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BILAYER MEMBRANE IN CONFINED GEOMETRY:
INTERLAYER SLIDE AND ENTROPIC REPULSION
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We derive the free energy functional of a bilayer lipid membrane from the first principles of elasticity theory.
The model explicitly includes position-dependent mutual slide of monolayers and bending deformation. Our free
energy functional of a liquid-crystalline membrane allows for incompressibility of the membrane and vanishing
of the in-plane shear modulus and obeys reflectional and rotational symmetries of the flat bilayer. Interlayer
slide at the mid-plane of the membrane results in a local difference of the surface densities of monolayers. The
slide amplitude directly enters the free energy via the strain tensor. For small bending deformations, the ratio
between the bending modulus and the area compression coefficient, K, /K 4, is proportional to the square of
monolayer thickness h. Using the functional, we perform self-consistent calculation of the entropic potential
acting on a bilayer between parallel confining walls separated by distance 2d. We find that at the minimum
of the confining potential, the temperature-dependent curvature o o< T?/K},d* is enhanced four times for a
bilayer with slide as compared to a unit bilayer. We also calculate viscous modes of a bilayer membrane between
confining walls. We investigate pure bending of the membrane, which is decoupled from area dilation at small
amplitudes. Three sources of viscous dissipation are considered: water and membrane viscosities and interlayer
drag. The dispersion relation gives two branches w1 ,2(q).
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1. INTRODUCTION

Cell membrane is characterized by complex struc-
tural and dynamical properties [1-4]. Theoretical mod-
eling and description of lipid membranes are of great
fundamental and practical interest and have a suffi-
ciently long history. The phenomenological model in-
troduced in [5] treated a lipid membrane as a single
sheet with bending rigidity and spontaneous curvature.
This model was later used for calculation of the fre-
quency spectrum of the membrane in water solution [6]
and for investigation of entropic interactions of mem-
branes in multilayer systems [7]. The bilayer structure
of a lipid membrane was analyzed in [3, 8], where the
dynamic coupling between the monolayers and the in-
terlayer slide was considered. The frequency spectrum
of a membrane in the bulk water was recalculated in [9]
with the coupling between local curvature and local
densities of lipids within the monolayers taken into ac-

*E-mail: svt lanal9@yahoo.com
ok . . .
E-mail: sergeimoscow@online.ru

count. Afterwards, viscous modes of a bilayer adhering
to a substrate were found in [10] using the density-
difference model [9], supplemented with a binding po-
tential [11].

In this paper, we derive a new free energy functional
of a bilayer membrane with interlayer slide. The inter-
layer slide function, membrane stretching and bending
amplitude directly enter the strain tensor of the mem-
brane. Our functional is a generalization of the density-
difference model used in [9, 10]. In our model, two lat-
eral deformation fields (interlayer slide and stretching)
generate the change in the local density and the den-
sity difference of monolayers that were used in the free
energy functional in [9,10]. But unlike in [9,10], we
do not require the presence of neutral surfaces in each
monolayer in the general case. As a step towards un-
derstanding intermembrane interactions, we study dy-
namics of a bilayer membrane in water solution con-
fined between parallel walls. The effect of confinement
is modeled by the entropic potential [12].

This paper is organized as follows. In Sec. 2, we
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introduce an anisotropic elastic moduli tensor, initially
containing 21 independent components. The reflection
and rotation symmetries of the flat bilayer reduce the
number of components to 5. Next, we impose the zero
shear stress modulus and incompressibility constraint.
We restrict ourselves to the case of small bending de-
formations and exclude the corresponding strain and
elastic tensor components. Thus, the number of inde-
pendent components of the elastic tensor in the free
energy functional is reduced to two. The derived free
energy functional of a bilayer membrane contains three
fields describing area dilation and bending deformation
coupled to interlayer slide.

In Sec. 3, a parabolic entropic potential acting on
the membrane between confining walls is introduced.
We self-consistently calculate the curvature of the con-
fining potential at its minimum for a bilayer with slide
and for a unit bilayer. Using our model, we analytically
derive the four-time decrease in bending rigidity due to
interlayer slide.

In Sec. 4, we use the derived functional to study dy-
namical properties and dissipative mechanisms of the
bilayer membrane in water solution confined between
parallel walls. We investigate only pure bending defor-
mations of the membrane (zero total lateral stretching),
which decouple from area dilation. The velocity field
in the surrounding water is found by solving Stokes
equations for incompressible fluid. Fluid velocity van-
ishes at the walls. Equations of motion are determined
as force balance conditions on the membrane surfaces
with inertial effects neglected. Three sources of dissi-
pation are included into dynamic equations: water and
membrane viscosities and interlayer drag.

In Sec. 5, we discuss limitations and possible im-
provements of our model and correspondence with ear-
lier results [10]. In Appendix A, static behavior of a
membrane in the axially symmetric case is studied. An-
alytic solutions are obtained for a circular membrane
bent by external pressure. Membrane bending, inter-
layer slide, and lateral stress distribution are found as
functions of pressure across the membrane. In Ap-
pendix B, we rederive the dispersion relation [9] for
a membrane in the bulk water solution using our free
energy functional.

2. FREE ENERGY FUNCTIONAL

The free energy density of an anisotropic medium
can be written to the lowest order in the elastic strain
tensor as [13, 14]

1
F= 5/\iklmuikulma (1)

where summation over the repeated indices 7, k, [, m
is performed. The indices i, k, [, m take values 1, 2,
3, labeling the respective space axes x, ¥y, z; u; is the
strain tensor, and Ajxy, is the elastic (modulus) tensor.
By definition, the elastic tensor is symmetric under the
transpositions i <> k, [ <> m, and ¢,k < [, m,

Xikim = Akitm = Nikml = Nimik,

and has 21 independent coefficients.
With (1), the (symmetric) stress tensor o is de-

fined as oF
A — NikimUim- 2
D Aiklm W (2)

Tik =

In a symmetric medium, there is a correlation be-
tween different components A;x;m, and the number of
independent elements of the elastic modulus tensor is
reduced.

We introduce a Cartesian coordinate system with
the z axis perpendicular to the unperturbed (flat) mem-
brane plane and with the monolayer interface (i.e.,
the bilayer mid-plane) positioned in the zy plane (at
2z = 0). The membrane thickness is equal to 2h, and
the flat membrane is modeled as a thin bilayer plate
bounded by the z = —h and z = h planes with in-
plane linear dimension R > 2h. The zy plane is a
plane of reflection symmetry. This implies that the
free energy must be invariant under the transformation
T —x,y =y, z— —z. Therefore, all the components
Airkim with an odd number of z indices are equal to
zero [10]. The membrane can be considered laterally
isotropic. Then the z axis is an axis of rotational sym-
metry. The expression for the elastic energy density F'
then becomes [11]

1 1
F = ikmmmm(uix + Uzy) + 5)\222211422 +

2
+ )\zzyyuzzuyy + (Ammmm -

+ AZZZZ (UZZUZZ + uyyuzz) + 2A1‘Z§L‘Z(uiz + uzz)‘ (3)

Agsuming that the membrane is in liquid state, we

require that the in-plane shear modulus (the coefficient
in front of u3,) vanishes, and thus obtain

Hence, expression (3) further simplifies and acquires
the form

1 1
= 5/\95909595(“91010 + Uyy)2 + 5/\2222'“32 +

+ )\ZZZZ (UZZUZZ + uyyuzz) + QAIZIZ(uiZ + uzz)' (4)

Let an external force applied perpendicular to the
membrane plane induce a small bending deformation

1007



S. V. Baoukina, S. I. Mukhin

MKIT®, Tom 126, Boin. 4 (10), 2004

along the z axis. Allowing for a typical experimental
situation, we consider a thin membrane with the ratio
of its thickness 2h to the lateral linear dimension (effec-
tive radius) R of the order 1073, Hence, we neglect the
applied external stresses on the top and bottom mem-
brane surfaces compared to the internal lateral stresses
in it. Due to the smallness of the membrane thickness,
zero stresses on the surface also vanish in the bulk of the
membrane. We therefore impose the condition usually
implied for the thin plates [13],

02:(r) = 0ys(r) = 0,,(r) =0, (5)

where r spans the membrane bulk. This condition is
justified by the fact that small external pressure nor-
mal to a thin membrane induces relatively high lateral
stresses in it [13]. Indeed, we show in Appendix A that
the ratio of the normal stress to the lateral stress is of
the order (h/R)?. In accordance with (2) and (4), the
z-components (5) of the stress tensor are related to the
strain tensor components as

Op> = 4Xg222Us2, Oyz = 4/\yzyzuy27 (6)

It is interesting to mention that as follows from (6),
the first two conditions in (5) require vanishing of the
strain tensor components u,, and u,..

Condition (5) allows omitting the terms containing
Uy and uy. in (4). Also using (8) and expressing u..
via Ugg + Uy, in (4), we find the expression for the free
energy density:

F—1<A —@>(u Fuy) (9)
D) TTTT )\zzzz zTT yy) -

In addition, we impose the «incompressibility» condi-
tion, i.e., the constancy of the bulk density of the mem-

brane:
Ugg + Uyy + Uz, = 0. (10)

Condition (10) is satisfied simultaneously with (8) if
Aizzz = Apaze
Finally, the free energy density is written as

1
F = EKl (U + Uyy)?, (11)

where K denotes a superposition of anisotropic elastic
moduli:

Krl = (Ammmm - )\zzzz)-

In the linear approximation for the strain tensor,

we have L/ 5
Uz’k:§<Ui+ uk>, (12)

6xk axl

where wu; is the ith component of the distortion field.
To introduce the essentials of our model in a simple

way, we limit the following discussion to the case of a

small bending amplitude, i.e., we impose condition

luy| < h,

where wu,(r) is the z-component of displacement de-
scribing the deformed membrane. Also, we neglect the
z-dependence of the component ., (r) in the thin plate
approximation [13], thus defining the «shape» function
&(x,y) = u.(r) independent of the depth z. Substitut-
ing &(z,y) in definition (12) and then in relations (6)
and conditions (5), we obtain the partial differential
equations

Ouy _ 08
9z Oz’
du, _ 0 1)
dz Oy

In integrating Eqs. (13), we introduce two func-
tions: the (inhomogeneous) lateral stretching of the
membrane a(z,y) and the in-plane slide +f(x,y) of
the lower (z < 0) and upper (z > 0) monolayers at
the mid-plane z = 0 of the membrane. Thus, the in-
plane distortions u, and u, of each monolayer have the
form

_ _0(z,y)
Up = =201

+(0(2) = O(=2)) fa(z,y) + az(z,y), (14)
S C )N

where the step function is defined as

O(z>0=1, O©(z<0)=0,

and the choice of the sign of © and of its argument is
made for the later convenience. The step functions in
(14) model splitting of the membrane into two separate
monolayers and describe a discontinuity of in-plane dis-
tortions across the interface between the monolayers.
Here it is worth emphasizing the limitations of the
validity of relations (14). Expressions (14) are clearly
distinct from the usual expressions for thin plates [13].
In the latter case, the displacements u, and u, are set
to zero at z = 0, implying the presence of a neutral
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(not stretched) surface at the mid-plane of the plate
in the small bending approximation {¢ < h [13]. Tt is
shown in Appendix A (see Eq. (A.11)) that the second
term in (14) is of the same order as the first one,

famy ~ hf/R,

where R is the effective radius of the membrane. The
small bending approximation is justified when the term
quadratic in £ is negligibly small compared to line-
ar terms in the expressions for in-plane distortions u,
and u,,

O(6?/R) < h¢/R.

This condition is fulfilled as long as ¢ < h. On the
other hand, for a strongly bent thin plate, the £2-
term dominates over the {-term, and therefore higher-
order terms should be added to the right-hand side of
Eqgs. (14).

We now discuss the physical meaning of expressions
(14). The membrane stretching a(x, y) defines position-
dependent shift of the neutral surface (along the z co-
ordinate), while the slide function f(z,y) multiplied by
step functions leads to the splitting of this neutral sur-
face into two surfaces belonging to the upper and lower
monolayers. These surfaces are determined from the
conditions

ugp(2,y,2) =0, uy(z,y,2)=0.
The function f(z,y) provides an additional degree of
freedom in comparison with a bilayer without slide (or
a single monolayer). Under the condition of zero to-
tal lateral stretching (i.e., pure bending deformation,
a = 0) the presence of the function f means that the
neutral surface splits into two such surfaces located
in each monolayer symmetrically with respect to the
mid-plane z = 0. The total amplitude of the common
interlayer slide at each point (z,y) of the mid-plane
is then given by 2f(x,y), which signifies discontinuity
of in-plane distortions u, and wu, across the mid-plane
z = 0. In the opposite case where f = 0, the monolayers
are coupled together (no interlayer slide) and the dis-
tortion field is the sum of bending and stretching (for
small deformations), the latter being continuous across
the mid-plane z = 0. In general, distortion field (14) in-
cludes bending, stretching, and mutual interlayer slide.

Substituting (14) in (12), we proceed to deter-
mine the strain tensor components for each monolayer
(z>0,2<0):

16 ZK3T®, Bem. 4 (10)

9E(x,y)
Upye = —267 + (@(Z) —
Of(,y) Dag(x,y)
X Oox + oxr

0%&(x,
Uyy = —z% +(0(2) -
Ofy(z,y) | day(x,y)
X Ay + oy

O(—2)) x

(15)
O(=2)) x

and u.. can be expressed via uz, and u,, using (8).

The above expressions allow for a free (static) mu-
tual slide of the monolayers. The jump of the lateral
strain across the interface between the monolayers does
not cost elastic energy. Hence, this jump does not in-
troduce any additional spatial scale smaller than A into
the problem.

The free energy functional of the whole membrane
F, is obtained by integrating the free energy density
F' over the membrane volume stepwise: first over the
thickness coordinate (—h < z < h) and then over the
membrane plane {z,y}. Using expressions (11) and
(15), we finally find

K,

F, 5

(Uge + uyy)QdV =

:%{g// (@Qg)dedy—
_ o2 // (@25) (vf) dz dy +
+ 2h// <(@-a)2+ (Vf)2> dxdy}, (16)

where the tilde refers to two-dimensional differentia-

tion:
ion - 90
oz’ oy

Equation (16) is actually quite remarkable. The
mean curvature of the interlayer surface H is expressed
as
0%¢ 9%
— + — =~ 2H. 17
oz2  Oy? (17)
Therefore, the first term in the right-hand side
gives the effective bending energy, i.e., the extrin-
sic curvature-bending energy functional F, of the
«standard» form [5, 13],

Vi =

K,
F,==t

5 (2H — ¢)?dS, (18)

with zero spontaneous curvature c¢o. Here, K} is the
bending rigidity (modulus). Comparing (16) and (18),
we find

20K, /3 = K.
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The last term in (16) accounts for the elastic energy
of area dilation with the area compression coefficient
defined as

K4 =2hK;.

In general, the local relative area dilation AS/S equals
Ugy + Uyy [13]. According to Eq. (15), the relative
area dilation is given by V - a, while the difference
of relative area dilations between the monolayers is
given by 2(V - f). Hence, the (V - a)? term in (16)
arises due to continuous (across the monolayers inter-
face z = 0) lateral stretching of the membrane, which
leads to a change in the average lipid density. The
(V - £)? term represents the energy of local area differ-
ence of the monolayers (area-difference elasticity [2]),
which is equivalent to the difference of lipid densities
in monolayers (density-difference model [9]). In princi-
ple, this energy is not related to the presence of neu-
tral surfaces within the monolayers (at large membrane
stretching/compression, there are no neutral surfaces
that would obey u, = u, = 0, see expression (14)). As
is apparent from Eq. (16), the relation between bending
and area compression coefficients (see [2])

Ky/Ka ~h?

occurs naturally in our derivation.

Next, the second term in the right-hand side of
Eq. (16) expresses the coupling between bending de-
formation and interlayer slide producing a local area
dilation difference between monolayers. We note that
in the lowest-order approximation, bending is decou-
pled from (continuous) area dilation caused by lateral
stretching. Due to the hydrophobic effect, the mono-
layers, while sliding, are forced to stick together and to
follow the same shape defined by &(z,y) on the mono-
layer interface. Mutual interlayer slide along the in-
terface leads to relaxation of stretching/compression of
the monolayers caused by bending deformation, and
thus permits the free energy decrease.

Finally, our free energy functional is invariant with
respect to transversal slide of monolayers such that
divf = 0. Hence, the energy does not change un-
der mutual rotation of the monolayers (as a whole) or
a position-independent shift of one of the monolayers
with respect to the other.

We consider pure bending deformations of the mem-
brane with no overall stretching. Therefore, we require
the lateral strain integrated over the thickness to be
zero at each point of the membrane. This imposes
a restriction on the form of u, and wu,: the function
a(z,y) must be equal to zero at every point of the bi-
layer. Hence, this function is omitted everywhere be-

low. Then the strain tensor components can be written
as

2
e = =255+ (0(2) - O(—2)) 22,
625 afy (19)
Uyy = _Za_yg +(0(z) — ©(=2)) By’

and u,, can again be expressed via gz, and wuy, us-
ing (8).

The free energy functional of the membrane ac-
quires the form

Fv:%/(uzz+uyy)2d‘/:
:%{Q?)ﬁ// (@25)2dxdy—2h2><
x// (@25) (vr) dz dy +
+2h// (Vf)dedy}. (20)

To study the properties of functional (20) in detail,
a simple problem with cylindrically symmetric defor-
mation is discussed in Appendix A. The equilibrium of
the membrane is defined by the Euler—Lagrange equa-
tions, which are obtained by equating to zero the first
variational derivatives of the elastic energy functional
F(&, f) with respect to the functions £(r) and f(r).

3. CONFINING POTENTIAL FOR A BILAYER
WITH SLIDE
Direct influence of the confined geometry on the
membrane behavior manifests itself in a reduction of
the manifold of accessible membrane conformations.
Entropic interactions of the membrane with confining
walls (see Fig. 1) can be modeled [12] by introduction of
an extra potential energy W dependent on the bending
amplitude, a,
W — 55 .
The free energy functional (20) appended with the con-
fining potential W acquires the form

F:%{?// (@25)2dxdy—
—op? // (@25) (Vf) dz dy +
+ 2h// (Vf)2dxdy}+%/ Ededy. (21)

The curvature of the confining potential at its mi-
nimum,

_PW
der |y’
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Fig.1. Membrane in the confined geometry. A bilayer
membrane (each monolayer of thickness h) is placed in
water solution between parallel walls separated by dis-
tance 2d. The bending amplitude £ = u. is defined at
the mid-plane and is independent of the depth in the
membrane. The interlayer slide function f parameter-
izes position-dependent mutual slide of the monolayers
at their interface

is calculated below using a self-consistent procedure.
In the Fourier space q = {¢, gy}, free energy func-
tional (21) is written as

dq,d
[ [ (3o e -

dg, de

(27)?

+// 2K hlq f|2d‘“dq9 (22)
0 0

8

+

9\8 o\

0
/Alh i £ — Eq-£,)
0

(2m)2
where
¢ =q; +q,

We diagonalize the quadratic form in (22) with re-
spect to &, and q - f; by the linear transformation

- 3 ¢
Re§, =Re§, — -+ - Im(q - f;),
2h ¢4
~ s (23)
Im¢, =Im¢, + o 5_4 Re(q - f,),
where
4 _ 4, O 1
qg =4q +I(b, Iﬁb— 3 I&l

In terms of the variables éq and f;, energy functional
(22) becomes

] e
+h (4 -3 <g>4> |q.fq2} d(‘ézﬁd)‘?f. (24)

Using relations (23) and functional (24), we calculate
the thermodynamic average

kT
(&) = s +
20,
?Alq +a
3¢'kgT
T il (25)

20 . 6o\’
<71&1q +O[> <q + I§’1h3>

where kg is the Boltzmann constant and 7' is the tem-
perature.

In the absence of interlayer slide, only the first term
remains in Eq. (25), as obtained in [12, 15]. The second
term in (25) signifies enhancement of the bending fluc-
tuations caused by interlayer slide. The latter leads to
relaxation of the lateral stresses (see Appendix A and
Fig. 3 below) and thus to a decrease of the free energy
of the bent membrane.

The mean-square fluctuations of the bending am-
plitude are found as

@) = [(&P1at =

0

3 ksT
32 VoK h? '

In the confined geometry, the average bending am-
plitude is restricted to the finite two-dimensional space
between the walls (neglecting the volume occupied by
the membrane itself, i.e., h < d), thus providing the
self-consistency condition for determination of the ef-
fective rigidity «,

(26)

(€%) = nd, (27)

where u < 1.
Substituting (26) in (27), we obtain a self-consistent
solution for a:
_ (kBT)?
C16p2d Ky
We here also evaluate the curvature ag of the con-
fining potential for a unit bilayer (without interlayer

(28)

slide). In this case, the second term in the right-hand
side of (25) is zero, and hence
(ksT)?
= ) 29
0= 64244 K, (29)
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Thus, interlayer slide results in considerable en-
hancement (a/ag = 4) of the curvature of the confining
potential.

4. BILAYER DYNAMICS: VISCOUS MODES

To study the dynamical properties of the introduced
model of a bilayer membrane with interlayer slide, we
here determine the equations of motion and find the
eigenmodes of the membrane surrounded by water so-
lution. We are interested in the behavior of the mem-
brane confined between parallel walls (see Fig. 1).

Let a flat membrane lie in the zy plane with the nor-
mal pointed along the z axis. We treat each monolayer
constituting the membrane as a (unit) two-dimensional
condensed structure. We require the equilibrium be-
tween viscous stresses exerted on the membrane surface
by water solution and the membrane restoring force.
We neglect inertial effects and introduce three sources
of viscous dissipation: water and membrane viscosities
and interlayer drag. The force balance equations are
expressed as

—‘Z—ZS FT.(:= 40)—TL.(: = -0) =0,  (30)
SF, 0 /e a7,
57, 2mmhg; (97£:) + 25, ot

—I,.(z=40) - ,.( =—-0) =0, (31)
IM,.(2 =+40) = II,.(z = —0) = 0. (32)
Here, the fluid stress tensor is defined as

dui | Dvy
Oxr  Ox; )’

Lk, = —pdir + Nw <

where p denotes the hydrostatic pressure, v is the veloc-
ity, and 1, is the viscosity of water solution. The fluid
stress tensor is evaluated at the upper (z = 40) and
lower (z = —0) membrane surfaces and carries the sign
of the normal. The first term in the left-hand side of
Eq. (30) is the elastic restoring membrane force, which
is balanced by viscous stress of the fluid normal to the
membrane surface. Equation (31) represents force bal-
ance in the lateral direction and contains the following
contributions [3,9]: a) tangential traction on the in-
terlayer surface due to differential flow of monolayers;
b) coherent surface flow of the monolayers as unit sur-
faces (with the dynamic viscosity 7,,); ¢) viscous drag
between monolayers (characterized by the coefficient
bs) that arises at a finite velocity of their mutual slide;

d) traction of the surrounding fluid. Equation (32) ac-
counts for the absence of total stretching forces exerted
by water on the membrane because we here discuss only
pure bending deformations of the membrane, i.e., when
the total area dilation is zero.

Navier—Stokes equations for water solutions sur-
rounding the membrane should be added to balance
Eqs. (30)-(32). In the small-velocity limit, treating
fluid as incompressible and neglecting inertia, we write
the «creeping flow» equations as

Vp = nwAv,

V-v=0. (33)

The non-slip boundary conditions at the membra-
ne—water interface provide the continuity of normal and
tangential velocities of the fluid and the membrane:

o6
at v:(£0), (34)
o vi(z = +0),
g}f' (35)
_a_;:vi('z:_o)v i=xy.

Confinement between parallel walls at the distance
2d implies vanishing of water velocity (normal and tan-
gential components) at the walls surfaces:

’U]'(Z = id) = 01 .7 =Y,z (36)

To find the dispersion relation, we make the Fourier
transform of free energy functional (21) and of the force
balance and creeping flow equations. For this, we ex-
pand the vibration in plane waves propagating along
the x direction. The free energy density Fs(q,w) then
takes the form

K 4h3
Fs(q,w) = 71 {Tq4|€q|2_

O fr — € ) +4h|fq|2q2} Fale? (37)

and
+o0 o0

F, = (QLTyP / / Fy(q,w) dq dw, (38)
-0 0
where L, is the system dimension along the y axis, and
we have omitted the index w in the subscripts of Fourier
components.
The restoring membrane forces are given by func-
tional derivatives of the free energy,

OF, 2h3 . 4
5o = (Kl—q4 + a) & + Kih? f,0%, (39)
q

3

1012



MITP, Tom 126, Ben. 4 (10), 2004

3

0F;
ofy

Fourier transforms of creeping flow equations (33)
for the components of water velocity and pressure

= —Kh*¢,¢% + 2K, hg* f,. (40)

vy = Wy (2) exp(igr—iwt), v. = w,(z)exp(igr—iwt),

P = pq(z) exp(igr — iwt)
are written as
ow.,
= 07

0z
0w,
0z2 )’

wz:{

iquy +

iqpg = Nw (—qux +

[Clz + Cg]eqz + [CQZ + C4]e_q2,
[—012 + Cg]e_qz + [—CQZ + C4]6q2,

Bilayer membrane in confined geometry ...
9pq

9w,
0z 922 )"
We find the following solutions of differential equa-
tions (41) with the normal velocity continuous at z = 0,
also obeying the condition of zero lateral stretching

force acting on the membrane (equation (32)) and the
condition

= N (—quz + (41)

vy (2 = 40) = —v,(z = —0)

resulting from Eq. (35):

{Clz + C5 + %} 1e9* + {—ng —Cy + %} e” %%, 2z >0,

=

|:—022 +Cy — %:| 1e9% +

\
This solution maintains the symmetry relations com-

patible with the confined geometry:

™
Wy <Zax + _> = wx(—z,x),
q

T
w, <z,x + —) = —w,(—z,x).
q

Physical meaning of Eq. (45), according to the defi-
nitions given before (41), is that the z/z-component
of water velocity around a vibrating membrane be-
haves symmetrically /antisymmetrically under simulta-
neous translation by the half-period (x — = + 7/q)
along the wave propagation direction x and mirror re-
flection in the mid-plane between the confining walls
(z = —2).

We next eliminate the unknown coefficients Cs
and C4 using stick boundary conditions at the walls,
Eq. (36). We then substitute the solutions in form
(42)—(44) into Fourier-transformed force balance equa-
tions (30) and (31) (exploiting (39) and (40)) and
into non-slip conditions (34) and (35) at the water—
membrane interface. Thus, we finally obtain the alge-
braic system of four linear homogeneous equations for
the unknowns C4, Cs, &, and f;:

20y (Cre?* 4+ Coe™ %), z >0,
Pq = us . (42)
‘ 20y (=Cre™ 9 — Cre®), 2 <0,
>0,
’ (43)
2 <0,
44
o (44)
012—03—7 ie” %, z<0.
2h - 22: 3
fq —Tlﬂlq — +fq[—[§1h 1q ]+
+ O [-41,2¢° d*e*19] +
+ O3 [Anwq(1 + €297 — 2¢de®™?)] =0, (46)
E(—h? K13 — dnypqw) +
+ f2K1hg® — 2nmhq®iw — 2bgiw) +
+ Cr[=4nwi(1 + €27 + 2qde®*?)] +
+ C3[—41,i2¢e1% = 0,  (47)

iwEy + 2qd*e*190, + C3(1 + 2qde®? — *14) = 0, (48)

C
wfg+ —1(1 — €210 — 2qde?1? — 242 d%e?1) +
q

+ C3(1 — 2qde?1® — e21%) = 0. (49)

The dispersion relation w(q) is found by equating
the determinant of system (46)—(49) to zero. The lat-
ter gives a quadratic equation for w(q) that results in
two branches wy (¢) and wy(q), see Fig. 2. Two viscous
modes — the hydrodynamically damped bending mode
and the intermonolayer slipping mode — mix, and the
power law w(q) changes with the wavelength of fluctua-
tions. For pure bending deformation of the membrane,
there exist up to four hydrodynamic regimes (depend-
ing on the parameters of the system), separated by
three crossover wave vectors.

3
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Fig.2. Viscous modes of a bilayer membrane in water
solution confined between parallel walls in the case of
pure bending deformations. Damping rates |w;| [1/s]
are plotted as functions of the dimensionless parameter
(q-d), where q is the wave vector and 2d is the distance
between the walls. Two branches 1 and 2 originate
from bending and interlayer slide. The following values
of parameters are used: d =10 %cm, h =2-10"" cm,
nw = 1072 dyn - s/em?, 0, = 1 dyn - s/cm?
bs =107 dyn-s/cm?®, Ki = 2-10® erg/cm®

We use the result in (28) to estimate the upper limit
qo of the smallest ¢ interval where the eigenmodes are
modified by the confining potential, i.e., where the in-
duced rigidity term (~ «) dominates over the bend-
ing term (~ Kpq?) in (22) (and in the first bracket in
Eq. (46)):

1/4 1/2 1/2
_ Q o kBT 1 1
1 m= <Kb> a < Ky ) 2d <H> - (50)

For a typical value of bending rigidity at room temper-
ature [2]

IX’b ~ 25kBT,

we obtain
0.1
qo ~ 7 .

The second crossover wave vector 1/d bounds the long-
wavelength regime where confinement of the surround-

ing water between the walls affects membrane dynam-
ics. For ¢ > 1/d, the membrane behaves as in the

bulk water solution. We assume that the distance be-
tween confining walls is much greater than the mono-
layer thickness (2d/h ~ 10). The crossover wave vector
for the bulk fluid ¢; (see Appendix B) for the chosen
parameters h = 2107 c¢m, 1, = 1072 dyn - s/cm?,
and by = 107 dyn - s/cm? acquires the value

Nw

= ~ 10° cm~

1
q1 = WE

and therefore obeys the condition ¢; < 1/d. Therefore,
it does not influence dynamic behavior of the mem-
brane in the confined geometry. In the interval of even
shorter wavelengths, there is one more crossover wave

vector
bs 0,
= A~ — cm
q2 - \/5
(Mm = 1 dyn - s/cm?), which obeys the condition

1/d < ¢2. Hence, we investigate four intervals of wave
vector values:
q < qo,

g < g < 1/d,
1/d<<Q<<Q27
P <L q.

For long wavelengths, ¢ < 1/d, confinement be-
tween the walls modifies the bending mode with respect
to the membrane in the bulk solution (see Appendix B),

K h? K
B RN . 34)p
wy = —i¢° —— ~ —iq"—, o1
1 20, = T, o1
and results in either ¢2- or ¢%-dependences of w; instead
of the ¢®-dependence of the «bulk» mode. For ¢ < qo,
the bending mode becomes (to be compared with [16])

i ad?
oy,

w1 = (52)

The mode w; (¢) is driven by the entropic potential,
characterized by curvature «, and is damped by vis-
cous losses in the surrounding fluid. It is interesting
to mention that for a bilayer with interlayer slide, «a is
four times greater that for a unit bilayer (see Eqs. (28)
and (29)). Thus, interlayer slide leads to faster dynam-
ics of the membrane.

For qp < ¢ < 1/d, the hydrodynamically damped
bending mode is given by

¢ K1h3d e Kpd?

3
w1 = —iq N —iq . (53)
144n,, Nw

In this wave vector interval, the finite thickness d of
water layers effectively enhances water viscosity from
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Nw 10 M/ (dq)? > 1, Result (47) coincides (modulo a
numeric coefficient) with the damped vibration mode
of erythrocyte walls consisting of two membranes with
liquid between them [6].

On the other hand, intermonolayer slipping mode
wa(q), damped by viscous drag at the monolayer mu-
tual interface, remains unchanged by confinement (see
Appendix B):

_iq2K1h i 2Ka

. 4
b T (54)

Wy =

For a membrane in the bulk solution, mixing of
the bending and slipping modes occurs at ¢ & ¢;, see
Appendix B. The relative order of the parameters ¢,
1/d, and ¢2 by increasing value depends on the choice
of characteristic parameters of the system. With our
choice, ¢ < 1/d and the mixing of the modes is de-
layed up to ¢ &~ 1/d, see Fig. 2. We speculate that this
happens because confinement hinders bending fluctua-
tions and therefore the bending mode remains slower
than the slipping mode up to ¢ ~ 1/d.

In the short-wavelength limit ¢ > 1/d, we recover,
as expected, the result for a membrane in the bulk wa-
ter. Confinement is not revealed in this case because
membrane-induced vibrations of water decay exponen-
tially before reaching the walls. Namely, for ¢ > 1/d,
the branch ws(¢) now corresponds to the bending mode
damped by viscous losses in the surrounding fluid:

~

. 3 Ky
~ —igt =2,

B e h?
A Bt S q
61w Nw

wy = (55)
The renormalized bending rigidity (~ K;h?) arises
for high-frequency fluctuations (to be compared with
the numeric coefficients in (51) and in (55)) because
the bending mode is faster than the interlayer slipping
mode [9, 10]; interlayer slide leading to relaxation of lat-
eral stresses in monolayers is retarded. In the interval
1/d <€ g < g2, the branch w; (¢) becomes the interlayer
slipping mode with the renormalized area compression
modulus
Kih

B .
b, T

— 2
wy = —iq

(56)

(the superscript «B» indicates that the solution coin-
cides with the bulk water case). Finally, for ¢ > ¢, the
w1 (g) mode is driven by the (high-frequency) effective
rigidity K7 and is damped by the monolayer surface
viscosity 1,,, which dominates over interlayer drag as
the monolayers are dynamically coupled:

K

wlB = —ZW . (57)

The viscous modes for a membrane in confined ge-
ometry obtained in this paper qualitatively agree with
the results for a membrane bound to substrate [10].
We have not included the membrane tension into our
free energy functional because in the considered limit
of small bending deformations of the bilayer, the term
proportional to the gradient of the bending amplitude
is negligible [15].

The dispersion relation for a bilayer membrane in
the bulk water based on our free energy functional (20)
is derived in Appendix B and also agrees with earlier
results obtained using the density-difference model [9].

5. CONCLUSIONS

A novel free energy functional of a bilayer fluid
membrane derived in this paper reflects important
physical properties of the membrane defining its dy-
namic behavior.  The functional allows for two-
dimensional liquid-crystalline structure of the mem-
brane and weak adherence between the monolayers con-
stituting it, leading to their mutual slide under (bend-
ing) deformations. Our free energy functional contains
three coupled fields parameterizing the degrees of free-
dom related to bending of the membrane, interlayer
mutual slide, and area dilation.

Using this functional, we have self-consistently cal-
culated the curvature of the effective entropic potential
acting on the membrane between two parallel confin-
ing walls. We found that the curvature at the potential
minimum (located at the middle between the walls) is
enhanced four times for a bilayer with interlayer slide
in comparison with a unit membrane (with forbidden
slide) of the same thickness. This leads to faster dy-
namics. This increase can be ascribed to (partial) de-
crease of the lateral stress in the bent membrane via
interlayer slide (static softening of the membrane). The
relaxation of stresses effectively lowers the energetic
«costy» of membrane bending and increases the ther-
modynamic probability for conformations with greater
bending amplitudes. This in turn amplifies entropic
repulsion.

We have also calculated the dispersion relations for
a membrane confined between parallel walls. Our re-
sults are in qualitative agreement with those for a mem-
brane bound to a substrate [10]. Confinement modifies
the viscous modes w(q) at long wavelengths compared
to the bulk water case. We have found four wave-vector
intervals separated by three characteristic wave-vector
values, ¢o < 1/d < ¢a, defined in Sec. 4. The inverse of
the half-distance d between the confining walls divides
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the ¢ axis into two intervals with confined (¢ < 1/d)
and bulk (¢ > 1/d) behavior, respectively. The wave
vector go delimits the interval of ¢ values in which the
entropic potential modifies the spectrum of bending
modes (see also [16]). In the interval ¢y < ¢ < 1/d, we
found the dependence of bending mode

w(q) o ¢°,

similar to peristaltic modes of a soap film [6]. Unlike
in [10], we do not obtain the dependence

w(q) x q*,

because the overall membrane tension is not included
into our free energy functional. Because we consider the
limit of small bending deformations of a flat bilayer,
the term proportional to the gradient of the bending
amplitude vanishes [15]. In the interval ¢ > 1/d, con-
finement is not important because membrane-induced
vibrations of water decay exponentially before reaching
the walls. At ¢ > ¢2, as in the bulk case, the mono-
layer surface viscosity 1, dominates over the interlayer
drag and the monolayers become dynamically strongly
coupled.

Finally, we mention some limitations and possi-
ble improvements of our approach. Our functional
respects reflectional symmetry of a flat bilayer and
therefore implies that spontaneous curvature is zero.
We assumed a thin-plate approximation for each
monolayer with constant elastic moduli. In other
words, we developed a phenomenological effective
medium model. Hence, only fluctuations with wave-
lengths larger than the intermolecular distance in a
lipid monolayer are considered. We have exploited
smallness of the bending-to-thickness ratio using
the linear approximation for the stress tensor. In
the small-bending approximation, area dilation is
decoupled from bending. In this paper, we discussed
only pure bending deformations, but the area dilation
dynamics can also be studied using our functional. We
found only damped eigenmodes of the membrane in
confined water solution. The propagating modes will
be considered elsewhere.

The authors are grateful to Prof. R. Bruinsma
for the formulation of the problem and to Prof.
Yu. A. Chizmadzhev and his coworkers for useful com-
ments. The work of S. B. is supported by the Non-
profit Foundation «Dynasty» and the PhD student
grant A03-2.9-283 of the Russian Ministry of Educa-
tion.

APPENDIX A

Analytic solutions in the axially symmetric
case

We can obtain analytic results describing the equi-
librium shape of and mutual monolayer slide in the
bilayer lipid membrane under constant external pres-
sure in the cylindrically symmetric case. We consider a
flat (unperturbed) circular membrane of the radius R
in the plane xy. We search for an equilibrium solution
independent of the polar angle ¢,

§=¢(r),

where 7 is the radial coordinate in the reference system
with the origin at the center of the unperturbed mem-
brane mid-plane and with the z axis directed along the
membrane normal. Hence, the slide functions take the
form

(A.1)

fm(xvy) = f(T) cos @, fy(xvy) = f(T) sin ¢, (AQ)

which then leads to the following expression for the ra-
dial component of the distortion field:

9¢(r)
or

ur(r, z) = =2 +(0(2) =0(=2)) f(r). (A3)

Because the deformation is purely radial, the angu-
lar component of the distortion is zero:

U¢:0.

The symmetry of distortion fields (A.1) and (A.2) al-
lows expressing the free energy density (11) in the cylin-
drical coordinates as

K
F = —1(11,,,7« + U¢¢)2,

> (A4)

where

ouy Uy

1 O0uy

U= G Ues = oDy = (A9)

The equilibrium of the membrane under pressure is
defined by the Euler-Lagrange equations, which are ob-
tained by equating to zero the first variational deriva-
tives of the elastic energy functional F(&, f) with re-
spect to the functions £(r) and f(r) entering u,, and
Ugg in accordance with (A.5) and (A.3),

QZF(T) — 9P =0,
. (A.6)
Sf(ry
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where

R
F, = /Fsrdr
0

and P is the z-component of the external pressure dif-
ference applied to the opposite sides of the membrane.

Equations (A.6) can be decoupled by introducing
the new unknown functions p(r) and ¢(r) instead of ¢
and f:

4h B¢

:35—21", 2f. (A.7)

In the new basic set of functions {p,g}, Eqs. (A.6) be-
come

35

3 " + 27,2 " rpl -|-p — P1’I‘3, (A 8)
7’29”+Tg ~g=0, '
where op
P=—.
YT KR

Both equations in (A.8) belong to the Euler class of
equations and can be solved analytically using the
transformation of the variable,

r=e",

where —o0o < & < o0 is the new variable.

The following boundary conditions are imposed.

1) (p"(r)r +p'(r) = p(r)/r) |r=0 = 0 — the bending
amplitude &(r) is arbltrary at r = 0;

2) {(R) = 0 — the membrane is fixed at the edge
(no vertical displacement);

3) ('(r)r +p(r))lr=r = 0 — zero torque at the
membrane edge;

4) 0¢/0r|,—o = 0 — the slope at the center is zero;

5) f(0) = 0 — no intermonolayer slide at the center
(axial symmetry);

6) g'(r)r +g(r)|,=r = 0 — the intermonolayer slide
at the edge is arbitrary.

These conditions have transparent physical mean-
ing. Conditions 1) and 3) originate from the expres-
sion for the variational derivative 0 Fs, /¢, and condi-
tion 6) arises in the variational derivative 6 Fs, /J f; both
derivatives include integration by parts in the segment
[0 < r < R]. In particular, condition 1) is obtained
by equating the prefactor in front of 6¢(r = 0) to zero.
Condition 3) is derived by equating the prefactor in
front of 9¢/0r|,—r to zero, which in turn corresponds
to zero torque M at the membrane edge (hence, the
membrane slope at the edge is arbitrary):

M = Ky7h? x

(252 (1)) ao

Condition 2) models the fixation of the membrane at
the periphery. Condition 4) implies a smooth shape
at the center of the curved membrane. The resulting
solutions are

3P
) = gy (! — 4R + 3R,
s (A.10)
1) = Jor " — 2R

The bending amplitude £(r) = u.(r) is defined at
the interface (mid-plane) of the membrane and is z-
independent (for small bending of the membrane con-
sidered here). The function f(r) characterizes the am-
plitude of mutual slide of the monolayers at the in-
terface of the membrane (z = 0) (the total amplitude
is given by 2f). As a result of this slide, the bottom
surface of the upper monolayer is compressed, and the
top surface of the lower monolayer is expanded. In the
present approximate approach, f is constant along the
thickness (along the z axis) of the monolayers and de-
pends on the position in the plane of the membrane. It
is apparent from (A.10) that

f ~ hé/R.

Substituting (A.10) in expression (A.3) for the ra-
dial distortion u,., we find

3P 2
Uyp = m <—2E — @(_Z) + @(Z)) X

x (r* —2R?r). (A.11)
The radial stress component corresponding to the
distortion given by (A.11) is readily found as

Opr(r,2) =

% <—z% —0(—2) + @(2)> x

x (r* = R%). (A.12)

It is important to mention here that the lateral
stress component o, in (A.12) proves to be indepen-
dent of the elastic modulus (K) in our weak bending
approximation. On the other hand, the distortion and
slide fields and the strain tensor components depend
on the elastic modulus.

In the considered case of a small bending amplitude,
there is no overall stretch of the deformed membrane
(i.e., pure bending occurs) and thus at any r:

h h
/O'M(T) dz ~ / [tpr(r) + ugp(r)] dz=0. (A.13)
h h
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Fig.3. The lateral stress o, normalized by 3PR?/4h?
for various z-positions inside the membrane (z > 0 for
the upper monolayer and z < 0 for the lower) is plotted
as a function of the radial coordinate r (in dimension-
less units). The solid lines show stresses in the upper
and lower monolayers (the stress profiles along the z
axis in both monolayers coincide due to interlayer slide,
see text). The dashed line represents two neutral sur-
faces (at z = +h/2) in the lower und upper monolay-
ers. The dotted lines (2 = h, z = —h) characterize
the stresses in the membrane of the same thickness 2h
with forbidden slide

The z-dependent factor in Eq. (A.12) guarantees
that Eq. (A.13) is satisfied. Condition (A.13) is kept
by the equality of the factors in front of ©(+z) and
©(—=z) (i.e., the function f is taken to be the same in
both monolayers). Simultaneously, stretching deforma-
tion of the monolayers is equal to zero, a = 0, in the
definitions of the distortion field components (see ex-
pression (14) in Sec. 3). In general, if the problem is
not restricted to a weak bending deformation and/or
if there are additional forces acting in the lateral di-
rection (stretching the membrane), we may introduce
a(r) # 0 or use two functions f; # fo in front of O(+2)
and ©(—z), respectively.

Results of analytic solution of the static equations in
the cylindrically symmetric case are presented in Fig. 3.
The lateral stress o,.,(r, z) is shown for several values
of the z coordinate for a bilayer with mutual interlayer
slide (solid lines and dashed lines) and for a unit bilayer
with forbidden slide, but of the same thickness 2h (lines
4, 5). Relaxation of lateral stresses in both monolay-
ers is induced by mutual interlayer slide. The neutral
(not stretched) surface at the interface of the mem-
brane splits into two. Consequently, a neutral surface
(with vanishing lateral stress) appears in the middle of
each monolayer: at z = +h/2 (the upper monolayer)

and at z = —h/2 (the lower monolayer) (line 2). The
monolayers are deformed as if they were disconnected,
independent layers, but still adjusted to the same shape
defined at their mutual interface inside the membrane.
Therefore, the stress profiles along the z axis coincide
with each other in both monolayers. As a result, the
stresses at the top and bottom external surfaces of the
membrane (z = +h, lines 1, 3) decrease two times
compared to the case without slide (z = +h, lines 4,
5). Simultaneously, as follows from (A.12), the lateral
stresses at the boundary » = R turn to zero through
the whole depth of the membrane, o,.(R, z) = 0, corre-
sponding to the absence of the applied external stretch-
ing forces.

APPENDIX B

Bilayer modes in the bulk water

To test the relevance of our approach for descrip-
tion of dynamical properties of a bilayer, we here red-
erive the dispersion relation for a membrane in the bulk
water solution using our free energy functional (20) in-
troduced in Sec. 2. Our results agree with the pre-
vious ones obtained for a membrane in the bulk fluid
using the curvature elastic model [6] and the density-
difference model [9].

For the surrounding bulk fluid, we search for the
solution of creeping flow equations (33) (Sec. 4) satis-
fying the non-slip conditions at the membrane—water
interface, Eqs. (34) and (35). In addition, we impose
the boundary conditions for fluid velocity components
Vi,

vj(z = £00) =0,

j :x7y727 (B']')

which require the fluid velocity field to vanish at large
distances from the membrane.

As in Sec. 4, we expand vibrations in plane waves
propagating along the x axis. We make a Fourier trans-
form of free energy functional (20). The free energy
density Fs(q,w) is written as

K, (4n®
Fua.w) = 5 { dtle -

I ey Ry 4h|fq|2q2} . (B2)

The components of water velocity and pressure in
the form

Uy = We(2) exp(igr—iwt), v, = w,(z)exp(igr—iwt),

» = pq(2) exp(igr — iwt)
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are substituted in Fourier-transformed creeping flow
equations (41) (see Sec. 4). The solutions of differ-
ential equations (41) satisfying boundary conditions
(B.1), with the normal velocity continuous at z = 0
and also obeying the condition of zero lateral stretch-
ing force acting on the membrane (Eq. (32) in Sec. 4)

are given by

—2n,Cre %%, 2> 0,
Pqg = Mot (B.3)

21 Cre?, z <0,

_ —qz

w. = [ Clz + 03]6 , 2> 0., (B4)

[C1z + Csle??, 2z <0,

{Clz —C5 - ﬁ} ie” %, 2> 0,

wWe / (B.5)

C
{012—0—03—}—71} 1?2 <0,

where the constants Cs and (4, which are present in
Eqs. (42)—(44), turn to zero due to boundary condi-
tions (B.1).

The unknown coefficients C'y and C5 are determined
from non-slip conditions (34) and (35). Then, we sub-
stitute solutions (B.3)—(B.5) in Fourier transforms of
force balance equations (30) and (31) and obtain an
algebraic system of two linear homogeneous equations
for the components ¢, and f,

2R3 . . 9.
&q —?K1q4+4nwzqw +f, [-K1h%i¢*] =0, (B.6)

& (=h*K1q%) +

+ fo (2K1hg? — 2iw(nmhg® + 20wg + b)) = 0. (B.7)

Equating the determinant of this system to zero, we
obtain a quadratic equation for w(q), which results in
two branches wi (¢) and wa(q). There are three hydro-
dynamic regimes,

1<, <LK qp, ¢Lq,

separated by crossover wave vectors ¢; and ¢o [9]:

_ Nw N bs
ql_—bshQ’ q2 = b

(B.8)

For long wavelengths, ¢ < ¢, the dispersion rela-
tions are given by

K3 K

B . 341 . 3\

= —iff N i 2 B.9

wy Ly Ut (B.9)

wB = —ig? 2 & 222 (B.10)
by by

which describe respectively the hydrodynamically
damped bending mode w?(¢) and the intermonolayer
slipping mode w!(q) damped by viscous drag at the
membrane mid-plane. Here, the superscript «B» is
introduced to label membrane modes in the bulk fluid.

For wave vectors in the interval ¢ € ¢ < @3, the
bending and slipping modes mix [9],

Kih K

B RN .o IV A

= — ~ — B.11

wy Ty i (B.11)
K h? K

w2B = —iq31— ~ —z’q3—b . (B.12)

61w Nw

The branch w®(q) now corresponds to the bending
mode damped by viscous losses in the surrounding
fluid, and the branch wP(q) describes the damping of
the slipping mode. The elastic moduli in (B.11) and
(B.12) differ in general from those in (B.9) and (B.10),
because high-frequency (bending) fluctuations occur at
nonrelaxed monolayer surface densities [9].
In the short-wavelength limit, g > ¢2, we obtain
B . I(l

wy = —1—

. B.13
40y ( )

~
~

. 3 I(b
—iq°— .
61w Nw

(B.14)
The wP(q) mode is driven by the (high-frequency) ef-
fective rigidity K7 and is damped by the monolayer
surface viscosity n,,. Effective rigidity is induced by
dynamic coupling of monolayers [3]. Monolayer surface
viscosity overwhelms interlayer drag and becomes the
main source of dissipation.
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