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We consider the question of the existence of nonradial solutions of the Ginzburg—Landau equation. We present
results indicating that such solutions exist. We seek such solutions as saddle points of the renormalized Ginzburg—
Landau free-energy functional. There are two main points in our analysis: searching for solutions that have
certain point symmetries and characterizing saddle-point solutions in terms of critical points of certain intervortex
energy function. The latter critical points correspond to forceless vortex configurations.
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1. INTRODUCTION

The Ginzburg-Landau equation describes, among
other things, macroscopic stationary states of super-
fluids, Bose—Einstein condensation, and solitary waves
in plasmas. In recent years, it has become a subject
of active mathematical research (see monographs [1, 2]
and [3] and reviews [4-7] for some of the recent refer-
ences). This equation is simple to write,

—AY + ([0]? = 1)y =0,

where (in the case of the entire plane R?) ¢: R? — C,
with the boundary condition

(1.1)

|| — 1 as|z| = oo, (1.2)

but not easy to analyze. In fact, so far only radi-
ally symmetric solutions, i.e., solutions of the form
Yp(x) = fa(r)e™?, where r and # are polar coordi-
nates for z € R?, are known for (1.1)—(1.2) (see [8-17]).
Solutions ,, are called the n-vortices. We note that
n = degyy,, where degy, the degree (or vorticity) of v
(satisfying (1.2)) is the total index (winding number)
at oo of ¢ considered as a vector field on R?, i.e.,

deg 1) :=% / d(arg))

lz|=R

*E-mail: ove@itp.ac.ru
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for R sufficiently large.

The existence and properties of the vortex solutions
were established only recently. The known facts are as
follows.

(i) Existence and uniqueness (modulo symmetry
transformations and in a class of radially symmetric
functions) [10-13].

(ii) Stability for |n| < 1 and instability for |n| > 1
([13], earlier results on stability for the disc are due
to [15-17]).

(iii) Uniqueness of t+; (again, modulo symme-
try transformation) in a class of functions ¢ with
degy = 1 and [ (o> — 1)2 < oo [16].

Therefore, the next question is: are there nonradi-
ally symmetric solutions?

In this paper, we present results indicating that
such solutions exist. There are two key ingredients in
our analysis. First, we characterize nonradially sym-
metric solutions as critical points of the intervortex en-
ergy function described below (see also [18]). Second,
we seek solutions having certain point symmetries. The
latter fact reduces the number of free parameters de-
scribing such solutions to one (the size of the corre-
sponding polygon of vortices).

Solutions breaking the rotational symmetry were
found to exist in the case of the Ginzburg-Landau
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equation in the ball Bg = {z € R?||z|] < R} with
the boundary condition ¢[,, = €™ and |n| > 2
(see [1,2], Thm IX.1]). However, in the case of the ball,
there is an external mechanism leading to the symme-
try breaking: the boundary condition. It repels vor-
tices, forcing their confinement. On the other hand,
the energy is lowered by breaking up multiple vortices
into (4+1)- (or (—1)-) vortices and merging vortices of
opposite signs. Thus, for R not very small, the lowest
energy is reached by a configuration of |n| vortices of
vorticities +1 depending on the sign of n which, obvi-
ously, is not rotationally symmetric.

This paper is organized as follows. In Secs. 2 and
3, we review some material in [13]: the variational for-
mulation of the problem and some specific properties
of vortex solutions. In Sec. 4, we define the intervor-
tex energy and discuss its properties. In particular, we
discuss the correlation term in (the upper bound on)
the expansion of the intervortex energy for large inter-
vortex separations and the definition of G-symmetric
vortex energies, where G is a subgroup of the symme-
try group of (1.1)

In Sec. 5, we consider point symmetries (Cny),
present one of our main results, Theorem 5.1, on the
existence of critical points for C'n,-symmetric intervor-
tex energies, and derive some general relations for those
energies. In Sec. 6, we prove Theorem 5.1 and discuss
some other cases.

Finally, we have five appendices where all the hard
analytic and numerical work is concentrated. In these
appendices, we compute various asymptotic expansions
beyond the leading order. We feel that these appen-
dices are of interest on their own because they address
rather subtle computational issues.

2. RENORMALIZED GINZBURG-LANDAU
ENERGY

It is a straightforward observation that Eq. (1.1) is
the equation for critical points of the functional

ew) =3 [ (Ivwr+ 3008 -17). e

Indeed, if we define the variational derivative 9,E(¢)
of £ by

Re [ €0u6(0) = )|, (2.2

0
for any path ¢ such that 1)y = ¢ and a_)\wf\‘xzo =¢,

then the Lh.s. of Eq. (1.1) is equal to 0y & (¥) = 05E (1)
for £(1) given by (2.1).

Equation (2.1) is the celebrated Ginzburg-Landau
(free) energy. However, there is a problem with it in
our context. It is shown in [13] that if ¢ is an arbitrary
Ct-vector field on R? such that |[¢| — 1 as |z| — o
uniformly in & = z/|z| and deg # 0, then £(y)) = 0.

We renormalize the Ginzburg—Landau energy func-
tional as follows (see [13]). Let x(z) be a smooth pos-
itive function on R? vanishing at the origin and con-
verging to one at infinity. We define

gren(l/)) =
-3 / ('VW—(digiwa+F<|w|2>) Pr, (23)

where

1
F(u) = §(u - 1)% (2.4)
Properties of the renormalized energy functional
Eren (1) are investigated in [13].
In this paper, we take

(2.5)
0 for|z| <R

1 for|z| >R+ R1,
x(z) =
for R very large compared to all length scales appearing
below.

3. VORTICES

It is shown in [10-13] that for any n, Eq. (1.1) has
a solution, unique modulo symmetry transformations,
of the form

Y () = fulr)e™,

where f,, with 1 > f, > 0, monotonically increase
from f,(0) = 0 to 1 as r increases to co. For n = 0,
fa(r) = 1. For |n| > 0, fn(r) does not admit an ex-
plicit expression. These are the n-vortices mentioned
in the introduction. Of course, each solution 1, gener-
ates a one-parameter (for n = 0) or a three-parameter
(for [n| > 0) family of solutions of (1.1). The latter are
obtained by applying symmetry transformations to v,,.

The function f,(r) in (3.1) satisfies the ordinary
differential equation

1a<%

o \"or

(3.1)

n? 5
)+ == =0 (32)

The (self) energy of the n-vortex is given by
Enr = &Een(¥n). To compute E, g, we use that
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if ¢ is a solution of (1.1), then, due to the formula
[1VY|? = = [ A of integration by parts, we have

Eenl) =
=3 [ (twr-ga-rr-UEE) ey

Using this formula for ¢» = ¢, and using the asymp-
totic expression (which can be easily derived from (3.2),
see [19,20] for the general case)

2 1
fn()_1—2”—2+0< > (3.4)
for r > 1, we obtain
Eypp = 7n’In <|R> +e(ln)) +0 <%> . (35)

The constant ¢(n) can be computed numerically (which
is not quite trivial, see Appendix 1), which yields
c(1) =0.376 T,
¢(3) =0.577m,

c(2) = 0.535,

c(5) = 0.6157. (3.6)

The asymptotic form of ¢(n) for n > 1 is found ana-
lytically in Appendix 2.

4. INTERVORTEX ENERGY

In this section, we introduce and discuss a key con-
cept of the intervortex energy (see also [4,18]). We
begin with some definitions.

By a vortex configuration ¢, we understand a
pair (a,n), where a = (a1,...,ax), a;j € R* and
n = (ni,...,nK), n; € Z, for some K > 1 (posi-
tions of the vortex centers and their vorticities). We
consider once-differentiable functions ¢: R? — C sat-
isfying || — 1 as |#| — oco. We say that the vortex
configuration of ¢ is ¢ = (a,n), confy) = ¢, if ¢ has
zeros (only) at a1, ... ,ax with the respective local in-
dices ny,... ,ng, i.e.,

/d(arg Y) = 2mn; (4.1)

Vi

for any contour v; containing a;, but not the other ze-
ros of ¢, and for j = 1,... , K. (Strictly speaking, we
have to specify the phase factor, or rotation angle, for
each vortex; but these play no role in our considerations
and are not displayed or mentioned in what follows.)
We now define

Eg(c) = inf {&ren(v)|conf ¢ = c}. (4.2)

We expect that Eg(c) > —oo. An argument support-
ing this statement is presented in [18]. Of course, for
bounded domains, this inequality is trivial. We call
Eg(c) the energy of the vortex configuration c. It plays
a central role in our analysis. We also note that E(c)
serves as a Hamiltonian for the vortex dynamics in the
adiabatic approximation (see [21]).

In what follows, we keep the vortex indices n fixed
and write Er(a) for Er(c). It is clear intuitively that a
minimizer in (4.2) exists if and only if VEg(a) = 0 (the
force acting on the vortex centers is zero). However, to
establish this fact is not so easy.

Theorem 4.1. If there is a minimizer for vari-
ational problem (4.2), then this minimizer satisfies
Ginzburg-Landau equation (1.1).

Proof. Let ¢ be a minimizer for (4.2). Because we
have

0

0= 5gren

W+xr9)| =

A=0

- Re/é( A+ (6 - 1))

for any differentiable function ¢: R? — C vani-
shing together with its gradient sufficiently fast at
oo and vanishing at the points ay,...,am, we con-
clude that 1 satisfies (1.1) for = # az,...,am.
On the other hand, because ¢ € HI°°(R?), we
have that —Ay + ([¢|> — 1)y € H'°(R?). Hence,
Ay + (J9]> = 1)y =0 on R?.

Arguments and results in [18] (see, in particular,
Theorem 3.2) justify making the following conjecture.

Conjecture 4.2. VEg(a,) = 0 for some g (with
n fixed) if and only if there is a minimizer for problem
(4.2) at the configuration g, and consequently, due to
Theorem 4.1, if and only if Ginzburg-Landau equation
(1.1) has a solution with the configuration a.

The goal of this paper is to find forceless vortex
configurations, i.e., configurations ¢ such that

VEgr(a) = 0. (4.3)

For this, we study the intervortex energy Egr(a) for
very small and very large intervortex separations.
Let

de = minla; —a;| for a=(ai,...,ax).
o i

For d, large, we prove in Sec. 7 the upper bound

Er(a) < BY) - A(a) + O(d;%?) + O(R™?), (4.4)

where

K
= ZEni7R +H (%)

i=1
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and A(c) is a homogeneous function of degree —2,
provided a satisfies VH(a) = 0. We recall that
En r = Eren(thy) is the self-energy of the n-vortex (see
(3.5)) and H(a) is the energy of the vortex pair inter-
actions,

H(a) = —ﬂ'Z nin; Inja;;|, (4.5)

i#]

with Qi = Q5 — Aj.

The correlation term A(a) is of importance for
us here. We have an explicit expression for it, see
Eqs. (A.3.4)-(A.3.5), and compute it explicitly in the
cases of interest. We conjecture that A(a) > 0 always.

We observe that the upper bound (4.4) with the
remainder O(dg’l) instead of —A(a) + O(d;8/3) is ob-
tained by choosing the Hartree-type function

K
() =[] vn, (@ — a;)
i=1

describing «independent» vortices. For asymptotically
forceless configurations, i.e., the ones with VH (a) = 0,
this estimate can be somewhat improved, but in order
to move even to the remainder estimate O(d;?In dy)
in the latter case, one has to refine upon this function
and include the leading correlations.

Remark 4.3. As d, — oo, the important asymp-

totic expression

K

Ep(@) = Y En.n+ H (%) + Rem (4.6)

was proved in [18] with Rem = O(d;?In d,) in general
and = O(d;?) if VH(a) = 0. B

As mentioned in the introduction, our second idea
is to consider solutions of (1.1) that are invariant under
point group transformations. Consequently, we intro-
duce intervortex energy functions invariant under such
groups. We consider a subgroup G of the total symme-

try group
Gsym = 0(2) x T(2) x U(1)

(where T'(n) is the group of translations of R") of
Ginzburg-Landau equation (1). For a G-invariant vor-
tex configuration ¢ = (a,n) (i.e., invariant under the
spatial part of ), we define the G-invariant vortex in-
teraction energy Er g(a) as

Er c(a) = inf{&ren () |conft) = ¢, 1 is G-invariant}

(as before, we fix n and omit it from the relation).
Theorem 4.1 and Conjecture 4.2 extend obviously
to the G-symmetric situation. In particular, we have

the following conjecture:

If a, is a critical point of Er ¢(a) (i.e., VERr,c(ay) = 0)
then Eq. (1.1) has a G-invariant solution.

Our goal in what follows is to find critical points
of the G-invariant intervortex energy Egr g(a) for ap-
propriate groups G, namely, point groups Cn, (see the
next section).

3

5. POINT SYMMETRIES

We seek solutions of Eq. (1.1) having symmetry
groups Cpny. These groups consist of rotations around
the origin by angles given by integer multiples of 27 /N
and reflection(s) in one (and therefore N) line(s) pas-
sing through the origin. Such solutions are determined
by fixing vortex configurations that have the desired
symmetry group. We consider vortex configurations
consisting of N m-vortices uniformly spaced on a circle
of radius a and a single (—k)-vortex at the center of
the circle, which is placed at the origin. Several such
configurations and their symmetry lines are shown in
Fig. 1. Such configurations have the symmetry group
CnNyp. The symmetry group Cy, determines such a con-
figuration uniquely up to the vortex values m and k and
the size a.

As noted at the end of the previous section, we rely
on the argument that Cpy,-symmetric solutions are in
one-to-one correspondence with critical points of the
Cny-symmetric intervortex energy

Egr(c) = Er,c. ()

1 1
[} N om 7/
| N | ’
| \\ | //
1—k IR
L —hx
| PARN
| / | N
| m/ | \m
| 7 | \
N=2 N=3
\ | / |
\ om 7 [}
N | / |
\\ | // |
N 7 L] L]
__’____*__k___.._- _______ 4.) _______
// | \\ ° | °
// ! \\ !
1
// +’m \\ |
Fig.1. Symmetric configurations and their reflection

lines
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(here and in what follows, we consider only Cpy,-
symmetric intervortex energies and often omit the sub-
script Cny). Our goal is to find critical points of Eg(c).
One of the central results in this paper is the following
theorem.

Theorem 5.1. There exist critical points of
ERr.cy,(c) among the configurations ¢ described above
for the parameter values

(N,m,k) = (2,2,1) and (4,2.3)

(see Fig. 1, a critical value of the parameter a is not
specified, but its existence is established).

This theorem is proven in Sec. 6. In the rest of
this section, we establish general properties of the en-
ergy ERr,cy.(c) and find a necessary condition on the
parameters N, m, and k.

We observe that if ¢ is a configuration described
above, then

vaj ER(Q) = &ja\aj\ER(Q)

X : (5.1)
and V. H(a) = a0, H(a) V],

where ¢ = a/|a| (again, we do not display the parame-
ters n). In this case, it therefore suffices to investigate
the energy Er(a) as a function of one variable, the scale
parameter a.

We note that if m > 2, then there is a continuum
of configurations, labeled by a parameter o > 0, with
the same symmetry group Cn, as a given configura-
tion, which have the given configuration as the limit as
a — 0. For instance, for m = 2, each m-vortex can
be split into a pair of 1-vortices with all pairs lying ei-
ther on the circle or on the lines joining their parent
m-vortices to the origin at equal distance a to those
m-vortices, see Fig. 2.

By symmetry, the energy of the resulting configu-
rations has a critical point at a = 0. A simple analysis
of the break-up of a 2-vortex shows that this critical
point is a local maximum. Indeed, e.g., for m = 2, it
was shown in [13] that the linearization of Eq. (1.1) (the
Hessian of the energy functional) around the 2-vortex
solutions vy = f(r)e?" has exactly one negative mode
(an eigenfunction corresponding to a negative eigen-
value) of the form & = e*% &, (r) + & (r), where & (r)
are some real functions. Then the function ¥y + A
for |\| sufficiently small lowers the energy of 1. On
the other hand, this function has two simple zeros (i.e.,
of vorticities +1) in a vicinity of z = 0. Indeed, in
the complex notation z = 1 + izg < = = (21, 22),
Pa(z) = b22 + O(2®) and £(2) = ¢ + O(z) for some
positive numbers b and ¢ in a neighbourhood of z = 0.
Hence, ¥2(2) + A6(2) = b22+ Ac+0(2%) + O(\z), which

A
therefore has two simple zeros z4 = + Tc + O(N¥4)

in a neighbourhood of z = 0. This shows in particular
that splitting of a 2-vortex lowers the energy.
Proposition 5.2. Let a configuration ¢, as
described above, be asymptotically forceless, i.e.,
VH(ay) =0. Then
k=

(N = 1)m. (5.2)

DO | =

Proof. By (4.1), the equation VH (a,) = 0 for the
configuration described is equivalent to the equation

0
511 (20) =0 (5.3)
Because
H(a)=H (%) - ﬁZninj In a, (5.4)
a
i

the latter equation implies that ) n;n; = 0, which is
i#j
equivalent to (5.2) due to the relation

> ninj = —2Nmk + N(N = 1)m?*.
i#j

(5.5)

We note that Eq. (5.3) implies that if VH (a,) = 0,
then VH(a) = 0 for all a of the form a = sa,, s > 0.
The latter fact implies another proof of (5.2). Indeed,
H (a/R) behaves as const - In R + const for large R.
Hence, for an asymptotically force-free configuration
(i.e., the one with VH (a) = 0), the constant in front of
In R is independent of the scale parameter a. This
asymptotic scale invariance implies that the leading
term

©(Nm—k)*InR

for the configuration with a = 0 (i.e., when all the vor-
tices collapse to the center of the circle) is equal to the
leading term

m(Nm? +k*)InR
for the configuration with a very large a, and therefore
the vortices in such a configuration can be treated as
virtually independent (see (4.4)). Hence,

(Nm — k)2 = Nm?> + k2,

which implies (5.2).
We observe that Eq. (5.2) is equivalent to the rela-
tion

n(2) = (2) o

Indeed, this follows from Eqgs. (5.4) and (5.5).

independent of a. (5.6)
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+1

a

_-+‘2T::¢_"_+'2" T

+
[y

Fig. 2.

Relation (5.2) between k and m is assumed in what
follows.

For the configuration above, we now introduce the
energy differences

AE(a) := Er(a) — n(Nm — k)?In R, (5.7)

where we recall that Nm — k is the total vorticity of
the configuration in question and E,, g is the energy of
a single vortex of vorticity n, i.e., En r = Eren(¥n). We
let AF,, denote the energy difference for this vortex,

Enr=mn’In R+ AE,. (5.8)
Clearly,
Er(0) = Exm_rg and AE(0) = AExp—r. (5.9)
This together with (3.5) implies that (modulo O(R~2))
AE(Q) = —n(Nm — k)?In(Nm — k) +
+c(Nm—k). (5.10)

On the other hand, for very large intervortex dis-
tances, Eqs. (5.7), (5.6), (4.6), and (3.5) imply that
(modulo O(R™?) + o(a™?))

AE(a) < —n(Nm?lnm + k*Ink) + Ne(m) +
+c(k) + H(a) — Ca™2,

We compute H(a) for the
Because the distances be-

(5.11)
where C = A(a/a).
given configuration.

. . . T
tween the vortices on the circle are 2asin e

(N —-1)rm

.21 .
2asin —, ..., 2asin

fi
N N we find
N1 .
— _ 2 H
H(a) = —mm°N kg_l In <2 sin N) . (5.12)

This equation together with Eq. (5.11) yields that for
large intervortex distances,

AE(a) < —n(Nm?lnm + k*Ink) + Ne(m) + c(k) —
N-1

—mm?N Z In (2 sin
k=1

km

N) —Ca?

(5.13)

|
|
+1 !
a | «
-- --&-o---q;--é)-l--
+1 41 -1 +1 +1

s

modulo O(R™2) + o(a™?).

In the next section, we establish the existence of
points a, such that VE(a,) = 0 for given configurations
by comparing AE(Q) and AE(a) for large intervortex
distances a.

6. THE SIMPLEST CASES. PROOF OF
THEOREM 5.1

In this section, we consider some special, in fact
the simplest, cases of the vortex configurations intro-
duced in Sec. 5. We recall that every such configuration
consists of a vortex of vorticity —k placed at the origin
and N vortices, each of vorticity m, distributed equidis-
tantly on the circle of radius a with the center at the
origin. Such a configuration is fixed by the symmetry
group Cp,, and hence the only remaining free param-
eter is the radius of the circle a. With a slight abuse of
notation, we write AE(a) = AE(a).

Proof of Theorem 5.1. The correlation coeffi-
cient C in Eq. (5.13) is computed for the specified con-
figurations in Appendix 3:

C =8n, 20«
for (N,m,k)=1(2,2,1), (4,2,3). (6.1)
1

(We expect that for general (N, m, k), k = E(N —1)m,

C' is of the form % - (integer).) Thus,

AFE(a) monotonically increases to
AFE(x) as a—oo. (6.2)

Moreover, due to (3.6), we have

AE(o0) < AE(0) (6.3)

for the configurations (N, m, k) = (2,2,1), (4,2,3) (ex-
plicit computations are given below). Hence, AE(a)
has at least one minimum for these configurations as

claimed.
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Fig. 3.

Computation of (6.3).

(a) The case N =2, m =2, and k = 1 (we recall
that Eg(a) = Er(a), etc). We have

AE(0) = AE3(0) =¢(3) —97ln3 = -9.317. (6.4)
On the other hand, Eq. (5.11) implies that for a very
large,

AE(a) < c(1)+(2¢(2)—871n2)—87In2—Ca >+

1 1
+0 (n—f> = 9641 — Ca~2+0 (n—f> . (6.5)
a a

(b) The case N =4, m = 2, and k = 3 (see Fig. 1).
In this case,

AE(0) = AE5(0) = ¢(5) — 257 In5 = —39.627. (6.6)

On the other hand, Eq. (5.11) implies that for large a,
we have the asymptotic behavior

AE(a) < (4¢(2) = 1671n2) + (¢(3) — 97 In3) —

al

—327ln2—Ca 240 <ln a) -

= 40447 - Ca 2+ 0 <h;—4a> . (6.7)
Thus (6.3) is shown.

Remarks.

a. We examine the case where m = 1, i.e.,
the vortices on the circle are simple. In this case,
k = (N —1)/2. Therefore, in the simplest case where
N =3 and k = 1, we take the (m = 1)-vortices equally
spaced (Fig. 3).

Equations (4.9), (4.12), and (3.6) imply that in this
case, AE(0) < AE(o¢) (in fact, AE(0) = AFE»(0) =
= —2.2387 and AFE(o00) = —1.7927). Numerical
computations show (see Appendices 3 and 4) that
AE'(c0) > 0 and AE'(0) > 0 (in fact, for a > 1,
AFE(a) = 4¢(1) = 3rIn 3 — Ca=2 = —1.7921 — Ca™2
with C' > 0). In this case, we cannot therefore con-
clude that a critical point of Er(a) exists. But a more

careful numerical analysis indicates that there probab-
ly exist two extremal points of Fr(a), a minimum and
a maximum, for 1/v/2 < a < 2. Similar configurations
for large (and odd) N are analyzed in Appendix 5.

b. The case where N = 2, m = 2, and k = 1 is the
limiting case of N =4, m =1, and k = 1 (see Fig. 2).
All three configurations have the same symmetry group
Cs, generated by rotation by 7 and reflections in the
vertical and horizontal axes passing through the vortex
—1. After the symmetry group is fixed, the second and
third configurations have two free parameters: the scale
parameter a and the angle/distance a between two of
its neighboring 1-vortices (see Fig. 3). As a — 0, the
second and third configurations are continuously trans-
formed into the first one.

7. UPPER BOUND ON THE INTERVORTEX
ENERGY

In this section, we prove inequality (4.4) for the en-
ergy Er(a) of vortex configurations.
Theorem 7.1. We have the estimate

Er(a) < BV + Rem + O(max |q;|?/R?),  (7.1)
0 k
where Eg%) =3 En,+H(%) and
k=1
O(d,? if VH(a) =0
Rem = (4,°) 1 @) =0, (7.2)
O(d,?In dy) otherwise.

Moreover, if VH(a) = 0, then estimate (7.2) can be
improved as
_ 1
Rem = —A(a) + O(dgg/s) +0 <ﬁ> ) (7.3)
where A(a), the correlation term, is a homogeneous

degree-(—2) function, explicitly given by the condition-
ally convergent integral

1
A =g [ [Val - T vestt| @
i
(where VH (a) = 0 is assumed) with
vo = ¢ @) =nb(x—ay),
J (7.5)

6(x) = the polar angle of z € R?.

Before proceeding to the proof of these estimates,
we show that the integral in the r.h.s. of (7.4) is con-
ditionally convergent in the forceless case VH(a) = 0.
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Because the integrand has singularities at the points
ai,...,ar, it suffices to show that the integrals over the
discs D(ag,¢) centered at ay and of a radius e > 0 con-
verge. We consider the integral over the disc D(ay,€).

Let
(@) =D pj).

J#k

(7.6)

Because the function ¢(;)(z) is harmonic in D(ag, <),
it has an expansion around the point a; of the form

(k) (z) = Z Cmryt cosm(fy, — 9(’")),

m=0

(7.7)

where rj, and 0, are the polar coordinates of z, = z—ay,
and ¢,, and 6™ are some constants.
In the forceless case,

b

IV, H(a) =0,
TNy

Vo (ar) = (7.8)

and therefore
Vo (z) = cx(wp cos 20y — ka‘ sin 260},) +

vo(3). o

where ¢, = O(1/d}) is a constant, r, = [2x], and

1 = (—z2,71). Now, writing

[ (vett =19 -

D(a.2)
= / (2|VerlPar +ai), (7.10)
D(ax.e)
where
ax 1= 2Ver - Vo + Vo (7.11)

and using (7.9), we see that the singular part of the
integral above is

4 / IVer*Vr - Vg =

D(ak,E)
n2
4 / “F(—cusin26, +0(ry)) =
D(ay.e) g

_ / O<%><oo. (7.12)

D(ag,e)

Therefore, the integral in the r.h.s. of (7.4) is condi-
tionally convergent, in the sense that it is well-defined
as a limit of similar integrals with small discs around

the points ay, ..., ax excised, as the radii of those discs
tend to 0.
Proof of Theorem 7.1. We prove the upper

bound (7.1) using the variational inequality

Egr(a) < Er(v), (7.13)

valid for any function « having the given vortex con-
figuration a, and by showing that for an appropriate ¥,
Er(¥) is of the form of the r.h.s. of (7.6). Namely, we
show that

gren("p) = Eg]) + Rem, (714)

where Rem is given by either (7.2) or (7.3), as appro-
priate. Then (7.1) follows from (7.13) and (7.14).

We begin with proving estimate (7.1) with remain-
der (7.2). Let t;(z) = ™) (x;), where z; = = — a;,
and let f; = |v;|. We consider the class of functions ¢
of the form ¢ = fe’° with a function f such that

f=ﬁ+0<1

rdg) it rj <da, Vi, (7.15)
where n = 2 if VH(a) and n = 1 otherwise and
ri = |z — a4, and

f=1+0 L if d(z,a) > 1 (7.16)

- d*(z,a) o " '
where
d(z,a) = min |z — gy,
j

with the corresponding estimates of their first deriva-
tives.

We construct a function satisfying (7.15) and (7.16).
Let D(z,p) denote the disc of radius p centered at a

point z. Let {x;}I be a smooth partition of unity, i.e.,
K

>~ x;j = 1, having the properties

=1

1
B <aj, gda> C suppy; Vi

and
V' =0(d,"), n=01,2
Then the function f = ) fjx; satisfies (7.15) and

(7.16). Indeed, (7.13) is obvious, while (7.14) follows
from the relation

fi=1+007". (7.17)
We prove the following lemma.
Lemma 7.1. Let ¢ satisfy (7.15)—(7.16). Then
Er(¥) = BV + Rem + 0 ( = 718
R(w) — ~R + Rem + ﬁ ) ( . )
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where Eg%o) is given in Theorem 7.1 and Rem is given
by (7.2).

Proof. Let D; = D(aj, o), the disc with the cen-
ter at a; and of the radius ro = d,/3. We decompose
the energy functional as

=Y [ew s [ ew. @)
7 D, Dr\UD;,
where e(1)) is the energy density,
1 1
() = VP + (e ~1)? (7.20)

Let ex(¢) = 5IVel? and (£()) = £(5)= £ o).
Equation (4.6) implies

[ = [ e+

DR\UDk DR\UDk
+ / O(d(z,a)~"). (7.21)
DH\UDk

Next, estimates (7.17) and

Vil = 0(r;?) (7.22)
give
/ e1(pi) = / e(vi) + O(ra2). (7.23)
DR\UDk DR\UD]C
Together with Eq. (7.10), this yields
| et =
DR\UD)c
1 _

=3 > ViV, +0(ry?). (7.24)

#IDp\UDy

Next, in the region D;, we have ¢ = €0 f; where
fi = |#i|. Expansion (7.9) implies that

/V@Nsﬂ(i) = (7.25)
D;
Using this relation, we obtain
[ew = [ ew+ [eitow) + 1.
D; D; D;
where R = [ (f? — 1)a;. Expanding
D;
ri
Vou = Vi )(az) +0 (d_2> (7.26)

and using that [V (2)? = O(d(z,a) 2
=07

)7 V(,QZ(-T) =
), and [ (1= f?)Vy; =0, we obtain
D;

In rg
)

In the forceless case, we can improve this estimate
using relation (7.9) again to show that, as in (7.12),

/(fz’2 - 1)VeiVe) =

D;
/(fl -1) (—czsm%) +O<d3>> =
D;
- [z -0 (d—>
D; -

r .
R=0 (d—§> if  Vi(a;) = 0.

Il
.
VN
Q.|ﬁ
pw|o
N~

This gives

Finally, we observe that due to (7.15),

1
3 [19ewP Z/m ¥) +In, =
Dy, i#kp,
_Z/ e(¥;) + Ip, +O(TO )5
i#k
where

1
=§Z/v¢i'v¢j'
i#i

Collecting the estimates above, we arrive at

[tew) =10, +0 (hldg ) +0(z). @

Dy,

which together with (7.9) and (7.16) yields

Er(Y) = E + Rem,

(7.28)

where Rem is given in (7.2) and

S

=S e(wy) + 3 . Veive;.

J i#]

with
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Now, by definition of the cut-off function
X (x >0, x=1for || > R), we have

2 )

B(0,R) B(0,R)e

(7.29)

where n = deg . We first compute the first integral in
the r.h.s.
By definition of E, r and because a; < R, we have

1
/e(¢i) = / e(p")) = Ep, g+0 <R2> . (7.30)
Dr Dgr+a;
We now show that
!
i#i Py
= - Zﬂnmj In <M> . (7.31)
— R
i#]
We compute
/V%V@j =
Dr
27 R p
r — oS
= nln]// I S COSGdT de, (7.32)
00

where a = |a;;j|. Furthermore, changing the integration
variable as # — z = ¢! and computing the residue, we
find

27

— 0
/ T — @ cos 40 —
r2 4+ a2 — 2ar cosf

0

r? —a? %
- _ - — =
r 2iar z—— z——)

=1 r
oo 7rr2—a2_27r 1 ifr>a,
roorr2—=a?  r | 0 ifr<a.

The last two equations yield (7.24). We also observe
that up to a multiplicative constant, expression (7.24)
can be found from the symmetry considerations: the
invariance of the integral in the Lh.s. under transla-
tions (a; = a; + h and a; = a; + h Vh € R?) and
rotations (a; — ga; and a; — ga; Vg € O(2)) implies
that it depends only on |a;;|. Its scaling properties un-
der the dilations (a; = Aa; and a; = Aa; VA € R)
imply that it is a multiple of In (|a;;|/R).

Equations (7.30) and (7.31) imply that
a 1
B(0,R)

Next, we estimate the second integral in the r.h.s.
of (7.29). By Eqs. (7.17) and (7.22), we have

1
g= §|Vg00|2 + O(d(a/:,g)*‘l).

Furthermore, expanding the terms Vé(z — a;) in
Vo(z) = > n;VO(z — a;) around the point z, we ob-
tain

Vo(z) = nVo(z) — 0"(z

Z njaj +
Snja’

0 : 7.34
+ (d(x’g)3 , (7.34)
where 6" (x) is the Hessian of #(x). Choosing the ori-
gin such that " nja; = 0 eliminates the second term on

the r.h.s.. (Otherwise we could use that by an explicit
computation,

xr

0" (2)Vl(z) = -1

the integral of which over the exterior of the ball
B(0, R) vanishes.) Hence,

[ (o-32)= [ oF5)-

B(0,R)® B(0,R)°

Zma?
:O< = ) (7.35)

Estimates (7.28), (7.29), (7.33), and (7.35) imply (7.7)
with Rem given in (7.2).

Remark 7.3. The statement of Lemma 7.2 re-
mains true for a wider class of functions defined by
replacing (7.7) by the condition

2T
f=f+0 <r61l”> and /Re(e‘i“’Olp — fi)df =
& 0

1
=0 <dn+1> if |z —a;| <da, (7.36)

with the corresponding estimates of their first deriva-
tives, where n = 2 if VH(a) = 0 and n = 1 otherwise.

To prove this, we write ¢ in the region D; as
P = e¥o(f; + &), where f; = [1;]. Using relation (7.25)
and

0
/f]ngJVImf = n]/f]%lmf = 0, (737)

D; D;
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we obtain

[ew = [ ewy+ [erom)+ReRL (139)

D; D; D;

where R is given above and

R' = / {(Wo2 + 7 = 1) fiRe& + ff(Re&)? +

D;

+%\V@0\2\5|2+%|V£|2+2VfNRe§+fN<p(i)VIm§+
FTm(EVg0 - VE) + 3 (7 — 1+ 2fReg)lel” +
1 4
+ 7l } (7.39)

Using that

1
5:O<7'da>
21
/Refd@zO(%) in D,

0

and

due to (7.36) and that [Vp;|? + 72 — 1 = O(r;*), we

find
In rg
R =0 (_dg ) |

We now proceed to proving estimate (7.4) with Rem
given by (7.3). First, we describe the class of test func-
tions for which we prove this estimate: ¢ = €0 f with

(7.40)

;

1,
fi— 5t agn;

2 1
in D(aj, —dg) Vi

3
_ 1
f 1= 5Viol* + O(d(z,0)™")

in (UD(aj’id“)> , (7.42)

(7.41)

\

where we used definition (7.11) and where n; are
smooth cut-off functions depending only on r; = |z;]|
(i.e., radially symmetric in the z; variables) satisfying

1
B <aj, Eda> \B(aj, 2dg) C suppn; C
1
CB <aj, gdg> \B(aj, d;) (743)

and

Vi =0(d™), n=0,1,2, (7.44)

for v = 5 (not optimal). (The f]._l’s in (7.41) play no
important role and are chosen purely with a view of
simplifying some expressions below.)

The function

1.
F=Yfixi->. 54 Lan;
satisfies Eqs. (7.41) and (7.42). To prove this, we use
the expansion

(7.45)

1 _
fi =1=5IVei* +0(r;") (7.46)
and the estimate
a; = 0(d,?) in D(aj,dg), (7.47)

which is shown by expanding the function V(; ()
around a; and using that

1

Vi (a;) = 5V,

H =
71"1’Lj (Q) 0

and
Vej(z) = 00rj ).

Our next task is to prove the following lemma.

Lemma 7.4. Let a be forceless in the sense that
VH(a) = 0. Then estimate (7.7) with (7.3) holds for
any function ¢ satisfying (7.21)—(7.22).

Proof. The proof follows the lines of the proof of
Lemma 7.2, but with some subtle modifications consid-
ered below.

First of all, instead of ey (1)) = L|Vip|? used in the

2
proof of Lemma 7.2, we use the density

1 1
ea(p) = 5Vel* = 7IVel", (7.48)

which is a better approximation to the density e(v).
We also use (7.27) instead of (7.17). In particular, we
have

e(¥;) = eapj) + O(r;°). (7.49)

We set fj :=1— f7 — |Vg;|*. For any k and for

up = e (fr + €), where ¢ is a real function, we have
the identity

(e(ur)) = %Zv¢iv¢j_A(¢)+Bk (&)+ Ry, (7.50)
where #]
B(€) := —%gk(ak+2fk§)+ia%+akfk£+f§£,f (7.51)
and
R= ; (62(90]')—6(%'))—%(gk—ak)52+fk§k+i€2+
J
(2V£VE+|VEP?). (7.52)

DO | =

+
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We now take & = —%fk_lozknk. Then

1
e(y) =e(ug) on D <ak, §da> . (7.53)
Due to (7.28) and the corresponding estimate for the
derivatives of a; and due to (7.25), (7.27), and (7.29),
we have

R, = O(d&

), (7.54)

We note that the form of (7.21) is chosen such that
1 Y
Br(§) =0 on B | ay, idg \B(ax.d}) C {m = 1}.
Next, we estimate Bi({) on the entire disc

D(ay, d,). Expanding the function V) (z) around
the point a; and using that

Vo (ar) = — JVa, H(a) =0,

TN

we find

ak(x) = 2V (x) @y (ar)zr, + O(rrdy®),  (7.55)
where z; = —ay and ¢" is the Hessian (the matrix of
second derivatives) of a function ¢. Using this expres-

sion in estimating By, (&), we find

By (€) = —giVeor () ey (ar) 2y +

1
+O(rtdg® +dg*) i on D <ak_/ gd“> , (7.56)

where 77 = 1 — 1. The first term in the r.h.s. of
this expression is singular at zx = z — ay = 0, but
the integral of it is conditionally convergent and equals
0. Indeed, because the function ¢ (z) is harmonic in
D(ay, 3d,), we have that (cf. (7.9))

P (ar)zy = c(zy, cos 20y, — it sin 26y,), (7.57)

where ¢ = O(d;2)., 2t = (=29, 71), and 6y is the polar
angle of =, (see Eq. (7.9)). Because g and 7, depend

only on r, (we write (gx 7 ) (1) for g (x)x (x)), we have

/(Qkﬁk)(rk)vs%( )@ (ar) Tk =
= —c/(gkﬁk)(rk) sin20, =0 (7.58)
(strictly speaking, we must first excise a small disc

around x;, = 0 and then take the radius of this disc
to zero).

Equations (7.32), (7.33), (7.35), and (7.37) imply
that

( > VeiVe; - A(9) | +
O(

i#j
ak73
+ Ay +d? ="+ d ). (7.59)
Finally, we derive the estimate
1 —
() = 5D VeiVip; — Alp) + O(d(z,a)~%) (7.60)

i#]

on (U (ak, 1da )) . Indeed, Eq. (7.42) implies that

k
e(y) = ex(po) + O(d(z,

which together with (7.49) implies (7.60).
Now, Eqs. (7.59) and (7.60) with v = 1/3 imply

a) %), (7.61)

Er(Y) = B = Ala) + O(d*).  (762)
Where the term E is defined after Eq. (7.28) and
= [ A(yp). Equations (7.29), (7.33), (7.35), and

(7.61) imply (7.14) with Rem given by (7.3).
Lemmas 7.2 and 7.4 and inequality (7.13) imply
Theorem 7.1.

8. DISCUSSION

In this paper, we investigated the Ginzburg—Landau
equation (1.1) appearing in condensed matter physics
and nonlinear optics. Specifically, we presented care-
ful arguments supporting the existence of non-radial-
symmetric solutions corresponding to vortex configu-
rations ¢ with N + 1 vortices fixed by the symmetry
group C'ny,. In these configurations, N m-vortices lie
on the circle of radius a and one (—k)-vortex is placed
at the center of the circle, and the only remaining free
parameter is the overall size of the configuration — the
radius of the circle a.

Our argument is based on reducing the problem of
the existence of solutions corresponding to a given vor-
tex configuration to the existence of critical points of
the effective energy of the vortex configurations intro-
duced in this paper. For Cp, configurations, this ef-
fective energy is a function of a single variable, a. To
prove the existence of critical points of this energy, we
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investigated it analytically and numerically at large and
small values of the parameter a. We found that there
are critical points at the vortex configurations (N = 2,
m=2,k=1)and (N =4, m =2, k= 3) and, con-
sequently, we expect the existence of (static) solutions
corresponding to these configurations. For the vortex
configuration (N = 3, m = 1, k = 1), our numerical
analysis indicates that it is very likely that such a crit-
ical point exists. Our numerical computations suggest
that the critical a’s are of the order O(1). Finding their
true values requires rather elaborate numerical anal-
ysis, which would be desirable to develop but which
is presently absent. In addition, we have shown (see
Appendix 5) that for the vortex configurations (N, 1,
(N —1)/2) with N > 1 odd and a sufficiently large, the
energy is greater than the effective energy of a single
N-vortex.

All the solutions considered are saddle points of
the renormalized Ginzburg-Landau energy functional.
Perturbations breaking the Cy, symmetry group can
lower the energy of the corresponding solution vortex
configuration. However, we expect that under small
symmetry breaking perturbations, such solutions lead
to long-living metastable states that can be observed
experimentally. Moreover, even weak pinning centers
can stabilize such solutions. Thus, to experimentally
observe the static configurations found in this paper,
one would need to create weak pinning potentials
satisfying the suggested point symmetry, adjust the
radius a at which these potentials are located, and
then slowly reduce the strength of these potentials to
7€10.

The authors are grateful to A. Knauf and L. Sadun
for a stimulating discussion. In fact, it was A. Knauf
who suggested that there might be static multivortex
configurations. The authors are also grateful to the
referee for useful suggestions.

APPENDIX 1

Computation of ¢(n)

In this appendix, we compute the constants c(n)
in expression (3.5) for the self-energy E, r of the n-
vortex (see Eq. (3.6)). For this, we derive a convenient
formula for E, . Multiplying Eq. (3.2) by r?f.(r),
where f'(r) = df(r)/0r, integrating the result over r,
observing that the first two integrands are total deriva-

tives, and integrating the last term by parts, we obtain
the quantization relation (see [22])

(1 — f2)*rdr =n?.

This equation together with Eq. (3.3) yields an expres-
sion for F, g,

i 2
En,R:—zn2+ﬂ'/ l—ffl—n—x rdr.
: 2 T2
0

However, we prefer to use a different representation
of E, r, which is obtained from above if we write
1—f2=(1—f2)f2+(1— f2)? and use the quantization
formula above again:

E,r n +7T/{1—f2 f2——2x rdr. (A.1.1)
0

To avoid numerical evaluation of the integral in
(A1.1) over an infinite range, we use the expansion of
fn(r)in 1/r for large r. However, f,(r) is not analytic
at r = oo; it has an essential singularity at this point.
Hence, the resulting series is asymptotic. We trun-
cate this series at the order O (-%5). To compensate for
this truncation, we add to the resulting polynomial in
1/r a multiple of the decaying solution e~ V2" /\/r of
the linearization of Eq. (3.2) around 1. We should lin-
earize Eq. (3.2) around the resulting polynomial, but
the powers of 1/r% lead to similar powers multiplying
e‘ﬂ’/\/ﬂ and it therefore suffices to linearize around
1. The result is

2r2 r4 ré \ 2
n2+16<n2+n_4>>_ }_
2 8 a
V3
—c (1+...), (A.1.2)

where c is a constant to be determined by a matching
procedure. Inserting this expression in Eq. (Al.1), we
obtain

7o
2 mn’ 2 2
E,r—mm"InR = T—}—W/fn(l—fn)rdr—

—mn?(Inr +n2—2+n2—16 +
0 2r2 4rd

+0(r;% (A.13)
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for any rqg > 0. We choose 6 < ry < 10. This relation
together with Eq. (3.5) implies that

”_ /
_2
0
n? — 16

n? -2
In — + + +
( In| ~ 2 4rg )

+0(ry%).

(1= fArdr—

(A.1.4)

For numerical solution of Eq. (3.2), we take the inter-

val (0.3,7g). Because Eq. (3.2) linearized around the
function 1 has the solutions
L 42
— " Al5
N (A.1.5)

we should apply the numerical iteration procedure
starting from the upper limit, ro. Then the danger-
ous, exponentially growing solution would not affect
our procedure.

In the range 0 < r < 0.3, we use the fact that as
Eq. (3.2) shows, the function f,(r) is analytic in a disc
|r] < O(1), and can therefore be presented by a con-
vergent series

T2 7,4
1-—
{ n+1) " 8m+2)
6

falr) =ar®

X o +a’s +— X
An+1) " C ) T 1m + 3)
3 1
2 s -
8 {a <5"’2 4(n+1)5"’1> Sn+2)

X <ﬁ+a26n’1>] +} (A.1.6)

for some number a > 0. Here, 6, 1 is the Kronnecker
symbol, d, = 1 for n = k and = 0 for n # k. (We
expect that the pole closest to the origin lies on the
imaginary axis.)

To finish the computation of ¢(n), we must find the
value of the parameters o and ¢. This is done by match-
ing solution (A1.2) for small r with solution (A1.6),
for large r. Specifically, using Eq. (A1.2), we compute
fn(ro) and f} (ro) for various values of the parameter
c. Using these values as initial conditions, we integrate
Eq. (3.2) backward to r = 0.3, which yields fyign¢(0.3)
and f};.n¢(0.3). On the other hand, using Eq. (A1.6),
we compute fiert(0.3) and fl(0.3) for various values
of the parameter . We then match fiign¢(0.3) and

vight (0-3) With fiert(0.3) and fie (0.3) by minimizing
[(Frignt (0-3)= fiere(0.3)) "+ (flga (03) = Flgra (0-3)) ]
This yields the values of the parameters ¢ and a. Af-

ter this, we compute c¢(n) using formulas (A.1.4)
and (A.1.6).

1/2

APPENDIX 2

Large-n asymptotic form of the vortex (self)
energy

In this appendix, we find the large-n asymptotic
form of the constant ¢(n) in expression (3.6) for the
(self) energy of the n-vortex. For this, we use the large-
n asymptotic expression for the function f,(r) defined
n (3.2),

() = {«/1—n2/r2 it r—n > (n/2)
L (r) =

)13

@2/m)* g(z) if [r —n| < n,
(A.2.1)
where the variable z is defined by

e (3)”

and the function g(z) is a solution of the equation

(A.2.2)

Jd"+zg—g>=0. (A.2.3)
The function g(z) has the asymptotic form
— 1/2 f > 1
gz) =217 2> 1, (A.2.4)

g(z) = const¢(z2) if z < —1,

where ¢(z) is the Eiry function. In particular, we have

0.39 o

2)3/2
9(z) = W@ )3

for z < —1. (A.2.5)

Inserting expression (A.2.1)—(A.2.2) in Eq. (A.1.1) and
using (A.2.4) and (A.2.5), we find that

c(n) = an*Prx + c+ 0O(n=?/?), (A.2.6)
where ¢ is some constant and
a=2'3 / (9%(2) — 20(2)) d=, (A.2.7)

with #(z) = 1 for z > 0 and = 0 for z < 0. Multiplying
Eq. (A.2.3) by ¢'(z) and integrating the result, we find
that a = 0, and therefore

c(n) =c+0n2/?) (A.2.8)

as n — 0o0. A rough numerical computation yields the
following value for the constant c:

c ~ 0.77. (A.2.9)
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APPENDIX 3

Computation of correlation coefficients

In this appendix, we compute the correlation func-
tion

1
A= Aa) = Z/ |-\V<,90\4 _ Z |V30j|4-| (A.3.1)
[ =
with
o = Zgoj and ¢;(x) = n;f0(x — a;), (A.3.2)
J
f(x) = the polar angle of z € R? (A.3.3)

(see Eq. (4.4)) for configurations of X' = N + 1 vortices
with N vortices of vorticity m lying on the circle of ra-
dius a and one vortex of vorticity —k at the center of
this circle, such that VH (a) = 0.

We write @ = a - b where b is a fixed configuration
with IV vortices on the unit circle and one at the center.
Changing the integration variable in (A.3.4) as @ = ay,
we find

A(a) = Ca™2, (A.3.4)

where C' depends on b only. Our task is now to find the
sign of C for the configurations of interest. We write
A= A(a).

1. N =2, m =2, and k = 1. In this case, there
are two double vortices on the circle and one single vor-
tex of the opposite vorticity at the center (see Fig. 1).
Below, we use the dimensionless variable

p=u~

; (A.3.5)

For the configuration under consideration, we have

1 oo
0
(48 16cos(20)  Gdcos?(20
x/dﬂ{—S— 6cos§ )+6 COSQ( )
a ap a
0

4
—% (1+2p* +2p cos(29))} , (A.3.6)

where
a = p* 4+ 1+ 2p? cos(26). (A.3.7)
(In general, for aj, j = 1,..., N, distributed equidis-
N
tantly on the circle of radius a, « = [] (z —a;)?/a®N.)
j=1

First, we take the integral over . For this, we change

the integration variable as § — z = exp(2i6), i.e., we
write the inner integral in (A.3.8) as an integral over
the unit circle. A simple calculation gives

27
/ 2r(1 4 pt)
|1—p *
(A.3.8)
d9 47 p?
— 2
0
2m
/_9_ 2m
a [1-pt]
o (A.3.9)
2m 1
- 20) = —— " i 2
/ cos(26) i mln{p , 2}7
0
2m 9
m
/ 2cos2(219) = 4|3><
14 4p* = p8 f 1
o MP<h (A 3.10)
(p® +4p* —1)/p* for p> 1.

Inserting expressions (A.3.7)-(A.3.10) in Eq. (A.3.7),
we obtain

1
4T 1—2z

a 1+2)
rod 1
x
1 R
+/(1+)3<3x++ + )
1
This gives
8T
A=—. (A.3.11)

Hence, in the configuration under consideration, the
energy Er(a) is given by
1 8 1
—Er(e)=9In R=—-9.64——+0 < 2“) . (A3.12)
™
2. N =3 m =1, and k£ = 1.
Eq. (A.3.8), we obtain

Similarly to

2
125sin(36)
A= 42/dpp/d9{ (1+2p%) — T(—
0
9(1+p 36p2 sin? (36
_%(1+p2+2p4)+7()_
5 .
_ 36p°sin(36) 513(39)}7 (A.3.13)
0]
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where a = p% + 1 + 2r3sin(36). The integrals in
Eq. (A.3.13) can be taken explicitly. To do this, we
set z = exp(3if), and then

27
/ﬁ 2
o =
2”d ) 1 (A.3.14)
/—sm(39) = T _ﬂ- g min (p ,—3> ,
0
27
/ﬁ 2m(1 + p%)
a2 11— 63
. (A.3.15)
0 . 4rp?
/ 5 sin(30) = TE
0
and
271'd0
. 9 _ ™
/ESID (39) = m X
0
14 4p% — p2 f 1
e Pt (A316)
(p'2 +4p° —1)/p% for p> 1.

Inserting expressions (A.3.14)—(A.3.16) in Eq. (A.3.13),
we obtain

1
A:3_7r /dx5x+9x2—1—2x3—2x4
4a? (1+x+22)3

0

o0
+ [ d : R
"\Trz122 (142 + 22)?
1
10z + 18
(1+ 2+ 22)3

6x + 2
+ x2(1+x+x2)3>}. (A.3.17)

A simple calculation of integrals in Eq. (A.3.16) gives
explicit answers for A:

_271'

A= (A.3.18)

a?’

Hence, the energy for such configurations is given by
1 2
—FEg(a) —4In R = -1.792 — —. (A.3.19)
™ a

3. N =4, m =2, and k = 3. In this case, there are
four double vortices in the corners of a rectangle and

a (—3)-vortex in the center. For this configuration, we
have

27 [es)
1 dpp [ 4p*2 4 cos? (46
A:—S/dﬂ/ pp{p +36/)COS( )+
a [0} (8% (8%
0 0
248

+4.5p* +13.5cos(46) + cos(40) —

- é[(ﬁ + 1) —202(p* + 1)%(p* + 1) + 4p°] —

—2p% cos(46) (3(p* +1)* - 2p2)/a} , (A.3.20)

where
a=p®+1—2ptcos(46).

The change of variables 260 — 6 + /2, p% — j* re-
duces the integrals over 6 in Eq. (A.3.20) to those in
Eqs. (A.3.8)-(A.3.10). As a result, we obtain

1
1-3z

A=—- dp | ———M——
a? / x{1+x+x2+x3+
0

2(52° + 232* + 182° + 622 — 3z — 1)
(1+z+a2>+23)3

-I-/dac 75 15 A(l+a+a?)
1+22  22(14+2%) 22(1+a+z’4a3)
1

2 5 4 3 2
_(1+x+x2+x3)3 (az + 112" — 22° — 222" —

a2 ) s

Direct calculation of the integrals in Eq. (A.3.11) gives

-, (A.3.22)

and therefore the energy of the configuration in ques-
tion is

1
—Eg(a) —25InR = —40.44 — 2
™ a

(A.3.23)
We note that for all the configurations under con-
sideration, the correlation term A is given by

™
A= 4_a2M

where M is an integer, i.e., the quantity given by the

integral in A is quantized. Moreover, the «quantiza-

tion» takes place separately for the integrals over re-

gions r < 1 and r > 1. We conjecture that this prop-

erty is general and holds for any forceless configuration.
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APPENDIX 4

Inequality ER(0) > 0

In this appendix, we show that Eg(a) — Er(0) > 0
for the configuration consisting of N 1-vortices equidis-
tributed on the circle of radius a and one (—M)
vortex at the center and for a sufficiently small. We
assume that N is odd but otherwise arbitrary.

For a = 0, the configuration in question collapses to
a single M—vortex, Tﬁ%, sitting at the origin. Let L
be the Hessian of &.en(¥) at ¢ = zp%.

in [13] that the subspaces

It was shown

o N+1_

{ur(r)e™? + us(r)el 0wy, €

€ L*(rdr), k=1,2}, (A4.1)

m = %, # + 1,..., which are orthogonal to each
other and span the entire Hilbert space L?(R?), are in-
variant under the action of the operator L. Moreover,
it was shown that in the sectors with m > 3% -1,
L is nonnegative and 0 is not its eigenvalue (actually,
the statement in [13] is formulated for m > 322, but
the proof works also for m = 322 — 1), while in the

sectors
N+1 N+1

— 4+2<m<2——,

2 + 2
the operator L has negative eigenvalues. We now ob-
serve that the sectors with % <m< 3% —2do not
have the C'y, symmetry and, consequently, are forbid-
den in our case. Therefore, on the subspace invariant
under the action of the group Cn,, L > 0 and 0 is now

its eigenvalue. The latter implies that

Eg(a)

— ER(O) >0 (A42)

for any odd N and for sufficiently small a.

APPENDIX 5

Large-IN asymptotic forms

In this appendix, we find asymptotic behavior of
the energy of the circular asymptotically forceless con-
figurations, i.e., the ones with VH(a) = 0, for large
values of N. More precisely, the configurations we
consider consist of N 1-vortices equally spaced on the
circle of radius a and with the center at the origin
and one (—k)-vortex at the center. We recall that
the condition VH (a) = 0 is equivalent to the relation
k= —(N—1)/2. We assume in addition that N is odd
and a > N.

6 ZKOT®, Bem. 5 (11)

According to Eq. (5.10) and because
m(N — k)

. 7k .
Sin — = sin ———,

N N

the energy of the above configuration is

= (V1) - (251)

x In <¥> + Ne(1) —

N-—1

—27N > In <2 sin %) . (A5)

k=1

where we use the notation Er(a) = Er(a). For a =0
(the «initial state» ), the energy is given by Eq. (3.5),

N+1\°
ER(O)Zﬂ'(T_'_) InR—

() (S s

To calculate the sum in Eq. (A.5.1), we use the Euler
expansion

. 14d
> 1 f(x)dz —
k=M M—1
1/, 1
g (1 (r5) -1 (-3)) s
and
w/2
/ In(2sinz) dx = 0, (A.5.4)
0
M
> Ink=IT(M+1),
k=1

where T'(z) is Euler gamma-function,
<2$1n—> Zln <2$1n< >>
N
<2 sin < > )
w/2

N[ aemeanz) = o () -

k=1

2
|

Pﬁm

=~
|
-

dz1n(2sinZ) +

|
3=
ot

k= M+1

M
N

2nM 1 2T M 1
—M(ln( N >—1>—§IH<T>+M7
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where 1 < M < N. For N > 1, this yields

Mt
. 7k 1
;ln <2$1nﬁ> = §lnN

modulo terms O(1) in N. As a result, we have the
energy difference

(A.5.5)

Fr(a) - Fn(0) = N [cu) ; (% i z) W] _

=0.1837N. (A.5.6)

Thus, for (N > 1)-vortices placed equidistantly on a
circle of radius a > N, the energy is greater than the
effective energy of a single N-vortex.
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