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Radiative corrections to the Compton scattering cross section are calculated in the leading and next-to-leading
logarithmic approximations in the case of colliding high-energy photon-electron beams. Radiative corrections
to the double Compton scattering cross section in the same experimental set-up are calculated in the leading
logarithmic approximation. We consider the case where no pairs are created in the final state. We show that
the differential cross section can be written in the form of the Drell-Yan process cross-section. Numerical values
of the K -factor and the leading-order distribution on the scattered electron energy fraction and scattering angle

are presented.

PACS: 11.10.Gh, 12.20.Ds, 13.60.Fz

1. INTRODUCTION

The Compton scattering process

Y(k1) + e (p1) = y(k2) + e (p2),
B =k3=0, p?=ps=m?
K1 = 2p1k‘1 = 461&)1, Iill = 2p2k1 = 262&)1(1—6)7 (1)
s1 = 2p1p2 = 2e162(1 + ¢),

2610.)1
€9 =

— wi(1—c)+e (140)

K1 ~ K] ~ 81> m?,

(where €1 2, w1 are the energies of the initial and scat-
tered electrons and the initial photon, ¢ = cos#, and 6
is the angle between ps and k;) plays an important
role as a possible calibration process at high-energy
photon—electron colliders [1]. Obtaining a radiation-
corrected cross section of this process is the motivation
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of this paper. Modern methods based on the renor-
malization group approach in combination with the
lowest-order radiative corrections (RC) allows obtain-
ing a differential cross section in the leading approxima-
tion (where ((a/7)L)™ ~ 1, with the «large logarithm»
L =In(s;/m?)) and in the next-to-leading approxima-
tion (where terms of the order of (a/7)" L"~! are kept).
The accuracy of the formulas given below is therefore
determined by terms of the order of

m?  a? s

K1 ' Mé

(2)

™

compared with the terms of the order of unity and is
at the level of per-mille for typical experimental condi-
tions [1] 6 ~ 1, k1 ~ 10 GeV2. Terms of order (2) are
systematically omitted in what follows. We consider
the energies of initial particles to be much less than the
Z-boson mass Mz, and therefore the weak corrections
to the Compton effect are beyond our accuracy.
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The first papers devoted to cancellation of radia-
tive corrections to Compton scattering were published
in 1952 by Brown and Feynman [2] (virtual and soft
real photon emission contribution) and Mandl and
Skyrme [3] (emission of an additional hard photon). In
the work of Veltman [4], the lowest-order radiative cor-
rections to the polarized Compton scattering were cal-
culated in nonrelativistic kinematics. This case of kine-
matics was also considered in the paper of Swartz [5].
In the papers of Denner and Dittmaier [6], the lowest-
order radiative corrections in the framework of the
Standard model were calculated in the case of polar-
ized electron and photon.

In this paper, we consider the case of high-energy
electron and photon Compton scattering (with the cms
energy supposed to be much higher than the electron
mass but much less than the Z-boson mass). We find
that the cross section with radiative corrections of all
orders of the perturbation theory taken into account
can be written in the form of the Drell-Yan process.
Both leading and next-to-leading contributions are de-
rived explicitly.

We consider the kinematics where the initial pho-
ton and electron move along the z axis in the opposite
directions. The energy of the scattered electron is a
function of its scattering angle:

€ 2
20:_2:_p7 a:a(cap):l_c_l—p(l_l_c)’
w1 a
(3)
_—w1_

We now consider the kinematic case where p < 1. The
case where p > 1 is considered in Appendix B.

The differential cross section in the Born approxi-
mation is given by

dop ra?Ug a 1—c
)= ——., Up= + . 4
de (p1,9) w?a?’ 07 1 ¢ a )

In taking RC of higher orders (arising from emission of
both virtual and real photons) into account, the sim-
ple relation between the scattered electron energy and
the scattering angle changes, and the differential cross
section in general depends on the energy fraction z of
the scattered electron. Accepting the Drell-Yan form
of the cross section, we can write it in the form

1
do

m(phevz) = /de(x-,L) X
0

Z0

x/%D (%,L)%(xpl,ﬁ,t) (1+%K), (5)

z

where the structure function D(x, L) (specified below)
describes the probability to find the electron (consid-
ered as a parton) inside the electron, K is the so-called
K-factor, which can be calculated from the lowest RC
orders, K is specified below (see Eqs. (8), (19), and
(26)), and the «hards cross section is

dO’h dO’B

m(xph&t) = W(Wl-ﬂﬁs(t —t(x)), (6)
dop(xp1,0) _ ma® 1 "
de Wl (T—c+pz(l+c)?

1-c
X
1—c+px(l1+c)

1—c+px(l+ec)
1—c ’

2zp

tz) = 1—c+pz(l+e)

The cross section written in the Drell-Yan form
explicitly satisfies the Kinoshita—Lee-Nauenberg the-
orem [7]. Indeed, being integrated over the scattered
electron energy fraction z, the structure function cor-
responding to the scattered electron turns to unity be-
cause

1 1

/dz/%p (G.r) f(t)z/ldtf(t). (7)

0

Mass singularities associated with the initial lepton
structure function remain.

Therefore, our master formula for the cross section
with RC taken into account is

do

m(plapz) =

1
dx dop

:/t(—x)D(axL)W(xpht‘))D (—xL> +

To

n adop(pi,0)
de

1(5‘/(5(2 - 20) + I(h:| , (8)

€ _ z(1—=r¢)
w1 p(2—z(1+¢))

with the nonsinglet structure function D defined as [8]
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alL

) k
D(zL)=6(1-2)+ ) % (§> Py (2)%F,
k=1 "

P1(2)®k =P ® "‘®]‘_)1(Z)7

k

P @ Pi(z) = /1P1(t)P1<5>

z

1+ 22
1—2z

Pi(z2) = O(1—z—A)+

+6(1 — 2) (21nA—}—g>7 A1

In Conclusion (see Eq. (30)), we give the so-called
«smoothed» form of the structure function.

The second term in the right-hand side of (8) col-
lects all the nonleading contributions from the emission
of virtual, soft, and hard photons, with Kgy given in
Sec. 2, where the virtual and soft real contributions are
considered. In Secs. 3 and 4, we consider the contri-
bution from an additional hard photon emission and
introduce an auxiliary parameter 6y to distinguish the
collinear and noncollinear kinematics of photon emis-
sion. We also give the expression for the hard photon
contribution K. The results of numerical estimation
of the K-factor and leading contributions are given in
Sec. 5. In Appendix A, we demonstrate the explicit
cancellation of the 6y dependence. In Appendix B, we
consider the kinematic case 1 > wj.

2. CONTRIBUTION OF VIRTUAL AND SOFT
REAL PHOTONS

To obtain the explicit form of the K-factor, we re-
produce the lowest-order RC. It consists of the vir-
tual photon emission contribution and the contribution
from the real (soft and hard) photon emission. The
virtual and soft photon emission contribution was first
calculated in the famous paper by Brown and Feyn-
man [2]. The result is

doyirt _ _a ﬂ (10)
dop m Uy’
with (see [2], kinematic case II)
A 1 2
U (1-L) §+21n— -2- T Ky,
Uy 2 m 2 6
o (11)
UO = =2 + _11
K1 K9

where Ky (the virtual photon contribution to the
K-factor) is
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1
Ky =——x
1% A
x <1—ﬂ—ﬂ> <1n2 ! 1n3—1+21n@> +
2K1 Ko 1 K1 R1
+ <1—i—@> <1n2 GES PYE O P +w2>}, (12)
2K K1 K3 K1 K2
and
ke  zo(l—c)
— = 13
o 2 (13)
3_1_20(1—|—c) s_lzp(l—l—c) (14)
K1 2 Ko 1—c

The soft photon emission for our kinematics has the

form
dosope  Ama o
dog 1673

o
w

(15)

<

Standard calculations lead to the result

2
(p_l _ p_2>
ik pok w=VEkZFAZ<Aeer ~en

dosopr m2Ae? 1,

<(L ~1)In

dO’B ™ )\26162 2
1, 58 w2 l—c
CSm2 T .
SR, 3+‘22> (16)

The resulting contribution to the cross section from
virtual and soft real photons is independent of the fic-
titious «photon mass» A and the L?-type terms. It can

be written as
do
dzdc) ,
_ . dog(p1,0) y
27 dc

X {(L — 1) (Pia + Poa) + 2Kgv |6(2 — 20),  (17)

_ doyire + dUsoft
de

0(z — z0)

where we introduce the notation

A A
P1A=g+21n—5, P2A=2+21n—6.

18
- - (18)

We can see that the terms proportional to the «large»
logarithm L have the form conforming with the renor-
malization group prescription of the structure function.
The contribution of nonleading terms is

2 1—¢c 1

. . 20 .
Kgy =——+L —In* 2 4+ Ky.
sV 6+ 5 5 M p+ 1%

(19)
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3. CONTRIBUTION OF THE HARD
COLLINEAR REAL PHOTON EMISSION

The dependence on the auxiliary parameter Ae is
eliminated when the emission of a real additional hard
photon with 4-momentum % and the energy w exceed-
ing Ae is taken into account.

It is convenient to consider the kinematics in which
this additional photon moves within a narrow cone of
the angular size m/e; <« 6y < 1 along the directions
of the initial or scattered electrons. The contribution
of these kinematic regions can be obtained using the
«quasireal electron method» [9] instead of the general
(rather cumbersome) expression for the cross section of
the double Compton (DC) scattering process [3].

In the case where the collinear photon is emitted
along the initial electron, the result is

().,

[1—}—502
X
1—=2

1—Ae¢/er
do

dz de

«

2T

do
dgcd—f(gcpl7 0) x
0

(Ly —1)+1-— x} 0(z —t(x)), (20)

03p
2z0(1 +¢)’

2.2
b€t _

Li=In 5 =L+In
m

When the photon is emitted along the scattered elec-
tron, we have

do o dop dt
=— —(p1,0 —o(t—
(dzdc)k 2m de (p1.6) / t (8=20)x
z(14+Ac/e2)
1+ 22/t z
————(Ly—1)+1— = 21
Y
2092 2,2
Lg:ln62190 =L—|—1n€0727
m? 2p(1 + ¢)zg

where z = €} /w; < zp is the energy fraction of the scat-
tered electron (after emission of the collinear photon).

It is convenient to write the contribution of the
collinear kinematics in the form
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dGh
dz de

«

1+ 22
= — X
2T

-t
0

dog(xp1,0)
de

(1) Tl

(&),

XG(l—x—Al)

— T

0(z —t(x)) +

Z0
dt 1+22/t?

— 1=/t d(t—z0) |+

t

df®)
dz de

df 2
dz dc’

(22)

where
dfM o?
dzde — 4p(1 — c)w? X
" <2 —z(1+¢)
2
[1 + 22

+2—z(1+c)> 8

92
n 2% +1—x} X
220(1 4+ ¢) o=z

X 9(1 — X — Al),
1-c
= X
dz dc 4paw%< a >
[1-|—;:2/t2 2202

+
n
1—z/t  2p(1+c)z
z
XG(l—;—A2)7 ALQ

1—=2

(23)

3

(% a

1—c¢

df 2

We here use the relation

_ 25

6(z — t(z)) = 20-0

(x — z9).

Again, we can see that the terms containing the
large logarithm L have the form conforming with the
structure function. Our ansatz (5) is therefore con-
firmed.

The dependence on the auxiliary parameter 6, van-
ishes when the contribution of noncollinear kinematics
of the additional hard photon emission is taken into
account (see Sec. 6).

4. NONCOLLINEAR KINEMATICS
CONTRIBUTION. DOUBLE COMPTON
SCATTERING PROCESS

The general expression for the cross section of the
DC scattering process

Y(k1) + e (p1) = v(k2) + (k) + e (p2),

k= 2kp1, K =2kps, (24)

ke =2kop1, Ky = 2kaps,
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Table 1.  The value of K}, as a function of z and cos @ (calculated for p = 0.4)

z\ cosf -0.8 —0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0.1 —2.82 —2.61 —2.39 -2.19 —2.09 -1.89 —1.87 —2.06 —2.75
0.2 —2.77 —2.47 —2.17 -1.90 -1.65 —1.46 -1.39 —1.56 —-2.30
0.3 —3.43 —2.98 —2.55 -2.14 —-1.77 —1.47 -1.30 —1.38 —2.13
0.4 —4.96 —3.87 -3.23 —2.65 -2.13 —-1.67 —1.34 -1.30 —2.02

Table 2.  The value of K}, as a function of y and cos # (calculated for n = 0.064)

y '\ cosb -0.8 —0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0.05 0.70 —-1.97 -7.41 —15.54 —26.90 —42.70 —65.40 —100.64 —166.21
0.10 0.36 -3.20 -9.85 —18.38 —18.35
0.15 0.03 -3.38 -1.34
0.20 -0.20 0.29
0.25 -0.25

was obtained years ago by Mandl and Skyrme [3]. The
expression for the cross section presented in this pa-
per is exact but, unfortunately, too complicated. In-
stead, we use the expression for the differential cross
section calculated (by the methods of chiral ampli-
tudes [10]) under the assumption that all kinematic
invariants are large compared with the electron mass
squared, Kk ~ k' ~ Kk; ~ K} > m?:

DC 3
eadoyg _ 1 « Rd®,
d3ps 2! 272,
Ak dPk
d® = —— 6 (p1 4+ ky —pa — ks — k),
oy W (p1 R 2 2 ) (25)
R = S1 X

y ki (K24K"2) Rk (K2 4K ) +Rokh (K3 4KS2)
KK'K1K] Kokl '
The explicit expression for the contribution to the
K-factor from hard photon emission K}, is

d doPC () gr(2)
Rl R P R )
7 de dzde  dzdc dzdc
where
d0£6 a’z
= [oR 2
dz de 2!47rp/Rd ’ (27)

and the phase volume d® is restricted by the condi-
tions w,ws > Ae and the requirement that the angles
between the 3-vectors ks, k and the 3-vectors p;, p2
exceed 6.

The values of K}, calculated numerically are given
in Tables 1 and 2. We find the independence of K}
from the auxiliary parameters #; and Ae numerically
and analytically (see Appendix A).

The cross section of the DC scattering process in an
inclusive experimental set-up with the leading logarith-
mic approximation in terms of the structure functions
has the form

dUDC(pl-, kl;p27 k7 k2) -

Jr(3)

z

1
/dx D(z,L) x
0

dt

Tda(]Dc <56p1,k1; tp%vk7k2> ’ (28)

with the structure functions given above and

3

doDC (p1, ky: pa, ki ko) = 47%1
Bl dPkd?
x RE2UEC P2 sy 4k —py — ky — k). (29)

WalW€n

5. CONCLUSION

The characteristic form «reverse radiative taily (see
Tables 3 and 4) of the differential cross section vs. the
energy fraction z can be reproduced if one uses the
«smoothed» expression for nonsinglet structure func-
tions, which includes the virtual electron pair produc-
tion [11]

41
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Table 3. The value of wi/a’do/(dcdz) (the leading contribution, the first term in the right-hand side of master
formula (8)) as a function of z and cosf (calculated for p = 0.4, wi =5 GeV)
z\ cosd -0.8 -0.6 -04 -0.2 0 0.2 0.4 0.6 0.8
0.1 0.211 0.237 0.265 0.299 0.345 0.413 0.526 0.754 1.450
0.2 0.337 0.357 0.378 0.405 0.445 0.508 0.618 0.850 1.576
0.3 0.703 0.669 0.643 0.634 0.644 0.685 0.782 1.013 1.784
0.4 3.883 2.153 1.554 1.264 1.113 1.054 1.090 1.296 2.122
Table 4. The value of (¢}/a?)dé/dedy (the leading contribution, the first term in the right-hand side of master
formula (39)) as a function of y and cos @ (calculated for wy = 400 MeV, &1 = 6 GeV)
y '\ cosb —0.8 —0.6 -0.4 —0.2 0 0.2 0.4 0.6
0.05 9.658 11.110 13.626 17.513 23.678 34.116 53.669 98.208
0.10 11.350 15.024 22.633 39.297 86.017
0.15 13.839 23.190 56.097
0.20 17.735 45.672
0.25 24.303
B . 3 R(6
D 1) = S -2 (1435) - 007 [ . . :
2a o g
Larnro@), p=2w-1, @y 0 ]
5 . . i 0.05F ]
2y _ P21 _ Ll 220 ; ]
o(p7) 2(1 x) < 486 <3L+7r 8>>+ 0.04f :
1 1 2 ]
+@ﬂ2(—4(1+x)ln(l—x)— 3 Inx —5—z). 0.03 ]
In the Figure, we give the magnitude of RC in the lead-  C9%f E
ing approximation 0.01 _ _
dGB -t do dch 0 E T 1 PR I ]
R(6) = <—dc > </ deo—r——— ). (1) -1 ~05 0 0.5 1.0
cos 6

The results given above refer to the experimental
set-up without additional ete™, uTu=, 7T 7~ real pairs
in the final state.

The accuracy of the formulas given above is deter-
mined by the order of magnitude of the terms omitted
(see (2)) compared to the terms of the order of unity,
i.e., is of the order of 0.1% for typical experimental con-
ditions. In particular, this is the reason why we omit
the evolution effect of the K-factor terms.

The numerical value of K}, leading contributions,
and the Born cross section for different kinematic
regions are presented as functions of z and ¢ in
Tables 1-6.
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The leading-order radiative corrections as a cos 6-dist-
ribution (see formulas (31))

Two of us (E. A. K) and (V. V. B) are grateful to
the RFBR (grant Ne(03-02-17077) for supporting this
work. We are grateful to S. Gevorkyan for collabora-
tion at the beginning of this work and S. Dittmaier for
reminding us of the valuable set of previously published
papers.
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Table 5.  Born cross section (4) (without the factor o’ /w?) for p = 0.4
cos 6 —0.8 —-0.6 —-04 -0.2 0 0.2 0.4 0.6 0.8
2d
< % 1779 | 2,038 | 2.365 | 2796 | 3.389 | 4266 | 5721 | 8669 | 17.881
a? de
Table 6.  Born cross section (40) (without the factor a?/w?) for wi = 400 MeV and &1 = 6 GeV
cosf -0.8 —0.6 —-0.4 -0.2 0 0.2 0.4 0.6 0.8
2 dé
5—12 % 93.317 | 60.706 | 49.428 | 44.994 | 44.351 47.084 | 54.584 72.444 129.944
a? de
Table 7. The value of yo and 2 as a function of ¢ for n = 0.064 and p = 0.4
cos 0 -0.8 —0.6 —-04 —0.2 0 0.2 04 0.6 0.8
Yo 0.417 0.263 0.192 0.152 0.125 0.106 0.093 0.082 0.074
Z0 0.423 0.455 0.489 0.526 0.571 0.625 0.690 0.769 0.870
APPENDIX A In the last equation, we take the same contribution
) from the region ks ~ (1 — x)p; into account.
Integrating the phase volume over k3, 2. In the case where k ~ (t/z — 1)p2, we obtain
Bk ks
dd = — —0(Q—k—ks), Q=pi+ki—p2, (32) 2xp z(1-c¢)
W w2 Rs = R|ka2 = + X
- 2(1=¢) 2zp
we can put it in the form . 14 22 1
dw 2decyd 1—12)2 2p%(1 — 2’
o = % \‘3/15025 2 — pz(1+¢) — 2(1 - ¢)— (1=2)* 20%( d‘;lk)ml (35)
w .
' w d®y = d®|yp, = 2-—0((zp1 + k1 —m)?) =
— —(p(l=c1)—z(1—=c3)+1+¢p) (33)
’ 1—a)dxd
w1 =2 p( 1‘) ! 015(1‘—1‘0).

where D =1 —¢? — 3 —

cosines of the respective angles between k and p1, po.
For collinear kinematics, the following relations can
be useful:
1. k=~ (1—2)p,
) x
—)?)

c® — 2ccieo and ¢, co are the

z2(1—=¢)
2zp

2xp

Rl = R|ka1 = <Z(1 — C)

o 1422 1
(1—2)% 2p%(1 — ¢1)aw
Ak
d@l = d@‘kal = 275((1']71 + k‘l

2
1

p(1 — z)dz dey
=2r——————§(xv —
2—z(1+¢) (@ = 20),
do}, a?z
= Rid®, =
dz de 2!47rp/ T 4w
2(1 —¢)
2x0p

1+ 22
1—29\ 2z

a3

Ao2(1 — )
wi(l—c)

)i

2xop
(l—c

43

T 2—z(1+¢)

Therefore, the contribution in the case where k||p2
(ka||p2) has the form

3

do? adz
=—— | Rid® =
dz de 2!4pwf/ e
.2
al 1—c a 1+t_2 4
= In—. (36
4pawf< a +1—c> 1-2 n92 (36)
t

Comparing formulas (34) and (36) with (23), we can
see explicit cancellation of the fy dependence.

APPENDIX B

Here, we describe the different cases of kinematic
regions for p and z.
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All the above formulas were considered for p < 1,
and the possible region for the variable z was deter-
mined by the inequality zg < 1,

2p

<
Z‘l—c—l—p(l—}—c)’ (37)

which means that the lower integration limit in for-
mula (8) is less than 1. In the case where p > 1, it is
convenient to introduce the new variables

w1

n=—
€1

€2

21
g1 l+etn(l—c)’
n <1

!

IS
=2
y_ 3
€1

Yo = (38)

For p > 1 (or n < 1), master equation (8) becomes

de

(zp1,0) o
dy dc

- do
1.p2) = [ =D D=2

with the possible values for the energy fraction y of
the scattered electron given by y < yo. Born cross
section (4) and (6) and formulas for hard photon emis-
sion, Kgv, Kj, for p > 1 follow just by the appropriate

substitution p — n~1:

dop(zp,0) _ ma® 1 )
de g ml-o) +2(l+0)?
nd—c) n(1—c)+a(1+c)
- <77(1_C)+33(1—|—c) 77(1—0) > (40)

44

Large values of the leading contribution (see Tab-
le 4) near the kinematic bound (see Table 7) can be un-
derstood as a manifestation of the §(y — yo)-character
of the differential cross section. The yq, zo dependence
is given in Table 7.
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