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BILAYER MEMBRANE IN CONFINED GEOMETRY:INTERLAYER SLIDE AND ENTROPIC REPULSIONS. V. Baoukina *, S. I. Mukhin **Mos
ow State Institute for Steel and Alloys (Te
hnologi
al University)119049, Mos
ow, RussiaSubmitted 28 April 2004We derive the free energy fun
tional of a bilayer lipid membrane from the �rst prin
iples of elasti
ity theory.The model expli
itly in
ludes position-dependent mutual slide of monolayers and bending deformation. Our freeenergy fun
tional of a liquid-
rystalline membrane allows for in
ompressibility of the membrane and vanishingof the in-plane shear modulus and obeys re�e
tional and rotational symmetries of the �at bilayer. Interlayerslide at the mid-plane of the membrane results in a lo
al di�eren
e of the surfa
e densities of monolayers. Theslide amplitude dire
tly enters the free energy via the strain tensor. For small bending deformations, the ratiobetween the bending modulus and the area 
ompression 
oe�
ient, Kb=KA, is proportional to the square ofmonolayer thi
kness h. Using the fun
tional, we perform self-
onsistent 
al
ulation of the entropi
 potentiala
ting on a bilayer between parallel 
on�ning walls separated by distan
e 2d. We �nd that at the minimumof the 
on�ning potential, the temperature-dependent 
urvature � / T 2=Kbd4 is enhan
ed four times for abilayer with slide as 
ompared to a unit bilayer. We also 
al
ulate vis
ous modes of a bilayer membrane between
on�ning walls. We investigate pure bending of the membrane, whi
h is de
oupled from area dilation at smallamplitudes. Three sour
es of vis
ous dissipation are 
onsidered: water and membrane vis
osities and interlayerdrag. The dispersion relation gives two bran
hes !1;2(q).PACS: 68.15.+e, 68.60.-Bs, 87.16.Dg1. INTRODUCTIONCell membrane is 
hara
terized by 
omplex stru
-tural and dynami
al properties [1�4℄. Theoreti
al mod-eling and des
ription of lipid membranes are of greatfundamental and pra
ti
al interest and have a su�-
iently long history. The phenomenologi
al model in-trodu
ed in [5℄ treated a lipid membrane as a singlesheet with bending rigidity and spontaneous 
urvature.This model was later used for 
al
ulation of the fre-quen
y spe
trum of the membrane in water solution [6℄and for investigation of entropi
 intera
tions of mem-branes in multilayer systems [7℄. The bilayer stru
tureof a lipid membrane was analyzed in [3; 8℄, where thedynami
 
oupling between the monolayers and the in-terlayer slide was 
onsidered. The frequen
y spe
trumof a membrane in the bulk water was re
al
ulated in [9℄with the 
oupling between lo
al 
urvature and lo
aldensities of lipids within the monolayers taken into a
-*E-mail: svt_lana19�yahoo.
om**E-mail: sergeimos
ow�online.ru


ount. Afterwards, vis
ous modes of a bilayer adheringto a substrate were found in [10℄ using the density-di�eren
e model [9℄, supplemented with a binding po-tential [11℄.In this paper, we derive a new free energy fun
tionalof a bilayer membrane with interlayer slide. The inter-layer slide fun
tion, membrane stret
hing and bendingamplitude dire
tly enter the strain tensor of the mem-brane. Our fun
tional is a generalization of the density-di�eren
e model used in [9; 10℄. In our model, two lat-eral deformation �elds (interlayer slide and stret
hing)generate the 
hange in the lo
al density and the den-sity di�eren
e of monolayers that were used in the freeenergy fun
tional in [9; 10℄. But unlike in [9; 10℄, wedo not require the presen
e of neutral surfa
es in ea
hmonolayer in the general 
ase. As a step towards un-derstanding intermembrane intera
tions, we study dy-nami
s of a bilayer membrane in water solution 
on-�ned between parallel walls. The e�e
t of 
on�nementis modeled by the entropi
 potential [12℄.This paper is organized as follows. In Se
. 2, we1006



ÆÝÒÔ, òîì 126, âûï. 4 (10), 2004 Bilayer membrane in 
on�ned geometry : : :introdu
e an anisotropi
 elasti
 moduli tensor, initially
ontaining 21 independent 
omponents. The re�e
tionand rotation symmetries of the �at bilayer redu
e thenumber of 
omponents to 5. Next, we impose the zeroshear stress modulus and in
ompressibility 
onstraint.We restri
t ourselves to the 
ase of small bending de-formations and ex
lude the 
orresponding strain andelasti
 tensor 
omponents. Thus, the number of inde-pendent 
omponents of the elasti
 tensor in the freeenergy fun
tional is redu
ed to two. The derived freeenergy fun
tional of a bilayer membrane 
ontains three�elds des
ribing area dilation and bending deformation
oupled to interlayer slide.In Se
. 3, a paraboli
 entropi
 potential a
ting onthe membrane between 
on�ning walls is introdu
ed.We self-
onsistently 
al
ulate the 
urvature of the 
on-�ning potential at its minimum for a bilayer with slideand for a unit bilayer. Using our model, we analyti
allyderive the four-time de
rease in bending rigidity due tointerlayer slide.In Se
. 4, we use the derived fun
tional to study dy-nami
al properties and dissipative me
hanisms of thebilayer membrane in water solution 
on�ned betweenparallel walls. We investigate only pure bending defor-mations of the membrane (zero total lateral stret
hing),whi
h de
ouple from area dilation. The velo
ity �eldin the surrounding water is found by solving Stokesequations for in
ompressible �uid. Fluid velo
ity van-ishes at the walls. Equations of motion are determinedas for
e balan
e 
onditions on the membrane surfa
eswith inertial e�e
ts negle
ted. Three sour
es of dissi-pation are in
luded into dynami
 equations: water andmembrane vis
osities and interlayer drag.In Se
. 5, we dis
uss limitations and possible im-provements of our model and 
orresponden
e with ear-lier results [10℄. In Appendix A, stati
 behavior of amembrane in the axially symmetri
 
ase is studied. An-alyti
 solutions are obtained for a 
ir
ular membranebent by external pressure. Membrane bending, inter-layer slide, and lateral stress distribution are found asfun
tions of pressure a
ross the membrane. In Ap-pendix B, we rederive the dispersion relation [9℄ fora membrane in the bulk water solution using our freeenergy fun
tional.2. FREE ENERGY FUNCTIONALThe free energy density of an anisotropi
 medium
an be written to the lowest order in the elasti
 straintensor as [13; 14℄ F = 12�iklmuikulm; (1)

where summation over the repeated indi
es i, k, l, mis performed. The indi
es i, k, l, m take values 1, 2,3, labeling the respe
tive spa
e axes x, y, z; uik is thestrain tensor, and �iklm is the elasti
 (modulus) tensor.By de�nition, the elasti
 tensor is symmetri
 under thetranspositions i$ k, l$ m, and i; k $ l;m,�iklm = �kilm = �ikml = �lmik ;and has 21 independent 
oe�
ients.With (1), the (symmetri
) stress tensor �ik is de-�ned as �ik = �F�uik = �iklmulm: (2)In a symmetri
 medium, there is a 
orrelation be-tween di�erent 
omponents �iklm, and the number ofindependent elements of the elasti
 modulus tensor isredu
ed.We introdu
e a Cartesian 
oordinate system withthe z axis perpendi
ular to the unperturbed (�at) mem-brane plane and with the monolayer interfa
e (i.e.,the bilayer mid-plane) positioned in the xy plane (atz = 0). The membrane thi
kness is equal to 2h, andthe �at membrane is modeled as a thin bilayer platebounded by the z = �h and z = h planes with in-plane linear dimension R � 2h. The xy plane is aplane of re�e
tion symmetry. This implies that thefree energy must be invariant under the transformationx! x, y ! y, z ! �z. Therefore, all the 
omponents�iklm with an odd number of z indi
es are equal tozero [10℄. The membrane 
an be 
onsidered laterallyisotropi
. Then the z axis is an axis of rotational sym-metry. The expression for the elasti
 energy density Fthen be
omes [11℄F = 12�xxxx(u2xx + u2yy) + 12�zzzzu2zz ++ �xxyyuxxuyy + (�xxxx � �xxyy)u2xy ++ �xxzz(uxxuzz + uyyuzz) + 2�xzxz(u2xz + u2yz): (3)Assuming that the membrane is in liquid state, werequire that the in-plane shear modulus (the 
oe�
ientin front of u2xy) vanishes, and thus obtain�xxxx = �xxyy:Hen
e, expression (3) further simpli�es and a
quiresthe formF = 12�xxxx(uxx + uyy)2 + 12�zzzzu2zz ++ �xxzz(uxxuzz + uyyuzz) + 2�xzxz(u2xz + u2yz): (4)Let an external for
e applied perpendi
ular to themembrane plane indu
e a small bending deformation1007



S. V. Baoukina, S. I. Mukhin ÆÝÒÔ, òîì 126, âûï. 4 (10), 2004along the z axis. Allowing for a typi
al experimentalsituation, we 
onsider a thin membrane with the ratioof its thi
kness 2h to the lateral linear dimension (e�e
-tive radius) R of the order 10�3. Hen
e, we negle
t theapplied external stresses on the top and bottom mem-brane surfa
es 
ompared to the internal lateral stressesin it. Due to the smallness of the membrane thi
kness,zero stresses on the surfa
e also vanish in the bulk of themembrane. We therefore impose the 
ondition usuallyimplied for the thin plates [13℄,�xz(r) = �yz(r) = �zz(r) � 0; (5)where r spans the membrane bulk. This 
ondition isjusti�ed by the fa
t that small external pressure nor-mal to a thin membrane indu
es relatively high lateralstresses in it [13℄. Indeed, we show in Appendix A thatthe ratio of the normal stress to the lateral stress is ofthe order (h=R)2. In a

ordan
e with (2) and (4), thez-
omponents (5) of the stress tensor are related to thestrain tensor 
omponents as�xz = 4�xzxzuxz; �yz = 4�yzyzuyz; (6)�zz = �xxzz(uxx + uyy) + �zzzzuzz: (7)Combining relations (5) and (7), we �nduzz = ��xxzz�zzzz (uxx + uyy): (8)It is interesting to mention that as follows from (6),the �rst two 
onditions in (5) require vanishing of thestrain tensor 
omponents uxz and uyz.Condition (5) allows omitting the terms 
ontaininguxz and uyz in (4). Also using (8) and expressing uzzvia uxx+uyy in (4), we �nd the expression for the freeenergy density:F = 12 ��xxxx � �2xxzz�zzzz � (uxx + uyy)2: (9)In addition, we impose the �in
ompressibility� 
ondi-tion, i.e., the 
onstan
y of the bulk density of the mem-brane: uxx + uyy + uzz = 0: (10)Condition (10) is satis�ed simultaneously with (8) if�zzzz = �xxzz.Finally, the free energy density is written asF = 12K1(uxx + uyy)2; (11)where K1 denotes a superposition of anisotropi
 elasti
moduli: K1 = (�xxxx � �zzzz):

In the linear approximation for the strain tensor,we have uik = 12 � �ui�xk + �uk�xi � ; (12)where ui is the ith 
omponent of the distortion �eld.To introdu
e the essentials of our model in a simpleway, we limit the following dis
ussion to the 
ase of asmall bending amplitude, i.e., we impose 
onditionjuzj � h;where uz(r) is the z-
omponent of displa
ement de-s
ribing the deformed membrane. Also, we negle
t thez-dependen
e of the 
omponent uz(r) in the thin plateapproximation [13℄, thus de�ning the �shape� fun
tion�(x; y) � uz(r) independent of the depth z. Substitut-ing �(x; y) in de�nition (12) and then in relations (6)and 
onditions (5), we obtain the partial di�erentialequations �ux�z = � ���x;�uy�z = ����y : (13)In integrating Eqs. (13), we introdu
e two fun
-tions: the (inhomogeneous) lateral stret
hing of themembrane a(x; y) and the in-plane slide �f(x; y) ofthe lower (z < 0) and upper (z > 0) monolayers atthe mid-plane z = 0 of the membrane. Thus, the in-plane distortions ux and uy of ea
h monolayer have theformux = �z ��(x; y)�x ++ (�(z)��(�z)) fx(x; y) + ax(x; y);uy = �z ��(x; y)�y ++ (�(z)��(�z)) fy(x; y) + ay(x; y); (14)where the step fun
tion is de�ned as�(z > 0) � 1; �(z < 0) � 0;and the 
hoi
e of the sign of � and of its argument ismade for the later 
onvenien
e. The step fun
tions in(14) model splitting of the membrane into two separatemonolayers and des
ribe a dis
ontinuity of in-plane dis-tortions a
ross the interfa
e between the monolayers.Here it is worth emphasizing the limitations of thevalidity of relations (14). Expressions (14) are 
learlydistin
t from the usual expressions for thin plates [13℄.In the latter 
ase, the displa
ements ux and uy are setto zero at z = 0, implying the presen
e of a neutral1008



ÆÝÒÔ, òîì 126, âûï. 4 (10), 2004 Bilayer membrane in 
on�ned geometry : : :(not stret
hed) surfa
e at the mid-plane of the platein the small bending approximation � � h [13℄. It isshown in Appendix A (see Eq. (A.11)) that the se
ondterm in (14) is of the same order as the �rst one,fx;y � h�=R;where R is the e�e
tive radius of the membrane. Thesmall bending approximation is justi�ed when the termquadrati
 in � is negligibly small 
ompared to line-ar terms in the expressions for in-plane distortions uxand uy, O(�2=R)� h�=R:This 
ondition is ful�lled as long as � � h. On theother hand, for a strongly bent thin plate, the �2-term dominates over the �-term, and therefore higher-order terms should be added to the right-hand side ofEqs. (14).We now dis
uss the physi
al meaning of expressions(14). The membrane stret
hing a(x; y) de�nes position-dependent shift of the neutral surfa
e (along the z 
o-ordinate), while the slide fun
tion f(x; y) multiplied bystep fun
tions leads to the splitting of this neutral sur-fa
e into two surfa
es belonging to the upper and lowermonolayers. These surfa
es are determined from the
onditions ux(x; y; z) � 0; uy(x; y; z) � 0:The fun
tion f(x; y) provides an additional degree offreedom in 
omparison with a bilayer without slide (ora single monolayer). Under the 
ondition of zero to-tal lateral stret
hing (i.e., pure bending deformation,a � 0) the presen
e of the fun
tion f means that theneutral surfa
e splits into two su
h surfa
es lo
atedin ea
h monolayer symmetri
ally with respe
t to themid-plane z = 0. The total amplitude of the 
ommoninterlayer slide at ea
h point (x; y) of the mid-planeis then given by 2f(x; y), whi
h signi�es dis
ontinuityof in-plane distortions ux and uy a
ross the mid-planez = 0. In the opposite 
ase where f � 0, the monolayersare 
oupled together (no interlayer slide) and the dis-tortion �eld is the sum of bending and stret
hing (forsmall deformations), the latter being 
ontinuous a
rossthe mid-plane z = 0. In general, distortion �eld (14) in-
ludes bending, stret
hing, and mutual interlayer slide.Substituting (14) in (12), we pro
eed to deter-mine the strain tensor 
omponents for ea
h monolayer(z > 0, z < 0):

uxx = �z �2�(x; y)�x2 + (�(z)��(�z))�� �fx(x; y)�x + �ax(x; y)�x ;uyy = �z �2�(x; y)�y2 + (�(z)��(�z))�� �fy(x; y)�y + �ay(x; y)�y ; (15)
and uzz 
an be expressed via uxx and uyy using (8).The above expressions allow for a free (stati
) mu-tual slide of the monolayers. The jump of the lateralstrain a
ross the interfa
e between the monolayers doesnot 
ost elasti
 energy. Hen
e, this jump does not in-trodu
e any additional spatial s
ale smaller than h intothe problem.The free energy fun
tional of the whole membraneFv is obtained by integrating the free energy densityF over the membrane volume stepwise: �rst over thethi
kness 
oordinate (�h < z < h) and then over themembrane plane fx; yg. Using expressions (11) and(15), we �nally �ndFv = K12 Z (uxx + uyy)2dV == K12 �2h33 ZZ � ~r2��2 dx dy�� 2h2 ZZ � ~r2��� ~r � f� dx dy ++ 2h ZZ �� ~r � a�2 + � ~r � f�2� dx dy� ; (16)where the tilde refers to two-dimensional di�erentia-tion: ~r = � ��x; ��y� :Equation (16) is a
tually quite remarkable. Themean 
urvature of the interlayer surfa
e H is expressedas ~r2� = �2��x2 + �2��y2 � 2H: (17)Therefore, the �rst term in the right-hand sidegives the e�e
tive bending energy, i.e., the extrin-si
 
urvature-bending energy fun
tional F
 of the�standard� form [5, 13℄,F
 = Kb2 Z (2H � 
0)2dS; (18)with zero spontaneous 
urvature 
0. Here, Kb is thebending rigidity (modulus). Comparing (16) and (18),we �nd 2h3K1=3 = Kb:16 ÆÝÒÔ, âûï. 4 (10) 1009



S. V. Baoukina, S. I. Mukhin ÆÝÒÔ, òîì 126, âûï. 4 (10), 2004The last term in (16) a

ounts for the elasti
 energyof area dilation with the area 
ompression 
oe�
ientde�ned as KA = 2hK1:In general, the lo
al relative area dilation �S=S equalsuxx + uyy [13℄. A

ording to Eq. (15), the relativearea dilation is given by ~r � a, while the di�eren
eof relative area dilations between the monolayers isgiven by 2( ~r � f). Hen
e, the ( ~r � a)2 term in (16)arises due to 
ontinuous (a
ross the monolayers inter-fa
e z = 0) lateral stret
hing of the membrane, whi
hleads to a 
hange in the average lipid density. The( ~r � f)2 term represents the energy of lo
al area di�er-en
e of the monolayers (area-di�eren
e elasti
ity [2℄),whi
h is equivalent to the di�eren
e of lipid densitiesin monolayers (density-di�eren
e model [9℄). In prin
i-ple, this energy is not related to the presen
e of neu-tral surfa
es within the monolayers (at large membranestret
hing/
ompression, there are no neutral surfa
esthat would obey ux � uy � 0, see expression (14)). Asis apparent from Eq. (16), the relation between bendingand area 
ompression 
oe�
ients (see [2℄)Kb=KA � h2o

urs naturally in our derivation.Next, the se
ond term in the right-hand side ofEq. (16) expresses the 
oupling between bending de-formation and interlayer slide produ
ing a lo
al areadilation di�eren
e between monolayers. We note thatin the lowest-order approximation, bending is de
ou-pled from (
ontinuous) area dilation 
aused by lateralstret
hing. Due to the hydrophobi
 e�e
t, the mono-layers, while sliding, are for
ed to sti
k together and tofollow the same shape de�ned by �(x; y) on the mono-layer interfa
e. Mutual interlayer slide along the in-terfa
e leads to relaxation of stret
hing/
ompression ofthe monolayers 
aused by bending deformation, andthus permits the free energy de
rease.Finally, our free energy fun
tional is invariant withrespe
t to transversal slide of monolayers su
h thatdiv f = 0. Hen
e, the energy does not 
hange un-der mutual rotation of the monolayers (as a whole) ora position-independent shift of one of the monolayerswith respe
t to the other.We 
onsider pure bending deformations of the mem-brane with no overall stret
hing. Therefore, we requirethe lateral strain integrated over the thi
kness to bezero at ea
h point of the membrane. This imposesa restri
tion on the form of ux and uy: the fun
tiona(x; y) must be equal to zero at every point of the bi-layer. Hen
e, this fun
tion is omitted everywhere be-

low. Then the strain tensor 
omponents 
an be writtenas uxx = �z �2��x2 + (�(z)��(�z)) �fx�x ;uyy = �z �2��y2 + (�(z)��(�z)) �fy�y ; (19)and uzz 
an again be expressed via uxx and uyy us-ing (8).The free energy fun
tional of the membrane a
-quires the formFv = K12 Z (uxx + uyy)2dV == K12 �2h33 ZZ � ~r2��2 dx dy � 2h2 ��ZZ � ~r2��� ~r � �f� dx dy ++ 2h ZZ � ~r � �f�2 dx dy� : (20)To study the properties of fun
tional (20) in detail,a simple problem with 
ylindri
ally symmetri
 defor-mation is dis
ussed in Appendix A. The equilibrium ofthe membrane is de�ned by the Euler�Lagrange equa-tions, whi
h are obtained by equating to zero the �rstvariational derivatives of the elasti
 energy fun
tionalF (�; f) with respe
t to the fun
tions �(r) and f(r).3. CONFINING POTENTIAL FOR A BILAYERWITH SLIDEDire
t in�uen
e of the 
on�ned geometry on themembrane behavior manifests itself in a redu
tion ofthe manifold of a

essible membrane 
onformations.Entropi
 intera
tions of the membrane with 
on�ningwalls (see Fig. 1) 
an be modeled [12℄ by introdu
tion ofan extra potential energyW dependent on the bendingamplitude, W = �2 �2:The free energy fun
tional (20) appended with the 
on-�ning potential W a
quires the formFv = K12 �2h33 ZZ � ~r2��2 dx dy�� 2h2 ZZ � ~r2��� ~r � f� dx dy ++ 2h ZZ � ~r � f�2 dx dy�+ �2 ZZ �2dx dy: (21)The 
urvature of the 
on�ning potential at its mi-nimum, � = d2Wd�2 �����=0 ;1010
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Fig. 1. Membrane in the 
on�ned geometry. A bilayermembrane (ea
h monolayer of thi
kness h) is pla
ed inwater solution between parallel walls separated by dis-tan
e 2d. The bending amplitude � = uz is de�ned atthe mid-plane and is independent of the depth in themembrane. The interlayer slide fun
tion f parameter-izes position-dependent mutual slide of the monolayersat their interfa
eis 
al
ulated below using a self-
onsistent pro
edure.In the Fourier spa
e q = fqx; qyg, free energy fun
-tional (21) is written asFv = 1Z0 1Z0 �K1 2h33 q4 + �� j�q j2 dqxdqy(2�)2 �� 1Z0 1Z0 K1h2iq2(�qq � f�q � ��qq � fq)dqxdqy(2�)2 ++ 1Z0 1Z0 2K1hjq � fq j2 dqxdqy(2�)2 ; (22)where q2 = q2x + q2y :We diagonalize the quadrati
 form in (22) with re-spe
t to �q and q � fq by the linear transformationRe ~�q = Re �q � 32h q2~q4 Im(q � fq);Im ~�q = Im �q + 32h q2~q4 Re(q � fq); (23)where ~q4 = q4 + �Kb ; Kb = 2h33 K1:

In terms of the variables ~�q and fq , energy fun
tional(22) be
omesFv = 1Z0 1Z0 K12 �4h33 ~q4j~�q j2++ h 4� 3�q~q�4! jq � fq j2) dqxdqy(2�)2 : (24)Using relations (23) and fun
tional (24), we 
al
ulatethe thermodynami
 averagehj�q j2i = kBT2h33 K1q4 + � ++ 3q4kBT�2h33 K1q4 + ���q4 + 6�K1h3� ; (25)where kB is the Boltzmann 
onstant and T is the tem-perature.In the absen
e of interlayer slide, only the �rst termremains in Eq. (25), as obtained in [12; 15℄. The se
ondterm in (25) signi�es enhan
ement of the bending �u
-tuations 
aused by interlayer slide. The latter leads torelaxation of the lateral stresses (see Appendix A andFig. 3 below) and thus to a de
rease of the free energyof the bent membrane.The mean-square �u
tuations of the bending am-plitude are found ash�2(�r)i = 1Z0 hj�q j2iq dq2� =r 332 kBTp�K1h3 : (26)In the 
on�ned geometry, the average bending am-plitude is restri
ted to the �nite two-dimensional spa
ebetween the walls (negle
ting the volume o

upied bythe membrane itself, i.e., h � d), thus providing theself-
onsisten
y 
ondition for determination of the ef-fe
tive rigidity �, h�2i = �d2; (27)where � � 1.Substituting (26) in (27), we obtain a self-
onsistentsolution for �: � = (kBT )216�2d4Kb : (28)We here also evaluate the 
urvature �0 of the 
on-�ning potential for a unit bilayer (without interlayerslide). In this 
ase, the se
ond term in the right-handside of (25) is zero, and hen
e�0 = (kBT )264�2d4Kb : (29)1011 16*



S. V. Baoukina, S. I. Mukhin ÆÝÒÔ, òîì 126, âûï. 4 (10), 2004Thus, interlayer slide results in 
onsiderable en-han
ement (�=�0 = 4) of the 
urvature of the 
on�ningpotential.4. BILAYER DYNAMICS: VISCOUS MODESTo study the dynami
al properties of the introdu
edmodel of a bilayer membrane with interlayer slide, wehere determine the equations of motion and �nd theeigenmodes of the membrane surrounded by water so-lution. We are interested in the behavior of the mem-brane 
on�ned between parallel walls (see Fig. 1).Let a �at membrane lie in the xy plane with the nor-mal pointed along the z axis. We treat ea
h monolayer
onstituting the membrane as a (unit) two-dimensional
ondensed stru
ture. We require the equilibrium be-tween vis
ous stresses exerted on the membrane surfa
eby water solution and the membrane restoring for
e.We negle
t inertial e�e
ts and introdu
e three sour
esof vis
ous dissipation: water and membrane vis
ositiesand interlayer drag. The for
e balan
e equations areexpressed as�ÆFsÆ� +�zz(z = +0)��zz(z = �0) = 0; (30)ÆFsÆfx � 2�mh ��t � ~r2fx�+ 2bs �fx�t ���xz(z = +0)��xz(z = �0) = 0; (31)�xz(z = +0)��xz(z = �0) = 0: (32)Here, the �uid stress tensor is de�ned as�ik = �pÆik + �w � �vi�xk + �vk�xi� ;where p denotes the hydrostati
 pressure, v is the velo
-ity, and �w is the vis
osity of water solution. The �uidstress tensor is evaluated at the upper (z = +0) andlower (z = �0) membrane surfa
es and 
arries the signof the normal. The �rst term in the left-hand side ofEq. (30) is the elasti
 restoring membrane for
e, whi
his balan
ed by vis
ous stress of the �uid normal to themembrane surfa
e. Equation (31) represents for
e bal-an
e in the lateral dire
tion and 
ontains the following
ontributions [3; 9℄: a) tangential tra
tion on the in-terlayer surfa
e due to di�erential �ow of monolayers;b) 
oherent surfa
e �ow of the monolayers as unit sur-fa
es (with the dynami
 vis
osity �m); 
) vis
ous dragbetween monolayers (
hara
terized by the 
oe�
ientbs) that arises at a �nite velo
ity of their mutual slide;

d) tra
tion of the surrounding �uid. Equation (32) a
-
ounts for the absen
e of total stret
hing for
es exertedby water on the membrane be
ause we here dis
uss onlypure bending deformations of the membrane, i.e., whenthe total area dilation is zero.Navier�Stokes equations for water solutions sur-rounding the membrane should be added to balan
eEqs. (30)�(32). In the small-velo
ity limit, treating�uid as in
ompressible and negle
ting inertia, we writethe �
reeping �ow� equations asrp = �w�v;r � v = 0: (33)The non-slip boundary 
onditions at the membra-ne�water interfa
e provide the 
ontinuity of normal andtangential velo
ities of the �uid and the membrane:���t = vz(�0); (34)�fi�t = vi(z = +0);��fi�t = vi(z = �0); i = x; y: (35)Con�nement between parallel walls at the distan
e2d implies vanishing of water velo
ity (normal and tan-gential 
omponents) at the walls surfa
es:vj(z = �d) = 0; j = x; y; z: (36)To �nd the dispersion relation, we make the Fouriertransform of free energy fun
tional (21) and of the for
ebalan
e and 
reeping �ow equations. For this, we ex-pand the vibration in plane waves propagating alongthe x dire
tion. The free energy density Fs(q; !) thentakes the formFs(q; !) = K12 �4h33 q4j�q j2�� 2h2(�qf�q � ��qfq)q3i+ 4hjfqj2q2�+ �j�q j2 (37)and Fv = Ly(2�)2 +1Z�1 +1Z0 Fs(q; !) dq d!; (38)where Ly is the system dimension along the y axis, andwe have omitted the index ! in the subs
ripts of Fourier
omponents.The restoring membrane for
es are given by fun
-tional derivatives of the free energy,ÆFsÆ��q = �K1 2h33 q4 + �� �q +K1h2fqq3i; (39)1012
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on�ned geometry : : :ÆFsÆf�q = �K1h2�qq3i+ 2K1hq2fq: (40)Fourier transforms of 
reeping �ow equations (33)for the 
omponents of water velo
ity and pressurevx = wx(z) exp(iqx�i!t); vz = wz(z) exp(iqx�i!t);p = pq(z) exp(iqx� i!t)are written as iqwx + �wz�z = 0;iqpq = �w ��q2wx + �2wx�z2 � ;

�pq�z = �w ��q2wz + �2wz�z2 � : (41)We �nd the following solutions of di�erential equa-tions (41) with the normal velo
ity 
ontinuous at z = 0,also obeying the 
ondition of zero lateral stret
hingfor
e a
ting on the membrane (equation (32)) and the
ondition vx(z = +0) = �vx(z = �0)resulting from Eq. (35):pq = ( 2�w(C1eqz + C2e�qz); z > 0;2�w(�C1e�qz � C2eqz); z < 0; (42)wz = ( [C1z + C3℄eqz + [C2z + C4℄e�qz ; z > 0;[�C1z + C3℄e�qz + [�C2z + C4℄eqz; z < 0; (43)wx = 8>>><>>>: �C1z + C3 + C1q � ieqz + ��C2z � C4 + C2q � ie�qz; z > 0;��C2z + C4 � C2q � ieqz + �C1z � C3 � C1q � ie�qz; z < 0: (44)This solution maintains the symmetry relations 
om-patible with the 
on�ned geometry:wx �z; x+ �q� = wx(�z; x);wz �z; x+ �q� = �wz(�z; x): (45)
Physi
al meaning of Eq. (45), a

ording to the de�-nitions given before (41), is that the x=z-
omponentof water velo
ity around a vibrating membrane be-haves symmetri
ally/antisymmetri
ally under simulta-neous translation by the half-period (x ! x + �=q)along the wave propagation dire
tion x and mirror re-�e
tion in the mid-plane between the 
on�ning walls(z ! �z).We next eliminate the unknown 
oe�
ients C2and C4 using sti
k boundary 
onditions at the walls,Eq. (36). We then substitute the solutions in form(42)�(44) into Fourier-transformed for
e balan
e equa-tions (30) and (31) (exploiting (39) and (40)) andinto non-slip 
onditions (34) and (35) at the water�membrane interfa
e. Thus, we �nally obtain the alge-brai
 system of four linear homogeneous equations forthe unknowns C1, C3, �q , and fq:

�q ��2h33 K1q4 � ��+ fq[�K1h2iq3℄ ++ C1[�4�w2q2d2e2qd℄ ++ C3 �4�wq(1 + e2qd � 2qde2qd)� = 0; (46)�q(�h2K1q3i� 4�wq!) ++ fq(2K1hq2 � 2�mhq2i! � 2bsi!) ++ C1[�4�wi(1 + e2qd + 2qde2qd)℄ ++ C3[�4�wi2qe2qd℄ = 0; (47)i!�q + 2qd2e2qdC1 +C3(1 + 2qde2qd � e2qd) = 0; (48)!fq + C1q (1� e2qd � 2qde2qd � 2q2d2e2qd) ++ C3(1� 2qde2qd � e2qd) = 0: (49)The dispersion relation !(q) is found by equatingthe determinant of system (46)�(49) to zero. The lat-ter gives a quadrati
 equation for !(q) that results intwo bran
hes !1(q) and !2(q), see Fig. 2. Two vis
ousmodes � the hydrodynami
ally damped bending modeand the intermonolayer slipping mode � mix, and thepower law !(q) 
hanges with the wavelength of �u
tua-tions. For pure bending deformation of the membrane,there exist up to four hydrodynami
 regimes (depend-ing on the parameters of the system), separated bythree 
rossover wave ve
tors.1013
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−2Fig. 2. Vis
ous modes of a bilayer membrane in watersolution 
on�ned between parallel walls in the 
ase ofpure bending deformations. Damping rates j!ij [1/s℄are plotted as fun
tions of the dimensionless parameter(q�d), where q is the wave ve
tor and 2d is the distan
ebetween the walls. Two bran
hes 1 and 2 originatefrom bending and interlayer slide. The following valuesof parameters are used: d = 10�6 
m, h = 2 �10�7 
m,�w = 10�2 dyn � s/
m2, �m = 1 dyn � s/
m2,bs = 107 dyn � s/
m3, K1 = 2 � 108 erg/
m3We use the result in (28) to estimate the upper limitq0 of the smallest q interval where the eigenmodes aremodi�ed by the 
on�ning potential, i.e., where the in-du
ed rigidity term (� �) dominates over the bend-ing term (� Kbq4) in (22) (and in the �rst bra
ket inEq. (46)):q � q0 � � �Kb�1=4 = �kBTKb �1=2 12d � 1��1=2 : (50)For a typi
al value of bending rigidity at room temper-ature [2℄ Kb � 25kBT;we obtain q0 � 0:1d :The se
ond 
rossover wave ve
tor 1=d bounds the long-wavelength regime where 
on�nement of the surround-ing water between the walls a�e
ts membrane dynam-i
s. For q � 1=d, the membrane behaves as in the

bulk water solution. We assume that the distan
e be-tween 
on�ning walls is mu
h greater than the mono-layer thi
kness (2d=h � 10). The 
rossover wave ve
torfor the bulk �uid q1 (see Appendix B) for the 
hosenparameters h = 2 � 10�7 
m, �w = 10�2 dyn � s/
m2,and bs = 107 dyn � s/
m3 a
quires the valueq1 = �wbsh2 � 105 
m�1and therefore obeys the 
ondition q1 � 1=d. Therefore,it does not in�uen
e dynami
 behavior of the mem-brane in the 
on�ned geometry. In the interval of evenshorter wavelengths, there is one more 
rossover waveve
tor q2 =s bs�mh � 107p2 
m�1(�m = 1 dyn � s/
m2), whi
h obeys the 
ondition1=d� q2. Hen
e, we investigate four intervals of waveve
tor values: q � q0;q0 � q � 1=d;1=d� q � q2;q2 � q:For long wavelengths, q � 1=d, 
on�nement be-tween the walls modi�es the bending mode with respe
tto the membrane in the bulk solution (see Appendix B),!B1 = �iq3K1h324�w � �iq3Kb�w ; (51)and results in either q2- or q6-dependen
es of !1 insteadof the q3-dependen
e of the �bulk� mode. For q � q0,the bending mode be
omes (to be 
ompared with [16℄)!1 = �iq2 �d324�w : (52)The mode !1(q) is driven by the entropi
 potential,
hara
terized by 
urvature �, and is damped by vis-
ous losses in the surrounding �uid. It is interestingto mention that for a bilayer with interlayer slide, � isfour times greater that for a unit bilayer (see Eqs. (28)and (29)). Thus, interlayer slide leads to faster dynam-i
s of the membrane.For q0 � q � 1=d, the hydrodynami
ally dampedbending mode is given by!1 = �iq6K1h3d3144�w � �iq6Kbd3�w : (53)In this wave ve
tor interval, the �nite thi
kness d ofwater layers e�e
tively enhan
es water vis
osity from1014
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on�ned geometry : : :�w to �w=(dq)3 � �w. Result (47) 
oin
ides (modulo anumeri
 
oe�
ient) with the damped vibration modeof erythro
yte walls 
onsisting of two membranes withliquid between them [6℄.On the other hand, intermonolayer slipping mode!2(q), damped by vis
ous drag at the monolayer mu-tual interfa
e, remains un
hanged by 
on�nement (seeAppendix B):!2 = �iq2K1hbs � �iq2KAbs : (54)For a membrane in the bulk solution, mixing ofthe bending and slipping modes o

urs at q � q1, seeAppendix B. The relative order of the parameters q1,1=d, and q2 by in
reasing value depends on the 
hoi
eof 
hara
teristi
 parameters of the system. With our
hoi
e, q1 � 1=d and the mixing of the modes is de-layed up to q � 1=d, see Fig. 2. We spe
ulate that thishappens be
ause 
on�nement hinders bending �u
tua-tions and therefore the bending mode remains slowerthan the slipping mode up to q � 1=d.In the short-wavelength limit q � 1=d, we re
over,as expe
ted, the result for a membrane in the bulk wa-ter. Con�nement is not revealed in this 
ase be
ausemembrane-indu
ed vibrations of water de
ay exponen-tially before rea
hing the walls. Namely, for q � 1=d,the bran
h !2(q) now 
orresponds to the bending modedamped by vis
ous losses in the surrounding �uid:!B2 = �iq3K1h36�w � �iq3Kb�w : (55)The renormalized bending rigidity (� K1h3) arisesfor high-frequen
y �u
tuations (to be 
ompared withthe numeri
 
oe�
ients in (51) and in (55)) be
ausethe bending mode is faster than the interlayer slippingmode [9; 10℄; interlayer slide leading to relaxation of lat-eral stresses in monolayers is retarded. In the interval1=d� q � q2, the bran
h !1(q) be
omes the interlayerslipping mode with the renormalized area 
ompressionmodulus !B1 = �iq2K1h4bs � �iq2KAbs ; (56)(the supers
ript �B� indi
ates that the solution 
oin-
ides with the bulk water 
ase). Finally, for q � q2, the!1(q) mode is driven by the (high-frequen
y) e�e
tiverigidity K1 and is damped by the monolayer surfa
evis
osity �m, whi
h dominates over interlayer drag asthe monolayers are dynami
ally 
oupled:!B1 = �i K14�m : (57)

The vis
ous modes for a membrane in 
on�ned ge-ometry obtained in this paper qualitatively agree withthe results for a membrane bound to substrate [10℄.We have not in
luded the membrane tension into ourfree energy fun
tional be
ause in the 
onsidered limitof small bending deformations of the bilayer, the termproportional to the gradient of the bending amplitudeis negligible [15℄.The dispersion relation for a bilayer membrane inthe bulk water based on our free energy fun
tional (20)is derived in Appendix B and also agrees with earlierresults obtained using the density-di�eren
e model [9℄.5. CONCLUSIONSA novel free energy fun
tional of a bilayer �uidmembrane derived in this paper re�e
ts importantphysi
al properties of the membrane de�ning its dy-nami
 behavior. The fun
tional allows for two-dimensional liquid-
rystalline stru
ture of the mem-brane and weak adheren
e between the monolayers 
on-stituting it, leading to their mutual slide under (bend-ing) deformations. Our free energy fun
tional 
ontainsthree 
oupled �elds parameterizing the degrees of free-dom related to bending of the membrane, interlayermutual slide, and area dilation.Using this fun
tional, we have self-
onsistently 
al-
ulated the 
urvature of the e�e
tive entropi
 potentiala
ting on the membrane between two parallel 
on�n-ing walls. We found that the 
urvature at the potentialminimum (lo
ated at the middle between the walls) isenhan
ed four times for a bilayer with interlayer slidein 
omparison with a unit membrane (with forbiddenslide) of the same thi
kness. This leads to faster dy-nami
s. This in
rease 
an be as
ribed to (partial) de-
rease of the lateral stress in the bent membrane viainterlayer slide (stati
 softening of the membrane). Therelaxation of stresses e�e
tively lowers the energeti
�
ost� of membrane bending and in
reases the ther-modynami
 probability for 
onformations with greaterbending amplitudes. This in turn ampli�es entropi
repulsion.We have also 
al
ulated the dispersion relations fora membrane 
on�ned between parallel walls. Our re-sults are in qualitative agreement with those for a mem-brane bound to a substrate [10℄. Con�nement modi�esthe vis
ous modes !(q) at long wavelengths 
omparedto the bulk water 
ase. We have found four wave-ve
torintervals separated by three 
hara
teristi
 wave-ve
torvalues, q0 � 1=d� q2, de�ned in Se
. 4. The inverse ofthe half-distan
e d between the 
on�ning walls divides1015
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on�ned (q � 1=d)and bulk (q � 1=d) behavior, respe
tively. The waveve
tor q0 delimits the interval of q values in whi
h theentropi
 potential modi�es the spe
trum of bendingmodes (see also [16℄). In the interval q0 � q � 1=d, wefound the dependen
e of bending mode!(q) / q6;similar to peristalti
 modes of a soap �lm [6℄. Unlikein [10℄, we do not obtain the dependen
e!(q) / q4;be
ause the overall membrane tension is not in
ludedinto our free energy fun
tional. Be
ause we 
onsider thelimit of small bending deformations of a �at bilayer,the term proportional to the gradient of the bendingamplitude vanishes [15℄. In the interval q � 1=d, 
on-�nement is not important be
ause membrane-indu
edvibrations of water de
ay exponentially before rea
hingthe walls. At q > q2, as in the bulk 
ase, the mono-layer surfa
e vis
osity �m dominates over the interlayerdrag and the monolayers be
ome dynami
ally strongly
oupled.Finally, we mention some limitations and possi-ble improvements of our approa
h. Our fun
tionalrespe
ts re�e
tional symmetry of a �at bilayer andtherefore implies that spontaneous 
urvature is zero.We assumed a thin-plate approximation for ea
hmonolayer with 
onstant elasti
 moduli. In otherwords, we developed a phenomenologi
al e�e
tivemedium model. Hen
e, only �u
tuations with wave-lengths larger than the intermole
ular distan
e in alipid monolayer are 
onsidered. We have exploitedsmallness of the bending-to-thi
kness ratio usingthe linear approximation for the stress tensor. Inthe small-bending approximation, area dilation isde
oupled from bending. In this paper, we dis
ussedonly pure bending deformations, but the area dilationdynami
s 
an also be studied using our fun
tional. Wefound only damped eigenmodes of the membrane in
on�ned water solution. The propagating modes willbe 
onsidered elsewhere.The authors are grateful to Prof. R. Bruinsmafor the formulation of the problem and to Prof.Yu. A. Chizmadzhev and his 
oworkers for useful 
om-ments. The work of S. B. is supported by the Non-pro�t Foundation �Dynasty� and the PhD studentgrant A03-2.9-283 of the Russian Ministry of Edu
a-tion.

APPENDIX AAnalyti
 solutions in the axially symmetri

aseWe 
an obtain analyti
 results des
ribing the equi-librium shape of and mutual monolayer slide in thebilayer lipid membrane under 
onstant external pres-sure in the 
ylindri
ally symmetri
 
ase. We 
onsider a�at (unperturbed) 
ir
ular membrane of the radius Rin the plane xy. We sear
h for an equilibrium solutionindependent of the polar angle �,� = �(r); (A.1)where r is the radial 
oordinate in the referen
e systemwith the origin at the 
enter of the unperturbed mem-brane mid-plane and with the z axis dire
ted along themembrane normal. Hen
e, the slide fun
tions take theformfx(x; y) = f(r) 
os�; fy(x; y) = f(r) sin�; (A.2)whi
h then leads to the following expression for the ra-dial 
omponent of the distortion �eld:ur(r; z) = �z ��(r)�r + (�(z)��(�z)) f(r): (A.3)Be
ause the deformation is purely radial, the angu-lar 
omponent of the distortion is zero:u� = 0:The symmetry of distortion �elds (A.1) and (A.2) al-lows expressing the free energy density (11) in the 
ylin-dri
al 
oordinates asF = K12 (urr + u��)2; (A.4)whereurr = �ur�r ; u�� = urr + 1r �u��� = urr : (A.5)The equilibrium of the membrane under pressure isde�ned by the Euler�Lagrange equations, whi
h are ob-tained by equating to zero the �rst variational deriva-tives of the elasti
 energy fun
tional F (�; f) with re-spe
t to the fun
tions �(r) and f(r) entering urr andu�� in a

ordan
e with (A.5) and (A.3),ÆFsrÆ�(r) � 2�rP = 0;ÆFsrÆf(r) = 0; (A.6)1016
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on�ned geometry : : :where Fv = RZ0 Fsrdrand P is the z-
omponent of the external pressure dif-feren
e applied to the opposite sides of the membrane.Equations (A.6) 
an be de
oupled by introdu
ingthe new unknown fun
tions p(r) and g(r) instead of �and f : p = 4h3 ���r � 2f; g = h���r � 2f: (A.7)In the new basi
 set of fun
tions fp; gg, Eqs. (A.6) be-
ome r3p000 + 2r2p00 � rp0 + p = P1r3;r2g00 + rg0 � g = 0; (A.8)where P1 = 2PK1h2 :Both equations in (A.8) belong to the Euler 
lass ofequations and 
an be solved analyti
ally using thetransformation of the variable,r = ex;where �1 < x <1 is the new variable.The following boundary 
onditions are imposed.1) (p00(r)r + p0(r) � p(r)=r) jr=0 = 0� the bendingamplitude �(r) is arbitrary at r = 0;2) �(R) = 0 � the membrane is �xed at the edge(no verti
al displa
ement);3) (p0(r)r + p(r)) jr=R = 0 � zero torque at themembrane edge;4) ��=�rjr=0 = 0 � the slope at the 
enter is zero;5) f(0) = 0 � no intermonolayer slide at the 
enter(axial symmetry);6) g0(r)r+g(r)jr=R = 0 � the intermonolayer slideat the edge is arbitrary.These 
onditions have transparent physi
al mean-ing. Conditions 1) and 3) originate from the expres-sion for the variational derivative ÆFsr=Æ�, and 
ondi-tion 6) arises in the variational derivative ÆFsr=Æf ; bothderivatives in
lude integration by parts in the segment[0 � r � R℄. In parti
ular, 
ondition 1) is obtainedby equating the prefa
tor in front of Æ�(r = 0) to zero.Condition 3) is derived by equating the prefa
tor infront of ��=�rjr=R to zero, whi
h in turn 
orrespondsto zero torque M at the membrane edge (hen
e, themembrane slope at the edge is arbitrary):M = K1�h2 ���43h��2��r2 r + ���r�� 2��f�r r + f�� : (A.9)

Condition 2) models the �xation of the membrane atthe periphery. Condition 4) implies a smooth shapeat the 
enter of the 
urved membrane. The resultingsolutions are�(r) = 3P32K1h3 (r4 � 4R2r2 + 3R4);f(r) = 3P16K1h2 (r3 � 2R2r): (A.10)The bending amplitude �(r) = uz(r) is de�ned atthe interfa
e (mid-plane) of the membrane and is z-independent (for small bending of the membrane 
on-sidered here). The fun
tion f(r) 
hara
terizes the am-plitude of mutual slide of the monolayers at the in-terfa
e of the membrane (z = 0) (the total amplitudeis given by 2f). As a result of this slide, the bottomsurfa
e of the upper monolayer is 
ompressed, and thetop surfa
e of the lower monolayer is expanded. In thepresent approximate approa
h, f is 
onstant along thethi
kness (along the z axis) of the monolayers and de-pends on the position in the plane of the membrane. Itis apparent from (A.10) thatf � h�=R:Substituting (A.10) in expression (A.3) for the ra-dial distortion ur, we �ndur = 3P16K1h2 ��z 2h ��(�z) + �(z)��� (r3 � 2R2r): (A.11)The radial stress 
omponent 
orresponding to thedistortion given by (A.11) is readily found as�rr(r; z) = 3P4h2 ��z 2h ��(�z) + �(z)��� (r2 �R2): (A.12)It is important to mention here that the lateralstress 
omponent �rr in (A.12) proves to be indepen-dent of the elasti
 modulus (K1) in our weak bendingapproximation. On the other hand, the distortion andslide �elds and the strain tensor 
omponents dependon the elasti
 modulus.In the 
onsidered 
ase of a small bending amplitude,there is no overall stret
h of the deformed membrane(i.e., pure bending o

urs) and thus at any r:hZ�h �rr(r) dz � hZ�h [urr(r) + u��(r)℄ dz = 0: (A.13)1017
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4 z = h5 z = �hFig. 3. The lateral stress �rr normalized by 3PR2=4h2for various z-positions inside the membrane (z > 0 forthe upper monolayer and z < 0 for the lower) is plottedas a fun
tion of the radial 
oordinate r (in dimension-less units). The solid lines show stresses in the upperand lower monolayers (the stress pro�les along the zaxis in both monolayers 
oin
ide due to interlayer slide,see text). The dashed line represents two neutral sur-fa
es (at z = �h=2) in the lower und upper monolay-ers. The dotted lines (z = h, z = �h) 
hara
terizethe stresses in the membrane of the same thi
kness 2hwith forbidden slideThe z-dependent fa
tor in Eq. (A.12) guaranteesthat Eq. (A.13) is satis�ed. Condition (A.13) is keptby the equality of the fa
tors in front of �(+z) and�(�z) (i.e., the fun
tion f is taken to be the same inboth monolayers). Simultaneously, stret
hing deforma-tion of the monolayers is equal to zero, a � 0, in thede�nitions of the distortion �eld 
omponents (see ex-pression (14) in Se
. 3). In general, if the problem isnot restri
ted to a weak bending deformation and/orif there are additional for
es a
ting in the lateral di-re
tion (stret
hing the membrane), we may introdu
ea(r) 6= 0 or use two fun
tions f1 6= f2 in front of �(+z)and �(�z), respe
tively.Results of analyti
 solution of the stati
 equations inthe 
ylindri
ally symmetri
 
ase are presented in Fig. 3.The lateral stress �rr(r; z) is shown for several valuesof the z 
oordinate for a bilayer with mutual interlayerslide (solid lines and dashed lines) and for a unit bilayerwith forbidden slide, but of the same thi
kness 2h (lines4, 5 ). Relaxation of lateral stresses in both monolay-ers is indu
ed by mutual interlayer slide. The neutral(not stret
hed) surfa
e at the interfa
e of the mem-brane splits into two. Consequently, a neutral surfa
e(with vanishing lateral stress) appears in the middle ofea
h monolayer: at z = +h=2 (the upper monolayer)

and at z = �h=2 (the lower monolayer) (line 2 ). Themonolayers are deformed as if they were dis
onne
ted,independent layers, but still adjusted to the same shapede�ned at their mutual interfa
e inside the membrane.Therefore, the stress pro�les along the z axis 
oin
idewith ea
h other in both monolayers. As a result, thestresses at the top and bottom external surfa
es of themembrane (z = �h, lines 1, 3 ) de
rease two times
ompared to the 
ase without slide (z = �h, lines 4,5 ). Simultaneously, as follows from (A.12), the lateralstresses at the boundary r = R turn to zero throughthe whole depth of the membrane, �rr(R; z) = 0, 
orre-sponding to the absen
e of the applied external stret
h-ing for
es. APPENDIX BBilayer modes in the bulk waterTo test the relevan
e of our approa
h for des
rip-tion of dynami
al properties of a bilayer, we here red-erive the dispersion relation for a membrane in the bulkwater solution using our free energy fun
tional (20) in-trodu
ed in Se
. 2. Our results agree with the pre-vious ones obtained for a membrane in the bulk �uidusing the 
urvature elasti
 model [6℄ and the density-di�eren
e model [9℄.For the surrounding bulk �uid, we sear
h for thesolution of 
reeping �ow equations (33) (Se
. 4) satis-fying the non-slip 
onditions at the membrane�waterinterfa
e, Eqs. (34) and (35). In addition, we imposethe boundary 
onditions for �uid velo
ity 
omponentsvi, vj(z = �1) = 0; j = x; y; z; (B.1)whi
h require the �uid velo
ity �eld to vanish at largedistan
es from the membrane.As in Se
. 4, we expand vibrations in plane wavespropagating along the x axis. We make a Fourier trans-form of free energy fun
tional (20). The free energydensity Fs(q; !) is written asFs(q; !) = K12 �4h33 q4j�q j2�� 2h2(�qf�q � ��qfq)q3i+ 4hjfqj2q2� : (B.2)The 
omponents of water velo
ity and pressure inthe formvx = wx(z) exp(iqx�i!t); vz = wz(z) exp(iqx�i!t);p = pq(z) exp(iqx� i!t)1018



ÆÝÒÔ, òîì 126, âûï. 4 (10), 2004 Bilayer membrane in 
on�ned geometry : : :are substituted in Fourier-transformed 
reeping �owequations (41) (see Se
. 4). The solutions of di�er-ential equations (41) satisfying boundary 
onditions(B.1), with the normal velo
ity 
ontinuous at z = 0and also obeying the 
ondition of zero lateral stret
h-ing for
e a
ting on the membrane (Eq. (32) in Se
. 4)are given bypq = ( �2�wC1e�qz; z > 0;2�wC1eqz ; z < 0; (B.3)wz = ( [�C1z + C3℄e�qz ; z > 0;[C1z + C3℄eqz; z < 0; (B.4)wx = 8>><>>: �C1z � C3 � C1q � ie�qz; z > 0;�C1z + C3 + C1q � ieqz; z < 0; (B.5)where the 
onstants C2 and C4, whi
h are present inEqs. (42)�(44), turn to zero due to boundary 
ondi-tions (B.1).The unknown 
oe�
ients C1 and C3 are determinedfrom non-slip 
onditions (34) and (35). Then, we sub-stitute solutions (B.3)�(B.5) in Fourier transforms offor
e balan
e equations (30) and (31) and obtain analgebrai
 system of two linear homogeneous equationsfor the 
omponents �q and fq,�q ��2h33 K1q4+4�wiq!�+fq ��K1h2iq3� = 0; (B.6)�q(�h2K1q3i) ++ fq �2K1hq2 � 2i!(�mhq2 + 2�wq + bs)� = 0: (B.7)Equating the determinant of this system to zero, weobtain a quadrati
 equation for !(q), whi
h results intwo bran
hes !1(q) and !2(q). There are three hydro-dynami
 regimes,q � q1; q1 � q � q2; q2 � q;separated by 
rossover wave ve
tors q1 and q2 [9℄:q1 = �wbsh2 ; q2 =s bs�mh : (B.8)For long wavelengths, q � q1, the dispersion rela-tions are given by!B1 = �iq3K1h324�w � �iq3Kb�w ; (B.9)!B2 = �iq2K1hbs � �iq2KAbs ; (B.10)

whi
h des
ribe respe
tively the hydrodynami
allydamped bending mode !B1 (q) and the intermonolayerslipping mode !B2 (q) damped by vis
ous drag at themembrane mid-plane. Here, the supers
ript �B� isintrodu
ed to label membrane modes in the bulk �uid.For wave ve
tors in the interval q1 � q � q2, thebending and slipping modes mix [9℄,!B1 = �iq2K1h4bs � �iq2KAbs ; (B.11)!B2 = �iq3K1h36�w � �iq3Kb�w : (B.12)The bran
h !B2 (q) now 
orresponds to the bendingmode damped by vis
ous losses in the surrounding�uid, and the bran
h !B1 (q) des
ribes the damping ofthe slipping mode. The elasti
 moduli in (B.11) and(B.12) di�er in general from those in (B.9) and (B.10),be
ause high-frequen
y (bending) �u
tuations o

ur atnonrelaxed monolayer surfa
e densities [9℄.In the short-wavelength limit, q � q2, we obtain!B1 = �i K14�m ; (B.13)!B2 = �iq3K1h36�w � �iq3Kb�w : (B.14)The !B1 (q) mode is driven by the (high-frequen
y) ef-fe
tive rigidity K1 and is damped by the monolayersurfa
e vis
osity �m. E�e
tive rigidity is indu
ed bydynami
 
oupling of monolayers [3℄. Monolayer surfa
evis
osity overwhelms interlayer drag and be
omes themain sour
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