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SYMMETRY-BREAKING SOLUTIONSOF THE GINZBURG�LANDAU EQUATIONYu. N. Ov
hinnikov *Landau Institute, Mos
ow, Russia and Max-Plan
k-Institute for Physi
s of Complex SystemsDresden, GermanyI. M. SigalUniversity of Toronto and University of Notre DameSubmitted 1 Mar
h 2004We 
onsider the question of the existen
e of nonradial solutions of the Ginzburg�Landau equation. We presentresults indi
ating that su
h solutions exist. We seek su
h solutions as saddle points of the renormalized Ginzburg�Landau free-energy fun
tional. There are two main points in our analysis: sear
hing for solutions that have
ertain point symmetries and 
hara
terizing saddle-point solutions in terms of 
riti
al points of 
ertain intervortexenergy fun
tion. The latter 
riti
al points 
orrespond to for
eless vortex 
on�gurations.PACS: 74.20.De 1. INTRODUCTIONThe Ginzburg�Landau equation des
ribes, amongother things, ma
ros
opi
 stationary states of super-�uids, Bose�Einstein 
ondensation, and solitary wavesin plasmas. In re
ent years, it has be
ome a subje
tof a
tive mathemati
al resear
h (see monographs [1; 2℄and [3℄ and reviews [4�7℄ for some of the re
ent refer-en
es). This equation is simple to write,�� + (j j2 � 1) = 0; (1:1)where (in the 
ase of the entire plane R2 )  : R2 ! C ,with the boundary 
onditionj j ! 1 as jxj ! 1; (1:2)but not easy to analyze. In fa
t, so far only radi-ally symmetri
 solutions, i.e., solutions of the form n(x) = fn(r)ein� , where r and � are polar 
oordi-nates for x 2 R2 , are known for (1.1)�(1.2) (see [8�17℄).Solutions  n are 
alled the n-vorti
es. We note thatn = deg n, where deg , the degree (or vorti
ity) of  (satisfying (1.2)) is the total index (winding number)at 1 of  
onsidered as a ve
tor �eld on R2 , i.e.,deg := 12� Zjxj=R d(arg )*E-mail: ov
�itp.a
.ru

for R su�
iently large.The existen
e and properties of the vortex solutionswere established only re
ently. The known fa
ts are asfollows.(i) Existen
e and uniqueness (modulo symmetrytransformations and in a 
lass of radially symmetri
fun
tions) [10�13℄.(ii) Stability for jnj � 1 and instability for jnj > 1([13℄, earlier results on stability for the dis
 are dueto [15�17℄).(iii) Uniqueness of  �1 (again, modulo symme-try transformation) in a 
lass of fun
tions  withdeg = �1 and R �j j2 � 1�2 <1 [16℄.Therefore, the next question is: are there nonradi-ally symmetri
 solutions?In this paper, we present results indi
ating thatsu
h solutions exist. There are two key ingredients inour analysis. First, we 
hara
terize nonradially sym-metri
 solutions as 
riti
al points of the intervortex en-ergy fun
tion des
ribed below (see also [18℄). Se
ond,we seek solutions having 
ertain point symmetries. Thelatter fa
t redu
es the number of free parameters de-s
ribing su
h solutions to one (the size of the 
orre-sponding polygon of vorti
es).Solutions breaking the rotational symmetry werefound to exist in the 
ase of the Ginzburg�Landau5 ÆÝÒÔ, âûï. 5 (11) 1249



Yu. N. Ov
hinnikov, I. M. Sigal ÆÝÒÔ, òîì 126, âûï. 5 (11), 2004equation in the ball BR = fx 2 R2 jjxj � Rg withthe boundary 
ondition  ���BR = ein� and jnj � 2(see [1; 2℄, Thm IX.1℄). However, in the 
ase of the ball,there is an external me
hanism leading to the symme-try breaking: the boundary 
ondition. It repels vor-ti
es, for
ing their 
on�nement. On the other hand,the energy is lowered by breaking up multiple vorti
esinto (+1)- (or (�1)-) vorti
es and merging vorti
es ofopposite signs. Thus, for R not very small, the lowestenergy is rea
hed by a 
on�guration of jnj vorti
es ofvorti
ities �1 depending on the sign of n whi
h, obvi-ously, is not rotationally symmetri
.This paper is organized as follows. In Se
s. 2 and3, we review some material in [13℄: the variational for-mulation of the problem and some spe
i�
 propertiesof vortex solutions. In Se
. 4, we de�ne the intervor-tex energy and dis
uss its properties. In parti
ular, wedis
uss the 
orrelation term in (the upper bound on)the expansion of the intervortex energy for large inter-vortex separations and the de�nition of G-symmetri
vortex energies, where G is a subgroup of the symme-try group of (1.1)In Se
. 5, we 
onsider point symmetries (CNv),present one of our main results, Theorem 5.1, on theexisten
e of 
riti
al points for CNv-symmetri
 intervor-tex energies, and derive some general relations for thoseenergies. In Se
. 6, we prove Theorem 5.1 and dis
usssome other 
ases.Finally, we have �ve appendi
es where all the hardanalyti
 and numeri
al work is 
on
entrated. In theseappendi
es, we 
ompute various asymptoti
 expansionsbeyond the leading order. We feel that these appen-di
es are of interest on their own be
ause they addressrather subtle 
omputational issues.2. RENORMALIZED GINZBURG�LANDAUENERGYIt is a straightforward observation that Eq. (1.1) isthe equation for 
riti
al points of the fun
tionalE( ) = 12 Z �jr j2 + 12(j j2 � 1)2� : (2:1)Indeed, if we de�ne the variational derivative � E( )of E by Re Z �� E( ) = ���E( �)����=0 (2:2)for any path  � su
h that  0 =  and ��� ����=0 = �,then the l.h.s. of Eq. (1.1) is equal to � E( ) = � � E( )for E( ) given by (2.1).

Equation (2.1) is the 
elebrated Ginzburg�Landau(free) energy. However, there is a problem with it inour 
ontext. It is shown in [13℄ that if  is an arbitraryC1-ve
tor �eld on R2 su
h that j j ! 1 as jxj ! 1uniformly in x̂ = x=jxj and deg 6= 0, then E( ) =1.We renormalize the Ginzburg�Landau energy fun
-tional as follows (see [13℄). Let �(x) be a smooth pos-itive fun
tion on R2 vanishing at the origin and 
on-verging to one at in�nity. We de�neEren( ) == 12 Z �jr j2� (deg )2r2 �+F (j j2)� d2x; (2.3)where F (u) = 12(u� 1)2: (2:4)Properties of the renormalized energy fun
tionalEren( ) are investigated in [13℄.In this paper, we take�(x) = ( 1 for jxj � R+R�1;0 for jxj � R (2:5)for R very large 
ompared to all length s
ales appearingbelow. 3. VORTICESIt is shown in [10�13℄ that for any n, Eq. (1.1) hasa solution, unique modulo symmetry transformations,of the form  n(x) = fn(r)ein� ; (3:1)where fn, with 1 > fn � 0, monotoni
ally in
reasefrom fn(0) = 0 to 1 as r in
reases to 1. For n = 0,fn(r) = 1. For jnj > 0, fn(r) does not admit an ex-pli
it expression. These are the n-vorti
es mentionedin the introdu
tion. Of 
ourse, ea
h solution  n gener-ates a one-parameter (for n = 0) or a three-parameter(for jnj > 0) family of solutions of (1.1). The latter areobtained by applying symmetry transformations to  n.The fun
tion fn(r) in (3.1) satis�es the ordinarydi�erential equation�1r ��r �r�fn�r �+ n2r2 fn � (1� f2n)fn = 0: (3:2)The (self) energy of the n-vortex is given byEn;R := Eren( n). To 
ompute En;R, we use that1250



ÆÝÒÔ, òîì 126, âûï. 5 (11), 2004 Symmetry-breaking solutions : : :if  is a solution of (1.1), then, due to the formulaR jr j2 = � R � � of integration by parts, we haveEren( ) == 12 Z �1�j j2�12(1�j j2)2� (deg )2r2 �� : (3.3)Using this formula for  =  n and using the asymp-toti
 expression (whi
h 
an be easily derived from (3.2),see [19; 20℄ for the general 
ase)fn(r) = 1� n22r2 +O� 1r4� (3:4)for r � 1, we obtainEn;R = �n2 ln� Rjnj�+ 
(jnj) +O� 1R2� : (3:5)The 
onstant 
(n) 
an be 
omputed numeri
ally (whi
his not quite trivial, see Appendix 1), whi
h yields
(1) = 0:376�; 
(2) = 0:535�;
(3) = 0:577�; 
(5) = 0:615�: (3.6)The asymptoti
 form of 
(n) for n � 1 is found ana-lyti
ally in Appendix 2.4. INTERVORTEX ENERGYIn this se
tion, we introdu
e and dis
uss a key 
on-
ept of the intervortex energy (see also [4; 18℄). Webegin with some de�nitions.By a vortex 
on�guration 
, we understand apair (a; n), where a = (a1; : : : ; aK), aj 2 R2 , andn = (n1; : : : ; nK), nj 2 Z, for some K � 1 (posi-tions of the vortex 
enters and their vorti
ities). We
onsider on
e-di�erentiable fun
tions  : R2 ! C sat-isfying j j ! 1 as jxj ! 1. We say that the vortex
on�guration of  is 
 = (a; n), 
onf  = 
, if  haszeros (only) at a1; : : : ; aK with the respe
tive lo
al in-di
es n1; : : : ; nK , i.e.,Z
j d(arg ) = 2�nj (4:1)for any 
ontour 
j 
ontaining aj , but not the other ze-ros of  , and for j = 1; : : : ;K. (Stri
tly speaking, wehave to spe
ify the phase fa
tor, or rotation angle, forea
h vortex; but these play no role in our 
onsiderationsand are not displayed or mentioned in what follows.)We now de�neER(
) = inf �Eren( )j
onf  = 
	: (4:2)

We expe
t that ER(
) > �1. An argument support-ing this statement is presented in [18℄. Of 
ourse, forbounded domains, this inequality is trivial. We 
allER(
) the energy of the vortex 
on�guration 
. It playsa 
entral r�le in our analysis. We also note that E(
)serves as a Hamiltonian for the vortex dynami
s in theadiabati
 approximation (see [21℄).In what follows, we keep the vortex indi
es n �xedand write ER(a) for ER(
). It is 
lear intuitively that aminimizer in (4.2) exists if and only if rER(a) = 0 (thefor
e a
ting on the vortex 
enters is zero). However, toestablish this fa
t is not so easy.Theorem 4.1. If there is a minimizer for vari-ational problem (4.2), then this minimizer satis�esGinzburg�Landau equation (1.1).Proof. Let  be a minimizer for (4.2). Be
ause wehave0 = ���Eren( + ��)����=0 == ReZ ����� + (j j2 � 1) �for any di�erentiable fun
tion �: R2 ! C vani-shing together with its gradient su�
iently fast at1 and vanishing at the points a1; : : : ; am, we 
on-
lude that  satis�es (1.1) for x 6= a1; : : : ; am.On the other hand, be
ause  2 H lo
1 (R2 ), wehave that �� + (j j2 � 1) 2 H lo
�1 (R2 ). Hen
e,�� + (j j2 � 1) = 0 on R2 .Arguments and results in [18℄ (see, in parti
ular,Theorem 3.2) justify making the following 
onje
ture.Conje
ture 4.2. rER(a0) = 0 for some a0 (withn �xed) if and only if there is a minimizer for problem(4.2) at the 
on�guration a0 and 
onsequently, due toTheorem 4.1, if and only if Ginzburg�Landau equation(1.1) has a solution with the 
on�guration a0.The goal of this paper is to �nd for
eless vortex
on�gurations, i.e., 
on�gurations 
 su
h thatrER(a) = 0: (4:3)For this, we study the intervortex energy ER(a) forvery small and very large intervortex separations.Letda = mini6=j jai � aj j for a = (a1; : : : ; aK):For da large, we prove in Se
. 7 the upper boundER(a) � E(0)R �A(a) +O�d�8=3a �+O(R�2); (4:4)where E(0)R = KXi=1 Eni;R +H � aR�1251 5*
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hinnikov, I. M. Sigal ÆÝÒÔ, òîì 126, âûï. 5 (11), 2004and A(
) is a homogeneous fun
tion of degree �2,provided a satis�es rH(a) = 0. We re
all thatEn;R = Eren( n) is the self-energy of the n-vortex (see(3.5)) and H(a) is the energy of the vortex pair inter-a
tions, H(a) = ��Xi6=j ninj ln jaij j; (4:5)with aij = ai � aj .The 
orrelation term A(a) is of importan
e forus here. We have an expli
it expression for it, seeEqs. (A.3.4)�(A.3.5), and 
ompute it expli
itly in the
ases of interest. We 
onje
ture that A(a) > 0 always.We observe that the upper bound (4.4) with theremainder O�d�1a � instead of �A(a) +O�d�8=3a � is ob-tained by 
hoosing the Hartree-type fun
tion (0)(x) = KYi=1 nj (x� ai)des
ribing �independent� vorti
es. For asymptoti
allyfor
eless 
on�gurations, i.e., the ones with rH(a) = 0,this estimate 
an be somewhat improved, but in orderto move even to the remainder estimate O�d�2a ln da�in the latter 
ase, one has to re�ne upon this fun
tionand in
lude the leading 
orrelations.Remark 4.3. As da ! 1, the important asymp-toti
 expressionER(a) = KXi=1 Eni;R +H � aR�+Rem (4:6)was proved in [18℄ with Rem = O(d�2a ln da) in generaland = O(d�2a ) if rH(a) = 0.As mentioned in the introdu
tion, our se
ond ideais to 
onsider solutions of (1.1) that are invariant underpoint group transformations. Consequently, we intro-du
e intervortex energy fun
tions invariant under su
hgroups. We 
onsider a subgroup G of the total symme-try group Gsym = O(2)� T (2)� U(1)(where T (n) is the group of translations of Rn ) ofGinzburg�Landau equation (1). For a G-invariant vor-tex 
on�guration 
 = (a; n) (i.e., invariant under thespatial part of G), we de�ne the G-invariant vortex in-tera
tion energy ER;G(a) asER;G(a) = inffEren( )j
onf = 
;  is G-invariantg(as before, we �x n and omit it from the relation).Theorem 4.1 and Conje
ture 4.2 extend obviouslyto the G-symmetri
 situation. In parti
ular, we have

the following 
onje
ture:If a0 is a 
riti
al point ofER;G(a) (i.e., rER;G(a0) = 0),then Eq. (1.1) has a G-invariant solution.Our goal in what follows is to �nd 
riti
al pointsof the G-invariant intervortex energy ER;G(a) for ap-propriate groups G, namely, point groups CNv (see thenext se
tion).5. POINT SYMMETRIESWe seek solutions of Eq. (1.1) having symmetrygroups CNv . These groups 
onsist of rotations aroundthe origin by angles given by integer multiples of 2�=Nand re�e
tion(s) in one (and therefore N) line(s) pas-sing through the origin. Su
h solutions are determinedby �xing vortex 
on�gurations that have the desiredsymmetry group. We 
onsider vortex 
on�gurations
onsisting of N m-vorti
es uniformly spa
ed on a 
ir
leof radius a and a single (�k)-vortex at the 
enter ofthe 
ir
le, whi
h is pla
ed at the origin. Several su
h
on�gurations and their symmetry lines are shown inFig. 1. Su
h 
on�gurations have the symmetry groupCNv . The symmetry group CNv determines su
h a 
on-�guration uniquely up to the vortex valuesm and k andthe size a.As noted at the end of the previous se
tion, we relyon the argument that CNv-symmetri
 solutions are inone-to-one 
orresponden
e with 
riti
al points of theCNv-symmetri
 intervortex energyER(
) � ER;CNv(
)m�kN = 2m
mmmm �kN = 4

m
N = 3�k mm
N = 4Fig. 1. Symmetri
 
on�gurations and their re�e
tionlines1252



ÆÝÒÔ, òîì 126, âûï. 5 (11), 2004 Symmetry-breaking solutions : : :(here and in what follows, we 
onsider only CNv-symmetri
 intervortex energies and often omit the sub-s
ript CNv). Our goal is to �nd 
riti
al points of ER(
).One of the 
entral results in this paper is the followingtheorem.Theorem 5.1. There exist 
riti
al points ofER;CNv(
) among the 
on�gurations 
 des
ribed abovefor the parameter values(N;m; k) = (2; 2; 1) and (4; 2; 3)(see Fig. 1, a 
riti
al value of the parameter a is notspe
i�ed, but its existen
e is established).This theorem is proven in Se
. 6. In the rest ofthis se
tion, we establish general properties of the en-ergy ER;CNv(
) and �nd a ne
essary 
ondition on theparameters N , m, and k.We observe that if 
 is a 
on�guration des
ribedabove, thenrajER(a) = âj�jajjER(a)and rajH(a) = âj�jaj jH(a) 8 j; (5.1)where â = a=jaj (again, we do not display the parame-ters n). In this 
ase, it therefore su�
es to investigatethe energy ER(a) as a fun
tion of one variable, the s
aleparameter a.We note that if m � 2, then there is a 
ontinuumof 
on�gurations, labeled by a parameter � > 0, withthe same symmetry group CNv as a given 
on�gura-tion, whi
h have the given 
on�guration as the limit as� ! 0. For instan
e, for m = 2, ea
h m-vortex 
anbe split into a pair of 1-vorti
es with all pairs lying ei-ther on the 
ir
le or on the lines joining their parentm-vorti
es to the origin at equal distan
e � to thosem-vorti
es, see Fig. 2.By symmetry, the energy of the resulting 
on�gu-rations has a 
riti
al point at � = 0. A simple analysisof the break-up of a 2-vortex shows that this 
riti
alpoint is a lo
al maximum. Indeed, e.g., for m = 2, itwas shown in [13℄ that the linearization of Eq. (1.1) (theHessian of the energy fun
tional) around the 2-vortexsolutions  2 = f2(r)e2i� has exa
tly one negative mode(an eigenfun
tion 
orresponding to a negative eigen-value) of the form � = e4i'�4(r) + �0(r), where �k(r)are some real fun
tions. Then the fun
tion  2 + ��for j�j su�
iently small lowers the energy of  2. Onthe other hand, this fun
tion has two simple zeros (i.e.,of vorti
ities +1) in a vi
inity of x = 0. Indeed, inthe 
omplex notation z = x1 + ix2 $ x = (x1; x2), 2(z) = bz2 + O(z3) and �(z) = 
 + O(z) for somepositive numbers b and 
 in a neighbourhood of z = 0.Hen
e,  2(z)+��(z) = bz2+�
+O(z3)+O(�z), whi
h

therefore has two simple zeros z� = �r�
b + O(�3=4)in a neighbourhood of z = 0. This shows in parti
ularthat splitting of a 2-vortex lowers the energy.Proposition 5.2. Let a 
on�guration 
0, asdes
ribed above, be asymptoti
ally for
eless, i.e.,rH(a0) = 0. Thenk = 12(N � 1)m: (5:2)Proof. By (4.1), the equation rH(a0) = 0 for the
on�guration des
ribed is equivalent to the equation��aH(a0) = 0: (5:3)Be
ause H(a) = H �aa�� �Xi6=j ninj ln a; (5:4)the latter equation implies that Pi6=j ninj = 0, whi
h isequivalent to (5.2) due to the relationXi6=j ninj = �2Nmk +N(N � 1)m2: (5:5)We note that Eq. (5.3) implies that if rH(a0) = 0,then rH(a) = 0 for all a of the form a = sa0, s > 0.The latter fa
t implies another proof of (5.2). Indeed,H (a=R) behaves as 
onst � ln R + 
onst for large R.Hen
e, for an asymptoti
ally for
e-free 
on�guration(i.e., the one with rH(a) = 0), the 
onstant in front ofln R is independent of the s
ale parameter a. Thisasymptoti
 s
ale invarian
e implies that the leadingterm �(Nm� k)2 lnRfor the 
on�guration with a = 0 (i.e., when all the vor-ti
es 
ollapse to the 
enter of the 
ir
le) is equal to theleading term �(Nm2 + k2) lnRfor the 
on�guration with a very large a, and thereforethe vorti
es in su
h a 
on�guration 
an be treated asvirtually independent (see (4.4)). Hen
e,(Nm� k)2 = Nm2 + k2;whi
h implies (5.2).We observe that Eq. (5.2) is equivalent to the rela-tionH � aR� = H �aa� = H(a); independent of a: (5:6)Indeed, this follows from Eqs. (5.4) and (5.5).1253
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Fig. 2.Relation (5.2) between k and m is assumed in whatfollows.For the 
on�guration above, we now introdu
e theenergy di�eren
es�E(a) := ER(a)� �(Nm� k)2 lnR; (5:7)where we re
all that Nm � k is the total vorti
ity ofthe 
on�guration in question and En;R is the energy ofa single vortex of vorti
ity n, i.e., En;R = Eren( n). Welet �En denote the energy di�eren
e for this vortex,En;R = �n2 ln R+�En: (5:8)Clearly,ER(0) = ENm�k;R and �E(0) = �ENm�k: (5:9)This together with (3.5) implies that (modulo O(R�2))�E(0) = ��(Nm� k)2 ln(Nm� k) ++ 
(Nm� k): (5.10)On the other hand, for very large intervortex dis-tan
es, Eqs. (5.7), (5.6), (4.6), and (3.5) imply that(modulo O(R�2) + o(a�2))�E(a) � ��(Nm2 lnm+ k2 ln k) +N
(m) ++ 
(k) +H(a)� Ca�2; (5.11)where C = A(a=a). We 
ompute H(a) for thegiven 
on�guration. Be
ause the distan
es be-tween the vorti
es on the 
ir
le are 2a sin �N ,2a sin 2�N ; : : : ; 2a sin (N � 1)�N , we �ndH(a) = ��m2N N�1Xk=1 ln�2 sin k�N � : (5:12)This equation together with Eq. (5.11) yields that forlarge intervortex distan
es,�E(a) � ��(Nm2 lnm+ k2 ln k) +N
(m) + 
(k)�� �m2N N�1Xk=1 ln �2 sin k�N �� Ca�2 (5.13)

modulo O(R�2) + o(a�2).In the next se
tion, we establish the existen
e ofpoints a0 su
h thatrE(a0) = 0 for given 
on�gurationsby 
omparing �E(0) and �E(a) for large intervortexdistan
es a.6. THE SIMPLEST CASES. PROOF OFTHEOREM 5.1In this se
tion, we 
onsider some spe
ial, in fa
tthe simplest, 
ases of the vortex 
on�gurations intro-du
ed in Se
. 5. We re
all that every su
h 
on�guration
onsists of a vortex of vorti
ity �k pla
ed at the originandN vorti
es, ea
h of vorti
itym, distributed equidis-tantly on the 
ir
le of radius a with the 
enter at theorigin. Su
h a 
on�guration is �xed by the symmetrygroup CNv, and hen
e the only remaining free param-eter is the radius of the 
ir
le a. With a slight abuse ofnotation, we write �E(a) = �E(a).Proof of Theorem 5.1. The 
orrelation 
oe�-
ient C in Eq. (5.13) is 
omputed for the spe
i�ed 
on-�gurations in Appendix 3:C = 8�; 20�for (N;m; k) = (2; 2; 1); (4; 2; 3): (6.1)(We expe
t that for general (N;m; k), k = 12(N �1)m,C is of the form �4 � (integer).) Thus,�E(a) monotoni
ally in
reases to�E(1) as a!1: (6.2)Moreover, due to (3.6), we have�E(1) < �E(0) (6:3)for the 
on�gurations (N;m; k) = (2; 2; 1); (4; 2; 3) (ex-pli
it 
omputations are given below). Hen
e, �E(a)has at least one minimum for these 
on�gurations as
laimed.1254
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−1

+1 +1

+1

a

Fig. 3.Computation of (6.3).(a) The 
ase N = 2, m = 2, and k = 1 (we re
allthat ER(a) � ER(a), et
). We have�E(0) � �E3(0) = 
(3)� 9� ln 3 = �9:31�: (6:4)On the other hand, Eq. (5.11) implies that for a verylarge,�E(a) � 
(1)+�2
(2)�8� ln 2��8� ln 2�Ca�2++O� ln aa4 � = �9:64� � Ca�2 +O� ln aa4 � : (6.5)(b) The 
ase N = 4, m = 2, and k = 3 (see Fig. 1).In this 
ase,�E(0) = �E5(0) = 
(5)� 25� ln 5 = �39:62�: (6:6)On the other hand, Eq. (5.11) implies that for large a,we have the asymptoti
 behavior�E(a) � �4
(2)� 16� ln 2�+ �
(3)� 9� ln 3��� 32� ln 2� Ca�2 +O� ln aa4 � == �40:44�� Ca�2 +O� ln aa4 � : (6.7)Thus (6.3) is shown.Remarks.a. We examine the 
ase where m = 1, i.e.,the vorti
es on the 
ir
le are simple. In this 
ase,k = (N � 1)=2. Therefore, in the simplest 
ase whereN = 3 and k = 1, we take the (m = 1)-vorti
es equallyspa
ed (Fig. 3).Equations (4.9), (4.12), and (3.6) imply that in this
ase, �E(0) < �E(1) (in fa
t, �E(0) = �E2(0) == �2:238� and �E(1) = �1:792�). Numeri
al
omputations show (see Appendi
es 3 and 4) that�E0(1) > 0 and �E0(0) > 0 (in fa
t, for a � 1,�E(a) = 4
(1) � 3� ln 3 � Ca�2 = �1:792� � Ca�2with C > 0). In this 
ase, we 
annot therefore 
on-
lude that a 
riti
al point of ER(a) exists. But a more


areful numeri
al analysis indi
ates that there probab-ly exist two extremal points of ER(a), a minimum anda maximum, for 1=p2 � a � 2. Similar 
on�gurationsfor large (and odd) N are analyzed in Appendix 5.b. The 
ase where N = 2, m = 2, and k = 1 is thelimiting 
ase of N = 4, m = 1, and k = 1 (see Fig. 2).All three 
on�gurations have the same symmetry groupC2v generated by rotation by � and re�e
tions in theverti
al and horizontal axes passing through the vortex�1. After the symmetry group is �xed, the se
ond andthird 
on�gurations have two free parameters: the s
aleparameter a and the angle/distan
e � between two ofits neighboring 1-vorti
es (see Fig. 3). As � ! 0, these
ond and third 
on�gurations are 
ontinuously trans-formed into the �rst one.7. UPPER BOUND ON THE INTERVORTEXENERGYIn this se
tion, we prove inequality (4.4) for the en-ergy ER(a) of vortex 
on�gurations.Theorem 7.1. We have the estimateER(a) � E(0)R +Rem +O(max jaj j2=R2); (7:1)where E(0)R = kPk=1Eni;R +H� aR� andRem = ( O�d�2a � if rH(a) = 0;O�d�2a ln da� otherwise: (7:2)Moreover, if rH(a) = 0, then estimate (7.2) 
an beimproved asRem = �A(a) +O�d�8=3a �+O� 1R2� ; (7:3)where A(a), the 
orrelation term, is a homogeneousdegree-(�2) fun
tion, expli
itly given by the 
ondition-ally 
onvergent integralA(a) = 14 Z 24jr'0j4 �Xj jr'j j435 (7.4)(where rH(a) = 0 is assumed) with'0 =Xj 'j ; 'j(x) = nj�(x� aj);�(x) = the polar angle of x 2 R2 : (7.5)Before pro
eeding to the proof of these estimates,we show that the integral in the r.h.s. of (7.4) is 
on-ditionally 
onvergent in the for
eless 
ase rH(a) = 0.1255



Yu. N. Ov
hinnikov, I. M. Sigal ÆÝÒÔ, òîì 126, âûï. 5 (11), 2004Be
ause the integrand has singularities at the pointsa1; : : : ; aK , it su�
es to show that the integrals over thedis
s D(ak; ") 
entered at ak and of a radius " > 0 
on-verge. We 
onsider the integral over the dis
 D(ak; ").Let '(k)(x) =Xj 6=k 'j(x): (7:6)Be
ause the fun
tion '(k)(x) is harmoni
 in D(ak; "),it has an expansion around the point ak of the form'(k)(x) = 1Xm=0 
mrmk 
osm(�k � �(m)); (7:7)where rk and �k are the polar 
oordinates of xk = x�akand 
m and �(m) are some 
onstants.In the for
eless 
ase,r'(k)(ak) = � 12�nk JrakH(a) = 0; (7:8)and thereforer'(k)(x) = 
k(xk 
os 2�k � x?k sin 2�k) ++O r2kd3a! ; (7.9)where 
k = O(1=d2a) is a 
onstant, rk = jxk j, andx? = (�x2; x1). Now, writingZD(ak;") �jr'j4 � jr'k j4� == ZD(ak;") �2jr'kj2�k + �2k�; (7.10)where �k := 2r'k � r'(k) + jr'(k)j2 (7:11)and using (7.9), we see that the singular part of theintegral above is4 ZD(ak;") jr'kj2r'k � r'(k) == 4 ZD(ak;") n2kr2k �� 
k sin 2�k +O(rk)� == ZD(ak;") O� 1rk� <1: (7.12)Therefore, the integral in the r.h.s. of (7.4) is 
ondi-tionally 
onvergent, in the sense that it is well-de�nedas a limit of similar integrals with small dis
s around

the points a1; : : : ; aK ex
ised, as the radii of those dis
stend to 0.Proof of Theorem 7.1. We prove the upperbound (7.1) using the variational inequalityER(a) � ER( ); (7:13)valid for any fun
tion  having the given vortex 
on-�guration a, and by showing that for an appropriate  ,ER( ) is of the form of the r.h.s. of (7.6). Namely, weshow that Eren( ) = E(0)R +Rem; (7:14)where Rem is given by either (7.2) or (7.3), as appro-priate. Then (7.1) follows from (7.13) and (7.14).We begin with proving estimate (7.1) with remain-der (7.2). Let  i(x) =  (ni)(xi), where xi = x � ai,and let fi � j ij. We 
onsider the 
lass of fun
tions  of the form  = fei'0 with a fun
tion f su
h thatf = fi +O 1rdna ! if rj � da; 8i; (7:15)where n = 2 if rH(a) and n = 1 otherwise andri = jx� aij, andf = 1 +O� 1d2(x; a)� if d(x; a)� 1; (7:16)where d(x; a) = minj jx� aj j;with the 
orresponding estimates of their �rst deriva-tives.We 
onstru
t a fun
tion satisfying (7.15) and (7.16).Let D(z; �) denote the dis
 of radius � 
entered at apoint z. Let f�jgK1 be a smooth partition of unity, i.e.,KPl=1�j = 1, having the propertiesB�aj ; 13da� � supp�j 8jand rn�j = O�d�na �; n = 0; 1; 2:Then the fun
tion f = P fj�j satis�es (7.15) and(7.16). Indeed, (7.13) is obvious, while (7.14) followsfrom the relation fj = 1 +O(r�1j ): (7:17)We prove the following lemma.Lemma 7.1. Let  satisfy (7.15)�(7.16). ThenER( ) = E(0)R +Rem +O� 1R2� ; (7:18)1256



ÆÝÒÔ, òîì 126, âûï. 5 (11), 2004 Symmetry-breaking solutions : : :where E(0)R is given in Theorem 7.1 and Rem is givenby (7.2).Proof. Let Dj = D(aj ; r0), the dis
 with the 
en-ter at aj and of the radius r0 = da=3. We de
omposethe energy fun
tional asER( ) =Xj ZDj e( ) + ZDRn[Dj e( ); (7:19)where e( ) is the energy density,e( ) = 12 jr j2 + 14(j j2 � 1)2 : (7:20)Let e1(') = 12 jr'j2 and hf( )i = f( )�Pk f( k).Equation (4.6) impliesZDRn[Dk e( ) = ZDRn[Dk e1('0) ++ ZDRn[Dk O�d(x; a)�4�: (7.21)Next, estimates (7.17) andrj ij = O(r�3j ) (7:22)give ZDRn[Dk e1('i) = ZDRn[Dk e( i) +O(r�20 ): (7:23)Together with Eq. (7.10), this yieldsZDRn[Dk he( )i == 12Xi6=j ZDRn[Dk r'ir'j +O(r�20 ): (7.24)Next, in the region Di, we have  = ei'0fi, wherefi � j ij. Expansion (7.9) implies thatZDi r'ir'(i) = 0: (7:25)Using this relation, we obtainZDi e( ) = ZDi e( i) + ZDi e1('(i)) +R;where R = RDi (f2i � 1)�i. Expandingr'(i) = r'(i)(ai) +O rid2a! (7:26)

and using that jr'(i)(x)j2 = O�d(x; a)�2�, r'i(x) == O(r�1i ), and RDi (1� f2i )r'i = 0, we obtainR = O ln r0d2a ! :In the for
eless 
ase, we 
an improve this estimateusing relation (7.9) again to show that, as in (7.12),ZDi (f2i � 1)r'ir'(i) == ZDi (f2i � 1) �
i sin 2�i +O rid3a!! == ZDi (f2i � 1)O rid3a! = O r0d3a! :This gives R = O r0d3a! if r'i(ai) = 0:Finally, we observe that due to (7.15),12 ZDk jr'(k)j2 =Xj 6=k ZDk e1( j) + IDk ==Xj 6=k Z e( j) + IDk +O(r�20 );where ID := 12Xi6=j ZD r'i � r'j :Colle
ting the estimates above, we arrive atZDk he( )i = IDk +O ln r0d2a !+O� 1r20� ; (7:27)whi
h together with (7.9) and (7.16) yieldsER( ) = E +Rem; (7:28)where Rem is given in (7.2) andE = Z �g � (deg )2n2 ��with g =Xj e( j) + 12Xi6=j r'ir'j :1257



Yu. N. Ov
hinnikov, I. M. Sigal ÆÝÒÔ, òîì 126, âûï. 5 (11), 2004Now, by de�nition of the 
ut-o� fun
tion� (� � 0; � = 1 for jxj � R), we haveE � ZB(0;R) g + ZB(0;R)
 �g � n2r2 � ; (7:29)where n = deg . We �rst 
ompute the �rst integral inthe r.h.s.By de�nition of En;R and be
ause ai � R, we haveZDR e( i) = ZDR+ai e( (ni)) = Eni;R+O� 1R2� : (7:30)We now show thatIDR � 12Xi6=j ZDR r'ir'j == �Xi6=j �ninj ln� jaij jR � : (7.31)We 
omputeZDR r'ir'j == ninj 2�Z0 RZ0 r � a 
os �r2 + a2 � 2ar 
os �dr d�; (7.32)where a = jaij j. Furthermore, 
hanging the integrationvariable as � ! z = ei� and 
omputing the residue, we�nd2�Z0 r � a 
os �r2 + a2 � 2ar 
os �d� == �r � r2 � a22iar2 Ijzj=1 dz�z � ra��z � ar � == �r + �r r2 � a2jr2 � a2j = 2�r ( 1 if r > a;0 if r < a:The last two equations yield (7.24). We also observethat up to a multipli
ative 
onstant, expression (7.24)
an be found from the symmetry 
onsiderations: theinvarian
e of the integral in the l.h.s. under transla-tions (ai ! ai + h and aj ! aj + h 8h 2 R2 ) androtations (ai ! gai and aj ! gaj 8g 2 O(2)) impliesthat it depends only on jaij j. Its s
aling properties un-der the dilations (ai ! �ai and aj ! �aj 8� 2 R)imply that it is a multiple of ln (jaij j=R).

Equations (7.30) and (7.31) imply thatZB(0;R) g =XEni;R +H � aR�+O� 1R2� : (7:33)Next, we estimate the se
ond integral in the r.h.s.of (7.29). By Eqs. (7.17) and (7.22), we haveg = 12 jr'0j2 +O�d(x; a)�4�:Furthermore, expanding the terms r�(x � aj) inr'0(x) =Pnjr�(x� aj) around the point x, we ob-tainr'0(x) = nr�(x)� �00(x)X njaj ++O Pnja2jd(x; a)3! ; (7.34)where �00(x) is the Hessian of �(x). Choosing the ori-gin su
h thatPnjaj = 0 eliminates the se
ond term onthe r.h.s.. (Otherwise we 
ould use that by an expli
it
omputation, �00(x)r�(x) = � xr4 ;the integral of whi
h over the exterior of the ballB(0; R) vanishes.) Hen
e,ZB(0;R)
 �g � n22r2� = ZB(0;R)
 O Pnja2jd(x; a)4! == O Pnja2jR2 ! : (7.35)Estimates (7.28), (7.29), (7.33), and (7.35) imply (7.7)with Rem given in (7.2).Remark 7.3. The statement of Lemma 7.2 re-mains true for a wider 
lass of fun
tions de�ned byrepla
ing (7.7) by the 
onditionf = fi +O 1rdna ! and 2�Z0 Re(e�i'0 � fi)d� == O� 1dn+1a � if jx� aij � da; (7.36)with the 
orresponding estimates of their �rst deriva-tives, where n = 2 if rH(a) = 0 and n = 1 otherwise.To prove this, we write  in the region Di as = ei'0(fi+ �), where fi � j ij. Using relation (7.25)and ZDj fjr'jr Im � = nj ZDj fj ��� Im � = 0; (7:37)1258



ÆÝÒÔ, òîì 126, âûï. 5 (11), 2004 Symmetry-breaking solutions : : :we obtainZDi e( ) = ZDi e( i) + ZDi e1('(i)) + R+R0; (7:38)where R is given above andR0 = ZDi �(jr'0j2 + f2i � 1)fiRe � + f2i (Re �)2 ++ 12 jr'0j2j�j2+ 12 jr�j2+2rfirRe �+fir'(i)rIm�++ Im(�r'0 � r�) + 12(f2i � 1 + 2fiRe �)j�j2 ++ 14 j�j4� : (7.39)Using that � = O� 1rda�and 2�Z0 Re � d� = O 1d2a! in Djdue to (7.36) and that jr'ij2 + f2i � 1 = O(r�4i ), we�nd R0 = O ln r0d2a ! : (7:40)We now pro
eed to proving estimate (7.4) with Remgiven by (7.3). First, we des
ribe the 
lass of test fun
-tions for whi
h we prove this estimate:  = ei'0f with
f =8>>>>>>>>><>>>>>>>>>:

fj � 12f�1j �j�jin D�aj ; 13da� 8j (7:41)1� 12 jr'0j2 +O�d(x; a)�4�in  Sj D�aj ; 14da�!
 ; (7:42)where we used de�nition (7.11) and where �j aresmooth 
ut-o� fun
tions depending only on rj = jxj j(i.e., radially symmetri
 in the xj variables) satisfyingB�aj ; 12da� nB�aj ; 2d
a� � supp�j �� B�aj ; 12da� nB(aj ; d
a� (7.43)and rn�j = O�d�
na �; n = 0; 1; 2; (7:44)

for 
 = 13 (not optimal). (The f�1j 's in (7.41) play noimportant role and are 
hosen purely with a view ofsimplifying some expressions below.)The fun
tionf =X fj�j �X 12f�1j �j�j (7:45)satis�es Eqs. (7.41) and (7.42). To prove this, we usethe expansionfj = 1� 12 jr'j j2 +O�r�4j � (7:46)and the estimate�j = O�d�2a � in D�aj ; da�; (7:47)whi
h is shown by expanding the fun
tion r'(j)(x)around aj and using thatr'(j)(aj) = � 12�njrajH(a) = 0and r'j(x) = O(r�1j ):Our next task is to prove the following lemma.Lemma 7.4. Let a be for
eless in the sense thatrH(a) = 0. Then estimate (7.7) with (7.3) holds forany fun
tion  satisfying (7.21)�(7.22).Proof. The proof follows the lines of the proof ofLemma 7.2, but with some subtle modi�
ations 
onsid-ered below.First of all, instead of e1( ) = 12 jr'j2 used in theproof of Lemma 7.2, we use the densitye2(') = 12 jr'j2 � 14 jr'j4; (7:48)whi
h is a better approximation to the density e( ).We also use (7.27) instead of (7.17). In parti
ular, wehave e( j) = e2('j) +O(r�6j ): (7:49)We set fj := 1 � f2j � jr'j j2. For any k and foruk = ei'0(fk + �), where � is a real fun
tion, we havethe identityhe(uk)i = 12Xi6=j r'ir'j�A(')+Bk(�)+Rk; (7:50)whereBk(�) := �12gk(�k+2fk�)+14�2k+�kfk�+f2k �2k (7:51)andR =Xj 6=k �e2('j)�e( j)��12(gk��k)�2+fk�k+14�4k++ 12�2rfkr� + jr�j2�: (7.52)1259



Yu. N. Ov
hinnikov, I. M. Sigal ÆÝÒÔ, òîì 126, âûï. 5 (11), 2004We now take � = � 12f�1k �k�k. Thene( ) = e(uk) on D�ak; 13da� : (7:53)Due to (7.28) and the 
orresponding estimate for thederivatives of �j and due to (7.25), (7.27), and (7.29),we have Rk = O�d�4
�2a �: (7:54)We note that the form of (7.21) is 
hosen su
h thatBk(�) = 0 on B�ak; 12da� nB�ak; d
a� � f�k = 1g:Next, we estimate Bk(�) on the entire dis
D�ak; 13da�. Expanding the fun
tion r'(k)(x) aroundthe point ak and using thatr'(k)(ak) = � 12�nk JrakH(a) = 0;we �nd�k(x) = 2r'k(x)'00(k)(ak)xk +O�rkd�3a �; (7:55)where xk = �ak and '00 is the Hessian (the matrix ofse
ond derivatives) of a fun
tion '. Using this expres-sion in estimating Bk(�), we �ndBk(�) = �gkr'k(x)'00(k)(ak)xk��k ++O�r�3d�3a + d�4a ���k on D�ak; 13da� ; (7.56)where ��k = 1 � �k. The �rst term in the r.h.s. ofthis expression is singular at xk = x � ak = 0, butthe integral of it is 
onditionally 
onvergent and equals0. Indeed, be
ause the fun
tion '(k)(x) is harmoni
 inD�ak; 13da�, we have that (
f. (7.9))'00(k)(ak)xk = 
(xk 
os 2�k � x?k sin 2�k); (7:57)where 
 = O�d�2a �, x? = (�x2; x1), and �k is the polarangle of xk (see Eq. (7.9)). Be
ause gk and ��k dependonly on rk (we write (gk��k)(rk) for gk(x)��k(x)), we haveZ (gk��k)(rk)r'k(x)'00(k)(ak)xk == �
 Z (gk��k)(rk) sin 2�k = 0 (7.58)(stri
tly speaking, we must �rst ex
ise a small dis
around xk = 0 and then take the radius of this dis
to zero).

Equations (7.32), (7.33), (7.35), and (7.37) implythat ZD�ak; 13da� he( )i == ZD�ak; 13da� 0�12Xi6=j r'ir'j �A(')1A++ O�d�3a + d�2�4
a + d�4+2
a �: (7.59)Finally, we derive the estimatehe( )i = 12Xi6=j r'ir'j �A(')+O�d(x; a)�6� (7:60)on �Sk D�ak; 14da��
. Indeed, Eq. (7.42) implies thate( ) = e2('0) +O�d(x; a)�6�; (7:61)whi
h together with (7.49) implies (7.60).Now, Eqs. (7.59) and (7.60) with 
 = 1=3 implyER( ) = E �A(a) +O�d8=3a �; (7:62)where the term E is de�ned after Eq. (7.28) andA(a) = R A('). Equations (7.29), (7.33), (7.35), and(7.61) imply (7.14) with Rem given by (7.3).Lemmas 7.2 and 7.4 and inequality (7.13) implyTheorem 7.1. 8. DISCUSSIONIn this paper, we investigated the Ginzburg�Landauequation (1.1) appearing in 
ondensed matter physi
sand nonlinear opti
s. Spe
i�
ally, we presented 
are-ful arguments supporting the existen
e of non-radial-symmetri
 solutions 
orresponding to vortex 
on�gu-rations 
 with N + 1 vorti
es �xed by the symmetrygroup CNv . In these 
on�gurations, N m-vorti
es lieon the 
ir
le of radius a and one (�k)-vortex is pla
edat the 
enter of the 
ir
le, and the only remaining freeparameter is the overall size of the 
on�guration � theradius of the 
ir
le a.Our argument is based on redu
ing the problem ofthe existen
e of solutions 
orresponding to a given vor-tex 
on�guration to the existen
e of 
riti
al points ofthe e�e
tive energy of the vortex 
on�gurations intro-du
ed in this paper. For CNv 
on�gurations, this ef-fe
tive energy is a fun
tion of a single variable, a. Toprove the existen
e of 
riti
al points of this energy, we1260



ÆÝÒÔ, òîì 126, âûï. 5 (11), 2004 Symmetry-breaking solutions : : :investigated it analyti
ally and numeri
ally at large andsmall values of the parameter a. We found that thereare 
riti
al points at the vortex 
on�gurations (N = 2,m = 2, k = 1) and (N = 4, m = 2, k = 3) and, 
on-sequently, we expe
t the existen
e of (stati
) solutions
orresponding to these 
on�gurations. For the vortex
on�guration (N = 3, m = 1, k = 1), our numeri
alanalysis indi
ates that it is very likely that su
h a 
rit-i
al point exists. Our numeri
al 
omputations suggestthat the 
riti
al a's are of the order O(1). Finding theirtrue values requires rather elaborate numeri
al anal-ysis, whi
h would be desirable to develop but whi
his presently absent. In addition, we have shown (seeAppendix 5) that for the vortex 
on�gurations (N , 1,(N�1)=2) with N � 1 odd and a su�
iently large, theenergy is greater than the e�e
tive energy of a singleN -vortex.All the solutions 
onsidered are saddle points ofthe renormalized Ginzburg�Landau energy fun
tional.Perturbations breaking the CNv symmetry group 
anlower the energy of the 
orresponding solution vortex
on�guration. However, we expe
t that under smallsymmetry breaking perturbations, su
h solutions leadto long-living metastable states that 
an be observedexperimentally. Moreover, even weak pinning 
enters
an stabilize su
h solutions. Thus, to experimentallyobserve the stati
 
on�gurations found in this paper,one would need to 
reate weak pinning potentialssatisfying the suggested point symmetry, adjust theradius a at whi
h these potentials are lo
ated, andthen slowly redu
e the strength of these potentials tozero.The authors are grateful to A. Knauf and L. Sadunfor a stimulating dis
ussion. In fa
t, it was A. Knaufwho suggested that there might be stati
 multivortex
on�gurations. The authors are also grateful to thereferee for useful suggestions.APPENDIX 1Computation of 
(n)In this appendix, we 
ompute the 
onstants 
(n)in expression (3.5) for the self-energy En;R of the n-vortex (see Eq. (3.6)). For this, we derive a 
onvenientformula for En;R. Multiplying Eq. (3.2) by r2f 0n(r),where f 0(r) = �f(r)=�r, integrating the result over r,observing that the �rst two integrands are total deriva-

tives, and integrating the last term by parts, we obtainthe quantization relation (see [22℄)1Z0 (1� f2n)2rdr = n2:This equation together with Eq. (3.3) yields an expres-sion for En;R,En;R = ��2n2 + � 1Z0 �1� f2n � n2r2 �� r dr:However, we prefer to use a di�erent representationof En;R, whi
h is obtained from above if we write1�f2n = (1�f2n)f2n+(1�f2n)2 and use the quantizationformula above again:En;R = �2n2 + � 1Z0 �(1� f2n)f2n � n2r2 �� r dr: (A.1.1)To avoid numeri
al evaluation of the integral in(A1.1) over an in�nite range, we use the expansion offn(r) in 1=r for large r. However, fn(r) is not analyti
at r = 1; it has an essential singularity at this point.Hen
e, the resulting series is asymptoti
. We trun-
ate this series at the order O � 1r6 �. To 
ompensate forthis trun
ation, we add to the resulting polynomial in1=r a multiple of the de
aying solution e�p2r=pr ofthe linearization of Eq. (3.2) around 1. We should lin-earize Eq. (3.2) around the resulting polynomial, butthe powers of 1=r2 lead to similar powers multiplyinge�p2r=pr, and it therefore su�
es to linearize around1. The result isfn(r) = �1� n22r2 � n2(1 + n2=8)r4 � 1r6 �n42 ++ n2 + 162 �n2 + n48 ��� : : :��� 
e�p2rpr (1 + : : : ); (A.1.2)where 
 is a 
onstant to be determined by a mat
hingpro
edure. Inserting this expression in Eq. (A1.1), weobtainEn;R � �n2 lnR = �n22 + � r0Z0 f2n(1� f2n)r dr �� �n2�ln r0 + n2 � 22r20 + n2 � 164r40 �++O(r�60 ) (A.1.3)1261



Yu. N. Ov
hinnikov, I. M. Sigal ÆÝÒÔ, òîì 126, âûï. 5 (11), 2004for any r0 > 0. We 
hoose 6 � r0 � 10. This relationtogether with Eq. (3.5) implies that1� 
(n) = n22 + r0Z0 f2n(1� f2n)r dr �� n2�ln r0jnj + n2 � 22r20 + n2 � 164r40 �++O(r�60 ): (A.1.4)For numeri
al solution of Eq. (3.2), we take the inter-val (0:3; r0). Be
ause Eq. (3.2) linearized around thefun
tion 1 has the solutions1pr e�p2r; (A.1.5)we should apply the numeri
al iteration pro
edurestarting from the upper limit, r0. Then the danger-ous, exponentially growing solution would not a�e
tour pro
edure.In the range 0 < r � 0:3, we use the fa
t that asEq. (3.2) shows, the fun
tion fn(r) is analyti
 in a dis
jrj < O(1), and 
an therefore be presented by a 
on-vergent seriesfn(r) = �rn �1� r24(n+ 1) + r48(n+ 2) ��� 14(n+ 1) + �2Æn;1�+ r612(n+ 3) �� ��2�Æn;2 � 34(n+ 1)Æn;1�� 18(n+ 2) �� � 14(n+ 1) + �2Æn;1��+ : : :� (A.1.6)for some number � > 0. Here, Æn;k is the Kronne
kersymbol, Æn;k = 1 for n = k and = 0 for n 6= k. (Weexpe
t that the pole 
losest to the origin lies on theimaginary axis.)To �nish the 
omputation of 
(n), we must �nd thevalue of the parameters � and 
. This is done by mat
h-ing solution (A1.2) for small r with solution (A1.6),for large r. Spe
i�
ally, using Eq. (A1.2), we 
omputefn(r0) and f 0n(r0) for various values of the parameter
. Using these values as initial 
onditions, we integrateEq. (3.2) ba
kward to r = 0:3, whi
h yields fright(0:3)and f 0right(0:3). On the other hand, using Eq. (A1.6),we 
ompute fleft(0:3) and f 0left(0:3) for various valuesof the parameter �. We then mat
h fright(0:3) andf 0right(0:3) with fleft(0:3) and f 0left(0:3) by minimizing��fright(0:3)�fleft(0:3)�2+�f 0right(0:3)�f 0right(0:3)�2�1=2.This yields the values of the parameters 
 and �. Af-ter this, we 
ompute 
(n) using formulas (A.1.4)and (A.1.6).

APPENDIX 2Large-n asymptoti
 form of the vortex (self)energyIn this appendix, we �nd the large-n asymptoti
form of the 
onstant 
(n) in expression (3.6) for the(self) energy of the n-vortex. For this, we use the large-n asymptoti
 expression for the fun
tion fn(r) de�nedin (3.2),fn(r) = (p1�n2=r2 if r�n� (n=2)1=3 ;(2=n)1=3 g(z) if jr � nj � n; (A.2.1)where the variable z is de�ned byr = n+ �n2�1=3 z (A.2.2)and the fun
tion g(z) is a solution of the equationg00 + zg � g3 = 0: (A.2.3)The fun
tion g(z) has the asymptoti
 formg(z) = z1=2 if z � 1;g(z) = 
onst�(z) if z � �1; (A.2.4)where �(z) is the Eiry fun
tion. In parti
ular, we haveg(z) = 0:39(�z)1=4 e�2(�z)3=2=3 for z � �1: (A.2.5)Inserting expression (A.2.1)�(A.2.2) in Eq. (A.1.1) andusing (A.2.4) and (A.2.5), we �nd that
(n) = �n2=3� + 
+O(n�2=3); (A.2.6)where 
 is some 
onstant and� = 21=3 1Z�1 �g2(z)� z�(z)� dz; (A.2.7)with �(z) = 1 for z � 0 and = 0 for z < 0. MultiplyingEq. (A.2.3) by g0(z) and integrating the result, we �ndthat � = 0, and therefore
(n) = 
+O(n�2=3) (A.2.8)as n !1. A rough numeri
al 
omputation yields thefollowing value for the 
onstant 
:
 � 0:7�: (A.2.9)1262



ÆÝÒÔ, òîì 126, âûï. 5 (11), 2004 Symmetry-breaking solutions : : :APPENDIX 3Computation of 
orrelation 
oe�
ientsIn this appendix, we 
ompute the 
orrelation fun
-tionA = A(a) = 14 Z 24jr'0j4 �Xj jr'j j435 (A.3.1)with'0 =Xj 'j and 'j(x) = nj�(x� aj); (A.3.2)�(x) = the polar angle of x 2 R2 (A.3.3)(see Eq. (4.4)) for 
on�gurations of K = N+1 vorti
eswith N vorti
es of vorti
ity m lying on the 
ir
le of ra-dius a and one vortex of vorti
ity �k at the 
enter ofthis 
ir
le, su
h that rH(a) = 0.We write a = a � b where b is a �xed 
on�gurationwith N vorti
es on the unit 
ir
le and one at the 
enter.Changing the integration variable in (A.3.4) as x = ay,we �nd A(a) = Ca�2; (A.3.4)where C depends on b only. Our task is now to �nd thesign of C for the 
on�gurations of interest. We writeA = A(a).1. N = 2, m = 2, and k = 1. In this 
ase, thereare two double vorti
es on the 
ir
le and one single vor-tex of the opposite vorti
ity at the 
enter (see Fig. 1).Below, we use the dimensionless variable� = jxja : (A.3.5)For the 
on�guration under 
onsideration, we haveA = 14a2 1Z0 �d��� 2�Z0 d��48� � 16 
os(2�)��2 + 64 
os2(2�)�2 �� 64�2 �1 + 2�2 + 2�2 
os(2�)�� ; (A.3.6)where � = �4 + 1 + 2�2 
os(2�): (A.3.7)(In general, for aj , j = 1; : : : ; N , distributed equidis-tantly on the 
ir
le of radius a, � = NQj=1(x�aj)2=a2N .)First, we take the integral over �. For this, we 
hange

the integration variable as � ! z = exp(2i�), i.e., wewrite the inner integral in (A.3.8) as an integral overthe unit 
ir
le. A simple 
al
ulation gives2�Z0 d��2 = 2�(1 + �4)j1� �4j3 ;2�Z0 d��2 
os(2�) = � 4��2j1� �4j3 ; (A.3.8)2�Z0 d�� = 2�j1� �4j ;2�Z0 d�� 
os(2�) = � 2�j1� �4j min��2; 1�2� ; (A.3.9)
2�Z0 d��2 
os2(2�) = �j1� �4j3 ��( 1 + 4�4 � �8 for � < 1;(�8 + 4�4 � 1)=�4 for � > 1: (A.3.10)Inserting expressions (A.3.7)�(A.3.10) in Eq. (A.3.7),we obtainA = 4�a2 8<:2 1Z0 dx 1� x(1 + x)3++ 1Z1 dx(1 + x)3 �3x+ 1 + 3x + 1x2�9=; :This gives A = 8�a2 : (A.3.11)Hen
e, in the 
on�guration under 
onsideration, theenergy ER(a) is given by1�ER(a)�9 ln R = �9:64� 8a2 +O� ln aa4 � : (A.3.12)2. N = 3, m = 1, and k = 1. Similarly toEq. (A.3.8), we obtainA = 14a2 1Z0 d�� 2�Z0 d�� 6� (1 + 2�2)� 12 sin(3�)�� �� 9(1 + �2)�2 (1 + �2 + 2�4) + 36�2 sin2(3�)�2 �� 36�5 sin(3�)�2 � ; (A.3.13)1263



Yu. N. Ov
hinnikov, I. M. Sigal ÆÝÒÔ, òîì 126, âûï. 5 (11), 2004where � = �6 + 1 + 2r3 sin(3�). The integrals inEq. (A.3.13) 
an be taken expli
itly. To do this, weset z = exp(3i�), and then2�Z0 d�� = 2�j1� �6j ;2�Z0 d�� sin(3�) = � 2�j1� �6j min��3; 1�3� ; (A.3.14)
2�Z0 d��2 = 2�(1 + �6)j1� �6j3 ;2�Z0 d��2 sin(3�) = � 4��3j1� �6j3 (A.3.15)and2�Z0 d��2 sin2(3�) = �j1� �6j3 ��( 1 + 4�6 � �12 for � < 1;(�12 + 4�6 � 1)=�6 for � > 1: (A.3.16)Inserting expressions (A.3.14)�(A.3.16) in Eq. (A.3.13),we obtainA = 3�4a2 8<: 1Z0 dx5x+ 9x2 � 1� 2x3 � 2x4(1 + x+ x2)3 ++ 1Z1 dx� 41 + x+ x2 � 9(1 + x+ x2)2++ 10x+ 18(1 + x+ x2)3 + 6x+ 2x2(1 + x+ x2)3�� : (A.3.17)A simple 
al
ulation of integrals in Eq. (A.3.16) givesexpli
it answers for A: A = 2�a2 : (A.3.18)Hen
e, the energy for su
h 
on�gurations is given by1�ER(a)� 4 ln R = �1:792� 2a2 : (A.3.19)3. N = 4, m = 2, and k = 3. In this 
ase, there arefour double vorti
es in the 
orners of a re
tangle and

a (�3)-vortex in the 
enter. For this 
on�guration, wehaveA = 16a2 2�Z0 d� 1Z0 d� �� �4�12� +36�4 
os2(4�)� ++ 4:5�4 + 13:5 
os(4�) + 24�8� 
os(4�)�� 1� �(�2 + 1)6 � 2�2(�2 + 1)2(�4 + 1) + 4�6���2�4 
os(4�)�3(�2 + 1)2 � 2�2�=�� ; (A.3.20)where � = �8 + 1� 2�4 
os(4�):The 
hange of variables 2� ! ~� + �=2, �8 ! ~�4 re-du
es the integrals over � in Eq. (A.3.20) to those inEqs. (A.3.8)�(A.3.10). As a result, we obtainA = 16�a2 8<: 1Z0 dx � 1� 3x1 + x+ x2 + x3++ 2(5x5 + 23x4 + 18x3 + 6x2 � 3x� 1)(1 + x+ x2 + x3)3 ++ 1Z1 dx� 7:51+x2� 1:5x2(1+x2)� 4(1+x+x2)x2(1+x+x2+x3) �� 2(1 + x+ x2 + x3)3 �x5 + 11x4 � 2x3 � 22x2��31x� 21� 12x � 4x2���� : (A.3.21)Dire
t 
al
ulation of the integrals in Eq. (A.3.11) givesA = 80�a2 ; (A.3.22)and therefore the energy of the 
on�guration in ques-tion is1�ER(a)� 25 lnR = �40:44� 80a2 : (A.3.23)We note that for all the 
on�gurations under 
on-sideration, the 
orrelation term A is given byA = �4a2Mwhere M is an integer, i.e., the quantity given by theintegral in A is quantized. Moreover, the �quantiza-tion� takes pla
e separately for the integrals over re-gions r < 1 and r > 1. We 
onje
ture that this prop-erty is general and holds for any for
eless 
on�guration.1264



ÆÝÒÔ, òîì 126, âûï. 5 (11), 2004 Symmetry-breaking solutions : : :APPENDIX 4Inequality E0R(0) > 0In this appendix, we show that ER(a)�ER(0) > 0for the 
on�guration 
onsisting of N 1-vorti
es equidis-tributed on the 
ir
le of radius a and one ��N�12 �-vortex at the 
enter and for a su�
iently small. Weassume that N is odd but otherwise arbitrary.For a = 0, the 
on�guration in question 
ollapses toa single N+12 -vortex,  N+12 , sitting at the origin. Let Lbe the Hessian of Eren( ) at  =  N+12 . It was shownin [13℄ that the subspa
es�u1(r)eim� + u2(r)ei(2N+12 �m)�juk 22 L2(rdr); k = 1; 2	; (A.4.1)m = N+12 ; N+12 + 1; : : : , whi
h are orthogonal to ea
hother and span the entire Hilbert spa
e L2(R2 ), are in-variant under the a
tion of the operator L. Moreover,it was shown that in the se
tors with m � 3N�12 � 1,L is nonnegative and 0 is not its eigenvalue (a
tually,the statement in [13℄ is formulated for m � 3N�12 , butthe proof works also for m = 3N�12 � 1), while in these
tors N + 12 + 2 � m � 2N + 12 ;the operator L has negative eigenvalues. We now ob-serve that the se
tors with N+12 � m � 3N�12 �2 do nothave the CNv symmetry and, 
onsequently, are forbid-den in our 
ase. Therefore, on the subspa
e invariantunder the a
tion of the group CNv, L � 0 and 0 is nowits eigenvalue. The latter implies thatER(a)�ER(0) > 0 (A.4.2)for any odd N and for su�
iently small a.APPENDIX 5Large-N asymptoti
 formsIn this appendix, we �nd asymptoti
 behavior ofthe energy of the 
ir
ular asymptoti
ally for
eless 
on-�gurations, i.e., the ones with rH(a) = 0, for largevalues of N . More pre
isely, the 
on�gurations we
onsider 
onsist of N 1-vorti
es equally spa
ed on the
ir
le of radius a and with the 
enter at the originand one (�k)-vortex at the 
enter. We re
all thatthe 
ondition rH(a) = 0 is equivalent to the relationk = �(N � 1)=2. We assume in addition that N is oddand a� N .

A

ording to Eq. (5.10) and be
ausesin �kN = sin �(N � k)N ;the energy of the above 
on�guration isER(a) = ��N + 12 �2 lnR� ��N � 12 �2 �� ln�N � 12 �+N
(1)�� 2�N N�12Xk=1 ln�2 sin �kN � ; (A.5.1)where we use the notation ER(a) = ER(a). For a = 0(the �initial state�), the energy is given by Eq. (3.5),ER(0) = ��N + 12 �2 lnR�� ��N + 12 �2 ln�N + 12 � : (A.5.2)To 
al
ulate the sum in Eq. (A.5.1), we use the EulerexpansionLXk=M f(k) = L+ 12ZM� 12 f(x) dx �� 124 �f 0�L+ 12�� f 0�M � 12�� (A.5.3)and �=2Z0 ln(2 sinx) dx = 0; (A.5.4)MXk=1 ln k = ln�(M + 1);where �(x) is Euler gamma-fun
tion,N�12Xk=1 ln�2 sin �kN � = MXk=1 ln�2 sin��kN ���� N� �MNZ0 dz ln (2 sinZ) + N�12Xk=M+1 ln�2 sin��kN ���� N� �=2Z�MN dz ln (2 sinZ) = MXk=1 ln�2�kN ���M �ln�2�MN �� 1�� 12 ln�2�MN �+ 124M ;6 ÆÝÒÔ, âûï. 5 (11) 1265



Yu. N. Ov
hinnikov, I. M. Sigal ÆÝÒÔ, òîì 126, âûï. 5 (11), 2004where 1�M � N . For N � 1, this yieldsN�12Xk=1 ln�2 sin �kN � = 12 lnN (A.5.5)modulo terms O(1) in N . As a result, we have theenergy di�eren
eER(a)�ER(0) = N �
(1) +�12 � ln 2��� == 0:183�N: (A.5.6)Thus, for (N � 1)-vorti
es pla
ed equidistantly on a
ir
le of radius a � N , the energy is greater than thee�e
tive energy of a single N -vortex.Resear
h in this paper was supported by NSERCunder Grant NA7901 and by CRDF grant 2565-Mo-03U.S.A. and by the Russian Foundation for Basi
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