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We consider the singular electron—electron interaction corrections to the transport coefficients in disordered
metals to test the validity of the Wiedemann—Franz law. We develop a local, quantum kinetic equation ap-
proach in which the charge and energy conservation laws are explicitly satisfied. To obtain the local description,
we introduce bosonic distribution functions for the neutral low-energy collective modes (electron—hole pairs).
The resulting system of kinetic equations enables us to distinguish between the different physical processes
involved in the charge and energy transport: the elastic electron scattering affects both, while the inelastic
processes influence only the latter. Moreover, the neutral bosons, although incapable of transporting charge,
contribute significantly to the energy transport. In our approach, we calculate on equal footing the electric
and thermal conductivities and the specific heat in any dimension. We find that the Wiedemann—Franz law is
always violated by the interaction corrections; the violation is larger for one- and two-dimensional systems in the
diffusive regime Tt < h and is due to the energy transported by neutral bosons. For two-dimensional systems
in the quasi-ballistic regime T'r > h, the inelastic scattering of the electron on the bosons also contributes to

the violation.

PACS: 71.10.Ay, 72.10.Bg, 72.15.Eb

1. INTRODUCTION

It is well-known that measurement of the thermal
transport coefficient may provide additional informa-
tion about the scattering processes in disordered met-
als. In particular, the Wiedemann —Franz [1] law holds
as long as elastic scattering dominates in the system!),

kK ow?
oT ~ 3¢’
where k and o are the respective thermal and electric
conductivities in the system, 7' is the temperature in
energy units (kg = 1), and e is the electron charge.
On the other hand, for the deep inelastic forward scat-
tering, the Wiedemann —Franz law is violated [2], and
hence the Lorentz number L is smaller than the uni-
versal value, L < 72 /3¢e?.

(1.1)

*BE-mail: aleiner@phys.columbia.edu

D) 1t was shown by G. V. Chester and A. Thellung (Proc. Phys.
Soc. (London) 77, 1005 (1961)) that Eq. (1.1) remains valid for
arbitrary scattering strength as long as the scattering rates and
the density of states are smooth (C2) functions of energy near
the Fermi level.
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Historically, the transport (in particular, thermal
transport) coefficients were first calculated using the
Boltzmann equation (BE) [3]. The advantage of this
approach is that it allows a clear separation of the scales
in the problem: a particle moves freely most of the time
and rarely scatters on other particles or impurities. The
BE is applicable at the time scale much larger than the
time that it takes for the scattering to happen, and
hence all the scattering events are encoded into the lo-
cal collision integral. All the quantum mechanical part
of the calculation is then reduced to solving the scatter-
ing problems for the relevant physical processes. This
gives the precise form of the collision integral but does
not affect the general structure of the BE. The great
advantage of the BE is that its structure illuminates
the relevant conservation laws.

In the late 50s, an alternative approach became
popular — the so-called Kubo formulas [4]. In this
approach, the transport equation is not derived but
rather the connection of the transport coefficient to the
equilibrium correlation function of certain current op-
erators is used. (The Kubo approach to the thermal
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transport was claimed to be put on rigorous footing by
Luttinger [5] based on the assumption that there exists
some spatial scale in the system such that the gradi-
ent expansion is possible for perturbations smooth at
that scale). Being exact, the Kubo formulas are for-
mally applicable even in the regime where the trans-
port equation cannot be justified (the evolution cannot
be separated into free motion and rare collisions).

However, in practice, the possibility of explicit cal-
culations within the Kubo formula is somewhat limited.
The most spectacular results of the Kubo-formula cal-
culations — such as the Maki—Thompson [6, 7], Asla-
mazov — Larkin [8], and weak localization [9] corrections
to the electrical conductivity — require a small param-
eter, which is the same parameter that determines the
applicability of the Boltzmann equation. This means
that all these effects can also be described in terms of
quantum corrections to the collision integral (for weak
localization, this was done in Ref. [13]). The most rel-
evant effect for this paper, the Altshuler — Aronov [10]
interaction correction to the electrical conductivity in
two dimensions [11, 14]
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originates from the elastic scattering of electrons on
a self-consistent potential (Friedel oscillation) [15, 16]
and can be once again obtained from the correction to
the collision integral [17].

The success of the Kubo formulas in the description
of the quantum and interaction effects in thermal trans-
port is by far more modest and controversial. Partic-
ularly, despite a 20-year history, there is no consensus
on the answer to a natural question: how does the log-
arithmic correction to conductivity (1.2) translate into
a correction to Wiedemann — Franz law (1.1)7

The first attempt to answer this question was made
by Castellani at al. [19] by analyzing Ward identities for
a disordered Fermi liquid; they found that the Wiede-
mann — Franz law should hold for interacting disordered
electrons. Their claim was later disputed by Livanov et
al. [20]: in a «quantum kinetic equation» approach?),
a logarithmic divergence for the thermal conductivity
in two dimensions was found to have even the sign op-
posite to the Wiedemann —Franz law. More recently,
Niven and Smith [22] applied the Kubo formula and

2
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2) The quantum kinetic equation with the necessary conserva-
tion laws was not actually derived in Ref. [20] and we are there-
fore unable to compare their approach with ours.
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again found a logarithmically divergent contribution
(for the Coulomb but not a short-range interaction) in
addition to the one that follows from the Wiedemann —
Franz law.

The reason for this confusion in the literature is
twofold. Technically, the identification of the correct
form of the current operator is complicated by the pres-
ence of the electron—electron interaction (the energy
current operator in the form defined by Luttinger [5]
is cumbersome for use due to the presence of the addi-
tional disorder and interaction potentials in it, whereas
the superficially more elegant expression in the Mat-
subara frequency representation does not in fact corre-
spond to any conservation law for the interacting sys-
tem and violates gauge invariance, see Appendix B).
Physically, the use of the diagram calculation within
the Kubo formula prevents one from clearly identify-
ing the relevant scattering processes, because each dia-
gram taken separately describes some mixture of such
processes and does not have a physical meaning indi-
vidually.

This situation calls for the development of the ki-
netic equation description, which takes the interaction
correction of the Altshuler — Aronov type into account
for both the electric and thermal transport. The ad-
vantage of this approach is that it allows keeping track
of the conservation laws explicitly and thus excludes
any ambiguity in the definition of the currents. This
paper is devoted to the development and application of
this method.

We use the units with 7 = 1 throughout the pa-
per and restore the Planck constant in the final results
only. This paper is organized as follows: in Sec. 2,
we discuss some general features of the kinetic equa-
tion approach using a simple «toy model». In Sec. 3,
we present our final expression for the kinetic equation
describing interacting electrons in disordered metals.
Section 4 summarizes the results for the thermal con-
ductivity and the specific heat obtained by solving the
kinetic equation. The derivation of the kinetic equa-
tion is presented in Sec. 5, and the calculation of the
transport coefficients and the specific heat is given in
Sec. 6. Some mathematical details are relegated to the
Appendices.

2. STRUCTURE OF THE KINETIC
EQUATION: CURRENTS AND SPECIFIC
HEAT

The purpose of this section is to show how the struc-
ture of the kinetic equation permits the proper identi-
fication of the relevant currents. We first recall how



G. Catelani, I. L. Aleiner

MWITD, Tom 127, BhIm. 2, 2005

to calculate the specific heat from the kinetic equation
once the conservation laws are obtained (this enables a
direct check against the much simpler thermodynamic
calculation). We then discuss the locality requirement
for a proper kinetic equation. This requirement deter-
mines the number of the necessary degrees of freedom
(i.e., independent distribution functions) that must be
introduced into the kinetic description.

2.1. Kinetic equation and conservation laws

As a specific example, we here consider electron-like
and hole-like excitations coupled to neutral bosons in
the presence of an external electric field E. (As we see
later, the system of interacting electrons can be effec-
tively described at low temperatures by such a coupled
system for the scattering at small momentum transfer
in the particle-hole channel.) The kinetic equations for
electrons and bosons have the form

—-I-an~V+ean~E2

[6 35] f=5St{f.N}, (2.1a)
|

ot
where f = f(e,n;t,r) is the distribution function for
the electrons with charge e, vp is the Fermi velocity,
and n is the direction of the momentum. The energy
¢ is counted from the Fermi level such that f(e > 0)
describes electron-like excitations and 1— f(—¢), e > 0,
corresponds to hole-like excitations. Concentrating
only on the corrections that are singular in 7', we ne-
glect the dependence of the electron velocity on the
energy (the electron—hole asymmetry) because it does
not introduce anything but a small correction regular
in powers of T2.

The bosonic function N = N(w, n; ¢, r) is the distri-
bution function for the bosons with the velocity v(w).
All the interaction effects are included into the colli-
sion integrals St. and Stj; for example, an electron-
like excitation can decay into a less energetic elec-
tron and a neutral boson, or an electron and a hole
can annihilate into a neutral bosons, etc. By locality,
the collision integrals depend on the same variables as
the distribution functions, i.e., St, = St.(¢,n;¢,r) and
Sty = Sty(w, n; t,r).

In thermodynamic equilibrium with E 0, the
Fermi function for fermions and the Planck function
for the neutral bosons,

0

a—}—v(w)n-V] N =Sty{f, N}, (2.1.b)

1
fF(E) = o 5
xp(e/T)+1
o h (2.2)
PW) = @M =1
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solve the kinetic equation. The temperature T' is here
a constant determined by the initial conditions for the
kinetic equation.

Being an effective description for the slow dynam-
ics of the original quantum mechanical system, the ki-
netic equation must respect the conservation laws of
the original system: (i) the total charge conservation
and (ii) the total energy conservation. These two con-
ditions are enforced by the requirements

/ds v(Ste{fyN})n=20 (2.3a)

and
/daa v(Ste{f,N})n +

+ /dw w b(w)(Stp{f, N})n =0 (2.3b)

for the collision integrals; here, v is the density of states
(DOS) of the electrons (we neglect its energy depen-
dence) and b(w) is the density of states of the bosons.
We also introduce the short notation for the angular
integral

dn
coon=[ — ..., 2.4
(= [ 4 (24)
where Q4 is the total solid angle in d dimensions.
Let the electron density p be given by
p(t,r) = ezx/da(f(a,n;t,r))n. (2.5)

Integrating Eq. (2.1a) over the energy and the direc-
tion of the momentum and using Eq. (2.3a), we arrive
at the continuity equation

Ip .
—+V:j=0 2.6
with the electron current density defined as
i(t,r) = evvp/da<nf(a,n;t,r)>n. (2.7)

(Strictly speaking, Eq. (2.6) fixes only the longitudinal
component of the current, i.e., an arbitrary curl may
be added to Eq. (2.7). We do not consider the effect
of the magnetic field here and therefore disregard such
magnetization currents.)

We now turn to the analysis of the energy conserva-
tion. We multiply Eq. (2.1a) by ve and integrate over
¢ and n. Next, we multiply Eq. (2.1b) by wb(w) and in-
tegrate over w and n. Adding the two results together
and using Eqs. (2.3b) and (2.7), we obtain

=i E (2.8)
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where
)+ up(t,

r),
welt,r —v/daa (e,n;t,1))n,

= [ dww by

=Je +Jb>

Utot = ue (2'98*)

(2.9h)

r))n, (2.9¢)

(w,m;t,
and
Jtot (2.10a)

BEtr) = vpv/da e (nf(e,n;t,r))n,
/dwwb(w)v(w)(nN(w,n;t,r)>n.

(2.10D)

Jp(t, 1) (2.10c¢)

The right-hand side of Eq. (2.8) is nothing but the
Joule heat. For a homogeneous system, the gradient
term in the left-hand side vanishes, and by virtue of
the energy conservation, expression (2.9) must be iden-
tified with the total energy density of the system. On
the other hand, for E = 0, Eq. (2.8) has the form of the
continuity equation for the energy density; therefore,
Eqgs. (2.10) must be identified with the total energy
current density. This statement is not entirely trivial.
One could imagine that for an interacting system, the
DOS entering the respective expressions (2.5) and (2.9)
for the charge and the energy density are renormalized
differently. Energy conservation equation (2.8) elimi-
nates such a possibility.

The conservation of energy, Eq. (2.8), is valid for
any rate of the energy flow into and out of the system.
On the other hand, the collision integrals in Eqs. (2.1)
define a certain time scale 7;,: the dynamics slow at the
scale of 7;, can be characterized by distribution func-
tions (2.2) with a time-dependent temperature 7'(¢)
(corrections to such an adiabatic description are of the
order of 7;,0; InT). Substituting this form of the dis-
tribution function in Eq. (2.9) and then using the result
in Eq. (2.8), we find, for a homogeneous system,

ev(T) (2.11)

a1

where

“v=or

{u/ds efr(e)+
+ /dw w b(W)Np(w)| (2.12)

is nothing but the specific heat of the system. The lat-
ter quantity may be calculated independently by ap-
plying the standard diagram technique for equilibrium
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systems. The agreement of such a calculation with the
structure of the kinetic equation result in (2.12) is the
most important check of the consistency of our descrip-
tion of the thermal transport.

2.2. Locality of the kinetic equation and the
number of the degrees of freedom

The form of the collision integrals local in space and
time is clearly a simplified description. Actually, the
collision integral may be nonlocal at the time scale of
the order of /i/T and at the spatial scale of the order of
hvp/T. We say that such a description is local and the
description where the nonlocality is involved at larger
spatial and time scales is nonlocal.

The number of distribution functions to be intro-
duced into the description is governed by the locality
of the kinetic equation. We use the model in Eqs. (2.1)
to illustrate the point. We had a local description in
terms of the fermionic and bosonic distribution func-
tions. But we can try to eliminate the bosonic distri-
bution function and obtain a description in terms of
the electronic degrees of freedom only.

Assuming that the deviation of the distribution
function from its equilibrium value is small, we can
linearize the bosonic collision integral to the form

Sty{f.N} = —1 (N - N{f}) , (2.13)
where I is some positive definite integral operator
and N{f} is the functional of the fermionic distri-
bution function f(¢) such that for f(e) fr(e),
N(w) = Np(w). Using Eq. (2.13), we can formally
solve Eq. (2.1b) as

_ 1
a 0/0t + v(w)n

IN{f}.

] (2.14)
V41

Substituting Eq. (2.14) in Eq. (2.1a), we apparently ob-
tain the kinetic equation in terms of the electron dis-
tribution function only,

0 0 ?
[8t+vpn V + evpn - E@ }fzSté{f},

St’{f} = (2.15)

= Ste {f’ 8/t + v(w)n v+1m{f}}

If we are interested in the linear response to a
weak and smooth external perturbation, the descrip-
tion in terms of this single kinetic equation is com-
pletely equivalent to the original coupled system (2.1).
However, there are clear drawbacks: the presence of
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the integral operator I in the collision integral makes it
nonlocal on the scale determined by the kinetic equa-
tion itself rather than by the temperature. Moreover,
although it is still easy to identify the continuity equa-
tion for the electron charge using Eq. (2.3a), there is no
longer a relation similar to Eq. (2.3b). This is why the
analysis of the energy conservation law becomes cum-
bersome: calculation of the specific heat and energy
current requires the time expansion of the collision in-
tegral, which in turns seems to require the knowledge
of the concrete form of the inelastic collision integral.

The example we have just considered is somewhat
trivial because the system was separated into fermionic
and bosonic modes from the very beginning. The prob-
lem that we consider in this paper is how to include the
collective modes of the interacting electron system into
the kinetic equation. Indeed, in this case, any calcu-
lation gives the result in terms of the electronic distri-
bution function only, and it is not clear a priori how
to introduce the occupation numbers for the collective
modes into the description.

As we show in what follows, it may be possible to
reverse our previous argument. We consider a system of
interacting electrons and find that the interactions are
described by a nonlocal collision integral. We therefore
introduce bosonic degrees of freedom that allow rewrit-
ing the nonlocal kinetic equation in terms of coupled,
local kinetic equations. This then makes it possible to
identify the energy density and energy current density
as sums of the fermionic and bosonic contributions. A
specific example is briefly discussed in the next subsec-
tion.

2.3. Degrees of freedom for the kinetics of a
disordered Fermi liquid

We now focus on the disordered, interacting Fermi
liquid. For simplicity, we consider the interaction in
the singlet channel only. Our goal is to show that the
thermodynamic result for the interaction correction to
the specific heat has indeed the kinetic equation struc-
ture (2.12). As a result, we are then able to deter-
mine the necessary number of the bosonic degrees of
freedom for the local kinetic equation. For the paper
to be self-contained, we briefly review the thermody-
namic approach, referring the reader to the literature
for further details®).

The thermodynamic calculation of the specific heat

3) See, e.g., Refs. [12,26] and references therein.

376

DN | =

Fig.1. Leading singular contribution to the thermody-

namic potential for the clean system. The shaded box

corresponds to F/v, defined through the two-particle

vertex ['“, see Ref. [26]; the solid lines are coher-

ent parts of the electron Green's functions. For the

disordered system, the polarization bubbles should be
dressed by impurity scattering [12]

cy is based on the relation between ¢y and the ther-
modynamic potential €:

0%Q

~T o3 (2.16)

Ccy =

The thermodynamic potential can be written as the
sum of the thermodynamic potential )y for noninter-
acting quasiparticles and a correction 42 associated
with soft modes in the system. Keeping such a cor-
rection is legitimate because it turns out to be a more
singular function of the temperature than the T3 cor-
rection due to the electron—hole asymmetry.

The correction 6 is given by the sum of the so-

called ring diagrams, see Fig. 1. The Matsubara repre-
sentation for this diagram is

T
59=5§/

d
2

d F )
Zd In (1 + ;H(z|wn|,q)> . (2.17)

™

where F' is the coupling constant, w, = 27nTn are the
bosonic Matsubara frequencies, and II is the polariza-
tion operator. The explicit expression for this operator
is not important for the present discussion and is given
later, see Eq. (5.43a).

A straightforward calculation, relegated to Ap-
pendix A, enables us to rewrite Eq. (2.17) as
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dw (1 w

d
<[ o

WImTr{lnﬁp —Inl?). (2.18)
The explicit expressions for the bosonic propagators
LP and L9 are not relevant (they can be found
from Eq. (3.11), with the trace understood as the sum
or integration over all variables other than w, q); we
just mention here that £° = L9 in the absence of inter-
action (F' = 0). Substituting Eq. (2.18) in Eq. (2.16)
and integrating over w by parts, we find

/dw wNp(w) b (w) — b (w)], (2.19a)
0

9

oev = 57

where the densities of states are defined as

Pl = 1 g ,
1 d%q
bg(o.)) = ;Im/ WawTr In Eg. (219C)

The function b” (w) has the physical meaning of the den-
sity of states (DOS) of the bosonic degrees of freedom
in the system (soft electron—hole pairs). The function
b9(w) has the meaning of the density of states of ficti-
tious bosons (we call them «ghosts») that describe soft
electron—hole pairs in the absence of interaction. The
physical meaning of the minus sign in front of b?(w) is
that with the formation of collective modes, some de-
grees of freedom are removed from the description of
the noninteracting system; the ghost bosons in the last
term in Eq. (2.19a) take this reduction into account.

Comparison of Eq. (2.19a) with Eqgs. (2.12)
and (2.9) suggests the following expression for the
contribution of the collective modes to the energy
density in the nonequilibrium case:

up = /dww [N?(w)b? (w) — N9 (w)b? (w)]; (2.20)

here, N? = N9 = Np in the equilibrium and have to
be found from some kinetic equation otherwise (this
definition requires that Eq. (2.8) holds for an arbitrary
distribution function). A similar expression can be ob-
tained for the contribution due to the interaction in the
triplet channel by introducing an additional propaga-
tor L7 and the distribution function N?. This means
that the proper local kinetic equation must include four
distribution functions: one for the fermions, f(¢), and
three for the bosons, N?%9(w). We derive such a de-
scription in the subsequent sections.

3. FINAL FORM OF THE KINETIC EQUATION
AND SCATTERING PROCESSES

In this section, we summarize the final form of the
quantum kinetic equation, the conservation laws, and
the corresponding currents. The explicit expressions
of the collision integrals are given in subsection 3.2.
The detailed derivation of these results is presented in
Sec. 5.

In accord with the previous section, the kinetics of
the system is described by the electron distribution
function f(e,n;t,r), the «distribution functions» NP
and N° of the bosonic singlet and triplet excitations,
and the «distribution function» N9 of the ghost exci-
tation.

The electron distribution function f(e,n;t,r) is di-
agonal in the space of momentum directions. On the
contrary, bosonic excitations are characterized by the
density matrices N%(w,q;n;,n;;t,r) (o = p,0,g) that
may not be diagonal in the space of momentum direc-
tion n. Only in the thermal equilibrium, with

feq(&f./l’l;t,l‘) = .fF(‘S)a

o (3.1)
N (w, q;ny,ny;t,r) = Q4d(n;, nj)Np(w)

and with the Fermi and Planck distribution functions
given by Eq. (2.2), the matrices N*(w, q;n;,nj;t,r) ac-
quire the diagonal form®. But even outside the equi-
librium, these matrices have the property

Ne (w7q7nl,n]) =

)] 32

(hereafter, the spectator ¢, r variables might be sup-
pressed.)

Strictly speaking, f(e,n;t,r) is a 2 X 2 density ma-
trix in the spin space and N7 is a 3 x 3 density matrix
in the angular momentum L = 1 space; however, this
is not important in the calculations below and we write
the equations for the diagonal components only. To ac-
count for the threefold degeneracy of the triplet mode,
we explicitly introduce factors of 3 in the corresponding
collision integrals and currents.

For compactness, we use the operator notation for
matrices in the space of momentum directions, such
that, for example, N should be understood as an oper-
ator acting on a function a(n;) as

/

4) As given in Eq. (3.1), the equilibrium distribution functions
N& (w) are defined only for w > 0; for w < 0, they are found
using the property in Eq. (3.2).

dnj
—N
Qq

[Na] (n;) = (3.3)

(ni,n;)a(n;).
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3.1. Kinetic equations and conserved currents

The kinetic equation for the electrons in the electric
field E (we do not consider the magnetic field effects)
has the canonical form

at—l—v-V—I—ev-E% fle,n;t,r) = SAtE(E,n;tr)7

~ ~ ~ e- ~ e-0 4
St. = St, f+ St "{f,N°} +3St" " {f. N7} — (34)

— 4SS Ny + SET Y,

where the first term in the right-hand side is the «bare»
collision integral

1 — dl’lk
Str(n;,n;) = —— — (n;,n; / , 3.5
( ]) T(ei]’) ( ]) T(eik) ( )
with 6;; = m;n;, and the other terms, which are to

be written shortly, take the interaction effects into ac-
count.

The bosonic distributions, for a = p, 0, g, are gov-
erned by

WH 1 +1Fa;8tNa} - {éa(waQ);VNa} +
+i [ Agh(w»Q);NQH =

=St N, f} (w, qinynyst,r),

(3.6)

where the commutator and anticommutator are de-
fined as

{A;ﬁ}%mmm), [4:B] = AB-BA. (37)

The operators ﬁé{h acting in the angular (momen-
tum direction) space are defined as

w
1+ Fo

He j(w,q)=v-q- (3.8)

and the velocity operator is

aﬁg—h(wa q)

() = g T =

The action of the operators Fo in the angular space is
the same as in Eq. (3.3); these operators are given by

(3.10)

where F*7(0) are the Landau Fermi-liquid interac-
tion parameters. The angular-independent term vV (q)
takes the long-range part of the Coulomb density—
density interaction into account.

To characterize the density of states for the
bosonic excitations, we introduce the propagators
ﬁa(w'/ q; 1n;, nj)a a=p,0,9 as

iHY ,(w,q) — St | £ =1. (3.11)
They describe the propagation of an electron—hole pair
scattered by the disorder potential. This propagation is
affected by the corresponding interactions for a = p, o,
and it reduces to the usual diffusion for the ghosts.

We are now prepared to write the conservation laws
that must be satisfied by the collision integrals inde-
pendently of their explicit form or the particular shape
of the distribution functions. The conservation of the
number of particles is ensured by the condition

/SAte_a{f, N} (e,n;t,r)dnds = 0,
a=g,p,0, (3.12a)
/SAte_e{f} (e,n;t,r)dnde =0,

and the impurity collision integral (3.5) preserves the
number of particles on each energy shell,

/SAtTf(E, n;t,r)dn = 0. (3.12b)

The conservation of energy during purely electron—
electron collisions is ensured by

/ESAte_E{f} (e,n;t,r)dnde = 0. (3.12¢)

Finally, the conservation of energy during the electron—
boson collision is guaranteed by the conditions

dn de
d

V/EE/}\tE_a{f,Na}(a,n;t,r) +

+ / T[22 @S (. N (wi1,m)] o2 =

. a5 fa T wdw
= —Z/TI‘ H en(W); £ (w)] N (w;t,r)} ot
(3.12d)
for a = g, p, 0, where the trace is defined as
TI'AB = dnlgn2
2
dq
X / WA(Q; ni,ny)B(q;ns,ng).  (3.13)
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The existence of conservation laws (3.12) immedi-
ately enables us to establish the expressions for the
conserved currents in the spirit of Sec. 2.1. By inte-
grating both sides of Eq. (3.4) over ¢ and n, we find
the relations

dp
at

plt.r) = ev [ flemit.n
jt,r) = evvp/nf(a,n;t,r)

+V-j=0,

de dn
Qg
de dn
Qg '
which express the conservation of charge in terms of
the usual charge density and electric current density,
cf. Eqgs. (2.5)—(2.7).

Turning to the energy conservation, we multi-
ply Eq. (3.4) by € and then integrate over n and . Simi-
larly, we multiply Eq. (3.6) by £, take the trace (3.13),
and integrate over w. Adding the results together, we
find

(3.14)

OUtot

ot

Utor = Ue + U, + 3uy — duy,

Jiot = Je T35 + 315 — 4iy-

+v ‘jiot :j ‘E7
(3.15a)

The electronic contributions to the energy density and
current density are given by

ue(t,r) = 1//
jo(t,r) = m)F/

The contributions of the bosonic neutral excitations are
U (ta I')

:/Tr
jaltr) =

_ /Tr{ga(w)ﬁa(w)ﬁa(w;t,r)}

de dn
a, </
de dn

d

)

(3.15h)

enf(e,n;t,r).

1
1+ Fa

w dw
2

A

R it

(3.15¢)

w dw

o
for a = g,p, 0.

Equations (3.14)—(??) constitute our main results:
the conserved currents are defined in terms of the dis-
tribution functions of the quasiparticles that describe
low-energy excitations of the interacting electron gas
for interaction in the particle-hole channel. In con-
trast with previous calculations [20-23], we explicitly
show the validity of the continuity equation for energy
transport; no such proof has been presented before in
the quantum kinetic equation approach®. Moreover,

5) The current operator used in Ref. [21] does not satisfy the
continuity equation for the long-range interaction potential.
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we believe that the form of the energy current in those
references is not correct, because it is not gauge invari-
ant, see Appendix B for more details. As an additional
benefit, our approach enables us to clearly identify the
contributions of the collective modes and the scatter-
ing processes involved (this last task is accomplished
by analyzing the explicit form of the collision integrals,
which is also needed to calculate the transport coeffi-
cients). The derivation of the collision integrals can be
found in Sec. 5; in the next section, we summarize the
results and give them a physical interpretation.

3.2. The collision integrals

In this section, we give the explicit form of various
collision integrals and verify that they satisfy conserva-
tion laws (3.12). To shorten the formulas, we introduce
the combinations of the distribution functions

T%;kl (vavq;tar) = N“ (w7q7 ni-,nj;tar) X
><{f(s,nk;t.,r)—f(s—w.,nk;t,r)}+ﬂd6(rﬁj) X

X {f(s,nl;t,r) [1- f(s—w,nk;t.,r)]} (3.16a)

and

Ui (€,61;w) = fle —w,my) [1 = f(2,10;)] X
X fler,mp) [1— fe1 —w,my)] —
— fle,m) [1 = f(e —w,n;)] fle1 — w,ng) x
X [1 = f(e1,my)]. (3.16b)

It follows from Eq. (3.2) that Y2, 1, has the property

[0 = [d X506 0. (3160

It is easy to check that Y = ¥ = 0 in the thermal equi-
librium (Eq. (3.1)). The combination in (3.16b) enters
the collision integral in the symmetric form

1
It is worth noting that the terms involving four distri-
bution functions f are in fact cancelled from ¥*; be-

sides, it has the properties

[‘I’i]’; i + Wiig + Vijeji + Ui g |- (3.16d)

/‘I!fj (e,e1;w) dedey =0,
(3.16¢)
/a(w) /E\I/fj (e,e1;w) dedey dw =0

for any even function a(w). Finally, we introduce the
vertex v for the impurity scattering

1
7-(6,»]'

—

l'ljl'lk

O [s(wm,) - d@my)]  (37)

)
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and the short notation

L:O(_L:O(

ij — ( aq;ni7nj)'

The boson—electron collision integral is then expli-
citly expressed as
dnsd
/d 113 114

X {7141.?2;41 (670')7 q; t71') +

+ 7§4T{113;14 (e,w,q;t,r) }7 (3.18)

-~ (x-€

St

( 1qanlan2a T

for a = g,p,0. The formula for the electron—boson
collision integral can be conveniently decomposed into
local (1) and nonlocal (n) (in the sense of Sec. 2) parts

St7" =St " + St (3.19a)

The local part of the collision integral is

/ / /dn2dn3dn4 "
21 w a3

X {712 [534T41;21(5=WaQ) + T34;21(5,w,q)£_fﬁ] +

/\Ea

St

51’11

+ 73 [£§4T32;21(57 w,q) +
+ T§4;21(5,w, )»sz] }7 (3.19b)
where the bar denotes Hermitian conjugation,
LYw,q;n;,n;) = LY(—w, —q; nj,n;). (3.19¢)

Using Eq. (3.11) and definitions (3.13) and (3.17), we
can verify that the pair of equations (3.18), (3.19b)
satisfies the energy conservation law Eq. (3.12d) on its
own.

The function in Eq. (3.19b) also satisfies the parti-
cle number conservation law (3.12a). To verify this, we
change the variables as (w,q) — (—w, —q) in the terms
containing £% and then use Eqs. (3.16b) and (3.19¢) to
rewrite the integral in Eq. (3.19b) in terms of £L* only:

dl’l4

/dl’ll
Q

X

4
d

- £?4T§3;12(5»W7Q)] +
£§‘4T2‘3;12(5,w,q)] }-

Performing the ns-integration using the delta functions
in Eq. (3.17), we obtain the result that is antisymmet-
ric under the n; < ny permutation. Hence, the above
expression vanishes after the n; o-integrations.

The physical meaning of collision integrals (3.18)
and (3.19b) is as follows. In the ahsence of disorder,
the electron—hole pair propagates for an infinitely long

/ SAtfa (e,1n1)de dny

X {7?2 [£§4Tffl;21(5.,w.,q)
+ 731 [£g4T22;21(67 W, q) -
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Fig.2. The scattering amplitudes leading to the cre-

ation of the same electron and hole out of different

electron—hole pairs (double lines) (a, b) and their in-

terference contribution (¢). The impurity is denoted
by filled circles

time. Due to the impurity potential, the decay of the
pair into an electron and a hole moving in different di-
rections as shown in Fig. 2 is allowed. Equations (3.18)
and (3.19b) are the probabilities for such a decay. (See
also Sec. 5 after Eq. (5.67) for further discussion.)

By construction, the nonlocal contribution to the

collision integral
/ / / dns . ..dny;
v X
Q4

0
><713“V46 [£9,—L34] sh? (;8 ) [f(EaUG)—f(Ean)]X

dw 1
2 w2

-~ e-

St

51'11

n

x / der { [X2r0a (1,00, @) + YEroag (e, w0, )] L5 +

+ L5, [T%;ls(flawa(ﬂ + T?2;31(51-,W-,Q)] } (3.19d)
satisfies its own conservation law
~e-
/am St, (e,my)de=0, m=0,1, (3.19¢)

i.e., preserves the energy and the number of electrons
moving along a given momentum direction n. More-
over, one can see that the collision integral (3.19d)
does not contribute to the linear response at all be-
cause Y = 0 and f is independent of the angle in
the thermodynamic equilibrium. The nonlocality of
this collision integral indicates that the task formu-
lated in Sec. 2 has not been fully accomplished. Techni-
cally, this nonlocality can be decoupled by introducing
a density matrix that is nondiagonal in the boson—ghost
space. We choose not to pursue this line because the
term in Eq. (3.19d) does not contribute to any observ-
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able quantity of interest and does not affect any con-
servation laws.

The electron—electron collision integral can be split
into elastic, nonlocal, and local parts:

~ e-

St (e.ny) =Sto, (e,mp) +

+ SAtZ_e(s., n) + SAtf_e(s., ny). (3.20a)

The elastic term describes the scattering of the electron
on the static self-consistent potential created by all the
dw 1

other electrons,
/ ddq /dn2 .dng o y
2r w ) (2m)d a3 Yo

‘= %Re/
X [LP 4+ 3L7 —4L9]., [f(e —w,ng) — f(e —w,ny)] X
[£§4f(a, ns) + L%, f (e, nl)] . (3.20b)

~ e-

el

Its physical origin is discussed in detail in Ref. [17].
Being elastic, it preserves the number of particles, for
each energy shell,

/\e E
/ (e,n1)dn; =0, (3.20c¢)
as can be seen from the property 773 = —~3, of ver-
tex (3.17).
The nonlocal term
~e-€e dw 1
= ——
Sty R /271' e
% / /dl’l2 dl’lﬁ 9
(2r)d QZ ’713'746
« / dey { (L8, — £94) [£7 +3L7 — 4£9],, %
X Uis(e,e1;w)  (3.20d)

describes the inelastic electron—electron collisions dur-
ing which the bosons and ghosts act as virtual states.
(The function ¥* was introduced in Eq. (3.16d).) The
real part being an even function, we can use Eq. (3.16¢)
to verify that Eq. (3.20d) satisfies the conservation law

/sm S/\tfj (e,n1)de =0, m=0,1. (3.20e)

As indicated, the same law is satisfied by the local (and
elastic) term:
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dw 1
21 w?
dd

q /dn2 ...dng / 9 5
X de1vi3V4e X
/(271_),1 QZ 13 746

X [L1y + L34 [LF +3L7 — 4L, %
<ot (20 [7(eome) = fevma)] »

x [f(e1,m)[1 = f(e1 —w,m3)] + (m1 <> n3)].

(3.20f)

Therefore, Eq. (3.20e) enables us to conclude that both
collision integrals (3.20d) and (3.20f) do not affect the
transport coefficients (in the case where they can be
considered perturbations in comparison to the bare im-
purity collision integral).

We note that although it might not be evident, the
present form of the kinetic equation permits the proper
identification of the inelastic kernel that determines the
phase relaxation time; further details can be found in
Appendix G.

4. SUMMARY OF THE RESULTS FOR THE
THERMAL TRANSPORT AND SPECIFIC
HEAT

In this section, we present our final answers for the
interaction corrections to the thermal conductivity and
the specific heat. They are obtained by solving the
kinetic equations and then substituting the solutions
in definitions (3.15) of the energy and energy current
densities. The explicit calculations are performed in
Sec. 6. We consider short-range impurities for which
the scattering time 7 is independent of the scattering
angle, 7(f) = 7. We report our results for quasi-one-
dimensional and three-dimensional systems in the dif-
fusive limit Tt < h; for two-dimensional systems, we
do not put such a restriction on the temperature range.
However, common to all dimensionalities is the zeroth
harmonic approximation for the Fermi-liquid constants
(see Eq. (6.14)).

4.1. Thermal conductivity

In the absence of a magnetic field, the thermal con-
ductivity tensor is diagonal, k., = Kd,,, and we write
the expression for the diagonal components simply as

K = Kwr + AR. (4.1)

The first term is given by the Wiedemann - Franz law
kwr = LoT with the inclusion of the interaction cor-
rections to the conductivity and the Lorentz number
given in Eq. (1.1). The second term causes a violation
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of the Wiedemann—Franz law. In the diffusive limit
and for low dimensionality, the main contribution to
Ak is due to the long-range nature of the bosonic en-
ergy transport, which originates from the long-range
part of the interaction in the singlet channel. In the
quasiballistic case, large contribution also comes from
the inelastic scattering of the electron on the bosons.
Smaller corrections arise due to the triplet channel
bosonic transport and to the energy dependence of the
elastic scattering.

For quasi-one-dimensional and three-dimensional
systems in the diffusive limit, we write

Ak = 0Kk” + 30K7 + Oke,

where the bosonic corrections include the ghost contri-
butions

0k =r" — kR, a=p,0o

(see Eq. (6.12) for the definition of k%) and we neglect
the inelastic contributions dk;,, which are smaller by
the parameter T'7/h.
For quasi-one-dimensional systems, the explicit ex-
1

pressions are
7= (3)
8v2m

x {—1+3 {1—}% (1+Fg—\/ﬁ)} } . (4.2a)

3
2

DT

Okiet = 7

3 (3\ [DT . . (hDR
OKP = SEC <2> T akln <—T ), (4.2b)
7 = —=C <2>\/—h {\/1+F0 1}, (4.2¢)

where a is a length of the order of the wire width,
k = V4me2v is the inverse screening length in the bulk,
and D = 7v%/d is the diffusion constant (in d dimen-
sions).
For three-dimensional systems, the results are
5 5

NGz <5> \/h:g:; )
) } (.3)
T3

2
X{1+3 I_F_(?(l_
—_ 4.
oS (4

(

5'%[ =

1

VI+E¢

)

15

¢ 5
32213

P — 2
2
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1

T3
X 1
V%D V1+E

In these expressions, ((x) is the Riemann zeta function,
with ((3/2) ~ 2.612 and ((5/2) ~ 1.341.

For two-dimensional systems, we separate the cor-
rections due to the singlet and the triplet channel in-
teractions:

(4.3¢)

Ak = Akg + 3AkK;. (4.4a)

With logarithmic accuracy, the singlet channel contri-
Tr horpk
2T —

bution is
T
s () (17
T (4 Y
ﬂ-h n

T 14+ ——
2 2
T <&> In <%> (4.4b)

T 2up”? (TT)?
S5 R\ h
where k = 2me?v is the two-dimensional inverse screen-
ing length. The cross-over functions g; and g are given
in Eq. (6.42). Here, we note that g;(z),g2(z) ~ 1 for
r < 1and g () ~ 3/x, g2(x) ~ 1422 /15 for x> 1.
For the triplet channel, we have

T 1
11— —In(1+F°
18h{ o n(l+ 0)%
+ L m(14F), Tr<h
2n o), ST
Ak; = 4.4c
! 2T (Tr 21 Er) (44c)
Ba\n) "\T
Feo\?
X<1+Fg> , Tt>h

In the diffusive limit T'r < h, our results are con-
sistent with those in Ref. [22], even though the form of
the energy current operator used in this reference is, in
our opinion, incorrect, see Appendix B.

4.2. Specific heat

The specific heat is given by

2
cy = EZ/T + dcy, (4.5)
where the first term is the usual noninteracting elec-
tronic contribution and the second term is the bosonic
interaction correction.
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For quasi-one-dimensional and three-dimensional
systems,

T

/2
ocy = (1 + 3Ad) <—> Q.

— (4.6)

The two terms in the first bracket are respectively the
singlet and triplet channel contributions. The singlet
channel term is considered in the unitary limit and
is therefore independent of any interaction parameter.
On the other hand, the Fermi-liquid parameter for the
interaction in the triplet channel enters Eq. (4.6) as

1

Ag=1-—
’ (1+ Fg)*

(4.7)

and the numerical factors a3 are
S
P 3mvar o \2)

w(a)

For two-dimensional systems, with logarithmic ac-
curacy, the result is

ey = — <%) {( +3A2)—1n <ETF> +

+ (1 +3A3) EC(B)TT] . (4.8)

a; =

where ((3) &~ 1.202. The first term in the right-hand
side extends the logarithmic behavior known in the dif-
fusive limit to higher temperatures (the upper cutoff is
of the order of the Fermi energy Er and not 7i/7); the
second term becomes relevant in the quasiballistic limit
and coincides with the correction calculated in Ref. [29]
for the clean Fermi liquid. In the diffusive limit, our
results are the same as those obtained in Ref. [12] by
an explicit thermodynamic calculation.

5. DERIVATION OF THE KINETIC EQUATION

This section is devoted to the derivation of the lo-
cal kinetic equation. We first introduce the Eilenberger
equation and some basic notation. Next, we perform
a (generalized) gauge transformation: this is the cru-
cial step that enables us to obtain the local description.
Then we introduce the bosonic degrees of freedom and
derive the collision integrals.

5.1. Eilenberger equation

Our starting point for the derivation of the kinetic
equation is the Eilneberger equation (Eq. (5.7)). For
disordered metals, the derivation of this equation start-
ing from the action for the interacting electron gas in
the presence of disorder can be found in Ref. [17]. We
briefly summarize it here to introduce some notation
and a straightforward generalization to the angle-de-
pendent impurity scattering rate and Fermi-liquid pa-
rameter (see Egs. (5.8) and (5.15)).

The interaction with small momentum and energy
transfer in the singlet channel (the triplet channel is to
be discussed in Sec. 5) is decoupled using the two Hub-
bard — Stratonovich fields ¢4 (¢,r,n). For the purpose
of the one-loop approximation that we use, these fields
can be considered Gaussian with the propagators

{6+ (1)6+(2)) = ~5D¥(1,2),

{6+ (Mp-(2)) = ~sD"(1,2)

(o (1)04+(2)) = —gDA(L?)-,

(5.1)

where ((...)) denotes averaging over the fields ¢r. We
use the short notation

(1) = (ti,ri,n;), /dz /dt drz/dnl
(1) = (r;,ny), /dz* _/drl/ Q)

where i = 1,2, ... and Q4 is the total solid angle.
We introduce the disorder-averaged Green’s func-
tion of the electron in the field ¢4 in its matrix form

in the Keldysh space,
G(1,2[¢)
G (1.29) )

A _ GR(L 2|¢)
G(1,2)¢) = <GZ(1,2|¢)
such that its average over the fluctuating field ¢4 gives
the usual expressions for the physical propagators:
(a"(1,2) =
= —if(t1—t2) (L (Y1 (2)+1 (2)9 (1)),
(a2 =
= if(t2—t1) (P ()Y (2)+47(2)3(1)),
(G*(,2) = <¢(1)W( ) =91 (2)9 (1),
(G#(1,2)) =

Here, 6(t) is the Heaviside step function, ! and v
are the fermionic creation/annihilation operators in the

(5.3)
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Heisenberg representation, and quantum mechanical
averaging (...) is performed with an arbitrary distri-
bution function to be found from the solution of the
kinetic equation.

For the disorder-averaged Green’s function, the
semiclassical approximation is obtained by integrating
the Wigner transform of @(1,2|¢) over the distance
from the Fermi surface:

~

Glttop R) = [Ere®rG1200, ()
where
1
r=r;—ry, R-= 5(1‘1 +r2),
1
P =P - i[A(tl,R)-FA(tQ,R)],
(5.6)

g(ti,ta,n,r) =

L /dfé <t17t27n |:pF+i:| ,I‘> )
TV VF

where A is the vector potential of an external electro-
magnetic field, pp is the Fermi momentum, vr is the
Fermi velocity, and v is the density of states on the
Fermi level. The dynamics of the semiclassical Green’s
function ¢ in the matrix form is governed by the Eilen-

berger equation [24]
)

nx —

5t+v~@+wc-< n

(5.7)

where v = vpn, the action of the «barey collision inte-
gral on any function a(n) is defined as

dn1

[S/\t,.a} (n) = / Q—dStT(n,nl)a(nl),
R 1 - dn, (5.8)
Str(ny,ng) = m — 6(n1n2)/m,

and f;2 = myn, (for the short-range impurity, 7(6) is
independent of 6; however, the formulas derived here
are valid for an arbitrary impurity scattering). The
time convolution of two matrices a(t1,ts) and b(t1, t2)
is given by

—

(5.9)
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Defining the commutator between a matrix é(¢,r,n)
and g as
[67 g] = é(tl ) Ty n)g(tla t27 n, I‘) -
_g(tlatQanar)é(tQaran)a (510)
we express the covariant derivatives in Eq. (5.7) as
019 = 0§ + 0§ + i [p: 9],
Vi =Vi+i|Aig]

(5.11a)
(5.11D)

with A = AflK and ¢ = 4,9]1;(. Here, ﬂK denotes the
unit matrix in the Keldysh space and ¢ is the scalar
potential for an external electromagnetic field such that

eE=-Vyp+d;A, eB=-cV xA.

The vector w, = eB/(mc) has the magnitude of the
cyclotron frequengy and the direction of the magnetic
field B. Finally, ¢ is the matrix in the Keldysh space:

(m ¢>_
o— 01 )

The matrix Green’s function § is subject to the con-
straints

¢ = (5.12)

g(n,r)og(n,r) = d(t —t>)1k, (5.13a)
Trg(t,t,n,r) = 0. (5.13b)
In thermal equilibrium, the relation
9% (t1,t2) = [gFon —no g*] (t1,12),
n(tn 1) = [ 5o expliclts —t))ne) (519
€
nle)=1-2fp(e) = 2thﬁ

must hold independently of the form of the spectral
functions gf4.

In what follows, we assume that there is no mag-
netic field, B = 0 and w. = 0, but no gauge choice
is made: although one could set A = 0 by a gauge
transformation, both the scalar and vector external po-
tentials are left arbitrary in order to keep track of the
gauge invariance of the equations.

The propagators defined by Eq. (5.1) satisfy the ma-
trix Dyson equation

D(1,2) = Dy(1,2) +
+/d3/d4 Do(1,3)1I(

DO(LQ) = — |:V(I‘12) +

N

3,4)D(4,2),

FP(815) 6(r15) (5.15)

X 6(t9) g,
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where V(r) is the long-range part of the interaction (for
the Coulomb interaction, V(r) = €*/|r|, #12 = nin,,
ripo =r1 —ro, and tio =t — tg) The matrix propaga-
tor is denoted by D and II is the matrix polarization
operator. They have a structure similar to the Green’s
function one:

DR DK R ne mnx
A = A - (5.16)
0 D). 0 o).

The polarization operators are given by variational
derivatives of the solutions of the Eilenberger equa-
tion (5.7)

3

mR(1,2) =I4(2,1) =

™ 691\’(t17t17n11r1):|
=v |02+ = , (5.17a
y{n 2 0¢4(t2,r2,n2) ( )

' 5(g™ + g7)(t1, 1,1, 1)
(1,2 =E{ SLRLTUL  517h
1.2 2 6¢—(t2, 19, 13) ( )

where

(512 = Qd5(rT1\rl2)6(r1 — r2)5(t1 — t2)7 (518)

with Q4 being the total solid angle.

5.2. The gauge transformation

With Eilenberger equation (5.7) at hand, one could
proceed as in Ref. [17] in order to derive an equation
for the distribution function. But the resulting inelas-
tic part of the collision integral, expressed in terms of
the electron distribution function only, is nonlocal and
the evaluation, e.g., of the thermal conductivity would
require the time and spatial gradient expansion of this
term in the spirit of Eq. (2.15). As we already dis-
cussed, such a route makes the energy conservation in
the kinetic equation obscure. Here, we follow a different
approach, inspired by the following considerations [25]:
if the fluctuating fields were uniform, they would be
eliminated from Eq. (5.7) by a gauge transformation

t1

to
§ — exp —i/as(t) dt 3 §exp z'/gs(t) dt 3. (5.19)

In other words, the position-independent fluctuations
of the ¢ fields define a time-dependent position of the
energy levels but the occupation numbers for such lev-
els do not change. Therefore, such fluctuations affect
neither the electric transport nor the electron contri-
bution to the thermal transport in the system. More-
over, if the path of the electron were a straight line, all

9 ZKIT®, B, 2

smooth fluctuating fields would still be eliminated in
the eikonal approximation and, once again, they should
not affect the electron contribution to the transport. To
eliminate such spurious contributions, we use the gauge
transformation described below.

We introduce a new matrix field R’(t, n,r),

. K, K_
K="t ,

K_ K,
which is a functional of the field qAﬂ and is used to per-
form the «generalized» gauge transformation

(5.20)

—iK(t1,n,r) A

g ez’];’(tg,n,r) )

g—e (5.21)
This transformation is unitary and therefore preserves
constraints (5.13). As we see in what follows, it leads
to the local kinetic equations. Applying the transfor-

mation to Eilenberger equation (5.7), we obtain

[5t+v-ﬂg—i[(8t+v-V)1§'—é,g] =
1

> [925679) . 5:22)

where

[é\tfg} (t1,t2,n) 5/@ tr(n,ny) x
d

K(t1,n) ,—iK (t1,m1) iK (t2,m1) ,—iK (t2,m)

><ei g(tl,t2,n1)e
The «bare» impurity collision integral and the deriva-
tives are defined respectively in Eq. (5.8) and (5.11).
We suppress the argument r, which is the same in all
functions.

We seek a perturbative solution of the Eilenberger
equation in form (5.22) in the one-loop approximation;
for this, it suffices to retain only the terms at most
quadratic in the K fields in the collision integral. In
the lowest order, ¢ has the form

. [6(tr = t2) g~
9= 0 —6(t —t2) )

We require that this form be preserved even in the first
and second order in K, i.e., the corrections to the spec-
trum (described by ¢g%4) be indeed eliminated by the
gauge transformation.

In the linear order, the retarded, advanced, and
«Z» components of Eq. (5.22) vanish if K_ satisfies
the equation

(5.23)

(at + v-v)K, + St K=o (5.24)
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The solution of integro-differential equation (5.24)
can be written in terms of the diffuson propagator
L9(ty,t2;m1,n9;11,19), the retarded solution of the
classical kinetic equation

(8t1 + vy 'Vrl - §t-r) Eg = (5127 (525)

where 15 is defined in Eq. (5.18). Using Eq. (5.25), we
find

K-(1)= - [&2200.20-2)
Eg(]_’ 2) =£9(2,1),

(5.26)

where we use the short notation in (5.2). In the oper-
ator notation, Eq. (5.26) can be rewritten as

K_=-L"¢_. (5.26')

To simplify further manipulations, we introduce the
following function of three angular variables:
1

7( > 7(6i)

x Qg [8(A7m,) — o(am,)] = 75, (5.27)
This function is related to the impurity collision inte-

)
()
()

np

X
n; nj;

dny
Qg !

ng

ng;ns

dny
Qg !

ng

ng;ns

dng
Q4!

ng

/

With §¢g™ denoting the first-order correction to gt
the Keldysh component of the Eilenberger equations in
the linear order is

ng;ns

z'(ét +v-V-— SAtT)égK +
+ [(at I v §t) Ky — ¢+;gK] — 0K +
dl’lzdl’lg
n / y x
2 ( )
X [K+(n3); gK(n2) - QK(H)]

with (cf. Eq. (5.11))

ng

n;no

(5.29)

dog" = (3t1 + 3@)691" +ilp; 6971,
Vgt = Vogk +i[A; 8¢5
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Here, the operator Q is local in space,

R d
QK _ = /dts/%Q(tht%n; tz,ni;r) K (f3,m,1)
d

[ ()

X [PgK(t17t37 nl)gK(t37 t2, 1’13)+

+ (111 < 113)] .

with the kernel

1

2

dng
Qg !

ns
Q(t17t27n1;t37n2) =
n;;ng

(5.30)

We suppress the spectator argument r, which is the
same in each term of the equation; the last term means
that terms similar to the ones shown but with the angu-
lar arguments of the Green’s function switched must be
added. The principal value sign P in Eq. (5.30) means
that the part of the product of the Green’s functions
divergent as t; — to,

2
7T(t1 - t2)

K(ty,ty,n, 1) + regular, (5.31)

t1—ta

g
must be eliminated,

Pg"(t1,t3)9" (ts,t2) =
= g (t1.t3) 9" (ts,t2) — 45(t1 — t3)5(t5 — t2),

or, equivalently,

Pg"(t1,t3)9" (t3,t2) =

1 - . < .
3 Z 9" (t1,t3 + 0i0)g" (t5 + 0i0, 12).
o==+1

It is worth noting that all nonequilibrium effects con-
tribute to the regular part in Eq. (5.31) but not to the
singular part; the states deep in the Fermi sea, which
are not perturbed, contribute to it.
To solve Eq. (5.59), we define a new field K_ by the
relation
K (t,n,r) = (i8,) " MK_, (5.32)
where the operator M is shown below to be re-
lated to certain products of the Green’s functions g%,
see Eq. (5.38). The operator M is Hermitian and local
in space but not in the momentum direction and time.
We again use the operator notation

MK =

d
E/dtl/%M(Ln;t17n1;r)K_(t17n1,r). (5.33)
d
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We require K to satisfy the equation

(at +vV - SAtT)K+ = ¢, —2K_, (5.34)
whose solution is
Ky=0L%, —2L9K_. (5.35)

The operator notation here is the same as in Eq. (5.26).

The next task is to choose the «best» form for the
operator M to maximally simplify the further pertur-
bative expansion. Writing 6g™ = g + 69", we obtain
the equations

iLogK = QK _ +2 [IZ'_, gK], (5.36a)
S dnsdn n
= [ g ()
x [Ki(n3), (9% (n2) — g™ (n))], (5.36b)

where L = <5t +v-V —§‘LT).

We note that the right-hand side of Eq. (5.36b)
vanishes in equilibrium, because ¢ = (¢™),. There-
fore, 5gf also vanishes in equilibrium and cannot con-
tribute to the equilibrium properties such as the spe-
cific heat. Moreover, even outside the equilibrium,
89X (t1,t1,n,r) = 0, because the right-hand side of
Eq. (5.36b) vanishes, see the remark after Eq. (5.31).
This means that §g does not contribute to the elec-
tron density or current.

We are now ready to choose the operator M. We
require that 6g%(t,t;,n,r) = 0, i.e., 6g% also does
not contribute to the electron density or current. This
means that the right-hand side of Eq. (5.36a) must van-
ish for t; = to for any field K_. Imposing this require-
ment, we obtain

M(t17t27n7ﬁ7r) = %Q(tlatlan; tQaﬁ; I').

Together with Eq. (5.30), it yields

d
M(tl,nl;t2,n2;1‘) = %/%;’y( nn2n ) X
1,113

X [PgK(tlat27n1)gK(t27t17n3) +

+ (111 <~ 113)] .

(5.37)

(5.38)

Expression (5.27) for the vertex 7 enables us to estab-
lish the following properties of kernel (5.38):

M(t1,m1;t2,m0) = M(t1,n05t0,m1) =

= M(t2,m23t1,m1);  (5.38)

the operator M is therefore Hermitian.

It is instructive to find M in the thermal equi-
librium. With Eq. (5.14), because Eq. (5.24) implies
that the retarded and advanced components of g are
still given by Eq. (5.23), it follows from Eqs. (5.28)

and (5.38) that
Meg(ti,my5ta, nysr) =

dw iw(ta — Y
:/ge (t2 tl)Meq(w;n17n2)7 (539)

w

Mey(w;ng,ny) = —wcth (QT) {gtT] (ng,ny).

Equation (5.39) is useful in checking the fluctuation—
dissipation theorem.

5.3. Polarization operators and propagators

The knowledge of the linear-order corrections to the
Green’s function permits the calculation of the polar-
ization operators as variational derivatives of the origi-
nal Green’s functions (i.e., before the gauge transforma-
tion) in the limit t5 — ¢, see Eq. (5.17). In the linear
order, the corrections to the original Green’s functions
are given by the relations (cf. Eq. (5.21))

69" = 69" —i[Ky, "] —2K_6(ti —t2), (5.40a)
697 = 2K _6(t1 — to). (5.40b)
By construction in the previous subsection,
. K _
t2113%1 09" (t1,ta,n,r) =0, (5.41)
and using Eq. (5.31), we have
lim —i[K;,¢"] = 25K (t.,n,r). (5.42)
P} + T +\by 1y

Substituting these results in Eq. (5.17) and using
Eqgs. (5.26), (5.32), and (5.35), we obtain

HR(LQ) =V [612 - 8751[’9(17 2)] ;

HA(Q, 1)=v [(512 — atzﬁ_g(l, 2)] : (5.43a)

we use notation (5.2) throughout this subsection. The
result for the Keldysh component is

% (1,2) = 2iv [ﬁngg] (1,2). (5.43b)

The actions of the operators M and D are defined
in Eqgs. (5.26) and (5.33).

It is easy to check that the fluctuation—dissipation
relation between the polarization operators holds in

9*
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the thermal equilibrium. As follows from Eqs. (5.25)
and (5.26),

—2£9St, " = 9 + [9. (5.44)

We perform the time Fourier transformation for all the
propagators and the polarization operators in thermo-

dynamic equilibrium,
d—wew(tg_tl)A(w; 1%,2%).

A@m:/%

Substituting Eqs. (5.39) and (5.44) in Eq. (5.43b), we
obtain that in equilibrium,

(5.45)

T (w;17,27) =
W

2T
With the help of Eq. (5.15), we then derive the
fluctuation—dissipation relation

= |17 (w; 1% 2%) — T (w: 1%, 2%)| cth (5.46)

Dl (w;1%,27) =
= [DR(w;1%2%) — DA(w; 1% 2%) cth%. (5.47)
With the expressions for the polarization operators
obtained above, we can solve Dyson equation (5.15)

and obtain the explicit expressions for the interaction
propagators. In the operator notation,

. 1 .
vDR = —— — ___F, (5.48a)
1+ F—8,FL9
. . 1
1+ F+ 0L F
DX = 2w DRLINIf9 DA, (5.48¢)

where the action of the operator £ on any function
a(t,n,r) is defined by

dny

[mmmﬂ;/m

+/dr11/V(r—r1)a(t,n1,r1) ,  (5.49)

[Fp(ﬁﬁl)a(t, ni,r) +

see also the text after Eq. (5.15).
To find the propagators for the fields K4 given in
Eqs. (5.26') and (5.35), defined as

i K
1,2
FK(1.2),

i

(K4 ()K1(2))
2

(K (1) K-(2))

(K-(K+(2) = 5
(K-(HK-(2)) =0,

K1), (5.50)

KA4(1,2),

388

we use Eqgs. (5.1) and (5.48) and obtain the retarded
and advanced propagators

KR = £9DRE. KA = faDALs, (5.51a)

whereas the result for the Keldysh propagator is

A~

KK = —£9DK fo + 2i| £9(8,)" M Lo DA L9 —

— L9DRLINI(B,) L], (5.51b)

The fluctuation—dissipation relation between the D
propagators in Eq. (5.47), the equilibrium form for M
in Eq. (5.39), and identity (5.44) allow us to verify the
fluctuation—dissipation relation for the K propagators:

KE (w;17,2%) = [Kf(w; 1%,2%) = K4 (w; 1%,2%)] x
w
x cth . (5.52)

5.4. Additional bosonic fields

Equation (5.51b) together with Eqs. (5.51a)
and (5.38) allows expressing the Keldysh propagator
KX in terms of the electron distribution function.
This relation, however, is nonlocal on the spatial scale
much larger than the temperature length

g
T
recall the discussion in Sec. 2.2. Indeed, the collision

integral and all physical quantities are then given by
integrals of the type

ME e , (5.53)

T

Lt ~ min

I° = /dwf(w)lCa(w), a=RAK,

where the function f(w) depends on its argument at
the characteristic scale of T'. A retarded function is an
analytic function of w at Imw > 0, which implies that
for @ = R, the integral is determined only by singulari-
ties of f(w), i.e., Z® ~ KF(w = 4T). This immediately
restricts the spatial scales to L. The same argument
applies to the advanced case, because of the analytic-
ity at Imw < 0. But the function KX (w) is not ana-
lytic. Moreover, according to Eq. (5.51b), it contains
overlapping singularities of the retarded and advanced
propagators. This means that the characteristic fre-
quencies entering Z¥ are determined by the poles of
the propagator rather than by the width of the func-
tion f, i.e., the spatial scale may by far exceed Ly and
any expression of the type Z¥ is therefore nonlocal.
To overcome this difficulty, the standard paramete-
rization of the Keldysh function DX = DFoN — NoD4
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is usually introduced and the kinetic equation for the
distribution function N is then derived. All the non-
locality in the problem is then contained in the partial
solution of the kinetic equation, to be compared with
Eq. (2.14), whereas the kinetic equation itself is local.

In what follows, we adopt this program in a slightly
modified form. We introduce a new retarded propaga-
tor £°(1,2) (to be compared with Eq. (5.25))

iH,_ (i, —iV1) — Str| LP = 615,

w (5.54)

1+ F

and its advanced counterpart £°(1,2) = £°(2,1). The
multiplications in Eq. (5.54) are to be understood in
the operator sense and the action of the operator £ on
a function a(t,n,r) is defined by Eq. (5.49).

For F' = 0, £P (£P) reduces to the usual diffuson
L9 (L£9). Physically, £P describes the spectrum of a
propagating electron—hole pair and the operator in the
left-hand side of Eq. (5.54) corresponds to the kinetic
equation for the collective mode in the Fermi-liquid the-
ory [26]. The operator ﬁe_h(w,q) can be interpreted
as a «Hamiltonian» (see also Appendix C) of the inter-
acting electron—hole pair.

In terms of £ and L9, Egs. (5.51) acquire the form

He_p(w,q) =v-q-

0)~" [[39 - EAP}., (5550
—[59—2[)] (&:)_17 .5ba

— —2i(8)" [ﬁgMﬁg - ﬁpME"] @) . (5.55b)

We introduce two bosonic «distribution functions»
(the density matrices, to be more precise) N9 and AP
that satisfy the equations

(L9 N8 4+ N9 (La)~" = 20,
(LPY"LATP + AP (L27) 1 = 21T

(5.56a)
(5.56h)

The operator M is defined in Eqs. (5.33) and (5.38)
and, in a more explicit notation, the action of the op-
erators N'”9 on any function a(t,n,r) is to be under-
stood as

[Arra] (1) = /d2 NP9 (1,2) a(2),

where short notation (5.2) is used. We note that the
above equations imply that the bosonic functions N7+9
are symmetric:

NP9(1,2) = NP9(2,1). (5.57)

389

Equations (5.56) allow us to rewrite Eq. (5.55b) as

VKK = i (9,)" [[:9/\79 +A7959] @)~ +
+i(a)! [ﬁwp +J\7PE”] @)™, (5.58)

This expression is local in the sense discussed above and
is used in the construction of the conserved energy cur-
rent. Obtaining the local expression, however, requires
the introduction of two additional bosonic distribution
functions: N?, describing the interacting electron—hole
pairs, and the ghost field distribution A9, subtracting
the contribution of the electron—hole pairs in the ab-
sence of interactions.

Closing this subsection, we rewrite Eq. (5.56) in a
form resembling the kinetic equation in Sec. 2. We sub-
stitute Eqs. (5.25) and (5.54) in Eq. (5.56) and obtain

{ﬁt +v-V; ./\79] = §tb {./\/'g,gK , (5.59a)

. - ~b .
[iHe,h(iatl., —iVl);/\/'”] =St {N?. g5}, (5.59b)
where the collision integrals are
&b a K J o 9
St {N g }EQ{StT;/\/ }+2M (5.59¢)

for « = g,p. They depend on g® via M and we use
the notation

(5.60)

We perform the time and space Wigner transforma-
tions of Eqs. (5.59) to introduce the bosonic distribu-
ddq )

tion functions N9:°,
N9P(1,2 :/ e*i“’(tlft?)/ el (r1—ra) o
2= )50 (2m)"

X w[2N?? (w, q;ny, na5 ¢, 1) + (07, 0,)],

dw

(5.61)

where t = (t; +t2)/2, r = (r; + r3)/2. Symmetry rela-
tion (5.57) translates into the condition

NP (w,q;n1,m2) =

== [Ng’p (~w, —q;nz,ny) + Qdfs(n/la\fb)] . (5.62)
The physical meaning of this relation is the Bose statis-
tics: at w > 0, N9 corresponds to the occupation
numbers entering the probability of the absorption of
the bosons, whereas the w < 0 part describes the boson
emission.
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The fermionic distribution function f is obtained in
two steps: (a) we introduce the gauge-invariant Green’s
function g (also see the next subsection) and (b) we
perform the time Wigner transformation:

gK(tla t27 n,r) =

ty
=exp | —i /dfgo(f,r) g(t1,t2,n,r),  (5.63a)
to
g(t17t27n I‘) =
de 725(t —t2)
=2 oy 17t [1—2f(6,n;t,r)]. (5.63b)
Performing such Wigner transformations of
Eqgs. (5.56) and (5.38), we find
w{@tﬁg + {V;VNQ} +1 {v~q;NgH =
=St (N, f}, (5.64a)
wH ! A,ath} { (w, q); VNP}
1+ F

+¢[ﬁ6_ (w,q), N H —St’ {N?, fY,  (5.64Db)

where the collective mode velocity operator is

() e

In the left-hand side of Eq. (5.64b), we limited ourselves
to the leading Poisson brackets (the equation becomes
exact for a short-range interaction because 8q]3' =0,
and in the unitary limit, F— o0). However, no Pois-
son brackets arise in the right-hand sides of Eqgs. (5.64)
as a consequence of the locality of the kinetic equations.

The right-hand sides of Eq. (5.64) describe the de-
cay of an electron—hole pair into an electron and a hole
moving in different directions. To write the expression
for this collision term, it is convenient to introduce the
following object:

6ﬁefh(w7 q)

S(w,q) = a

=V+w—

dq\1+F

Tf]’,p]gl (5./(,0., q; t7 I')
><{f(a,nk;t,r)—f(a—w,nk;t,r)}+9d6(ﬁ;ﬁj)x
x {flemit,r) (1= f(e = wmi )] b (5.60)

= N9* (qu; nianj§t7r) x

It is easy to see that Y97 = 0 in the thermal equilib-
rium, Eq. (3.1).
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In terms of this object and vertex (5.27), we have

dns dn4

SAtb{Ng’p,f}(w-,Q;nl-,m;tr = / /

x {7?41.3’2741 (e,w) + 734T§é’;)14 (e,w) }7 (5-67)

where we suppress the spectator arguments ¢, r, and
q in the right-hand side of the equation. In deriv-
ing Eq. (5.67), we used Eqs. (5.28) and (5.38") and the

property
Jelse-

To understand the physical meaning of the pro-
cesses described by collision integral (5.67), we use
the explicit form of the vertex v (Eq. (5.27)) for the
isotropic impurity scattering 7(612) = 7. Then the col-
lision integrals can be decomposed into the sum of two
contributions

St" (N} =Sto (NP, £} + St N9, f).

The first term in the right-hand side can be obtained
from a simple counting of the probabilities of the pro-
cesses depicted in Fig. 2a, b:

St l{ng f} (w;ny,ny) =
dn
/ / 3 T‘({stz g,w) + 11y, 13 (E»W)}

The second term in the right-hand side originates from
the interference of two scattering processes, see Fig. 2c.
It therefore makes contributions to N that are not di-
agonal in the momentum directions:

SiL (N, £} () =

dn
__/ / 3 T‘(fspu (e, w)+T3221( )}

5.5. The collision integral for electrons

With the bosonic propagators K at hand, we can
proceed with the calculation and include the second-or-
der contributions in the fluctuating fields K1 to the
collision term of Eilenberger equation (5.22). With the
fluctuating fields K1 given by Eqs. (5.26") and (5.35),
the Eilenberger equation becomes

[0, +v - V)5 = [gf:%SAtfg—

i (S}TA; - 212’_) g +iSt,K_6%|, (5.68
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K K K
a ﬁ:i
O +v V) —~—=Cr——+ + +...
b

O +v-V) ——=——

St ) )
K K
C
Q=@+{;+£:;;Z>
St St, St St

—00000— = (5t+V'V—§tT)_1

Fig.3. Schematic representation of averaging over the

fluctuation fields K. a) Expansion of Eilenberger equa-

tion (5.68) before averaging. b) The equation for the

Green's function averaged over K, see Eq. (5.69). ¢) The

contributions to the total collision integral in the one-loop
approximation

where we use notation (5.11) for the derivatives, §cf is
defined after Bq. (5.22), K_ is defined in Eq. (5.32),
and 67 is the Pauli matrix.

We expand the right-hand side of Eq. (5.68) up to
the second order in I&’., see Fig. 3a; then we average
it to obtain Fig. 3b. The resulting second-order con-
tributions can have two different origins: (1) they can
arise from the expansion of the exponentials truncated
at the second order, the term St; in Fig. 3¢, or (2)
they are obtained as products of the linear correction
59X of Eq. (5.36a) and the first-order expansion of the
exponentials, the term St, in Fig. 3c.

The Eilenberger equation for the averaged Green
function takes the form

[& v @] §=St{5, N*, N9}, (5.69)

where St contains both zeroth and second-order con-
tributions. We find (see Appendix D for the details on
the cancellation of second-order corrections in the R,
A 7 sectors)

A : 0 St{g~, Nr N9
St{gf-,g(?,g"}=<0 o . }>, (5.70)

where gf = —g' = §(t; — t3). This means that the
matrix Green’s function of form (5.23) is still a solu-
tion of the Eilenberger equation — the main gain of

gauge transformation (5.21) — provided that the ki-
netic equation for the Keldysh component is satisfied;
accordingly, we concentrate on this component only.

Performing gauge transformation (5.63a) of the
Keldysh component of the Eilenberger equation, we ar-
rive at the explicitly gauge-invariant form of the kinetic
equation

t1
O, + O, +V-V—|—iv-/dfeE(f,r) g=
2

= St{g, N*, N?}. (5.71)

__In the collision integral é\t{g., NP N9}, we use
SAtl{g, NP N9} to denote contributions of type (1) and
Sta{g, N?, N9} for those of type (2)9),

St{g, N, N9} = St,g — 4St; {g, N*, N9} —

— 4Sta{g, N”. N*},  (5.72)
where St, is defined in Eq. (5.8). The numerical fac-
tors in front of the last two terms are introduced to
facilitate the transformation to the canonical form of
the kinetic equation in subsequent sections.

The expression for §tl written in terms of the I
propagators (5.50) and the v vertex (5.27) is

~ i dnsdn
[Stl] (t1,ta;my) = 16 ;22 23,
d

x {glti,ta ) [KE (b1 t2) = KfS (01, 82)| +

+/dt39(t17t37nl)g(t3at27n2) X

X [Kgh(ts, ta) — K4y (ts, t2)] —
—g(ti,t3,m2)g(t3,ta,m1) ¥
x [KE (b, ts) = KR (t1,1)] }. (5.73)
We introduce the short notation
Kij(t1,ta) = K(t1,my5t0, 1) (5.74)
and

/61((151,752) = 2}CK(t1’t2) - KK (t1,t1) — /CK(tz, ta).

We omit the variable r, which always appears in the
distribution function as g(¢;,t2,n,r) and in the propa-
gators as K(t1,ny,r;t2,ny,r). The dependence on the

6) This separation has no particular physical meaning, it is
just a matter of practicality in the calculations; we return to the
physical aspects when we analyze the conservation laws in the

next subsection.
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electron distribution function g is explicit, whereas the
dependence on the bosonic distribution functions is hid-
den into the propagators, see Eq. (5.58). For reasons to
become clear in the next subsection, we split Eq. (5.73)
into two parts:

~ P el

St; = St," + Sty ; (5.75a)
- in 1 dnsdng
|:St1 ] (tl,tQ;nl):—ﬁ Tg’}/fQ X

X {29(151,152,112) [/63{\;(751,752) —/aé‘i(thtz)} +
+/dt3 [9(t1,t3,m1)g(t3, t2, m2)+

+g(t17t37n2)g(t3-t2-n1)] I:’C?Q(tS-tQ) - K%(tl,tg) —
—K33 (3, t2) + Kib(t1,t3)] } (5.75h)

dl’l2 dl’lg
32 / it /

X{[g(t17t37nl)g(t?nt2an2)—g(t1,t3,n2)g(t3,t2’n1)] y
[’C32(t37t2) +K§3(t1,t3) —
K4 (t5, 1) — KB (11, 13)] } (5.75¢)

{SAtEl] (t1,t2;11)

As regards SAtg, it is convenient to separate it into
two parts, depending on which field, K, or K_, we
retain in the expansion,

~ ~

Sty = (St ) + (St_), (5.76a)

where (...) denotes averaging over the fluctuating
fields K1 with propagators (5.50) and

~ d
St_(tl,tz;n I' = /dtg 1’11 (t3,n1,r) X

1T
X [6Q(ty, t2,m;t3,my51) — ?5!# (t1,t2;m,1) X

t1

X /dt5Q(t5,t5,n;t3,n1;r) N (576]3)

SAt+(t1.,t2;n):i/ 7( ) X
X [[x"+(n3); (6g(ny) — 6g(n))] (t1,t2). (5.76¢)

The commutator is defined in Eq. (5.10) and the kernel
0@ is the first variation of operator (5.30) with respect

dn2 dn3
2%

ng

n;ns
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to the Keldysh component of the electron Green’s func-

tion,

X { [5g+(t1,t3,ﬂ,1‘)9(t3,t2,1’12,1‘) +

dnz
Q4

1
5Q(t1,t2,n;t37n1;r):§/ n;

n;ns

+g(t1,t371171')59+(t3,t2,n271')] +

Finally, the functions dg+ and dg = dg4 + dg—
are obtained by solving Eqs. (5.36a) and (5.36b) (after
transformation (5.63a)); with the help of Eq. (5.37), we
have

dnsd
0g+(t1,t2;m,r) —z/dB/ 12 n4

x L9 (tl, n,r, 3) |:[(+(t3, ny, I'3)—[(+ (tg—tlg, ny, 1'3)] X

X [gK(ts,ts —t12;09,13) —
—gK(tg,tg —tlg;ng.,l'g)], (577)
d
0g—(t1,ta;n, 1) = —z/d3/dt4 o
X Eg(tl,l’l,l‘73) (t4,n4,1‘3) X
X [Q(t37t3_t127n3;t47n4;r3)_
i
- ?gK (t3,t3 — ti2;m3,13) X
/dt5Q(t5,t5,n3;t4,n4;r3) , (5.78)

tz—t12

where t15 = t; — t2 and notation (5.2) is used?.
For future use, we note the properties (see also the
discussion following Eq. (5.36))

6g-(t,t) = dg+(t,1)

/dn(sQ(tlat%n; tz,ni;r) =0,

=0,
(5.79)

7) These solutions are exact only in the absence of the electric
field, because in its gauge invariant form, the operator acting on
dg+ is the same that appears in the left-hand side of Eq. (5.71).
We could perturbatively include field-dependent corrections into
our expressions, which would be of the first order in E for dg_—
and of the second order for 6g4 (because dg4 vanishes in equilib-
rium). However, as noted above, the first property in Eq. (5.79)
implies that these corrections cannot contribute to the physical
quantities in which we are interested, and therefore we do not
include them in our calculations.
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which follow from Eqs. (5.77)-(5.78) and from defini-
tions (5.76d) and (5.27).

The canonical form of the kinetic equation is ob-
tained by performing the time Wigner transforma-
tion (5.63b) of both sides of Eq. (5.71). It is clear
from the structure of the collision integrals that this
procedure leads to the appearance of Poisson brack-
ets in the right-hand side of the kinetic equation. We
choose another route, however: we prove the existence
of the conservation laws before the Wigner transforma-
tion. This then allows us to argue that these Poisson
brackets (in our formulation of the kinetic equation)
give only small contributions, which can be neglected
within the accuracy of the kinetic equation.

5.6. Conservation laws

The derivation of the conservation laws is based on
the following properties of the collision integrals in the
previous subsection:

(Strg)n = 0, (5.80a)
(St_)n =0, (5.80b)
(Styn = 0. (5.80¢)

The physical meaning of conditions (5.80) is that the
corresponding terms in the collision integral preserve
the number of particles within the energy shell. Equa-
tions (5.80) follow immediately from definitions (5.8),
(5.75b), (5.76b), (5.76d), and (5.79).

The two remaining contributions to the collision in-
tegral have the properties

Jim St (ty,15) =0, (5.81a)
Jim St (1, t2) = 0, (5.81D)

and
lim (9, — O4,) St (ty,t2) =0, (5.82a)

t1—ta

lim (8, — ) St (b1, £2) =

t1—to
o 1 dl’l2dn3
C 4n 02

’Yfz{ [0 ICKﬁt]Sl (t1,t1) —
_ZZ” dts [0K7] , (t1,t3) [g(t1. ts, 1) g(ts. b1, m2)+
+ g(t, t3, ma)g(ts, b1, 1)) — (g — nz)}, (5.82h)

where we use notation (5.74) and the vertex is de-
fined in Eq. (5.28). Equations (5.81a) and (5.82a)

immediately follow from definition (5.76¢) and condi-
tion (5.79). Derivations of Egs. (5.81b) and (5.82b) are
given in Appendix E.

Expressions (5.81) mean that while not preserving
the number of particles for a given energy shell, the

terms S/\t+ and é\tin preserve the total number of par-
ticles for a given direction (small-angle inelastic scat-
tering). Equation (5.82a) means that the inelastic St.
term preserves not only the number of particles but
also the energy for a given direction. Equation (5.82h)

means that the é\tin term does not preserve the energy
for a given direction, thus describing the energy ex-
change between quasiparticles and electron—hole pairs
discussed in Sec. 5.3.

The possibility to find the conserved energy current
is based on a certain relation between Eq. (5.82b) and
the collision integral for electron-hole pairs. We now
turn to the discussion of this relation.

We substitute Egs. (5.55a) and (5.58) in Eq. (5.82b)
and average the result over n; then using the analytical
property
_ [dw

) oon

together with £°(1,2) = £P(2,1), £9(1,2) = £9(2,1),
NP9(1,2) = NP9(2,1), and Eq. (5.38), we find

KE(t,t) KRw) =0 (5.83)

lim (), — 1) (Sty ) =

t1—ta

where St is defined in Eq. (5.8) and Try acts as

{Trnfl] (t,r) = / ?Z—nA(t,n,r;t,n,r). (5.85)

d
The corresponding traces of the collision integrals
for the electron-hole pairs, Eq. (5.59¢)®), are
Trp [ﬁg St’ {./\/'g,g}] = Try “Eg; g\tr]./\A/'g +

+2£9 (NgsTtT + Mﬂ . (5.86a)

Ton [0 (N7, g}] = T [£7381 ] A0+

+2L° (NPSL + Mﬂ . (5.86h)

8) The operator M is gauge-invariant and has the same form

in terms of g or g¥.

393



G. Catelani, I. L. Aleiner

MWITD, Tom 127, BhIm. 2, 2005

Comparing Eqs. (5.84) and (5.86) and using Eqs. (5.25)
and (5.54) once again, we obtain the desired relation
between the collision integrals:

2imw lim (9, = Or,) (St {g, N?. N ) +
+ Ton [£9§8 (N7, g)] - Tra[£9 S (47,9} ] =
_ Trn“v-v;ﬁg]ﬁfg -
—i [I—Lh(i&g, —iV); ﬁp] m} . (5.87)

The left-hand side of Eq. (5.87) is the quantum
counterpart of relation (2.3b) and Egs. (5.80)—(5.81)
are related to Eq. (2.3a); we now derive the expres-
sions for the electric and energy currents in the spirit
of our discussion in Sec. 2.1.

We begin with the conservation of electric charge.
According to Eqs. (5.4) and (5.6), the charge density is
given by

lim
t1—ta—t

(g(ti,t2,m,1))p. (5.88)

Taking the limit ¢; — t2 — ¢ in both sides of Eq. (5.71)
and using Eqs. (5.72), (5.80), and (5.81), we obtain the
continuity equation

Bp+V-j=0, (5.89)

where
eVFUT

2

to be compared with Eqs. (2.5)—(2.7).

Having found the usual equation for the electric cur-
rents, we turn to the energy conservation. Acting with
the operator (0¢, — 0;,) on both sides of Eq. (5.71) and
introducing the quantities

lim
t1—ta—t

j(t,l‘) = <1’lg(t1,t2,l’l,r)>n, (590)

ity .
Ue(t, 1) = ——— tlllg!t (04, — Oy, %
X <g(tlat21nar)>n7 (5 91)
. B _im/vp . B ’
i) = 1 tlggl_w (01, — Or,) x

X <ng(t17 t27 nar)>1’h

we find

Oue +V -z =j E+
(91 = 01) (St{g. N\ N . (5.92)

lim
t1—tas—

+vm

The expression in the left-hand side of Eq. (5.92) has
the form of a continuity equation for the energy cur-
rent of electrons: the first term in the right-hand side
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is the Joule heat acting as an energy source. The last
term in the right-hand side indicates that the electron
system is open by itself, due to the energy exchange
with electron—hole pairs. As we discussed in Sec. 2.1,
this means that the contribution of these degrees of
freedom must be taken into account in the definition of
the conserved energy and energy current densities. For
this, we multiply Egs. (5.59a) and (5.59b) by £9 and
LP respectively. Using Eqs. (5.25), (5.54), and (5.59¢)
and taking the trace Try (see Eq. (5.85)) of both sides,
we obtain

1 ~ ~
Ortty + V -5 = 3 Trn [v-v;cg}f\/g =
1 A~
= 5 Tral? St’,  (5.93a)

'y,

Oy +V - = 3

[Heh(iat, —iV);ﬁf’} NP =

1 A~
:§Trn£"Stp, (5.93b)

where the energy densities u,, and currents j; , are
defined as
ug(t,r) = %Trnﬁg NI
1 1 o (5.93c)
u,(t,r) §Trn{1+ A,E”J\/"’},

i = %Trnvﬁg N ;Trn{é; LoNPY. (5.93d)
The velocity operator § is defined in Eq. (5.65) and
notation (5.60) is used.

We now add Eq. (5.93a) to Eq. (5.92) and subtract
Eq. (5.93b). According to Eq. (5.87), all the collision
terms and the commutators cancel, and we obtain the
energy balance equation (compare with Eq. (2.8)):

Otitor +V - jior =3 E, (5.94a)
Uor(t, 1) = ue(t,r) + up(t,r) —uy(t,r), (5.94b)
jiot(tvr) :jZ(t,I‘) +j;(t,1‘) _jZ(t,r)~ (594C)

Equations (5.94), (5.91), (5.93¢c), and (5.93d) con-
stitute the main result in this subsection. They de-
fine the conserved currents in terms of quantities to
be found from the kinetic equations. We emphasize
that the conservation laws thus found are exact (at one
loop) in the sense that no approximation has been made
beyond the usual Fermi-liquid theory: specifically, no
gradient or harmonic expansion has been made and no
time or space Poisson brackets have been neglected yet
(except those suppressed by the factor ¢/pr).
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Within the same accuracy with which kinetic equa-
tions (5.64) were derived, performing Wigner transfor-
mations (5.61)—(5.63) of Eq. (5.90), (5.91), and (5.93d),
we find

j =evpv /da (nf(e,n;t,1))n (5.95)
for the electric current density and
i =vpv /ds e(nf(e,n;t,r))n, (5.96a)

X <vﬁ9 (w,q)Ng(w,q;t,r)> (5.96¢)

n

for the energy current densities, in agreement with
Eqs. (3.14)—(3.15).

It remains to reduce the expressions found to the
usual form of the quantum Boltzmann equation. This
is the subject of the next subsection.

5.7. The quantum kinetic equation

After Wigner transformations (5.61)—(5.63b),

Eq. (5.71) becomes

at—}—v-V—}—ev-E% fle,n;t,r) =
= St{f,N*,N*}. (5.97)

The collision integral is the sum of the inelastic and
elastic parts,

St{f,N?, N9} = Stin{f, N*, N9} + St {f}. (5.98)

The elastic part is obtained by adding the trans-
form of the «bare» collision integral (the first term in
the right-hand side of Eq. (5.72)) to the transforms of

é\til, Eq. (5.75¢), and St_, Eq. (5.76b). The inelastic
part is given by the transform of SAt;n Eq. (5.75b), plus
the transform of St , Eq. (5.76¢). However, for the sake

of compactness, we do not make such a distinction be-
tween elastic and inelastic contributions and, using a

notation resembling that in Sec. 5.5, write the collision
integral in the form

St{f, N, N9} = St, f + St {f, N*, N9} +

+St_{f} + St. {f, N?, N9}, (5.99)

where the first term in the right-hand side is the trans-
form of the «bare» collision integral and the other terms
are given below.

With the elastic and inelastic parts of collision
integral (5.73) kept in a single formula, the corre-
sponding contribution is obtained by first substitut-
ing Eqgs. (5.58) and then performing Wigner transfor-
mations (5.61)—(5.63) (and using their property (5.83)).
We decompose the result into distinct contributions due
to the two bosonic degrees of freedom:

§t1 (57 n;t, I‘) = é\tiip(‘sv n;t, I') -
—St; Y(e,n;t,r). (5.100)
As usual, the collisions with the «ghost» particles en-
ter with the opposite signs. In terms of combina-
tion (5.66) of distribution functions denoted by Y and

vertex (5.28), these contributions are (we suppress the
spectator arguments ¢ and r in both sides of the equa-

tions)
l/d_wl/ diq /dngdngdn4 y
v) 2r w /) (2m)? o3

X {’Yfz [£§4YZ1;21(57W7‘1) + T§4;21(5»W»Q)Ef111] +
+ 75 [£§4T22;21(57 w,q) +
+ T§4;21(57 w, q)‘cfl)Z] }7

l/d_w l/ d?q /dngdngdn4 o
v) 2r w /) (2m)? o3
X {’Yfz [£g4YZ1;21(57WaQ) + Tg4;21(5%‘1)£§1] +

+ 731 [£§4T22;21(57 w, q) +
+ Yy (6w, a) L]} (5.101D)

~e-p

Stl (E, 111)

(5.101a)

~e-g

Stl (E,Ill) =

Here and below, the short notation

E%:Ea(qu;nian]')v a=4g,p

is used. It is readily seen that these contributions coin-
cide with the local electron—boson collision integral in
Eq. (3.19b).

Proceeding as above, we obtain the transform of
Eq. (5.76b) as

~

St_(e,n;) = §t5[(6,n1) + SAt,’l(s.,nl)., (5.102a)
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dwl dny...dng ,

~ 2 diq
Ste; = ;Re/g " /(27r)d/ 0% 713
x [LP = L9, [f(e —w,ng) — f(e —w,myq)] ¥

x [£405(ems) + £807(e,m0)], - (5.102b)

o=i [z [ |

x[2(e. 1) = f (=0, m4) — f e+, 1)~ (mg = mg)| x

5
Va6 X

dw 1
21 w2

dIlQ N dn6 2
V13
a3

5
Va6 X

X /dal [f(al,nl)[l—f(al—w,ng)]+(n1 o n3)] X

X [LP — L], LY+

1

+ 5 [£7 = L5 [£14 = L34] (5.1020)

Equation (5.102b) is (the singlet part of) the elastic
electron—electron collision integral, Eq. (3.20b). To ob-
tain Eq. (5.102¢) in the given form, we used the analytic
properties of the propagators and changed the variable
as 1 — €1 + w in some of the terms.

We finally transform Eq. (5.76¢) and obtain

Sty(e,ny) =St, (e,n1) +
+Styn(e.my) + St y(eny). (5.103a)

The first term is given by (the singlet part of)
Eq. (3.20d). The second term is

Stin = Sty — Sty (5.103b)

with SAtio; given by Eq. (3.19d) excluding the last line.

The ‘hird term iS

o~ 1
Sty = 5/

X [Qf(g, ng)—f(e—w,nq)—f(e+w,ns)—(ng — ng)| x
X [LP (2NP +1) = LY (2N + 1)],, X

X [L54 — L14].
Adding Egs. (5.103¢) and (5.102c), we recover the last
line in Eq. (3.19d) and (the singlet part of) the local
electron—electron collision integral, Eq. (3.20f). This

concludes the derivation of the quantum kinetic equa-
tion for the singlet channel.

dl’l2...d1’16 2

dw 1 y
- 13
05

27 w

5
Vae X

(5.103c)

5.8. The triplet channel

Inclusion of the interaction in the triplet channel is
straightforward; in Eilenberger equation (5.7), we add
the term

(5.104)
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to the left-hand side, where o; are the Pauli matrices
(i = x,y, 2) and the fluctuating field ¢; is a 3-compo-
nent vector in the L = 1 angular momentum space.
Therefore, all the triplet channel propagators, polar-
ization operators, and density matrices should be con-
sidered 3 x 3 matrices; for example, we have

F0(912) 5([‘12)

14

[Do]ij (17 2) 5(t12)5ij

(cf. Eq. (5.15)) and the retarded polarization operator
|:0_' 691\’(t11 tla np, 1‘1)
! 6¢+] (t27 ry, 1’12)

is given by
where the trace is over spin indices.

The trace of triplet channel operators includes the
sum over the indices 7, j. In the absence of the magnetic
field, all the operators are diagonal, e.g.,

m
o012 + ZTI‘

Hf}(l,Q):u{

[‘Cg]ij = L7,

and the trace results in extra factors of 3 in compari-
son to the singlet channel. The derivation can therefore
be repeated with simple modifications and it gives the
quantum kinetic equation presented in Sec. 3. We only
note one main difference in the derivation for the triplet
channel: the gauge transformation, which has the form
g N e—z’f(-a‘geif(-a"
does not commute with interaction term (5.104). Ad-
ditional second-order terms arise due to commutators
of the Pauli matrices; however, these terms vanish in
the one-loop approximation and we can neglect them.
In the next section, we use the quantum kinetic
equation to calculate the interaction corrections to the
transport coefficients and specific heat.

6. DERIVATION OF TRANSPORT
COEFFICIENTS AND SPECIFIC HEAT

In this section, we calculate the transport coeffi-
cients for quasi one-dimensional, two-dimensional, and
three-dimensional systems; the evaluation of the inter-
action correction to the specific heat is in the final sub-
section.

To calculate the currents in the presence of an exter-
nal field (electric field E or temperature gradient VT'),
we need to solve the kinetic equations. We assume that
the external fields are weak, i.e.,

¢eELr < T, VTLp <T,
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with the temperature length defined in Eq. (5.53).
These conditions ensure that the deviations from the
equilibrium distribution functions are small and we can
solve the equations by iteration.

In the lowest order, the distribution functions
should turn the collision integrals in Eqs. (3.4) and (3.6)
to zero, and the sought corrections df,d N* are linear
in the electric field or in the gradients of the distribu-
tion functions. In other words, we seek a solution of
the kinetic equations of the form

f(s,n;r) = fF(E;r) +6f(6,n;1‘),

. . N 6.1
N, qix) = Np(orm)i 4 68w, qcr), )

where the Fermi and Planck distribution functions (2.2)
depend on the spatial coordinate only through the tem-
perature T'(r). For compactness, we consider only the
singlet channel explicitly and indicate how to include
the triplet channel.

We start from the electron part of the kinetic equa-
tion. The bare impurity collision part §‘cT is larger than
the other terms, and it therefore suffices to calculate the
latter in the first order of perturbation theory. Consid-
ering short-range impurities, such that 7 is independent
of the scattering angle, we find

6f = 5f0 + 6f17
O0fo =71V - <eE — EZT> <— 8f§€(6)

5f1 = 76St {fr + 6fo, Np + 6N? Np + 6N},

(6.2)

where St is the linearized collision integral. We note
that according to the discussion of the conservation
laws in Sec. 3, we need to consider only the local
electron—boson contribution, Eq. (3.19b), and the elas-
tic electron—electron one, Eq. (3.20b).

Expression (6.2) is to be substituted in Eqs. (3.14)
and (3.15b) to find the electric current and the elec-
tron component of the energy current. Integration of
the 0 fp term is straightforward. Due to the structure
of collision integrals (3.19)—(3.20), the integration over
e can be performed before the w and q integrations
in the §f; term. For the combination of distribution
functions entering Eq. (3.16a), we find

6Tij7kl(s,w) =
= 6N (w, q:ni,n5) {fr(e) — fr(e —w)} +
+ Qqd(nin;) Np(w) {6 f(e,n) — 0f (e — w,np)} +

+ Qq6(n;n;) [6}‘(6, n) (1 — fr(e— w)) —
— fr(e)of(e —w, nk)} . (6.3)
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where we next use the identities

[z s 2= = 2 [oNpie)],
(6.4a)
/dgafg;&) [1 — fr(e - w)] - % {WNP(W)],
[ e -y =
_ 1 ,0Np(w)
N 2w ow
/ds (e — W)afF(g — LL))fF( ) =
1 ,0Np(w)
) ow
(6.4b)
/d562 ﬁf(;(s) 1-fr(e—w)] =
3] ON
= —T2 5 [wNp(w)] + %wb’iaz(w),
/daa(a—w f (E)W =
2 0
_ %T28 [wNp( )] - ]\g:d( )
to obtain
%/ds [6Tij,kl(57qu) =0 i ni(e, —w, _Q)] =
=evpTE - (ng — nl)% (wN]iDj) , (6.52)
% /dé‘s[(srij’k[(é‘, w, q) - 5Tij,kl (5-, —Ww, —Q)] =
2
= —%6N(w,?; ni,nj)—UFZJYT < (ny+ny) X
Xw38é\;13] UF;VT~(nl—nk)><
T2 d(wNY)  w? ONY
3 Ow 12 6wp .+ (6:5b)
where
Np = [NP] (ni,n;) = Np(w)Qqd(nin;) . (6.6)

We here retained only the contribution odd in w be-
cause the even part vanishes after the w integration in
the relevant collision integral, see Eq. (3.19b).

The combination of the distribution functions en-
tering the elastic collision part, Eq. (3.20b), gives

%/dafp(a)[éf(a—w,n) —8f(e + w,n)]

= —cvprE - na% [wNp(w)] . (6.72)
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%/dssfp(s)[df(s—w,n)—6f(6+w,n)] =
vpn - VT
= x
T
T2 O(wNp(w))  w® ONp(w)
3 ow 6 Ow

] o)

where we again retained only the part odd in w, non-
vanishing after the w integration in Eq. (3.20b).

Using Eq. (3.14), we find the electric current j = 6E
with the conductivity tensor 6 given by

G = aD{i+ /dw [Sel(w)+é(w)] X

X % [wNp(w)] } (6.8)

where o), Tvke?v/d is the Drude conductivity.
With the spatial indices denoted by pu,v = 1,... ,d,
the elastic kernels 8¢, and &,,,, which originate from
Eq. (3.19b) and Eq. (3.20b) respectively, are given by

Siv (W) = S (W) + 8,5 (w),

d dq dnidn,
11/ 5y _
SurW) =200 /(%)d/ Qg2 e X
x Re[L]) — L{,] + Re[L5, — L3,] -

—2Re [Ell)Q - E?Q] )

2d dq
120, _ <4
S (@) = rwr ) (2m)d 8 (6.9)
dnldng p g
x (Qd)2 nlﬂn2VRe[£12 - £12] )
dr ddq dn1 PN dn6 6 _5
guu(w) - _m,uu /(27T)d / (Qd)ﬁ V12743 X

X (nlung,, — n2”n3,,) X

X Re{ (L8 — L36] [L15 + L] }a

where we keep only the singlet channel correction for
compactness; inclusion of the triplet channel contribu-
tion is straightforward?). We show in Appendix F that
our expression for the conductivity coincides with the
one in Ref. [17]. It is natural that the conductivity
does not involve any bosonic distribution function (cf.
Eq. (6.5a)), because the inelastic electron collision with
such bosons changes the energy of the electron but not
the direction of its motion.

In contrast, even the electron contribution to the
thermal conductivity tensor &, such that j;,, = —&AVT,

9 By the simple substitution £° — £9 — £P + 3L° — 4L9 in
the kernels.
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is sensitive to the bosonic distribution functions. We
represent the total thermal conductivity as
k= Kkwr + 0k + &P — RY. (6.10)

The first term in this expression obeys the Wiede-
mann - Franz law with the interaction corrections to
the electric conductivity included, i.e., Awr = LoT,
with the Lorentz number given by Eq. (1.1). The sec-
ond term represents the (electronic) correction to the
Wiedemann —Franz law due to the energy dependence
of the elastic scattering and due to the inelastic elec-
tron scattering on bosons. Finally, the third and the
fourth terms represent the contribution of the p and
g bosons to the thermal transport. These additional
contributions are given by

0k = O0Rel + O0Rin, (6.11a)
[6"<’El]pu =
3
_ p el (1) — w” ONp
=22 /dw[SW(w) 25W(w)] [12 - } (6.11b)
3
) _ Op 12/, 7 qll W_aNP
[6"4’271]“1/ - 62T dw |:S,“,((U) Suu(w)} |:4 aw :| +

n /d_w /ddq /dnldngdng
e | anyd OPE

x {Re|£0,0, NG, + £5,0,N8, — £8,6,N%, | -

Ny X

~ Re[£9,0, N3, + £4,0,N8, — £9,6,N%, |}, (6.11¢)

ddq
(2m)d
dnydns (., ., o

ﬁ{su;ﬁuéyz\fﬂ}, (6.12)

X

o dw
h:lv“’:_ gw
></

5
3(V,T)

where

5N = [ON®(w, q;n;,n;)]. (6.13)

Equations (6.8)—(6.12) are the complete expressions
for the electric and thermal transport coefficients. To
obtain the explicit result, we must solve Eqs. (3.6) to
find the distribution functions §N®. We do this by
restricting ourselves to the diffusive Tt < 1 regime,
except for two-dimensional systems for which we con-
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sider an arbitrary temperature range'®). Moreover, for
the Coulomb interaction, we consider the unitary limit
(for infrared-finite momentum integrals), which enables
us to drop all the terms that depend on 6qﬁ'.

From now on, we retain only the zeroth harmonic
of the Fermi-liquid constants, for which we use the no-
tation Fy'. For the singlet channel, this means

de
R = / CF6) + 0V (@ (6.14a)
and for the triplet channel,
g — de o
E§ :/ﬁF (9). (6.14b)

We recall that F'9 = 0 and that the Coulomb interac-
tion potential is given by

4 2
Zf . d=3,
2 2
Viq) = e d=2, (6.14c)
q
1
e?In 5, d=1
\ (qa)

where a is a length of the order of the quasi one-
dimensional wire width.

6.1. Diffusive regime

We first consider the distribution function N9; sub-
stituting expression (6.1) in Eq. (3.6), in the linear or-
der in VT, we obtain

w ONP(w) . Cenrg] —
— TVlVTaT +'L|:V‘q,(sN ] =

:2{SA‘57;5N9}+UF%6N8LW(W) X

x VT - (Qd5(r1/1-,\112)n1 —n; — 112), (615)

with Nligj defined in Eq. (6.6). The (exact at this order)
solution for §N9(w;nq,ns) is

12
SNY = §N° = yprn, - VT% ONp ()

i (6.16)

10) The Boltzmann equation description of strictly one-di-
mensional systems is not applicable and considering the qua-
si-one-dimensional ballistic case within our scheme is meaning-
less because of the effects of boundary scattering. The ballistic
regime in three dimensions also cannot be considered within our
scheme because the main effect on the thermal conductivity is
due to the inelastic scattering processes with momentum transfer
of the order of kp.
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For the distribution function N”, the above is only

the starting point for the iterative solution:
SN? = 6N° + 6N*. (6.17)

The equation for §N? is
JalZ
7VT> . <wi e
Oq 1+ F»
jalZ

= ;6N9
1+ Fr

)+

] +1 {I:IE,;L; 6](/'1}

— 9 {SAtT;le} . (6.18)

In the diffusive limit 7' < 1, the (first-iteration) solu-
tion would be of the form

w ONp(w
5N1 Nw’l'(”UFT?%

VT) -V
for a vector V with a magnitude of the order one.
However, contributions from frequencies w larger than
the temperature T are exponentially suppressed, i.e.,
wr <T7 < 1; therefore, SN can be neglected in com-
parison to dN9. Thus, in the diffusive limit,

w aNg(w)

T dw

For the propagators £* in Eq. (3.11), the diffusive
approximation amounts to the substitution

O
d b

6HNi(;' = Q)FT[nl'] (619)

nyn, —
which leads to the expression

Ea(nl,l’lz) = 7(6(11/1-,\112) — 1) + Lg +

+ (ny + n2)uL?u + nlanVLg;u/v (6.20)

where the functions L{ depend on w, q only and are
explicitly given by

Ly = — L X (6.21a)
ﬁ + Dq

LY, = —itvrqLg, (6.21b)

L3,, = —drDquq, Ly . (6.21c)

Here, D = 7v}./d is the diffusion constant. These for-
mulas are valid whenever w, Dg> < 1/7.
Within this approximation, we have

e

p
x L S

S[,1H2/(w) + S/,lull(w) 2uv

This means that in both ¢ and d& (see Eqs. (6.8)
and (6.11)), we can neglect the contributions of the
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S kernels (we note that by inserting solution (6.19) in
Eq. (6.11¢), 0/, is given by twice the first line of that
equation). Indeed, the leading contribution is given by

the kernel € in Eq. (6.11b). This kernel has the ap-
proximate form

i L
T dw
<[5 g
(2m)?
Finally, the bosonic contributions (cf. Eq. (6.12)) to
thermal conductivity (6.10) can be written as'")

Epv(w) =

g
LQ;U/

Re L8 (L4

2uv

)]. (6.22)

W 8Np

iP = 62T /d B(w {4 &u} (6.23)
with
20 d’q p 9
By (w) = o /(27r)d e[Ls— LY. (6.24)

The next step is to evaluate the momentum inte-
grals; we first give the results for the short-range inter-
action described by (the zeroth harmonic of) the Fermi-
liquid constant Fp, and then we indicate the modifica-
tions needed to account for the long-range part of the
Coulomb interaction in the singlet channel. The triplet
channel contributions are obtained by multiplying the
obtained results by three and identifying Fy with Fy .

For the elastic kernel, we find

, 2 0 d/2—1 1 1
Ew(w) = Suv € (o] 2 %
d o, 27)4 \ D w wd
cos —
4
d 1 1—-d/2
><[§—F0(1+F0—(1+F) )} (6.25)

The expression for the Coulomb interaction is obtained
by taking the unitary limit Fy — +oc.
The result for the bosonic kernel is

Bo) < B € Q0 (WL
W) =79 op (2m)¢ \ D w
1 1-d/2
x —— [1—(1+F0) ] (6.26)
COSZ

For d = 3, the limit Fy — +oo gives the correct for-
mula for the long-range contribution, but for d = 1,
the limit diverges. But with the full form of the in-
teraction potential retained, this infrared divergence is

11) We choose to collect the bosonic contributions into a single
kernel such that the resulting momentum integral is convergent.
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cut off at the inverse screening radius. With logarith-
mic accuracy, the result for the Coulomb interaction
is found by substituting [...] — —akIn*/?(Dk2/|w]).
where a is a length of the order of the wire width and
k? = 4me?v is the square of the inverse screening radius
(in the bulk).

We can now proceed with the calculation of the in-
tegrals over w in Egs. (6.8), (6.11), and (6.23) using the
identity

/dw W"O,Np(w) = =2T"((m)T'(m +1).  (6.27)

Here, ((z) is the Riemann zeta function, whose values
at the points relevant for our discussion are

1 1 1
¢ <—§> ~ —0.208, ((0) = —3 ¢ <§> ~ —1.460,
3 72 5
¢ <§> ~2.612, ((2)= 3 ~ 1.645, ¢ <§> ~ 1.341,

and I'(2) is the Euler gamma function, with the values

r G) _JF T()=1, T (g) NG
r <g> “3m T@=2 T (g) =2

Performing the final w integrations, we obtain

oc=o0p+eé’ a2 g—l T d/2_1><
P (2m) d D
d\d-4 1
><F<§>—2_d—cos7r_dx
4
d 1 1-d/2
X[i—Fo(l‘FFO_(l"‘FO) )}7 (6.28)
1 Q (T\%? d
=g (5) P<(3+1)>
d 1
F< +2> El><
COS4
d 1 1-d/2
><[§—F0(1+F0—(1+F) )} (6.29)
1 Q (T\"? d
P _ 9 — __ — —_
K K 1 @) <D> DC<2+1>><
d 1 1—d/2
T (5+2) —— [1—(1+F0) ] (6.30)
COSZ
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where in the absence of the magnetic field, 0, = 00,
and a similar relation holds for the thermal conduc-
tivity. According to the previous discussion, for the
Coulomb interaction, the correct expressions are given
by the limit Fy — 400, with the exception of the term
kP — k9 in the case where d = 1 for which, with log-
arithmic accuracy, the result is obtained by substitut-
ing [...] = —akIn'/?(Dk?/T). The final answers for
the corrections to the thermal conductivity are given
in Eqs.(4.2)-(4.3).

We note that for d = 3, the w integration in &
and Awr is actually ultraviolet-divergent. This diver-
gence can be incorporated as a renormalization into the
Drude results; this renormalization, however, does not
invalidate the Wiedemann —Franz law.

6.2. Two-dimensional system

To evaluate the interaction corrections for the en-
tire temperature range, we need the exact form of the
propagators. In two dimensions, they are given by

L (w, q;ny,n2) = Qgd(ny,0y)Lo(w, q;ny) +
+ Lo(w, q;my)Lo(w, g;nz) X

j—0 +1 C
zw1+Fa

31
><C_ R +17 (6.31)
1+ Fy
where
Lo(w,q;n) = L
0l& 45  —iw+iv-q+1/7’ (6.32)

(UFQ)2~

C= \/(—iw+ 1/7)° +

We note that the variables w and vpq are now bounded
only by the Fermi energy Ep.

As before, we need to find the nonequilibrium cor-
rections NP9 to the bosonic distribution functions.
These are again given by Egs. (6.16), (6.17), but to
obtain the thermal conductivity in an arbitrary tem-
perature range, we calculate the solution of Eq. (6.18)
exactly (in the linear order in VT'):

a-VT . i y
vpq?  dvpq-(ng —ng) +2/7
X [X(nl)nf - A(nﬁnﬂ -VT}, (6.33)

SN' =N{

where the bar denotes complex conjugation and we in-
troduce the quantities

10 ZKBT®, Beim. 2

N 28NP FO
“UTT ow 1+ Fy
nt=n— (nqg)q’
i (6.34)
An) = a(n) b= ZWF0+17
a(n) —b 1+F 71

a(n) = \/(qu)2 + <—iq-v + %)2

We do not calculate the corrections to the elec-
tric conductivity, which would reproduce the results in
Ref. [17], as shown in Appendix F (see also Ref. [1§]
for the generalization to arbitrary disorder). For con-
venience in the calculations, we separate the contri-
butions due to dNY and 6N! in 6k;, and &° (cf.
Egs. (6.11¢c) and (6.23)):

Skin = ORY, + 0Ri,, (6.35a)
205 R
05, = 2 [ dw[$7(w) = 8" w)] x
w3 8Np

[06in]

/ / /dnlandng %
= VUF 92)

x nluRe{£126VN213 +L0,6,NL, —

- £§’25VN211}., (6.35¢)
R0 = RE 4 AP, (6.362)
0 a0 = 70 [ B0 <2 2P
Ro —R' = 5 /de (w)[ T oo | (6.36b)
_/d / d?q dnldng "
2 02)2
X {sﬂ;£126,,N211} ., (6.36¢)

where, as in Eq. (6.13), we use 6,N! to denote the
variational derivative with respect to the temperature
gradient and

4 d?q
rwr ) (27)?
dn;

nlunl,,Re [‘Cll — E‘(ljl] (636(21)
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Expressions (6.8) for the electric conductivity
and (6.11b) for the elastic correction to the ther-
mal conductivity and definition (6.9) for the kernels
remain unchanged. The momentum and angular
integrals in (6.9) can be calculated exactly; for the
singlet channel in the unitary limit, we find

_ e 5;“/ 1 1
Epv(w) = ~ oo [2 — 2wTH (wT) arctg o +
(wr)? (1 1
5 5 H(wr) |In 1+ wr)?
— (wr)*H(wr)In 2}, (6.37a)
2
11 0 T
Sﬂy(w) = oo T 2s,1gnw (6.37b)
2
12 €0 _ 1
S (W) o T{ (QH(wT) 1) arctg = +

+ gsignw + wrH (wT) X

X [% In (1 + ﬁ) +1In 2} } (6.37¢)

with the function H defined as

1

H(z) =13

(6.37d)

To perform the momentum integral in Eq. (6.36d), we
must keep the full form of the propagator in order to
avoid the infrared divergence that we would obtain in
the unitary limit,

DE?

626‘“, 1
2]

o

- %m [1+ (wr)?] — wrarctg <£> } (6.37¢)

Bzu(w) =

op2m2

) + 7lw|T —

where k 2me?v is the inverse screening radius.
Next, we calculate the angular integrals in Eqs. (6.35¢)
and (6.36¢c) as well as the angular part of the momen-
tum integrals, with the result
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/ / dl’ll dn2 dn3

N nlMRe{,sz&,Nglg + £§26,,N211} =

LN L O I
=N v - L _
a {(vq)2 ce {c—ﬁc_b} x
1 c=bv C-=V
_b’ bl _ - B
[& C+0] (Uq)Q[ . - }
1 C c
_ﬁ[c—b_ﬁ”v (6.38a)
dnyd
/ / n; n2 wRe{Emé N21}:
Z ~ T C_ C 1 1
=N v—= N 1 1
1V0u 2{[0-&; C—b} [C+C}
1 [ch  Cy[e=b =¥
_W[ﬂJrﬁH T ” (6.38b)

The function C is defined in Eq. (6.32) and V' is given by
the Fo — +oo limit of b in Eq. (6.34), where N is also
defined. The remaining integrals over the magnitude
of the momentum can be evaluated approximately; the
result can be written as

oo D 1 w® ONp
Ok, +RY = 2T dw B (w )[4 aw} (6.39a)
with
2
1 e 2T @ 3
Bun(@) = op2m? T{ 1+ (wr)? " <2w
—arctgwr — wrln <\/%> } (6.39h)
w2477

In the above kernel, the first term in the curly brackets
originates from &7 only: as discussed in Sec. 5.2, no
long-range terms can be present in the electron contri-
bution to the thermal conductivity. We note that the
second term in the above expression is beyond the log-
arithmic accuracy of our approximate calculation and
must be dropped. Similarly, most of the terms in the
other kernels can be neglected, and collecting the loga-
rithmic contributions, we obtain
w2
1 / o [ ON p} "

Com2T 4 Ow

fern (5) e (5) +
wL[l(w7')2——+E ! }X
12 3 4+ (wr)?2
x In (1 + (wi)2>}7 (6.40)
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where we define the singlet and triplet channel correc-
tions as

[k — KWF]W = (Aks + 3AKy) Oy
The final integration can now be performed within the

logarithmic accuracy; we find (cf. Eq. (4.4b))

2 E T
Akg = —1—5T(T7-)2 In (%) + Egl(Qﬂ'Tr) X

UFk

x In <T> - %gg(ﬁTT) In <1 + ﬁ) . (6.41)

where
g1(x) = 5—2 {% {21&' (%) - xQ} - 2}, (6.42a)
ga2(z) = %12 + §g1 (z) — g, (6.42b)

and ¢’ is the derivative of the digamma function. Be-
cause the asymptotic behavior of g () is

1 1
1— -2+ =z + ...,

57t z<l
gi(x) = (6.42¢)
3 6 2
r T x

both these functions tend to 1 as Tt — 0; there-
fore, in the diffusive limit, the main contribution is
T In(Dk?/T)/12. On the other hand, for Tt > 1, the
first term in Eq. (6.41) is the dominant one.

Turning to the triplet channel, we restrict ourselves
to the limiting diffusive and quasiballistic cases for sim-
plicity, although one can extend the calculation to the
entire temperature range, as is done in Ref. [17] for the
electric conductivity.

In the diffusive limit T7 < 1, we know from our
previous analysis that we can discard the B! term as
well as the S terms. The relevant kernels are then'?)

Enl )——ﬁ - Lwma+rn|, (643)
o) = op2m2w Fg . o] '

0 6261“/ s

Bl (@) = =t (1+ ). (6.44)

Their substitution in Eqs. (6.11)—(6.36b) gives

T 1
[1——1n

Aky = —
TN T

(1+F5’)] +

T
+ g (1+F). (6.45)

12) They can be obtained from Eqs. (6.25), (6.26) in the limit
d— 2.
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In the opposite limit 7T'7 > 1, the main contribution
comes, as for the singlet channel, from the logarithmic
divergence at large momenta in the kernel B':

2
1 €0
B’“’(w) T op2n?
Ep Feo\?
1 . 4
XT{WTH<\/w2+72>}<1+F€> (6:46)

Then the correction to the thermal conductivity is

2 E
Ary = —1—5T(TT)21I1 (%) (

which concludes the derivation of Eq. (4.4c).

This correction to the thermal conductivity (and
the corresponding one in the singlet channel) is the con-
tribution of inelastic processes to the energy relaxation
rate!®). In a clean system, such inelastic processes can-
not relax momentum (because of the Galilean invari-
ance), and hence they do not affect the electric conduc-
tivity, but they can contribute to the energy relaxation
rate I'.. In the kinetic theory, the thermal conductivity
can be written, up to a numerical coefficient, as

kg
1+ F¢

)2, (6.47)

kx TEp/T.,

and the rate is given by the sum of the rates for the
relevant processes, namely the electron—-impurity and
electron—electron scattering rates,

Fs - Fimp + Fe—e

with T'jmp = 1/7 and

T2 Er
Fe—e = aE—F In <T> .

Here, a is a constant whose exact value is irrelevant for

our argument. In the limit (7%/Ep)In(Er/T) < 1/,

we can expand the expression for the total rate, substi-

tute the result into the above formula for x and obtain
E

k < TTEp — aT(T7)In <TF> .

The first term in the right-hand side is the usual Drude
result for the thermal conductivity and the second term
has the form of correction (6.47). We note that in the
opposite limit (clean system), the result is

Ef

Er\’
T (=£
(7)

in agreement with the result in Ref. [30].

KR X

13) A similar argument is presented in Ref. [21].

10%*
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6.3. Specific heat

Recalling our discussion on the structure of the ki-
netic equation in Sec. 2, we write the total specific heat
as the sum of the electronic and bosonic contributions,

cy = ¢ + ey, (6.48a)
2
& = ?;;f %I/T, (6.48h)
0
dey = T (up - ug)., (6.48¢)

where, in accordance with Eq. (5.93c), the bosonic en-
ergy densities (in the equilibrium (3.1)) are

Uy = /dwwba(w)Np(w) (6.49)

with!4)

Re

T or

d?q
2m)d

1 .
1+ Fo’

b* (w) / Trn{
(

As before, we explicitly consider the singlet-channel,
short-range interaction in the zeroth harmonic approx-
imation for the Fermi-liquid constant (denoted by Fp).
The results for the long-range interaction in the unitary
limit are obtained by letting FJ — +oo. For the triplet
channel, we must substitute Fj with F§ and multiply
by an overall factor of 3. The final answer with the
correct, coefficients is given in Sec. 4.2.

Ea(w,q)}. (6.50)

In the diffusive limit, to which we restrict our at-
tention for d = 1, 3, we have

/

< | gt - e 65

_Re
Y

dq "
(2m)d

b (w) — b9 (w)

with the functions L§ defined in Eqgs. (6.20) and (6.21).
After the momentum integration, we find

[9) w2
ww -0 =g () &
cos z(d_g) .
4
X Sing(d_Q) [1— (1+F0,,)d/2} . (6.52)

1) This definition of the density of states is half the one in
Egs. (2.19) because of the different limits for the w integration
in the energy density and the specific heat.
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Inserting this in Eq. (6.48¢) gives

1 Q4 (T\"? (d d
=3 (p) <(5+1)r(5+2)
cosz(d—Q)
4 1— ! } 6.53
g sing(d—Q) [ (1+ Fg)4/2 (653

The relevant numerical values for the zeta and gamma
functions are given after Eq. (6.27), which has been
used to evaluate the w integral.

For d = 2, we can keep the full form of the propa-
gators to find the singular contribution to the specific
heat at an arbitrary value of T'r,

o 9 _ _Re d*q Fy 1
WP (w) = b (w) =~ (27)? [1 +0F(§’ C—b
(—iw+1/7) [ 1 1
B— <C—b_c—1/r>}’ .

with C and b defined respectively in Eqs. (6.32) and
(6.34). The first term in the integral is formally di-
vergent as |¢| — oo; this divergence gives a linear-in-T
contribution to the specific heat that does not depend
on disorder. This term must be disregarded because all
the linear terms are included in the definition of the ef-
fective electron mass, and taking it into account would
lead to a double counting. To regularize the integral,
we replace 1/(C — b) — 1/(C — b) —1/C in the first line.
Evaluating the momentum integral, we obtain
Ep

()

2
™ 1
™ . p

) 27'|w| T+ Fp In(1 + F} )} . (6.55)

B 1
872D

g
1+ Fy

b (w) — b (w) =

iy

The final answer for the correction to the specific heat

g
1+ F)

is then
1T 1 ,. (Er ,
ey = BDITE {Foln<T> ln(l-l-FO)}
1 , 1T !
— 2 =3 -2 @) 5 -
3 .7 o\
-5 00 () 050)

where ((2) ~ 1.645, ('(2) =~ —0.938, and ((3) ~ 1.202.
In the quasiballistic limit 7 — +4o0c, only the last line
is relevant:
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This T?-correction to the specific heat has the same
form as the correction found for two-dimensional Fermi
liquids [28] and agrees (in the appropriate limit) with
the result in Ref. [29].

As discussed before, the long-range interaction can
be taken into account by passing to the limit as
FJ — +o0, while the triplet channel contribution is
three times larger (see also Sec. 4.2).

7. CONCLUSIONS

Locality at the scale determined by the tempera-
ture and the validity of the conservation laws are two
main requirements for a proper kinetic description of
any system. In the present paper, we derived such a
description for the interaction effects in disordered met-
als (assuming that the clean counterpart of the system
is a stable Fermi liquid).

We showed that this description requires the intro-
duction of bosonic distribution functions in addition to
the usual fermionic quasiparticle distribution function.
These neutral bosons are of two types: (i) the ones de-
scribing oscillations in charge density (singlet) or spin
density (triplet) and (ii) fictitious (ghost) bosons that
prevent overcounting the degrees of freedoms (electron—
hole pairs) already included in the fermionic part. The
obtained conservation laws together with gauge invari-
ance allow an unambiguous definition of the corre-
sponding electric and energy currents.

For the electric transport, the neutral bosons are
not important and our description reproduces the
known results for the correction to the conductivity
obtained in Ref. [11] for the diffusive regime and in
Ref. [17] in the ballistic and crossover regimes.

The neutral bosons, however, are crucial for the
thermal properties of the system. Namely, their contri-
butions to the energy density are responsible for non-
analytic corrections to the specific heat, see Eqs. (4.6)
and (4.8). Our kinetic equation approach reproduces
the results for the interaction corrections to the spe-
cific heat previously calculated within the equilibrium
diagram technique [12]. Moreover, the neutral boson
contributions to the energy current violate the Wiede-
mann—Franz law, see Eq. (4.1) and the discussion
that follows it. The violation is stronger for lower-
dimensional systems (d = 1,2) in the diffusive regime,
see Eqgs. (4.2) and (4.4b). Other effects contributing to
the violation of the Wiedemann —Franz law are the en-
ergy dependence of the electron elastic scattering and
the inelastic scattering of the electrons on the neutral
bosons. The latter effect was found to be relevant in
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the quasiballistic regime T'7 > h for two-dimensional
systems, see Eqs. (4.4).

The violation of the Wiedemann—Franz law was
investigated before in the diffusive regime in Refs. [20]
and [23] within the «quantum kinetic equation»
approach and by the Kubo formula in Ref. [22].
Tronically, even though the forms of the energy current
operator used in those references are wrong, the final
results for the thermal conductivity are consistent with
our Eqs. (4.2)-(4.4). We think that this agreement is
accidental.

We are grateful to B. L. Altshuler for initiating this
work. Interesting conversations with M. Yu. Reizer are
acknowledged. We thank A. 1. Larkin, A. J. Millis, and
B. N. Narozhny for discussions of our results. I. A. was
supported by the Packard foundation.

APPENDIX A

Correction to the thermodynamic potential

A standard analytic continuation of Eq. (2.17) gives

0N = /— th X
d%q F
— L ImiIn(1+ —TI% =
X/(zmd m “( o “’"“)

/—— th )ImTrln<1+EfIR>. (A.1)
14

In the second line, we use the operator notation
(see Eqs. (3.3) and (3.13)), which gives the correct
generalization for the momentum-dependent Fermi-li-
quid parameter. Substituting the transform of the ex-
plicit expression (5.43a) for the polarization operator,
we rewrite the argument of the logarithm as

. -1
(1+F) [(27) +
According to definition (3.11), the term in the square
N
brackets is (U’)

L.

— W
1+ F

. Using the property
Trln (AB) =Trin A + Trln B

and the fact that In (1 + F) does not contribute to the
imaginary part, we conclude that

ImTrln (1 + —HR> = —ImTr [ln LP —1In L9
v

Substituting this identity in Eq. (A.1), we finally ob-
tain Eq. (2.18).
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APPENDIX B

The microscopic form of the energy current
operator

The action entering the partition function that de-
scribes the electron gas in the presence of an external
electric field is given by

S = /dt ddy [Waﬂp — T Hyp — oy (B.1)

with the condition V x A = 0 that ensures the absence
of the magnetic field. The variables (¢,r) on which all
the fields depend are suppressed. The gauge-invariant
part of the Hamiltonian for the noninteracting system
has the usual form

YT Hyinp = % (iV + A) T (=iV + A) Y +
+ P Vimpr,  (B.2)

where Vj,,,,, is the impurity potential and the potentials
¢ and A describe the external electric field:

eEemt = —V(p + 6tA
As usual, the charge conservation law
Op+V-j=0 (B.3)

follows from the requirement of gauge invariance, with
the charge and current densities given by

p=eplip,

j= % [T (=iV + A) ¢ + (iV + A)pTep] . (B4)

The invariance of the action under the replacement

¢(t,r) = ¥(t +altr),r)

(and a similar replacement for ') underlies the deriva-
tion of the energy conservation law. A straightforward
calculation gives

0S8 2
= = 0= 06" Hy) + 00, (410) -
‘ﬁv [0 (~iV+ A —(iV+ AW O], (B.5)

where the prime means that the derivative acts on
¥, ¢! only. By adding and subtracting terms propor-
tional to ¢ in the last bracket and to d; A in the first
term, we find the energy conservation law

v 1 .
Opug +V - jo = Beat — g@[atp+v -il, (B.6)
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where
Up = 1/)Tﬁgi¢a (B.7a)
35 = =5 (10 + )0 (=i + Ay -
— (iV 4+ At (id; — )v|.  (B.7b)

The first term in the right-hand side of Eq. (B.6) is the
usual Joule heat; the last term in that equation is not
gauge invariant, but it vanishes because it is propor-
tional to the left-hand side of continuity equation (B.3).

We now consider the generalization to the interact-
ing case. The Hamiltonian then contains the additional
term

1
5 [ eV - r)etu(e).
where V (r) = e%/|r| describes the density—density Cou-
lomb interaction, which can be decoupled by the Hub-
bard —Stratonovich transformation. This amounts to
introducing the quantum fields ¢ and A in the action
by adding the term
1

~UloY + SEf, eBp=-Vo+aA (B
and redefining the vector potential as the sum of the
external and fluctuating ones:

A= A+ A (B.9)

The variation of the action with respect to the fluctu-
ating potentials results in the first and fourth Maxwell
equations relating the fluctuating electric field to the
charge and current densities,

V'Efl:p7 0:j+8tEfla (BIO)

where the electric current is defined in Eq. (B.4), but
with substitution (B.9) performed.

To obtain the energy conservation law, we must con-
sider the further transformation

o(t,r) = o(t + alt,r),r)

and a similar one for A. Proceeding as before, we find
the conservation law

81.07

at+V J2 =1 t
1., 1 OA

U? = Uug — EEﬂ + g [p¢+ E‘Efl:| 5 (B.ll)
1 1 o

e 1o 1[0 094

32 =1Jo 6¢J+e{¢J 5t fl}a
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where wug, j§ are defined in eq. (B.7) (with substitu-
tion (B.9)). Given the form of Eq. (B.11), one might
be tempted to call u» and j5 the energy and energy
current densities, in terms of which the conservation
law takes exactly the same form as in the noninter-
acting case. But such a redefinition would result in
gauge-dependent expressions for the densities, because
the terms in the square brackets taken separately are
not gauge invariant. Hence, this naive redefinition of
the conserved quantities is nonphysical, because any
physical perturbation can be coupled to only gauge-in-
variant quantities. To find gauge-invariant definitions,
we rewrite the contribution of those gauge-noninvariant
terms as

9
ot

0A

{p¢+ 5

~Ef[:| +V [¢J - %Eﬂ} =

10¢

e Ot
1 .
(8,5A — V¢) . Ef[ + E [V(b -J + 8tA 6tEﬂ] .

1 .
=E¢[atp+v'.]]+ 0=V -Ep]+

10
T
Here, the second line vanishes because of charge con-
servation, Eq. (B.3), and because of the first Maxwell
equation (B.10). In the third line, we use the second
Maxwell equation to eliminate the current; in the re-
sult, we substitute the definition of the fluctuating field
given in Eq. (B.8) and obtain that the third line of the
above equation is equal to 8,5E§cl. This enables us to
conclude that the correct, gauge-invariant expressions
for the energy and energy current densities are

- 1_.
u =T Hyp + EE;“ (B.12)
1
J* = 5|0+ )Y (—iV + A)y -
= (iV + A (o, — p)v|, (B.13)

where the potentials are the total ones:
A:Aezt+A-, 30:‘pezt+¢

We note that these expressions are gauge-invariant with
respect to gauge transformations of both the external
and fluctuating potentials. We believe that only such
quantities can be coupled to the «gravitational field» in
the Luttinger scheme for the calculation of the thermal
conductivity [5].

The same final answer is obtained if the interaction
is decoupled in the «gauge-fixed» form A = 0. In this
case, which is most widely used in the literature, there
are two contributions to the energy current vertex in

Fig.4. a) The energy current vertex for the noninter-
acting case; b) the additional vertex induced by the
interaction. The solid lines with arrows are the elec-
tron Green's functions, the wavy line is the interaction
propagator, the dashed lines are the «standard» (non-
interacting case) energy and electric current operators
defined respectively in Egs. (B.7b) and (B.4)

the diagram approach, see Fig. 4: in addition to the
usual vertex of the noninteracting case, which arises
from the terms 9,¢'Ve, there is a vertex from the
otV terms. These vertices were not taken into ac-
count in Refs. [20,22, 23]. However, analogous vertices
were previuosly considered in the calculations of the
thermoelectric coefficient!®) with the inclusion of the
electron—electron interaction in the particle-hole chan-
nel [31] and in the Cooper channel [32] and for the
electron—phonon interaction [33].

APPENDIX C

Alternative parameterization

The operator He_j, defined in Eq. (5.54) is clearly
not a standard Hamiltonian. However, we can intro-
duce a different definition of the propagator L£?,

D A (=ivy) = S 2o = b1,

i (C.1)

such that the (new) ﬁe,h operator is indeed a Hamil-
tonian:

ﬁe_h(q) =FvqlF, E/i\tgm = ‘7:"SAtTJ:",
. A\ 1/2 (C.2)
F = (1 + F)

15) A derivation similar to that in this appendix was performed
independently by M. Yu. Reyzer (private communication).
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(the action of the operator F is defined in Eq. (5.49)).
Proceeding as in Sec. 5.4, we obtain the following ex-
pressions for the K propagators:

VKR = (8,)7! [ﬁg - ﬁﬁpﬁ],
(C.3a)

VKA = — [59 - ﬁt"’ﬁ] @)7",
vKE = —i (9,) " [[:9/\79 +/\7959} @) "+
+i(8t)‘1ﬁ[ﬁpj\7’p+J\7”Ep]ﬁ(8t)‘1. (C.3b)

The «kinetic equation» for N9, Eq. (5.64a), remains
unchanged, while A’? now satisfies the equation

[at+ﬁe_h(—m;m] =St" (NP g5}, (C4)
where
~p K1 _ ~out ~ A A A
St {Ne g} = 2f S A0} 420 F (C)
or, after Wigner transformations (5.61)—(5.63),
w {atm {5,980} +i [ﬁeh@.,m]] -
= St"{N?, £}, (C.6)

dl’l3 A dl’l6

S/\tp{Np-,f}(wanl-,HZ):/dE/ Q4
d
X [7:1673?4T§2;43(57W)7:45 +

+ Fsor§a Tlnaa(e,0)Fis),  (C7)

with definitions (5.27) and (5.66) for v and Y.

We can then proceed as in Sec. 5.6 and obtain con-
servation laws (5.89) and (5.94); the only formal differ-
ence is in the definition of the bosonic energy density,
which is now

1
I‘) = §Trn

Ua (t, [ﬁa./\A/ a} .

In the alternative parameterization, the formalism
can be developed with not more difficulties than in the
original one. However, the evaluation of the thermal
conductivity becomes cumbersome. In the original pa-
rameterization, it is also easier to include (at least per-
turbatively) the effects due to higher harmonics of the
Fermi-liquid parameters.

APPENDIX D

Derivation of the electron collision integral

The calculation of the matrix collision integral
is simplified by the introduction of two functions
A(t,r,n,n) and B(t,r,n,n) such that

eif\’(t7n7r)e—if((t,ﬁ,r) — (A]i[( + B&%{) (Dl)

nn’

We recall that K = K4 g+ K_ 6% and

(o1
O = 1 0 .

The collision integral (i.e., the right-hand side
of Eq. (5.22)) in the matrix notation is then

1 N ~ A AL~ 5 AT
L {[itwe (44807, @) (A B0, -
- (Ail\’ + Ba’;{)n,f]g(ﬁ) X
x (Al +B&f()ﬁ7nog(n)]>ﬁ (D.2)

where the open dot indicates the time convolution
(cf. Eq. (5.9)) and the time argument of the functions
A and B is the first (second) time argument of the
Green’s function on their right (left), e.g.,

ByBog = / dts B(t)g" (1. 1) Bta)g™ (t3. 12).

Substituting the matrix Green’s function of
form (5.23), we find that the collision integral becomes

§in SAtI\’
~7 ~A
St St a

The explicit expressions for the retarded, advanced,

(D.3)

and «Z» components are
St = " () [B; A] + g™ (m)2 B(n, )¢ (3) B3, n),
St = [4: Bl (n) - B(n,5)g" (3) B, ) og" (m)
St7 = 25(ty — ta) [A; B] - 2B(n,1)g" (i) B(i, n),
where the (equal-time) commutator is
[4; B] = A(n,#)B(f,n) — B(n, ) A(#, n).

The calculations performed so far are exact. But at
the one-loop level, we are interested in terms up to
the second order in the fluctuating fields. Then expan-
sion of the exponentials in Eq. (D.1) shows that any
product of two functions B is proportional to terms
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of the form K _ K | which vanish after averaging over
the fluctuating fields; accordingly, we drop such terms.
The remaining terms are all commutators, whose ex-
plicit (approximate) form is

[4;B] = 2i (K_(ﬁ) ~K_ (n)).

We note that the second-order terms cancel each
other exactly. The surviving first-order terms lead
to Eq. (5.24) for K_.

For reference, we present the expression for SAtI\
from which Eq. (5.73) and Eq. (5.76) are derived (with
the exception of the last line in Eq. (5.76b), which is a
consequence of requirement (5.34) for K ):

(D.4)

APPENDIX E

Derivation of Egs. (5.81b) and (5.82b)

We start the derivation by separating the contribu-
tions of the Keldysh and retarded/advanced propaga-

tors to é\tin in Eq. (5.75b):
dngdng

16/W

X [QICK(t_, 5t, ns, 1’12) - ,CK <t_

A~

Sty = ’712 g(t,0t,na) x

ot
+ 5707n37n2

>_

— KK <t— %,0,1’13,1}2) —(ny » )], (E.1)

N o

X [’CA(tg,t2,n3,n2)—K (tl.,tg,ng./ng)—(ng — nl)] X
x [g(ti,t3,m1)g(ts, t2,m2) +
+ g(t1, t3,m2)g(ts, t2,m1)].

ARA

Stl dIIQ dl’l3 3

2 Y12 X

(E.2)

For convenience, we rewrite the Keldysh part in terms
of the new time variables ¢, dt:

t1 + to

t = ——— ot=t; —t
2 3 1 2,

g(t1,t2) = g(t,6t), (E.3)

KE(t1,t) = KE(t+6t/2,0),...
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We then consider the limit of Eq. (E.1) as ty — #;;
clearly, as 6t — 0, the square bracket vanishes. But we
know that in this limit, g — —2i/7dt (cf. Eq. (5.31)):
in principle, there could be a nonvanishing contribution
from the first-order expansion of the propagators in §t.
The last two Keldysh propagators depend on 6t in their
first variable, but with opposite signs, and hence their
respective first-order terms cancel each other. As for
the first propagator, the property KX (1,2) = KX (2,1)
translates into KX (¢,6t) = KX (¢, —6t), which ensures
the absence of first-order terms. We conclude that in
the limit as 6t — 0, the Keldysh propagator terms van-
ish. Similarly, from the property K4(1,2) = K£f(2,1),
it follows that Eq. (E.2) vanishes for ¢t = t1; this con-
cludes the proof of Eq. (5.81b).

We now turn to Eq. (5.82b). Because 8y, — 9y, =
= 20s¢, we must expand the Keldysh propagators to the
second order in §t. At this order, the square bracket
in Eq. (E.1) is (up to the proper combination of angular
variables)

52 (agt - ia;) KX (7,0) =

I Wh R K
= -4t tzh_r)r%latlatQIC (tl,tz),

where we restored the original time variables. In the

operator notation, this is

5t2 [at lc"’at}

to=t1

Therefore,

1 dngdng 3 %
4r 2 2

x { [8t ICKat] (t1,t1,n3,01) —
— [0 K50 (1, 11,m5,m5)

lim (8,51 — 8,52) Stl (tl, tz)

to—tq

which proves the first part of Eq. (5.82b).

As regards Eq. (E.2), using the analytic property
KA(1,2) = KE(2,1) again, we conclude that when
the derivatives 0y, 0, act on the distribution func-
tions g, the terms in the second line cancel each other.
However, there are nonvanishing contributions when a
derivative acts on the propagators, such as

dnsd
/dts n2 n3 —5— T gt ts,m1)g(ts, t1,mp) X
X {[6th j|(t1./t3.,1’11.,1’13)— [8,51CR] (tl,tg,ng.,ng)}.

Collecting all the terms, we arrive at
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lim (8,51 —8t2 )Stl

to—t1

(t17t2) =

dngd
/d ns3 1’12F}/2><

X {[8t/CR] (t1,t3,n2,n3) — [8th ](tl,ts,nlan3)}

X [g(t17t37nl)g(t37t17n2)+g(t17t37n2)g(t37t17n1)]7

X

which concludes the derivation of Eq. (5.82h).

APPENDIX F

Elastic kernels in terms of the interaction
propagator D
To compare the kernels in Eq. (6.9) with the cor-
responding expressions in Ref. [17], we use the Fourier
transforms of Eqs. (5.51) and (5.55a) to obtain
Re [ﬁp - ﬁg] = —vwlm [ﬁgbRﬁg]. (F.1)
If we assume, as is done in Ref. [17], that the Fermi-li-
quid parameters are independent of the momentum di-
rection, then the interaction propagators D4 are also
independent of it and the above equation becomes

Re [m - 59] = —pwim [£9>DR<£9]7 (F.2)

where we generalized the angular integral notation such
dn1

that
<£9 = /Q—dﬁg(nl 1’12) £g> = /Q—dﬁg(nl 1’12)
We recall that our ghost propagator £9 coincides with
the diffuson propagator D in Ref. [17].
By substituting Eq. (F.2), we rewrite kernels (6.9)

dl’l2

as

2
S (@) = =8 %

dd g9 g9 9,9
« /(%) (teo)(e9) —(co9)) DR, (£.3)
d
Sho(w) —Q?d (;lﬂgd (naL9Y(LIng)DE,  (F.4)
d
€ (o) = %Im/(;jﬂgd DF [{£%n0 Lon5)(L9) ~
— (LI LI)(ng L) + (LI )(LINg)(LI) —

— (L) (o Lna) (£9)] + DR (£7) (na LonsL7) -

— (LI ) (LIN L) — (LINg LINBLI)|. (F.5)

The first square bracket in the kernel £ can be ex-
pressed as
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T {(ﬁgnaﬁg [ng; E&T] L£9) +
+ (L9 [na; sﬂ £9n5><£9>} . (F.6)

Using the identity

59[ St]ﬁg [n'ﬁg], (F.7)

we rewrite it as
|2 (1) - (een) +
+ (L) (naLIng) — (Egnaﬁgn@} . (F.8)

In the second square bracket, we use the identity

LInLo = 0y Lf (F.9)
UF
to obtain
— (€994, (na %) = (£7m0)0y, (L7) -
F
— (L9400, L%)] . (F.10)
Finally, the identity
LI9L9 = —id, L9 (F.11)

enables us to conclude that the sum of the three kernels
S'yst?4¢

that determines the correction to the conductiv-
ity, Eq. (6.8), coincides with the combination
(Ko — K1 — Lo/vpT) in the expression for the conduc-
tivity in Ref. [17].

APPENDIX G

Inelastic kernel for the phase relaxation time
We consider a uniform system in which the bosons
are assumed to be in equilibrium with the electrons. In
other words, the distribution function f is independent
of r,n and the boson-electron collision integral (3.18)
must vanish. The latter condition enables us to express
the bosonic distributions N® in terms of f and obtain

Tij(e,w) = —Qdé(n/irTj)i /dsl U(e,er;w)  (G.1)

(from now on, irrelevant angular and momentum vari-
ables are omitted; all relevant definitions can be found
in Sec. 3). The former condition implies that colli-
sion integrals (3.19d), (3.20b), and (3.20f) vanish, and
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therefore the kinetic equation for (the zeroth harmonic
of) f reduces to

O fle;t) = /dw /dsl A(w)¥(g,e1;w), (G.2)
where
Alw) = 1/7_1'3)2

« Re Tr{ [2§‘ch9 + i} St [[:P + 307 — 4[:9] } (G.3)

We substitute Eq. (F.1) and a similar relation for the
triplet channel (D? being the triplet channel propa-
gator) in the expression for A(w); we then use iden-
tity (5.44) and obtain

Aw) = —%Im Tr [S}TEQ (f)R + b?) ﬁg] (G4

Using Eq. (5.44) again, we immediately recover the
form of the inelastic kernel A(w) given in Ref. [27].
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