO₃ : Mg — и от температуры. На рис. 4, 5 приведены зависимости периода d системы полос, наблюдаемой в FeBO₃ : Mg, от температуры и магнитного поля, приложенного вдоль нормали к ее волновому фронту. Изменение величины d в зависимости от H

¹⁾ Аналогичные эксперименты, выполненные на номинально чистых (беспримесных) кристаллах гематита и бората железа, показали, что в условиях технического насыщения намагниченности (H > 5 Э) манипуляции величиной и направлением внешнего магнитного поля не приводили к возникновению периодической модуляции контраста получаемых в поляризованном свете изображений этих кристаллов.

Рис. 3. Диаграмма существования структуры полос различного магнитооптического контраста в FeBO₃: Mg на плоскости азимут вектора \mathbf{H} — напряженность приложенного поля (T = 80 K). Заштрихованные области соответствуют значениям поля и его азимута, при которых наблюдается появление структуры, а ориентация штрихов отвечает ориентации волновых фронтов структуры. Ось легкого намагничивания (ОЛН) совпадает с направлением одной из осей C_2

d, мкм 50

Рис. 4. Температурная зависимость пространственного периода системы полос, наблюдаемой в FeBO₃ : Mg, полученная при нагреве (сплошная линия) и охлаждении (штриховая линия) образца (H = 6 Э, поле **H** перпендикулярно оси C_2)

Рис.5. Полевая зависимость пространственного периода системы полос различного магнитооптического контраста, наблюдаемой в ${\sf FeBO}_3$: Mg при $T=80~{\sf K}$

и T происходит скачком за счет изменения числа полос на единицу длины, что на рис. 4, 5 показано в виде ступенек. Отметим, что кроме этого эффекта пиннинга для полевой зависимости периода системы полос характерен гистерезис значений d: при уменьшении H средний период системы полос изменяется меньше, чем при увеличении поля от нуля (зависимость d(H), полученная для α -Fe₂O₃ : Ga в [14], качественно схожа с приведенной на рис. 5).

Рассмотрим физические причины, которые могут приводить к возникновению системы полос различного магнитооптического контраста, наблюдаемых в α -Fe₂O₃ : Ga и FeBO₃ : Mg в поляризованном свете. Эти полосы могут представлять собой 1) интерференционные полосы, возникающие за счет суперпозиции эффекта Фарадея и естественного двулучепреломления в блоховских доменных стенках, разделяющих домены по толщине образца [15, 16], 2) изображение доменов с наклонными к базисной плоскости доменными стенками неелевского типа [8], 3) образ полосовой доменной структуры, 4) отражать наличие пространственно-модулированного (неоднородного) магнитного состояния.

Как следует из результатов, приведенных в [15, 16], интерференционные полосы на поверхности кристалла FeBO₃ наблюдаются лишь при достаточно больших углах падения (около 45°) света на плоскость образца и исчезают при распространении света вдоль оси C_3 , т.е. в геометрии, используемой в наших экспериментах. Кроме того, как уже отмеча-

Рис. 6. Зависимость магнитооптического сигнала I от пространственной координаты вдоль направления волнового вектора модулированной магнитной структуры, наблюдаемой в α -Fe₂O₃ : Ga (1) и FeBO₃ : Mg (2)

лось, система полос, подобная показанным на рис. 1, 2, не возникала при тех же условиях намагничивания в номинально чистых кристаллах гематита и бората железа.

Наличие неелевских доменных стенок, наклонных к базисной плоскости кристаллов, визуально будет восприниматься в виде полос с нечеткими границами [8], однако при поворотах образца вокруг оси, лежащей в базисной плоскости вдоль направления полос, площади светлых и темных полос должны изменяться (за счет изменения проекции доменных стенок на плоскость образца), что не наблюдается экспериментально.

Что же касается возможности существования страйп-структуры, то для ее возникновения следует предположить, что примеси в α -Fe₂O₃ : Ga и FeBO₃ : Mg значительно меняют константу гексагональной анизотропии, обеспечивая выход вектора **m** из базисной плоскости (тогда для уменьшения магнитостатической энергии образец должен разбиться на полосовые домены). Для этого в примесных кристаллах (в отличие от номинально чистых) константа анизотропии шестого порядка должна стать заметной величиной по сравнению с константой анизотропии второго порядка, что маловероятно, поскольку в кристаллы допируются диамагнитные ионы.

Таким образом, остается предположить, что в полях H, превышающих поля насыщения, в исследованных слабых ферромагнетиках наблюдается пере-

ход из состояния с однородной намагниченностью в модулированное магнитное состояние. Отсутствие резких границ изображения полос различного магнитооптического контраста означает, что в отличие от обычной доменной структуры, где азимут вектора намагниченности является постоянным внутри отдельного домена, в реализуемых магнитных состояниях вектор ферромагнетизма (антиферромагнетизма) непрерывно и плавно меняет свой азимут вдоль направления намагничивания. Компьютерная оцифровка изображений наблюдаемых систем полос показала, что модуляция интенсивности *I* вдоль направления, перпендикулярного направлению полос, достаточно хорошо описывается гармонической функцией от координаты (полученные таким образом зависимости I(x) (поле **H** параллельно оси x и перпендикулярно оси C_2) для α -Fe₂O₃ : Ga и FeBO₃ : Мд приведены на рис. 6). Если считать, что вектор **m** в модулированных магнитных структурах не выходит из базисной плоскости кристаллов, то, используя уравнения (1) и (2), можно определить локальные вариации его азимута в наблюдаемой системе полос. Экспериментально это можно сделать, поворачивая плоскость поляризации падающего на образец света относительно направления полос структуры и находя положение поляризатора, при котором изображение темных и светлых полос структуры инвертируется. Согласно нашим измерениям, для α -Fe₂O₃ : Ga в поле H = 6 Э последнее достигалось при повороте поляризатора на угол около 30° относительно положения, в котором наблюдались полосы, показанные на рис. 26-г, причем величина этого угла в пределах ошибки эксперимента не зависит от T во всем исследованном температурном интервале существования модулированных магнитных структур. В соответствии с выражением (2) это означает, что амплитуда φ_A модуляции направления вектора \mathbf{m} в таких структурах в α -Fe₂O₃ : Ga при H = 6 Э составляет примерно 15° и в области от T_k до T = 290 К не зависит от температуры. Аналогично было установлено, что для FeBO₃ : Mg при T = 80 К максимальная амплитуда φ_A модуляции азимута вектора т в структуре составляет около 12° и уменьшается при повышении температуры (рис. 7). Полевые зависимости угла φ_A для обоих исследованных кристаллов показаны на рис. 7^{2} .

²⁾ Судя по полученным зависимостям $\varphi_A(T)$, переход из однородного в модулированное магнитное состояние в α -Fe₂O₃: Ga является переходом первого рода, а в FeBO₃: Mg — второго рода, причем модулированные магнитные структуры в первом случае возникают выше, а во втором случае ниже граничной температуры T_k .

Рис.7. Полевая зависимость амплитуды модуляции азимута локального вектора ферромагнетизма в модулированной магнитной структуре, полученная для α -Fe₂O₃ : Ga (1) при T = 290 K и для FeBO₃ : Mg (2) при T = 80 K. На вставке — температурная зависимость амплитуды модуляции азимута локального вектора ферромагнетизма в модулированной магнитной структуре, наблюдаемой в FeBO₃ : Mg (H = 6 Э)

На основе полученных результатов модулированное магнитное состояние α -Fe₂O₃ : Ga и FeBO₃ : Mg можно наглядно представить в виде одномерной зависимости азимутального угла φ , характеризующего ориентацию вектора **m** в базисной плоскости, от пространственной координаты вдоль направления намагничивания (поле **H** перпендикулярно оси C_2), а компоненты векторов **m** и **l** в модулированных магнитных структурах в системе координат, в которой ось z совпадает с направлением распространения света, а ось x — с направлением приложенного поля, определить как

$$l_{x} = |\mathbf{l}| \cos \varphi_{A} \cos ky, \quad m_{x} \approx |\mathbf{m}|, l_{y} \approx |\mathbf{l}|, \quad m_{y} = |m| \cos \varphi_{A} \cos kx,$$
(3)

где *k* — волновой вектор структуры.

По визуальному восприятию и поведению в магнитном поле исследованные модулированные магнитные структуры схожи с магнитной сверхструктурой, возникающей под действием света в борате железа, допированном ионами никеля [17]. Из теории фотоиндуцированной модулированной магнитной структуры, предложенной в [17], вытекает, что к ее возбуждению приводит обменное взаимодействие между комплексами, образованными матричными и примесными ионами кристалла FeBO₃ : Ni, которое в отсутствие фотовозбуждения мало́ и усиливается под действием света. Эта теория в принципе допуска-

ет возникновение модулированной магнитной структуры и без участия света, однако засветка должна влиять на параметры возникающего модулированного магнитного состояния кристалла. Поскольку в наших экспериментах световое воздействие на образец всегда имело место, были проведены исследования влияния засветки на магнитную структуру образцов *α*-Fe₂O₃ : Ga и FeBO₃ : Mg. В эксперименте варьировались мощность и спектральный состав падающего на кристаллы светового потока: поочередным введением в оптический канал микроскопа светофильтров отсекались различные части спектра зондирующего света (источником излучения служила 100-ваттная лампа накаливания). Однако изменения мощности светового потока и его спектра не влияли ни на условия возбуждения, ни на период или направление системы полос; не происходило и движение (в отличие от наблюдаемого в FeBO₃ : Ni) модулированных магнитных структур исследованных кристаллов как целого. Также не оказывало заметного воздействия на такие структуры сканирование поверхности образцов лазерным лучом ($\lambda = 0.63$ мкм, мощность порядка 10 мВт), сфокусированным в пятно диаметром примерно 20 мкм. Это означает, что возбуждение модуляции азимута вектора **m** в α -Fe₂O₃ : Ga и FeBO₃ : Mg происходит без участия света, т. е. к возникновению модулированных магнитных структур в нашем случае приводят причины, не связанные с локальными вариациями обменного взаимодействия, вызванными присутствием в составе кристаллов примесных ионов.

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Для описания возникающей модулированной магнитной структуры обратимся к теории перехода магнитоупорядоченной среды из однородного в неоднородное магнитное состояние под действием магнитного поля [18,19]. Основываясь на экспериментальных фактах, будем предполагать, что во внешнем магнитном поле устойчивым может оказаться состояние, в котором локальный вектор ферромагнетизма т отклонен от направления Н на некоторый угол. Поскольку в базисной плоскости исследованных кристаллов имеются три направления, вблизи которых возникает модулированная магнитная структура, для определенности направим внешнее поле Н вдоль одного из этих направлений, которое примем за ось х. Так же как и в [18,19], положим, что вклады в плотность термодинамического потенциала кристалла от

слабоферромагнитного момента незначительны и он определяется лишь компонентами вектора антиферромагнетизма. Тогда, выбрав в качестве формального параметра порядка малый угол β , характеризующий отклонение локального вектора антиферромагнетизма l от оси y (ось y параллельна оси C_2 , а ось z -оси C_3), термодинамический потенциал кристалла, следуя работам [18, 19], представим в виде инвариантного разложения по степеням параметра порядка:

$$\Phi(\beta) = \int \left[-\frac{1}{2}A\beta^2 + \frac{1}{4}B\beta^4 + \frac{1}{2}\alpha\beta'^2 + \frac{1}{4}\gamma\beta''^2 + mh\beta + \frac{1}{2}\mu lh\beta'^2 + \dots \right] dy. \quad (4)$$

Здесь $A, B, \alpha, \gamma, \mu$ — не зависящие от H параметры, а штрихи при β означают соответствующую производную по аргументу.

Внешнее магнитное поле в (4) учтено двумя разрешенными симметрией слагаемыми: первое из них, $mh\beta = mMH\beta$, где M — подрешеточный момент, представляет собой зеемановский вклад в энергию кристалла; второе, $\mu lh\beta'^2/2$, инвариантно к инверсии пространства и времени. Сконструированный функционал Φ отличается от используемого в [19] только добавлением этого последнего слагаемого, которое учитывает магнитную неоднородность среды (наличие случайного поля) и перенормирует коэффициент при квадрате первой производной, делая его зависящим от H.

Фазовый переход из однородного магнитного состояния в модулированное произойдет, когда коэффициент при квадрате первой производной в выражении (4) станет меньше нуля, т. е. при $\mu > 0$ в поле $h > \alpha/\mu l$ будет индуцировано модулированное магнитное состояние кристалла, при этом функционал (4) минимизируется функцией вида [19]

 $\beta(y) \approx \beta_0 + \eta \cos ky.$

Таким образом, согласно рассмотренной модели, при наложении внешнего магнитного поля в базисной плоскости ромбоэдрического слабого ферромагнетика вдоль трудной оси намагничивания в поле с критическим значением $H_0 = \alpha/M\mu l$ происходит фазовый переход из однородного магнитного состояния в модулированное. Ось, вдоль которой возникает модуляция, ориентирована по направлению **H**, а магнитная сверхструктура представима в виде рипплонной фазы, в которой на фоне постоянного отклонения от заданной оси азимут локального вектора антиферромагнетизма (ферромагнетизма) испытывает осцилляции с периодом $d = 2\pi/k$. Это в принципе согласуется с результатами измерений (см. соотношения (3)) пространственной вариации азимута вектора **m** в наблюдаемой структуре, если положить $\eta = \varphi_A + \pi/2$ (постоянная отклонения β_0 не наблюдалась экспериментально, возможно, из-за ошибки в определении величины угла φ_A , которая составляла около 1°).

Можно показать, что в полях, близких к критическому, характеристики возникающего неоднородного магнитного состояния будут вести себя следующим образом:

$$d = 2\pi \sqrt{\frac{2\gamma}{|\alpha + \mu lh|}},$$

$$\beta_0 = \frac{4\gamma h}{M(\alpha + \mu lh)^2},$$

$$\eta^2 = \frac{1}{3B} \left[A + \frac{\alpha + \mu lh}{4\gamma} - \frac{48\gamma^2 h^2 B}{M^2(\alpha + \mu lh)^4} \right].$$

Остановимся на физическом смысле полученных на основе потенциала (4) соотношений. Поскольку возникновение модулированного магнитного состояния не наблюдалось при тех же условиях намагничивания в номинально чистых гематите и борате железа, последнее свидетельствует о непосредственном влиянии примеси на процесс вращения подрешеточных моментов в допированных диамагнитными ионами кристаллах при их намагничивании в базисной плоскости. Это позволяет предположить наличие в *α*-Fe₂O₃ : Ga и FeBO₃ : Мд вблизи ионов примеси анизотропных магнитных центров, магнитные моменты M_c которых отклонены от направлений, задаваемых внутриплоскостной гексагональной анизотропией матрицы. В частности, роль таких центров могут играть комплексы, включающие в себя диамагнитный ион примеси и расположенные в ближайшей к нему координационной сфере ионы железа. Можно ожидать, что замещение матричных ионов железа диамагнитными примесями не приведет к отличию кристаллографической симметрии таких магнитных центров от гексагональной, однако локальные искажения кристаллической решетки, обусловленные различием размеров основного матричного иона железа и ионов магния и галлия, вызовут существенные изменения константы внутриплоскостной анизотропии в некоторой области кристалла вблизи примесей. Наличие этой случайной анизотропии приведет к тому, что ориентация вектора M_c отдельного центра в общем случае не будет совпадать с направлением результирующего спонтанного магнитного момента всего кристалла. Принимая

во внимание, что концентрация примесей невелика и, следовательно, магнитные моменты центров кооперативно не упорядочены, можно считать векторы M_c статистически равновероятно ориентированными вдоль легких осей центров (вдоль трех кристаллографически эквивалентных направлений в соответствии с выбранной моделью центра), фиксированных относительно осей симметрии матрицы. Очевидно, что при наложении внешнего магнитного поля равновесная магнитная структура кристалла будет определяться результатом конкуренции между вкладами в термодинамический потенциал от случайной анизотропии, кристаллографической анизотропии и поля *H*. Близкая к этой ситуация была проанализирована в [20] для поликристаллических пленок пермаллоя, где роль случайной анизотропии играла кристаллографическая анизотропия в кристаллитах, ориентированных случайным образом относительно друг друга, а ориентирующими факторами являлись наведенная анизотропия (текстура) и внешнее магнитное поле. Используя результаты работы [20], можно записать выражение для периода модуляции в виде

$$d = 2\pi \sqrt{\frac{2J}{M_s H - 2K}}, \qquad (5)$$

где J — константа обмена, M_s — спонтанная намагниченность, K — константа внутриплоскостной гексагональной анизотропии (в [20] под K понимается константа наведенной одноосной анизотропии). Отсюда следует, что модулированное магнитное состояние может существовать в области полей

$$H > H_0 = 2K/M_s. \tag{6}$$

Существенно, что соотношения (5) и (6) совпадают с выражениями для d и H_0 , полученными выше на основе рассмотрения потенциала (4), если положить $J = \gamma$, $2K = -\alpha$ и $M_s = -\mu l M$.

Из структуры формулы (5) видно, что вначале при $H \ge H_0$ зависимость d(H) имеет резкий спад, а затем при $H > 2H_0$ период модуляции меняется слабо, что коррелирует с данными эксперимента, приведенными на рис. 5 (за H_0 принимается минимальное поле, при котором возникает модулированное магнитное состояние). Заметим, что для обоих исследованных кристаллов периоды d, рассчитанные по формуле (5) с использованием экспериментально полученных значений H_0 , а также известных значений M_s и константы J, по порядку величины согласуются с периодами, измеренными в эксперименте (для гематита результаты расчета приведены в [13]). Как следует из (5), температурная зависимость периода модуляции определяется³⁾ изменением с температурой константы K. Нам не известен вид зависимостей K(T) в исследованных кристаллах, но если предположить, что эти зависимости близки к соответствующим зависимостям константы гексагональной анизотропии в номинально чистых борате железа (K уменьшается с ростом T [21]) и гематите ($K \approx$ const при 260 K < T < 300 K [22]), то, согласно (5), период структуры в α -Fe₂O₃ : Ga не должен изменяться во всем температурном интервале ее существования, а в FeBO₃ : Mg величина dдолжна уменьшаться при $T \rightarrow T_k$, что соответствует данным эксперимента.

Предположение о наличии в исследованных кристаллах одноосных магнитных центров позволяет объяснить скачкообразное изменение пространственного периода модулированной магнитной структуры в зависимости от величины магнитного поля и температуры (только для FeBO₃ : Mg): при изменении Н и/или Т число центров, направление вектора M_c которых отличается от направления **H**, в силу дискретности азимутов легких осей центров меняется дискретно, что, в свою очередь, приводит к скачкообразному изменению соотношения между энергиями конкурирующих взаимодействий, ответственных за равновесное магнитное состояние кристалла. При этом отмеченное в предыдущем разделе наблюдаемое в FeBO₃ : Мд различие в поведении зависимостей d(H) и d(T) определяется различием соответствующих зависимостей концентрации центров с $\mathbf{M}_c \parallel \mathbf{H}$. При T = const различие числа центров с $\mathbf{M}_{c} \parallel \mathbf{H}$ на прямом (при росте поля от нуля) и обратном ходе намагничивания обусловливает заметный гистерезис зависимости d(H) (см. рис. 5). В то же время изменение d в зависимости от Т определяется температурной зависимостью константы анизотропии, задающей направление вектора M_c центра, что приводит к отсутствию существенного различия значений d, измеренных при нагреве и охлаждении образца (имеющиеся несовпадения температуры скачков величины d, наблюдаемые на рис. 4, по-видимому, обусловлены ошибкой в определении Т, возникающей при смене режима нагрев — охлаждение за счет инерционности процесса установления термодинамического равновесия в кристалле).

³⁾ Как показали измерения, в температурной области существования модулированного магнитного состояния для обоих исследованных кристаллов в пределах ошибки эксперимента $I/I_0 = \text{const}$, поэтому зависимостью $M_s(T)$ в (5) можно пренебречь.

Таким образом, за исключением значений граничных температур T_k , предложенная модель возникновения неоднородного магнитного состояния позволяет объяснить (по крайней мере на качественном уровне) экспериментально наблюдаемое поведение периода модулированной магнитной структуры в *α*-Fe₂O₃ : Ga и FeBO₃ : Mg в зависимости от температуры и напряженности приложенного магнитного поля. Согласно [20], неоднородное магнитное состояние среды возникает при условии $K_a > K \gg K_a N^{-1/2}$, где N — число анизотропных магнитных центров в единице объема, а K_a константа анизотропии, задающая направление легкой оси центра. На основании этого можно предположить, что область температур существования модулированных магнитных структур в исследованных кристаллах определяется соотношением величин конкурирующих магнитоанизотропных взаимодействий, которое зависит от Т.

5. ЗАКЛЮЧЕНИЕ

Установлено, что в легкоплоскостных слабых ферромагнетиках, допированных диамагнитными ионами, в магнитном поле, превышающем поле насыщения номинально чистых кристаллов, возникают магнитные неоднородности, связанные с квазипериодическими отклонениями вектора ферромагнетизма от направления намагничивания. Механизм формирования модулированного магнитного состояния в этом классе магнетиков предполагает появление в базисной плоскости кристалла вблизи диамагнитных примесей анизотропных магнитных центров со случайным распределением азимутов легких осей. Направление индуцированной магнитной сверхструктуры, а также ее пространственный период меняются в зависимости от ориентации и величины внешнего магнитного поля, что может представлять интерес с точки зрения возможных практических приложений данного эффекта.

ЛИТЕРАТУРА

1. Ю. М. Изюмов, УФН 144, 439 (1984).

- 2. Y. Imry and S. Ma, Phys. Rev. Lett. 35, 1399 (1975).
- R. J. Birgeneau, H. Yoshizawa, R. A. Cowley et al., Phys. Rev. B 28, 1438 (1983).
- 4. H. Ikeda, J. Phys. C 16, L21 (1983).
- 5. H. Ikeda, J. Phys. C 16, L1033 (1983).
- 6. E. B. Sonin, J. Phys. C 13, 3293 (1980).
- 7. Г. А. Смоленский, В. В. Леманов, Г. М. Недлин и др., *Физика магнитных диэлектриков*, Наука, Ленинград (1974).
- В. Л. Преображенский, А. А. Шишков, Н. А. Экономов, ФТТ 29, 3549 (1987).
- 9. G. B. Scott, J. Phys. D 7, 1574 (1974).
- 10. J. A. Eaton and A. H. Morrish, Can. J. Phys. 49, 2768 (1971).
- Ю. М. Федоров, А. А. Лексиков, А. Е. Аксенов, ФТТ 26, 220 (1984).
- В. С. Меркулов, Е. Г. Рудашевский, А. Ле Галль, К. Лейкюрас, ЖЭТФ 75, 628 (1978).
- **13**. А. Т. Караев, Б. Ю. Соколов, ЖТФ **73**, 130 (2003).
- 14. З. Т. Азаматов, А. Т. Караев, Б. Ю. Соколов, Ю. М. Федоров, ЖТФ 71, 84 (2001).
- J. Haisma and W. T. Stacy, J. Appl. Phys. 44, 3367 (1973).
- 16. А. В. Чжан, ФТТ 32, 280 (1990).
- 17. Ю. М. Федоров, А. Ф. Садреев, А. А. Лексиков, ЖЭТФ 93, 2247 (1987).
- 18. A. Michelson, Phys. Rev. B 16, 585 (1977).
- И. Е. Дикштейн, Ф. В. Лисовский, Е. Г. Мансветова,
 В. В. Тарасенко, ФТТ 25, 2545 (1983).
- 20. H. Hoffmann, J. Appl. Phys. 35, 1790 (1964).
- **21**. В. Ф. Дорошев, И. М. Крыгин, С. Н. Лукин, Письма в ЖЭТФ **29**, 286 (1979).
- 22. Г. А. Петраковский, А. И. Панкрац, В. М. Соснин,
 В. И. Васильев, ЖЭТФ 85, 691 (1983).