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INTERACTION CORRECTIONS TO THERMAL TRANSPORTCOEFFICIENTS IN DISORDERED METALS:THE QUANTUM KINETIC EQUATION APPROACHG. Catelani, I. L. Aleiner *Physi
s Department, Columbia University, New York, NY 10027Submitted 30 August 2004We 
onsider the singular ele
tron�ele
tron intera
tion 
orre
tions to the transport 
oe�
ients in disorderedmetals to test the validity of the Wiedemann� Franz law. We develop a lo
al, quantum kineti
 equation ap-proa
h in whi
h the 
harge and energy 
onservation laws are expli
itly satis�ed. To obtain the lo
al des
ription,we introdu
e bosoni
 distribution fun
tions for the neutral low-energy 
olle
tive modes (ele
tron�hole pairs).The resulting system of kineti
 equations enables us to distinguish between the di�erent physi
al pro
essesinvolved in the 
harge and energy transport: the elasti
 ele
tron s
attering a�e
ts both, while the inelasti
pro
esses in�uen
e only the latter. Moreover, the neutral bosons, although in
apable of transporting 
harge,
ontribute signi�
antly to the energy transport. In our approa
h, we 
al
ulate on equal footing the ele
tri
and thermal 
ondu
tivities and the spe
i�
 heat in any dimension. We �nd that the Wiedemann� Franz law isalways violated by the intera
tion 
orre
tions; the violation is larger for one- and two-dimensional systems in thedi�usive regime T� � ~ and is due to the energy transported by neutral bosons. For two-dimensional systemsin the quasi-ballisti
 regime T� � ~, the inelasti
 s
attering of the ele
tron on the bosons also 
ontributes tothe violation.PACS: 71.10.Ay, 72.10.Bg, 72.15.Eb1. INTRODUCTIONIt is well-known that measurement of the thermaltransport 
oe�
ient may provide additional informa-tion about the s
attering pro
esses in disordered met-als. In parti
ular, the Wiedemann �Franz [1℄ law holdsas long as elasti
 s
attering dominates in the system1),L = ��T = �23e2 ; (1.1)where � and � are the respe
tive thermal and ele
tri

ondu
tivities in the system, T is the temperature inenergy units (kB = 1), and e is the ele
tron 
harge.On the other hand, for the deep inelasti
 forward s
at-tering, the Wiedemann �Franz law is violated [2℄, andhen
e the Lorentz number L is smaller than the uni-versal value, L < �2=3e2.*E-mail: aleiner�phys.
olumbia.edu1) It was shown by G. V. Chester and A. Thellung (Pro
. Phys.So
. (London) 77, 1005 (1961)) that Eq. (1.1) remains valid forarbitrary s
attering strength as long as the s
attering rates andthe density of states are smooth (C2) fun
tions of energy nearthe Fermi level.

Histori
ally, the transport (in parti
ular, thermaltransport) 
oe�
ients were �rst 
al
ulated using theBoltzmann equation (BE) [3℄. The advantage of thisapproa
h is that it allows a 
lear separation of the s
alesin the problem: a parti
le moves freely most of the timeand rarely s
atters on other parti
les or impurities. TheBE is appli
able at the time s
ale mu
h larger than thetime that it takes for the s
attering to happen, andhen
e all the s
attering events are en
oded into the lo-
al 
ollision integral. All the quantum me
hani
al partof the 
al
ulation is then redu
ed to solving the s
atter-ing problems for the relevant physi
al pro
esses. Thisgives the pre
ise form of the 
ollision integral but doesnot a�e
t the general stru
ture of the BE. The greatadvantage of the BE is that its stru
ture illuminatesthe relevant 
onservation laws.In the late 50s, an alternative approa
h be
amepopular � the so-
alled Kubo formulas [4℄. In thisapproa
h, the transport equation is not derived butrather the 
onne
tion of the transport 
oe�
ient to theequilibrium 
orrelation fun
tion of 
ertain 
urrent op-erators is used. (The Kubo approa
h to the thermal372
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tion 
orre
tions to thermal transport 
oe�
ients : : :transport was 
laimed to be put on rigorous footing byLuttinger [5℄ based on the assumption that there existssome spatial s
ale in the system su
h that the gradi-ent expansion is possible for perturbations smooth atthat s
ale). Being exa
t, the Kubo formulas are for-mally appli
able even in the regime where the trans-port equation 
annot be justi�ed (the evolution 
annotbe separated into free motion and rare 
ollisions).However, in pra
ti
e, the possibility of expli
it 
al-
ulations within the Kubo formula is somewhat limited.The most spe
ta
ular results of the Kubo-formula 
al-
ulations � su
h as the Maki �Thompson [6, 7℄, Asla-mazov �Larkin [8℄, and weak lo
alization [9℄ 
orre
tionsto the ele
tri
al 
ondu
tivity � require a small param-eter, whi
h is the same parameter that determines theappli
ability of the Boltzmann equation. This meansthat all these e�e
ts 
an also be des
ribed in terms ofquantum 
orre
tions to the 
ollision integral (for weaklo
alization, this was done in Ref. [13℄). The most rel-evant e�e
t for this paper, the Altshuler �Aronov [10℄intera
tion 
orre
tion to the ele
tri
al 
ondu
tivity intwo dimensions [11, 14℄Æ�AA = � e22�2~ ln� ~T���� �1 + 3�1� 1F �0 ln(1 + F �0 )�� ; (1.2)originates from the elasti
 s
attering of ele
trons ona self-
onsistent potential (Friedel os
illation) [15, 16℄and 
an be on
e again obtained from the 
orre
tion tothe 
ollision integral [17℄.The su

ess of the Kubo formulas in the des
riptionof the quantum and intera
tion e�e
ts in thermal trans-port is by far more modest and 
ontroversial. Parti
-ularly, despite a 20-year history, there is no 
onsensuson the answer to a natural question: how does the log-arithmi
 
orre
tion to 
ondu
tivity (1.2) translate intoa 
orre
tion to Wiedemann �Franz law (1.1)?The �rst attempt to answer this question was madeby Castellani at al. [19℄ by analyzingWard identities fora disordered Fermi liquid; they found that the Wiede-mann �Franz law should hold for intera
ting disorderedele
trons. Their 
laim was later disputed by Livanov etal. [20℄: in a �quantum kineti
 equation� approa
h2),a logarithmi
 divergen
e for the thermal 
ondu
tivityin two dimensions was found to have even the sign op-posite to the Wiedemann �Franz law. More re
ently,Niven and Smith [22℄ applied the Kubo formula and2) The quantum kineti
 equation with the ne
essary 
onserva-tion laws was not a
tually derived in Ref. [20℄ and we are there-fore unable to 
ompare their approa
h with ours.

again found a logarithmi
ally divergent 
ontribution(for the Coulomb but not a short-range intera
tion) inaddition to the one that follows from the Wiedemann �Franz law.The reason for this 
onfusion in the literature istwofold. Te
hni
ally, the identi�
ation of the 
orre
tform of the 
urrent operator is 
ompli
ated by the pres-en
e of the ele
tron�ele
tron intera
tion (the energy
urrent operator in the form de�ned by Luttinger [5℄is 
umbersome for use due to the presen
e of the addi-tional disorder and intera
tion potentials in it, whereasthe super�
ially more elegant expression in the Mat-subara frequen
y representation does not in fa
t 
orre-spond to any 
onservation law for the intera
ting sys-tem and violates gauge invarian
e, see Appendix B).Physi
ally, the use of the diagram 
al
ulation withinthe Kubo formula prevents one from 
learly identify-ing the relevant s
attering pro
esses, be
ause ea
h dia-gram taken separately des
ribes some mixture of su
hpro
esses and does not have a physi
al meaning indi-vidually.This situation 
alls for the development of the ki-neti
 equation des
ription, whi
h takes the intera
tion
orre
tion of the Altshuler �Aronov type into a

ountfor both the ele
tri
 and thermal transport. The ad-vantage of this approa
h is that it allows keeping tra
kof the 
onservation laws expli
itly and thus ex
ludesany ambiguity in the de�nition of the 
urrents. Thispaper is devoted to the development and appli
ation ofthis method.We use the units with ~ = 1 throughout the pa-per and restore the Plan
k 
onstant in the �nal resultsonly. This paper is organized as follows: in Se
. 2,we dis
uss some general features of the kineti
 equa-tion approa
h using a simple �toy model�. In Se
. 3,we present our �nal expression for the kineti
 equationdes
ribing intera
ting ele
trons in disordered metals.Se
tion 4 summarizes the results for the thermal 
on-du
tivity and the spe
i�
 heat obtained by solving thekineti
 equation. The derivation of the kineti
 equa-tion is presented in Se
. 5, and the 
al
ulation of thetransport 
oe�
ients and the spe
i�
 heat is given inSe
. 6. Some mathemati
al details are relegated to theAppendi
es.2. STRUCTURE OF THE KINETICEQUATION: CURRENTS AND SPECIFICHEATThe purpose of this se
tion is to show how the stru
-ture of the kineti
 equation permits the proper identi-�
ation of the relevant 
urrents. We �rst re
all how373
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al
ulate the spe
i�
 heat from the kineti
 equationon
e the 
onservation laws are obtained (this enables adire
t 
he
k against the mu
h simpler thermodynami

al
ulation). We then dis
uss the lo
ality requirementfor a proper kineti
 equation. This requirement deter-mines the number of the ne
essary degrees of freedom(i.e., independent distribution fun
tions) that must beintrodu
ed into the kineti
 des
ription.2.1. Kineti
 equation and 
onservation lawsAs a spe
i�
 example, we here 
onsider ele
tron-likeand hole-like ex
itations 
oupled to neutral bosons inthe presen
e of an external ele
tri
 �eld E. (As we seelater, the system of intera
ting ele
trons 
an be e�e
-tively des
ribed at low temperatures by su
h a 
oupledsystem for the s
attering at small momentum transferin the parti
le�hole 
hannel.) The kineti
 equations forele
trons and bosons have the form� ��t + vFn � r+ evFn �E ��"� f = Steff;Ng; (2.1a)� ��t + v(!)n � r�N = Stbff;Ng; (2.1.b)where f = f(";n; t; r) is the distribution fun
tion forthe ele
trons with 
harge e, vF is the Fermi velo
ity,and n is the dire
tion of the momentum. The energy" is 
ounted from the Fermi level su
h that f(" > 0)des
ribes ele
tron-like ex
itations and 1�f(�"), " > 0,
orresponds to hole-like ex
itations. Con
entratingonly on the 
orre
tions that are singular in T , we ne-gle
t the dependen
e of the ele
tron velo
ity on theenergy (the ele
tron�hole asymmetry) be
ause it doesnot introdu
e anything but a small 
orre
tion regularin powers of T 2.The bosoni
 fun
tion N = N(!;n; t; r) is the distri-bution fun
tion for the bosons with the velo
ity v(!).All the intera
tion e�e
ts are in
luded into the 
olli-sion integrals Ste and Stb; for example, an ele
tron-like ex
itation 
an de
ay into a less energeti
 ele
-tron and a neutral boson, or an ele
tron and a hole
an annihilate into a neutral bosons, et
. By lo
ality,the 
ollision integrals depend on the same variables asthe distribution fun
tions, i.e., Ste = Ste(";n; t; r) andStb = Stb(!;n; t; r).In thermodynami
 equilibrium with E = 0, theFermi fun
tion for fermions and the Plan
k fun
tionfor the neutral bosons,fF (") = 1exp("=T ) + 1 ;NP (!) = 1exp(!=T )� 1 ; (2.2)

solve the kineti
 equation. The temperature T is herea 
onstant determined by the initial 
onditions for thekineti
 equation.Being an e�e
tive des
ription for the slow dynam-i
s of the original quantum me
hani
al system, the ki-neti
 equation must respe
t the 
onservation laws ofthe original system: (i) the total 
harge 
onservationand (ii) the total energy 
onservation. These two 
on-ditions are enfor
ed by the requirementsZ d" �hSteff;Ngin = 0 (2.3a)andZ d"" �hSteff;Ngin ++ Z d! ! b(!)hStbff;Ngin = 0 (2.3b)for the 
ollision integrals; here, � is the density of states(DOS) of the ele
trons (we negle
t its energy depen-den
e) and b(!) is the density of states of the bosons.We also introdu
e the short notation for the angularintegral h: : :in � Z dn
d : : : ; (2.4)where 
d is the total solid angle in d dimensions.Let the ele
tron density � be given by�(t; r) = e� Z d"hf(";n; t; r)in: (2.5)Integrating Eq. (2.1a) over the energy and the dire
-tion of the momentum and using Eq. (2.3a), we arriveat the 
ontinuity equation���t +r � j = 0; (2.6)with the ele
tron 
urrent density de�ned asj(t; r) = e�vF Z d"hnf(";n; t; r)in: (2.7)(Stri
tly speaking, Eq. (2.6) �xes only the longitudinal
omponent of the 
urrent, i.e., an arbitrary 
url maybe added to Eq. (2.7). We do not 
onsider the e�e
tof the magneti
 �eld here and therefore disregard su
hmagnetization 
urrents.)We now turn to the analysis of the energy 
onserva-tion. We multiply Eq. (2.1a) by �" and integrate over" and n. Next, we multiply Eq. (2.1b) by !b(!) and in-tegrate over ! and n. Adding the two results togetherand using Eqs. (2.3b) and (2.7), we obtain�utot�t +r � j"tot = j � E; (2.8)374
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tion 
orre
tions to thermal transport 
oe�
ients : : :whereutot = ue(t; r) + ub(t; r); (2.9a)ue(t; r) = � Z d" " hf(";n; t; r)in; (2.9b)ub(t; r) = Z d! ! b(!)hN(!;n; t; r)in; (2.9
)andj"tot = j"e + j"b ; (2.10a)j"e(t; r) = vF � Z d" " hnf(";n; t; r)in; (2.10b)j"b(t; r) =Z d! ! b(!)v(!)hnN(!;n; t; r)in: (2.10
)The right-hand side of Eq. (2.8) is nothing but theJoule heat. For a homogeneous system, the gradientterm in the left-hand side vanishes, and by virtue ofthe energy 
onservation, expression (2.9) must be iden-ti�ed with the total energy density of the system. Onthe other hand, for E = 0, Eq. (2.8) has the form of the
ontinuity equation for the energy density; therefore,Eqs. (2.10) must be identi�ed with the total energy
urrent density. This statement is not entirely trivial.One 
ould imagine that for an intera
ting system, theDOS entering the respe
tive expressions (2.5) and (2.9)for the 
harge and the energy density are renormalizeddi�erently. Energy 
onservation equation (2.8) elimi-nates su
h a possibility.The 
onservation of energy, Eq. (2.8), is valid forany rate of the energy �ow into and out of the system.On the other hand, the 
ollision integrals in Eqs. (2.1)de�ne a 
ertain time s
ale �in: the dynami
s slow at thes
ale of �in 
an be 
hara
terized by distribution fun
-tions (2.2) with a time-dependent temperature T (t)(
orre
tions to su
h an adiabati
 des
ription are of theorder of �in�t lnT ). Substituting this form of the dis-tribution fun
tion in Eq. (2.9) and then using the resultin Eq. (2.8), we �nd, for a homogeneous system,
V (T )�T�t = j � E; (2.11)where
V = ��T �� Z d" "fF (")++ Z d! ! b(!)NP (!)� (2.12)is nothing but the spe
i�
 heat of the system. The lat-ter quantity may be 
al
ulated independently by ap-plying the standard diagram te
hnique for equilibrium

systems. The agreement of su
h a 
al
ulation with thestru
ture of the kineti
 equation result in (2.12) is themost important 
he
k of the 
onsisten
y of our des
rip-tion of the thermal transport.2.2. Lo
ality of the kineti
 equation and thenumber of the degrees of freedomThe form of the 
ollision integrals lo
al in spa
e andtime is 
learly a simpli�ed des
ription. A
tually, the
ollision integral may be nonlo
al at the time s
ale ofthe order of ~=T and at the spatial s
ale of the order of~vF =T . We say that su
h a des
ription is lo
al and thedes
ription where the nonlo
ality is involved at largerspatial and time s
ales is nonlo
al.The number of distribution fun
tions to be intro-du
ed into the des
ription is governed by the lo
alityof the kineti
 equation. We use the model in Eqs. (2.1)to illustrate the point. We had a lo
al des
ription interms of the fermioni
 and bosoni
 distribution fun
-tions. But we 
an try to eliminate the bosoni
 distri-bution fun
tion and obtain a des
ription in terms ofthe ele
troni
 degrees of freedom only.Assuming that the deviation of the distributionfun
tion from its equilibrium value is small, we 
anlinearize the bosoni
 
ollision integral to the formStbff;Ng = �Î �N � ~Nffg� ; (2.13)where Î is some positive de�nite integral operatorand ~Nffg is the fun
tional of the fermioni
 distri-bution fun
tion f(") su
h that for f(") = fF ("),~N(!) = NP (!). Using Eq. (2.13), we 
an formallysolve Eq. (2.1b) asN = 1�=�t+ v(!)n � r+ Î Î ~Nffg: (2.14)Substituting Eq. (2.14) in Eq. (2.1a), we apparently ob-tain the kineti
 equation in terms of the ele
tron dis-tribution fun
tion only,� ��t + vFn � r+ evFn � E ��"� f = St?effg;St?effg � (2.15)� Ste(f; 1�=�t+ v(!)n � r+ Î Î ~Nffg) :If we are interested in the linear response to aweak and smooth external perturbation, the des
rip-tion in terms of this single kineti
 equation is 
om-pletely equivalent to the original 
oupled system (2.1).However, there are 
lear drawba
ks: the presen
e of375
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ollision integral makes itnonlo
al on the s
ale determined by the kineti
 equa-tion itself rather than by the temperature. Moreover,although it is still easy to identify the 
ontinuity equa-tion for the ele
tron 
harge using Eq. (2.3a), there is nolonger a relation similar to Eq. (2.3b). This is why theanalysis of the energy 
onservation law be
omes 
um-bersome: 
al
ulation of the spe
i�
 heat and energy
urrent requires the time expansion of the 
ollision in-tegral, whi
h in turns seems to require the knowledgeof the 
on
rete form of the inelasti
 
ollision integral.The example we have just 
onsidered is somewhattrivial be
ause the system was separated into fermioni
and bosoni
 modes from the very beginning. The prob-lem that we 
onsider in this paper is how to in
lude the
olle
tive modes of the intera
ting ele
tron system intothe kineti
 equation. Indeed, in this 
ase, any 
al
u-lation gives the result in terms of the ele
troni
 distri-bution fun
tion only, and it is not 
lear a priori howto introdu
e the o

upation numbers for the 
olle
tivemodes into the des
ription.As we show in what follows, it may be possible toreverse our previous argument. We 
onsider a system ofintera
ting ele
trons and �nd that the intera
tions aredes
ribed by a nonlo
al 
ollision integral. We thereforeintrodu
e bosoni
 degrees of freedom that allow rewrit-ing the nonlo
al kineti
 equation in terms of 
oupled,lo
al kineti
 equations. This then makes it possible toidentify the energy density and energy 
urrent densityas sums of the fermioni
 and bosoni
 
ontributions. Aspe
i�
 example is brie�y dis
ussed in the next subse
-tion.2.3. Degrees of freedom for the kineti
s of adisordered Fermi liquidWe now fo
us on the disordered, intera
ting Fermiliquid. For simpli
ity, we 
onsider the intera
tion inthe singlet 
hannel only. Our goal is to show that thethermodynami
 result for the intera
tion 
orre
tion tothe spe
i�
 heat has indeed the kineti
 equation stru
-ture (2.12). As a result, we are then able to deter-mine the ne
essary number of the bosoni
 degrees offreedom for the lo
al kineti
 equation. For the paperto be self-
ontained, we brie�y review the thermody-nami
 approa
h, referring the reader to the literaturefor further details3).The thermodynami
 
al
ulation of the spe
i�
 heat3) See, e.g., Refs. [12; 26℄ and referen
es therein.
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Fig. 1. Leading singular 
ontribution to the thermody-nami
 potential for the 
lean system. The shaded box
orresponds to F=�, de�ned through the two-parti
levertex �!, see Ref. [26℄; the solid lines are 
oher-ent parts of the ele
tron Green's fun
tions. For thedisordered system, the polarization bubbles should bedressed by impurity s
attering [12℄
V is based on the relation between 
V and the ther-modynami
 potential 
:
V = �T �2
�T 2 : (2.16)The thermodynami
 potential 
an be written as thesum of the thermodynami
 potential 
0 for noninter-a
ting quasiparti
les and a 
orre
tion Æ
 asso
iatedwith soft modes in the system. Keeping su
h a 
or-re
tion is legitimate be
ause it turns out to be a moresingular fun
tion of the temperature than the T 3 
or-re
tion due to the ele
tron�hole asymmetry.The 
orre
tion Æ
 is given by the sum of the so-
alled ring diagrams, see Fig. 1. The Matsubara repre-sentation for this diagram isÆ
 = T2 X!n Z ddq(2�)d ln�1 + F� �(ij!nj;q)� ; (2.17)where F is the 
oupling 
onstant, !n = 2�Tn are thebosoni
 Matsubara frequen
ies, and � is the polariza-tion operator. The expli
it expression for this operatoris not important for the present dis
ussion and is givenlater, see Eq. (5.43a).A straightforward 
al
ulation, relegated to Ap-pendix A, enables us to rewrite Eq. (2.17) as376
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tion 
orre
tions to thermal transport 
oe�
ients : : :Æ
 = � Z d!2� �12 
th !2T ��� Z ddq(2�)d ImTrh ln L̂� � ln L̂gi: (2.18)The expli
it expressions for the bosoni
 propagatorsL� and Lg are not relevant (they 
an be foundfrom Eq. (3.11), with the tra
e understood as the sumor integration over all variables other than !; q); wejust mention here that L� = Lg in the absen
e of inter-a
tion (F = 0). Substituting Eq. (2.18) in Eq. (2.16)and integrating over ! by parts, we �ndÆ
V = ��T 1Z0 d! !NP (!) [b�(!)� bg(!)℄ ; (2.19a)where the densities of states are de�ned asb�(!) = 1� Im Z ddq(2�)d �!Tr lnL�; (2.19b)bg(!) = 1� Im Z ddq(2�)d �!Tr lnLg : (2.19
)The fun
tion b�(!) has the physi
al meaning of the den-sity of states (DOS) of the bosoni
 degrees of freedomin the system (soft ele
tron�hole pairs). The fun
tionbg(!) has the meaning of the density of states of �
ti-tious bosons (we 
all them �ghosts�) that des
ribe softele
tron�hole pairs in the absen
e of intera
tion. Thephysi
al meaning of the minus sign in front of bg(!) isthat with the formation of 
olle
tive modes, some de-grees of freedom are removed from the des
ription ofthe nonintera
ting system; the ghost bosons in the lastterm in Eq. (2.19a) take this redu
tion into a

ount.Comparison of Eq. (2.19a) with Eqs. (2.12)and (2.9) suggests the following expression for the
ontribution of the 
olle
tive modes to the energydensity in the nonequilibrium 
ase:ub = 1Z0 d! ! [N�(!)b�(!)�Ng(!)bg(!)℄ ; (2.20)here, N� = Ng = NP in the equilibrium and have tobe found from some kineti
 equation otherwise (thisde�nition requires that Eq. (2.8) holds for an arbitrarydistribution fun
tion). A similar expression 
an be ob-tained for the 
ontribution due to the intera
tion in thetriplet 
hannel by introdu
ing an additional propaga-tor L� and the distribution fun
tion N� . This meansthat the proper lo
al kineti
 equation must in
lude fourdistribution fun
tions: one for the fermions, f("), andthree for the bosons, N�;�;g(!). We derive su
h a de-s
ription in the subsequent se
tions.

3. FINAL FORM OF THE KINETIC EQUATIONAND SCATTERING PROCESSESIn this se
tion, we summarize the �nal form of thequantum kineti
 equation, the 
onservation laws, andthe 
orresponding 
urrents. The expli
it expressionsof the 
ollision integrals are given in subse
tion 3.2.The detailed derivation of these results is presented inSe
. 5.In a

ord with the previous se
tion, the kineti
s ofthe system is des
ribed by the ele
tron distributionfun
tion f(";n; t; r), the �distribution fun
tions� N̂�and N̂� of the bosoni
 singlet and triplet ex
itations,and the �distribution fun
tion� N̂g of the ghost ex
i-tation.The ele
tron distribution fun
tion f(";n; t; r) is di-agonal in the spa
e of momentum dire
tions. On the
ontrary, bosoni
 ex
itations are 
hara
terized by thedensity matri
es N�(!;q;ni;nj ; t; r) (� = �; �; g) thatmay not be diagonal in the spa
e of momentum dire
-tion n. Only in the thermal equilibrium, withfeq(";n; t; r) = fF (") ;N�eq(!;q;ni;nj ; t; r) = 
dÆ([ni;nj)NP (!) (3.1)and with the Fermi and Plan
k distribution fun
tionsgiven by Eq. (2.2), the matri
esN�(!;q;ni;nj ; t; r) a
-quire the diagonal form4). But even outside the equi-librium, these matri
es have the propertyN� (!;q;ni;nj) == � �N� (�!;�q;nj ;ni) + 
d([ni;nj)� (3.2)(hereafter, the spe
tator t; r variables might be sup-pressed.)Stri
tly speaking, f(";n; t; r) is a 2� 2 density ma-trix in the spin spa
e and N� is a 3� 3 density matrixin the angular momentum L = 1 spa
e; however, thisis not important in the 
al
ulations below and we writethe equations for the diagonal 
omponents only. To a
-
ount for the threefold degenera
y of the triplet mode,we expli
itly introdu
e fa
tors of 3 in the 
orresponding
ollision integrals and 
urrents.For 
ompa
tness, we use the operator notation formatri
es in the spa
e of momentum dire
tions, su
hthat, for example, N̂ should be understood as an oper-ator a
ting on a fun
tion a(ni) ashN̂ai (ni) � Z dnj
d N(ni;nj)a(nj): (3.3)4) As given in Eq. (3.1), the equilibrium distribution fun
tionsN�eq(!) are de�ned only for ! > 0; for ! < 0, they are foundusing the property in Eq. (3.2).377
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 equations and 
onserved 
urrentsThe kineti
 equation for the ele
trons in the ele
tri
�eld E (we do not 
onsider the magneti
 �eld e�e
ts)has the 
anoni
al form��t+v�r+ev�E ��"�f(";n; t; r) = bSte(";n; t; r);Ŝte = bSt�f + bSte-�ff;N�g+ 3 bSte-�ff;N�g �� 4 bSte-gff;Ngg+ bSte-effg; (3.4)where the �rst term in the right-hand side is the �bare�
ollision integralSt� (ni;nj) = 1�(�ij ) � ([ni;nj) Z dnk�(�ik) ; (3.5)with �ij = dninj , and the other terms, whi
h are tobe written shortly, take the intera
tion e�e
ts into a
-
ount.The bosoni
 distributions, for � = �; �; g, are gov-erned by!�� 11 + F̂� ; �tN̂��+ nŝ�(!;q);rN̂�o++ i hĤ�e�h(!;q); N̂�i� == bSt�-e fN�; fg (!;q;ni;nj ; t; r); (3.6)where the 
ommutator and anti
ommutator are de-�ned asnÂ; B̂o � 12(ÂB̂+B̂Â); hÂ; B̂i � ÂB̂�B̂Â: (3.7)The operators Ĥ�e�h a
ting in the angular (momen-tum dire
tion) spa
e are de�ned asĤ�e�h(!;q) = v � q� !1 + F̂� (3.8)and the velo
ity operator isŝ�(!;q) = �Ĥ�e�h(!;q)�q == v + ! ��q  F̂�1 + F̂�! : (3.9)The a
tion of the operators F̂� in the angular spa
e isthe same as in Eq. (3.3); these operators are given byF̂ g = 0;[F̂ � ℄(ni;nj) = F �(�ij);[F̂ �℄(ni;nj) = �V (q) + F �(�ij); (3.10)

where F �;�(�) are the Landau Fermi-liquid intera
-tion parameters. The angular-independent term �V (q)takes the long-range part of the Coulomb density�density intera
tion into a

ount.To 
hara
terize the density of states for thebosoni
 ex
itations, we introdu
e the propagatorsL̂�(!;q;ni;nj), � = �; �; g ashiĤ�e�h(!;q)� bSt�i L̂� = 1̂: (3.11)They des
ribe the propagation of an ele
tron�hole pairs
attered by the disorder potential. This propagation isa�e
ted by the 
orresponding intera
tions for � = �; �,and it redu
es to the usual di�usion for the ghosts.We are now prepared to write the 
onservation lawsthat must be satis�ed by the 
ollision integrals inde-pendently of their expli
it form or the parti
ular shapeof the distribution fun
tions. The 
onservation of thenumber of parti
les is ensured by the 
onditionZ bSte-�ff;N�g (";n; t; r) dn d" = 0;� = g; �; �;Z bSte-effg (";n; t; r) dn d" = 0; (3.12a)and the impurity 
ollision integral (3.5) preserves thenumber of parti
les on ea
h energy shell,Z bSt�f(";n; t; r) dn = 0: (3.12b)The 
onservation of energy during purely ele
tron�ele
tron 
ollisions is ensured byZ " bSte-effg (";n; t; r) dn d" = 0: (3.12
)Finally, the 
onservation of energy during the ele
tron�boson 
ollision is guaranteed by the 
onditions� Z " bSte-�ff;N�g (";n; t; r) dn d"
d ++ Z Tr hL̂�(!) bSt�-eff;N�g (!; t; r)i d!2� == �i Z Tr hhĤ�e�h(!); L̂�(!)i N̂�(!; t; r)i !d!2� ;(3.12d)for � = g; �; �, where the tra
e is de�ned asTrÂB̂ = Z dn1dn2
2d �� Z ddq(2�)dA(q;n1;n2)B(q;n2;n1): (3.13)378
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tion 
orre
tions to thermal transport 
oe�
ients : : :The existen
e of 
onservation laws (3.12) immedi-ately enables us to establish the expressions for the
onserved 
urrents in the spirit of Se
. 2.1. By inte-grating both sides of Eq. (3.4) over " and n, we �ndthe relations���t +r � j = 0;�(t; r) = e� Z f(";n; t; r)d" dn
d ;j(t; r) = e�vF Z nf(";n; t; r)d" dn
d ; (3.14)whi
h express the 
onservation of 
harge in terms ofthe usual 
harge density and ele
tri
 
urrent density,
f. Eqs. (2.5)�(2.7).Turning to the energy 
onservation, we multi-ply Eq. (3.4) by " and then integrate over n and ". Simi-larly, we multiply Eq. (3.6) by L̂�, take the tra
e (3.13),and integrate over !. Adding the results together, we�nd �utot�t +r � j"tot = j � E;utot = ue + u� + 3u� � 4ug;j"tot = j"e + j"� + 3j"� � 4j"g : (3.15a)The ele
troni
 
ontributions to the energy density and
urrent density are given byue(t; r) = � Z d" dn
d " f(";n; t; r);j"e(t; r) = �vF Z d" dn
d "nf(";n; t; r): (3.15b)The 
ontributions of the bosoni
 neutral ex
itations areu�(t; r) == Z Tr� 11 + F̂� L̂�(!)N̂�(!; t; r)� ! d!2� ;j"�(t; r) == Z Trnŝ�(!)L̂�(!)N̂�(!; t; r)o ! d!2� (3.15
)for � = g; �; �.Equations (3.14)�(??) 
onstitute our main results:the 
onserved 
urrents are de�ned in terms of the dis-tribution fun
tions of the quasiparti
les that des
ribelow-energy ex
itations of the intera
ting ele
tron gasfor intera
tion in the parti
le�hole 
hannel. In 
on-trast with previous 
al
ulations [20�23℄, we expli
itlyshow the validity of the 
ontinuity equation for energytransport; no su
h proof has been presented before inthe quantum kineti
 equation approa
h5). Moreover,5) The 
urrent operator used in Ref. [21℄ does not satisfy the
ontinuity equation for the long-range intera
tion potential.

we believe that the form of the energy 
urrent in thosereferen
es is not 
orre
t, be
ause it is not gauge invari-ant, see Appendix B for more details. As an additionalbene�t, our approa
h enables us to 
learly identify the
ontributions of the 
olle
tive modes and the s
atter-ing pro
esses involved (this last task is a

omplishedby analyzing the expli
it form of the 
ollision integrals,whi
h is also needed to 
al
ulate the transport 
oe�-
ients). The derivation of the 
ollision integrals 
an befound in Se
. 5; in the next se
tion, we summarize theresults and give them a physi
al interpretation.3.2. The 
ollision integralsIn this se
tion, we give the expli
it form of various
ollision integrals and verify that they satisfy 
onserva-tion laws (3.12). To shorten the formulas, we introdu
ethe 
ombinations of the distribution fun
tions��ij;kl ("; !;q; t; r) � N� (!;q;ni;nj ; t; r)��nf(";nk; t; r)�f("�!;nk; t; r)o+
dÆ(dninj)�� nf(";nl; t; r) [1� f("� !;nk; t; r)℄o (3.16a)and	ij;kl ("; "1;!) � f("� !;ni) [1� f(";nj)℄�� f("1;nk) [1� f("1 � !;nl)℄�� f(";ni) [1� f("� !;nj)℄ f("1 � !;nk)�� [1� f("1;nl)℄ : (3.16b)It follows from Eq. (3.2) that ��ij;kl has the propertyZ d"��ij;kl("; !;q) = Z d"��ji;lk(";�!;�q): (3.16
)It is easy to 
he
k that � = 	 = 0 in the thermal equi-librium (Eq. (3.1)). The 
ombination in (3.16b) entersthe 
ollision integral in the symmetri
 form	sij � 14h	ij; ij +	ji; ij +	ij; ji +	ji; jii: (3.16d)It is worth noting that the terms involving four distri-bution fun
tions f are in fa
t 
an
elled from 	s; be-sides, it has the propertiesZ 	sij ("; "1;!) d" d"1 = 0;Z a(!) Z "	sij ("; "1;!) d" d"1 d! = 0 (3.16e)for any even fun
tion a(!). Finally, we introdu
e thevertex 
 for the impurity s
attering
kij � 1�(�ij )
d �Æ(dnjnk)� Æ(dnink)� (3.17)379
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tron 
ollision integral is then expli-
itly expressed asbSt�-e (!;q;n1;n2; t; r) = � Z d" Z dn3dn4
2d �� n
314��32;41 ("; !;q; t; r) ++ 
234��13;14 ("; !;q; t; r)o; (3.18)for � = g; �; �. The formula for the ele
tron�boson
ollision integral 
an be 
onveniently de
omposed intolo
al (l) and nonlo
al (n) (in the sense of Se
. 2) partsbSte-� = bSte-�l + bSte-�n : (3.19a)The lo
al part of the 
ollision integral isbSte-�l (";n1) = 1� Z d!2� 1! Z ddq(2�)d Z dn2dn3dn4
3d �� �
312�L�34��41;21("; !;q) + ��34;21("; !;q) �L�41�++ 
321�L�34��42;21("; !;q) ++��34;21("; !;q) �L�42�	; (3.19b)where the bar denotes Hermitian 
onjugation,�L�(!;q;ni;nj) = L�(�!;�q;nj ;ni): (3.19
)Using Eq. (3.11) and de�nitions (3.13) and (3.17), we
an verify that the pair of equations (3.18), (3.19b)satis�es the energy 
onservation law Eq. (3.12d) on itsown.The fun
tion in Eq. (3.19b) also satis�es the parti-
le number 
onservation law (3.12a). To verify this, we
hange the variables as (!;q)! (�!;�q) in the terms
ontaining �L� and then use Eqs. (3.16b) and (3.19
) torewrite the integral in Eq. (3.19b) in terms of L� only:Z bSte-�l (";n1)d" dn1 = � � � Z dn1 : : : dn4
4d �� �
312�L�34��41;21("; !;q)�L�14��43;12("; !;q)�++ 
321�L�34��42;21("; !;q)�L�24��43;12("; !;q)�	:Performing the n3-integration using the delta fun
tionsin Eq. (3.17), we obtain the result that is antisymmet-ri
 under the n1 $ n2 permutation. Hen
e, the aboveexpression vanishes after the n1;2-integrations.The physi
al meaning of 
ollision integrals (3.18)and (3.19b) is as follows. In the absen
e of disorder,the ele
tron�hole pair propagates for an in�nitely long
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e − h

e − hFig. 2. The s
attering amplitudes leading to the 
re-ation of the same ele
tron and hole out of di�erentele
tron�hole pairs (double lines) (a, b) and their in-terferen
e 
ontribution (
). The impurity is denotedby �lled 
ir
lestime. Due to the impurity potential, the de
ay of thepair into an ele
tron and a hole moving in di�erent di-re
tions as shown in Fig. 2 is allowed. Equations (3.18)and (3.19b) are the probabilities for su
h a de
ay. (Seealso Se
. 5 after Eq. (5.67) for further dis
ussion.)By 
onstru
tion, the nonlo
al 
ontribution to the
ollision integralbSte-�n (";n1) = 2� Z d!2� 1!2 Z ddq(2�)d Z dn2 : : : dn7
6d ��
213
546 [Lg14�Lg34℄ sh2� !�2�"��f(";n6)�f(";n4)��� Z d"1� ���57;64("1; !;q) + ��57;46("1; !;q)� �L�72 ++ L�57 ���72;13("1; !;q) + ��72;31("1; !;q)� 	 (3.19d)satis�es its own 
onservation lawZ "m bSte-�n (";n1) d" = 0; m = 0; 1; (3.19e)i.e., preserves the energy and the number of ele
tronsmoving along a given momentum dire
tion n. More-over, one 
an see that the 
ollision integral (3.19d)does not 
ontribute to the linear response at all be-
ause � = 0 and f is independent of the angle inthe thermodynami
 equilibrium. The nonlo
ality ofthis 
ollision integral indi
ates that the task formu-lated in Se
. 2 has not been fully a

omplished. Te
hni-
ally, this nonlo
ality 
an be de
oupled by introdu
inga density matrix that is nondiagonal in the boson�ghostspa
e. We 
hoose not to pursue this line be
ause theterm in Eq. (3.19d) does not 
ontribute to any observ-380
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tion 
orre
tions to thermal transport 
oe�
ients : : :able quantity of interest and does not a�e
t any 
on-servation laws.The ele
tron�ele
tron 
ollision integral 
an be splitinto elasti
, nonlo
al, and lo
al parts:bSte-e(";n1) = bSte-eel (";n1) ++ bSte-en (";n1) + bSte-el (";n1): (3.20a)The elasti
 term des
ribes the s
attering of the ele
tronon the stati
 self-
onsistent potential 
reated by all theother ele
trons,bSte-eel = 2�Re Z d!2� 1! Z ddq(2�)d Z dn2 : : : dn6
5d 
213
546�� [L� + 3L� � 4Lg℄52 [f("� !;n6)� f("� !;n4)℄�hLg14f(";n3) + Lg34f(";n1)i: (3.20b)Its physi
al origin is dis
ussed in detail in Ref. [17℄.Being elasti
, it preserves the number of parti
les, forea
h energy shell,Z bSte-eel (";n1) dn1 = 0; (3.20
)as 
an be seen from the property 
213 = �
231 of ver-tex (3.17).The nonlo
al termbSte-en = �4�Re Z d!2� 1!2 �� Z ddq(2�)d Z dn2 : : : dn6
5d 
213
546 �� Z d"1� [Lg14 �Lg34℄ � �L� + 3 �L� � 4 �Lg�52 ��	s46("; "1;!) (3.20d)des
ribes the inelasti
 ele
tron�ele
tron 
ollisions dur-ing whi
h the bosons and ghosts a
t as virtual states.(The fun
tion 	s was introdu
ed in Eq. (3.16d).) Thereal part being an even fun
tion, we 
an use Eq. (3.16e)to verify that Eq. (3.20d) satis�es the 
onservation lawZ "m bSte-en;l(";n1) d" = 0; m = 0; 1: (3.20e)As indi
ated, the same law is satis�ed by the lo
al (andelasti
) term:

bSte-el = 2� Z d!2� 1!2 �� Z ddq(2�)d Z dn2 : : : dn6
5d Z d"1
213
546 �� [Lg14 + Lg34℄ [L� + 3L� � 4Lg℄52 �� sh2� !�2�"� [f(";n6)� f(";n4)℄�� [f("1;n1)[1� f("1 � !;n3)℄ + (n1 $ n3)℄ : (3.20f)Therefore, Eq. (3.20e) enables us to 
on
lude that both
ollision integrals (3.20d) and (3.20f) do not a�e
t thetransport 
oe�
ients (in the 
ase where they 
an be
onsidered perturbations in 
omparison to the bare im-purity 
ollision integral).We note that although it might not be evident, thepresent form of the kineti
 equation permits the properidenti�
ation of the inelasti
 kernel that determines thephase relaxation time; further details 
an be found inAppendix G.4. SUMMARY OF THE RESULTS FOR THETHERMAL TRANSPORT AND SPECIFICHEATIn this se
tion, we present our �nal answers for theintera
tion 
orre
tions to the thermal 
ondu
tivity andthe spe
i�
 heat. They are obtained by solving thekineti
 equations and then substituting the solutionsin de�nitions (3.15) of the energy and energy 
urrentdensities. The expli
it 
al
ulations are performed inSe
. 6. We 
onsider short-range impurities for whi
hthe s
attering time � is independent of the s
atteringangle, �(�) = � . We report our results for quasi-one-dimensional and three-dimensional systems in the dif-fusive limit T� � ~; for two-dimensional systems, wedo not put su
h a restri
tion on the temperature range.However, 
ommon to all dimensionalities is the zerothharmoni
 approximation for the Fermi-liquid 
onstants(see Eq. (6.14)).4.1. Thermal 
ondu
tivityIn the absen
e of a magneti
 �eld, the thermal 
on-du
tivity tensor is diagonal, ��� = �Æ�� , and we writethe expression for the diagonal 
omponents simply as� = �WF +��: (4.1)The �rst term is given by the Wiedemann �Franz law�WF = L�T with the in
lusion of the intera
tion 
or-re
tions to the 
ondu
tivity and the Lorentz numbergiven in Eq. (1.1). The se
ond term 
auses a violation381
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ontribution to�� is due to the long-range nature of the bosoni
 en-ergy transport, whi
h originates from the long-rangepart of the intera
tion in the singlet 
hannel. In thequasiballisti
 
ase, large 
ontribution also 
omes fromthe inelasti
 s
attering of the ele
tron on the bosons.Smaller 
orre
tions arise due to the triplet 
hannelbosoni
 transport and to the energy dependen
e of theelasti
 s
attering.For quasi-one-dimensional and three-dimensionalsystems in the di�usive limit, we write�� = Æ�� + 3Æ�� + Æ�el;where the bosoni
 
orre
tions in
lude the ghost 
ontri-butions Æ�� = �� � �g; � = �; �(see Eq. (6.12) for the de�nition of ��) and we negle
tthe inelasti
 
ontributions Æ�in, whi
h are smaller bythe parameter T�=~.For quasi-one-dimensional systems, the expli
it ex-pressions areÆ�el = 18p2� � �32�rDT~ ����1+3 �1� 2F �0 �1+F �0 �p1+F �0 ��� ; (4.2a)Æ�� = 38p2� � �32�rDT~ ak ln1=2�~Dk2T � ; (4.2b)Æ�� = 38p2� � �32�rDT~ hp1 + F �0 � 1i ; (4.2
)where a is a length of the order of the wire width,k = p4�e2� is the inverse s
reening length in the bulk,and D = �v2F =d is the di�usion 
onstant (in d dimen-sions).For three-dimensional systems, the results areÆ�el = 548p2�3 � �52�r T 3~3D ��(1 + 3"1� 2F �0  1� 1p1 + F �0 !#) ; (4.3a)Æ�� = 1532p2�3 � �52�r T 3~3D; (4.3b)

Æ�� = 1532p2�3 � �52���r T 3~3D "1� 1p1 + F �0 # : (4.3
)In these expressions, �(x) is the Riemann zeta fun
tion,with �(3=2) � 2:612 and �(5=2) � 1:341.For two-dimensional systems, we separate the 
or-re
tions due to the singlet and the triplet 
hannel in-tera
tions: �� = ��s + 3��t: (4.4a)With logarithmi
 a

ura
y, the singlet 
hannel 
ontri-bution is��s = T6~g1�2�T�~ � ln�~vF kT ��� T24~g2��T�~ � ln�1 + ~2(T�)2��� �215 T~ �T�~ �2 ln�EFT � ; (4.4b)where k = 2�e2� is the two-dimensional inverse s
reen-ing length. The 
ross-over fun
tions g1 and g2 are givenin Eq. (6.42). Here, we note that g1(x); g2(x) � 1 forx� 1 and g1(x) � 3=x, g2(x) � 14x2=15 for x� 1.For the triplet 
hannel, we have
��t = 8>>>>>>>>>>>><>>>>>>>>>>>>:

� T18~ �1� 1F �0 ln (1 + F �0 )�++ T12~ ln (1 + F �0 ) ; T � � ~;��215 T~ �T�~ �2 ln�EFT ���� F �01 + F �0 �2 ; T � � ~: (4.4
)
In the di�usive limit T� � ~, our results are 
on-sistent with those in Ref. [22℄, even though the form ofthe energy 
urrent operator used in this referen
e is, inour opinion, in
orre
t, see Appendix B.4.2. Spe
i�
 heatThe spe
i�
 heat is given by
V = �23 �T + Æ
V ; (4.5)where the �rst term is the usual nonintera
ting ele
-troni
 
ontribution and the se
ond term is the bosoni
intera
tion 
orre
tion.382
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tion 
orre
tions to thermal transport 
oe�
ients : : :For quasi-one-dimensional and three-dimensionalsystems, Æ
V = (1 + 3�d)� T~D�d=2 ad: (4.6)The two terms in the �rst bra
ket are respe
tively thesinglet and triplet 
hannel 
ontributions. The singlet
hannel term is 
onsidered in the unitary limit andis therefore independent of any intera
tion parameter.On the other hand, the Fermi-liquid parameter for theintera
tion in the triplet 
hannel enters Eq. (4.6) as�d = 1� 1(1 + F �0 )d=2 (4.7)and the numeri
al fa
tors a1;3 area3 = 1532�p2� � �52� ;a1 = � 38p2�� �32� :For two-dimensional systems, with logarithmi
 a
-
ura
y, the result isÆ
V = �� T~D�� (1 + 3�2) 112 ln�EFT �++ �1 + 3�22� 34� �(3)T��; (4.8)where �(3) � 1:202. The �rst term in the right-handside extends the logarithmi
 behavior known in the dif-fusive limit to higher temperatures (the upper 
uto� isof the order of the Fermi energy EF and not ~=�); these
ond term be
omes relevant in the quasiballisti
 limitand 
oin
ides with the 
orre
tion 
al
ulated in Ref. [29℄for the 
lean Fermi liquid. In the di�usive limit, ourresults are the same as those obtained in Ref. [12℄ byan expli
it thermodynami
 
al
ulation.5. DERIVATION OF THE KINETIC EQUATIONThis se
tion is devoted to the derivation of the lo-
al kineti
 equation. We �rst introdu
e the Eilenbergerequation and some basi
 notation. Next, we performa (generalized) gauge transformation: this is the 
ru-
ial step that enables us to obtain the lo
al des
ription.Then we introdu
e the bosoni
 degrees of freedom andderive the 
ollision integrals.

5.1. Eilenberger equationOur starting point for the derivation of the kineti
equation is the Eilneberger equation (Eq. (5.7)). Fordisordered metals, the derivation of this equation start-ing from the a
tion for the intera
ting ele
tron gas inthe presen
e of disorder 
an be found in Ref. [17℄. Webrie�y summarize it here to introdu
e some notationand a straightforward generalization to the angle-de-pendent impurity s
attering rate and Fermi-liquid pa-rameter (see Eqs. (5.8) and (5.15)).The intera
tion with small momentum and energytransfer in the singlet 
hannel (the triplet 
hannel is tobe dis
ussed in Se
. 5) is de
oupled using the two Hub-bard � Stratonovi
h �elds ��(t; r;n). For the purposeof the one-loop approximation that we use, these �elds
an be 
onsidered Gaussian with the propagatorshh�+(1)�+(2)ii = � i2DK(1; 2);hh�+(1)��(2)ii = � i2DR(1; 2);hh��(1)�+(2)ii = � i2DA(1; 2);hh��(1)��(2)ii = 0; (5.1)where hh: : :ii denotes averaging over the �elds ��. Weuse the short notation(i) � (ti; ri;ni); Z di � Z dtidri Z dni
d ;(i�) � (ri;ni); Z di� � Z dri Z dni
d ; (5.2)where i = 1; 2; : : : and 
d is the total solid angle.We introdu
e the disorder-averaged Green's fun
-tion of the ele
tron in the �eld �� in its matrix formin the Keldysh spa
e,bG(1; 2j�) =  GR(1; 2j�) GK(1; 2j�)GZ(1; 2j�) GA(1; 2j�)!K ; (5.3)su
h that its average over the �u
tuating �eld �� givesthe usual expressions for the physi
al propagators:hhGR(1; 2)ii == �i�(t1�t2)h (1) y(2)+ y(2) (1)i;hhGA(1; 2)ii == i�(t2�t1)h (1) y(2)+ y(2) (1)i;hhGK(1; 2)ii = �ih (1) y(2)�  y(2) (1)i;hhGZ (1; 2)ii = 0 : (5.4)
Here, �(t) is the Heaviside step fun
tion,  y and  are the fermioni
 
reation/annihilation operators in the383
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hani
alaveraging h: : :i is performed with an arbitrary distri-bution fun
tion to be found from the solution of thekineti
 equation.For the disorder-averaged Green's fun
tion, thesemi
lassi
al approximation is obtained by integratingthe Wigner transform of bG(1; 2j�) over the distan
efrom the Fermi surfa
e:bG(t1; t2;p;R) = Z d2r eiP�r bG(1; 2j�); (5.5)wherer = r1 � r2; R = 12(r1 + r2);P = p� 12 [A (t1;R) +A (t2;R)℄ ;ĝ(t1; t2;n; r) == i�� 1Z�1 d� bG�t1; t2;n �pF + �vF � ; r� ; (5.6)
where A is the ve
tor potential of an external ele
tro-magneti
 �eld, pF is the Fermi momentum, vF is theFermi velo
ity, and � is the density of states on theFermi level. The dynami
s of the semi
lassi
al Green'sfun
tion ĝ in the matrix form is governed by the Eilen-berger equation [24℄�~�t + v � ~r+!
 ��n� ��n�� ĝ + i h�̂; ĝi == hĝ Æ; bSt� ĝi2 ; (5.7)where v = vFn, the a
tion of the �bare� 
ollision inte-gral on any fun
tion a(n) is de�ned ash bSt�ai (n) = Z dn1
d St� (n;n1)a(n1) ;bSt� (n1;n2) = 1�(�12) � Æ(dn1n2) Z dn2�(�12) ; (5.8)and �12 = dn1n2 (for the short-range impurity, �(�) isindependent of �; however, the formulas derived hereare valid for an arbitrary impurity s
attering). Thetime 
onvolution of two matri
es â(t1; t2) and b̂(t1; t2)is given by â Æ b̂ = Z dt3 â(t1; t3)b̂(t3; t2);hâ Æ; b̂i = â Æ b̂� b̂ Æ â: (5.9)

De�ning the 
ommutator between a matrix 
̂(t; r;n)and ĝ as[
̂; ĝ℄ = 
̂(t1; r;n)ĝ(t1; t2;n; r)�� ĝ(t1; t2;n; r)
̂(t2; r;n); (5.10)we express the 
ovariant derivatives in Eq. (5.7) as~�tĝ = �t1 ĝ + �t2 ĝ + i ['̂; ĝ℄ ; (5.11a)~rĝ = rĝ + i hÂ; ĝi (5.11b)with Â = A1̂1K and '̂ = '1̂1K . Here, 1̂1K denotes theunit matrix in the Keldysh spa
e and ' is the s
alarpotential for an external ele
tromagneti
 �eld su
h thateE = �r'+ �tA; eB = �
r�A:The ve
tor !
 = eB=(m
) has the magnitude of the
y
lotron frequen
y and the dire
tion of the magneti
�eld B. Finally, �̂ is the matrix in the Keldysh spa
e:�̂ =  �+ ���� �+!K : (5.12)The matrix Green's fun
tion ĝ is subje
t to the 
on-straints ĝ(n; r)Æĝ(n; r) = Æ(t1 � t2)1̂1K ; (5.13a)Tr ĝ(t; t;n; r) = 0: (5.13b)In thermal equilibrium, the relationgK(t1; t2) = �gRÆ n� nÆ gA� (t1; t2);n(t1; t2) = Z d"2� exp (i"(t2 � t1))n(");n(") = 1� 2fF (") = 2 th "2T (5.14)must hold independently of the form of the spe
tralfun
tions gR;A.In what follows, we assume that there is no mag-neti
 �eld, B = 0 and !
 = 0, but no gauge 
hoi
eis made: although one 
ould set A = 0 by a gaugetransformation, both the s
alar and ve
tor external po-tentials are left arbitrary in order to keep tra
k of thegauge invarian
e of the equations.The propagators de�ned by Eq. (5.1) satisfy the ma-trix Dyson equationD̂(1; 2) = D̂0(1; 2) ++ Z d3Z d4 D̂0(1; 3)�̂(3; 4)D̂(4; 2);D̂0(1; 2) = � �V (r12) + F �(�12) Æ(r12)� ��� Æ(t12)1̂1K ; (5.15)
384
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tion 
orre
tions to thermal transport 
oe�
ients : : :where V (r) is the long-range part of the intera
tion (forthe Coulomb intera
tion, V (r) = e2=jrj, �12 = dn1n2,r12 = r1 � r2, and t12 = t1 � t2). The matrix propaga-tor is denoted by D̂ and �̂ is the matrix polarizationoperator. They have a stru
ture similar to the Green'sfun
tion one:D̂ =  DR DK0 DA!K ; �̂ =  �R �K0 �A!K : (5.16)The polarization operators are given by variationalderivatives of the solutions of the Eilenberger equa-tion (5.7),�R(1; 2) = �A(2; 1) == � �Æ12 + �2 ÆgK(t1; t1;n1; r1)Æ�+(t2; r2;n2) � ; (5.17a)�K(1; 2) = ��2 �Æ(gK + gZ)(t1; t1;n1; r1)Æ��(t2; r2;n2) � ; (5.17b)whereÆ12 � 
dÆ(dn1n2)Æ(r1 � r2)Æ(t1 � t2); (5.18)with 
d being the total solid angle.5.2. The gauge transformationWith Eilenberger equation (5.7) at hand, one 
ouldpro
eed as in Ref. [17℄ in order to derive an equationfor the distribution fun
tion. But the resulting inelas-ti
 part of the 
ollision integral, expressed in terms ofthe ele
tron distribution fun
tion only, is nonlo
al andthe evaluation, e.g., of the thermal 
ondu
tivity wouldrequire the time and spatial gradient expansion of thisterm in the spirit of Eq. (2.15). As we already dis-
ussed, su
h a route makes the energy 
onservation inthe kineti
 equation obs
ure. Here, we follow a di�erentapproa
h, inspired by the following 
onsiderations [25℄:if the �u
tuating �elds were uniform, they would beeliminated from Eq. (5.7) by a gauge transformationĝ ! exp8<:�i t1Z �̂(t) dt9=; ĝ exp8<:i t2Z �̂(t) dt9=; : (5.19)In other words, the position-independent �u
tuationsof the � �elds de�ne a time-dependent position of theenergy levels but the o

upation numbers for su
h lev-els do not 
hange. Therefore, su
h �u
tuations a�e
tneither the ele
tri
 transport nor the ele
tron 
ontri-bution to the thermal transport in the system. More-over, if the path of the ele
tron were a straight line, all

smooth �u
tuating �elds would still be eliminated inthe eikonal approximation and, on
e again, they shouldnot a�e
t the ele
tron 
ontribution to the transport. Toeliminate su
h spurious 
ontributions, we use the gaugetransformation des
ribed below.We introdu
e a new matrix �eld K̂(t;n; r),K̂ =  K+ K�K� K+! ; (5.20)whi
h is a fun
tional of the �eld �̂ and is used to per-form the �generalized� gauge transformationĝ ! e�iK̂(t1;n;r)ĝ eiK̂(t2;n;r): (5.21)This transformation is unitary and therefore preserves
onstraints (5.13). As we see in what follows, it leadsto the lo
al kineti
 equations. Applying the transfor-mation to Eilenberger equation (5.7), we obtainh~�t + v � ~ri ĝ � i h(�t + v�r) K̂ � �̂; ĝi == 12 hĝ Æ; bSt�� ĝi ; (5.22)whereh bSt�� ĝi (t1; t2;n) � Z dn1
d bSt� (n;n1)�� eiK̂(t1;n)e�iK̂(t1;n1)ĝ(t1; t2;n1)eiK̂(t2;n1)e�iK̂(t2;n):The �bare� impurity 
ollision integral and the deriva-tives are de�ned respe
tively in Eq. (5.8) and (5.11).We suppress the argument r, whi
h is the same in allfun
tions.We seek a perturbative solution of the Eilenbergerequation in form (5.22) in the one-loop approximation;for this, it su�
es to retain only the terms at mostquadrati
 in the K �elds in the 
ollision integral. Inthe lowest order, ĝ has the formĝ =  Æ(t1 � t2) gK0 �Æ(t1 � t2)! : (5.23)We require that this form be preserved even in the �rstand se
ond order in K, i.e., the 
orre
tions to the spe
-trum (des
ribed by gR;A) be indeed eliminated by thegauge transformation.In the linear order, the retarded, advan
ed, and�Z� 
omponents of Eq. (5.22) vanish if K� satis�esthe equation��t + v�r�K� + bSt�K� = ��: (5.24)9 ÆÝÒÔ, âûï. 2 385
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an be written in terms of the di�uson propagatorLg(t1; t2;n1;n2; r1; r2), the retarded solution of the
lassi
al kineti
 equation��t1 + v1 � rr1 � bSt��Lg = Æ12; (5.25)where Æ12 is de�ned in Eq. (5.18). Using Eq. (5.25), we�nd K�(1) = � Z d2 �Lg(1; 2)��(2);�Lg(1; 2) = Lg(2; 1); (5.26)where we use the short notation in (5.2). In the oper-ator notation, Eq. (5.26) 
an be rewritten asK� = � �̂Lg��: (5:260)To simplify further manipulations, we introdu
e thefollowing fun
tion of three angular variables:
 nkni;nj ! � 1�(�ij ) �� 
d �Æ(dnjnk)� Æ(dnink)� � 
kij : (5.27)This fun
tion is related to the impurity 
ollision inte-gral (5.8) byZ dn2
d 
 n3n1;n2 ! = h bSt�i (n1;n3);Z dn1
d 
 n3n1;n2 ! = � h bSt�i (n2;n3);Z dn3
d 
 n3n1;n2 ! = 0: (5.28)
With ÆgK denoting the �rst-order 
orre
tion to gK ,the Keldysh 
omponent of the Eilenberger equations inthe linear order isi� ~�t + v � ~r� bSt��ÆgK ++ h��t + v�r � bSt��K+ � �+; gKi = Q̂K� ++ Z dn2dn3
2d 
 n3n;n2 !�� �K+(n3); gK(n2)� gK(n)� (5.29)with (
f. Eq. (5.11))~�tÆgK = ��t1 + �t2�ÆgK + i['; ÆgK ℄;~rÆgK = rÆgK + i[A; ÆgK ℄:

Here, the operator Q̂ is lo
al in spa
e,Q̂K� = Z dt3 Z dn1
d Q(t1; t2;n; t3;n1; r)K�(t3;n1; r)with the kernelQ(t1; t2;n1; t3;n2) = 12 Z dn3
d 
 n2n1;n3 !�� �PgK(t1; t3;n1)gK(t3; t2;n3)++ (n1 $ n3)� : (5.30)We suppress the spe
tator argument r, whi
h is thesame in ea
h term of the equation; the last term meansthat terms similar to the ones shown but with the angu-lar arguments of the Green's fun
tion swit
hed must beadded. The prin
ipal value sign P in Eq. (5.30) meansthat the part of the produ
t of the Green's fun
tionsdivergent as t1 ! t2,gK(t1; t2;n; r)���t1!t2 = � 2i�(t1 � t2) + regular; (5.31)must be eliminated,PgK(t1; t3)gK(t3; t2) �� gK(t1; t3)gK(t3; t2)� 4Æ(t1 � t3)Æ(t3 � t2);or, equivalently,PgK(t1; t3)gK(t3; t2) �� 12 X�=�1 gK(t1; t3 + �i0)gK(t3 + �i0; t2):It is worth noting that all nonequilibrium e�e
ts 
on-tribute to the regular part in Eq. (5.31) but not to thesingular part; the states deep in the Fermi sea, whi
hare not perturbed, 
ontribute to it.To solve Eq. (5.59), we de�ne a new �eld ~K� by therelation ~K�(t;n; r) = (i�t)�1 M̂K� ; (5.32)where the operator M̂ is shown below to be re-lated to 
ertain produ
ts of the Green's fun
tions gK ,see Eq. (5.38). The operator M̂ is Hermitian and lo
alin spa
e but not in the momentum dire
tion and time.We again use the operator notationM̂ K� �� Z dt1 Z dn1
d M(t;n; t1;n1; r)K�(t1;n1; r): (5.33)386
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tion 
orre
tions to thermal transport 
oe�
ients : : :We require K+ to satisfy the equation��t + v�r � bSt��K+ = �+ � 2 ~K�; (5.34)whose solution isK+ = L̂g�+ � 2L̂g ~K�: (5.35)The operator notation here is the same as in Eq. (5.26).The next task is to 
hoose the �best� form for theoperator M̂ to maximally simplify the further pertur-bative expansion. Writing ÆgK = ÆgK+ +ÆgK� , we obtainthe equationsiL̂ÆgK� = Q̂K� + 2h ~K�; gKi; (5.36a)iL̂ÆgK+ = Z dn2dn3
2d 
 n3n;n2 !�� �K+(n3); �gK(n2)� gK(n)�� ; (5.36b)where L̂ � � ~�t + v � ~r� bSt��.We note that the right-hand side of Eq. (5.36b)vanishes in equilibrium, be
ause gK = hgKin. There-fore, ÆgK+ also vanishes in equilibrium and 
annot 
on-tribute to the equilibrium properties su
h as the spe-
i�
 heat. Moreover, even outside the equilibrium,ÆgK+ (t1; t1;n; r) = 0, be
ause the right-hand side ofEq. (5.36b) vanishes, see the remark after Eq. (5.31).This means that ÆgK+ does not 
ontribute to the ele
-tron density or 
urrent.We are now ready to 
hoose the operator M̂ . Werequire that ÆgK� (t1; t1;n; r) = 0, i.e., ÆgK� also doesnot 
ontribute to the ele
tron density or 
urrent. Thismeans that the right-hand side of Eq. (5.36a) must van-ish for t1 = t2 for any �eld K�. Imposing this require-ment, we obtainM̂(t1; t2;n; ~n; r) = �4 Q̂(t1; t1;n; t2; ~n; r): (5.37)Together with Eq. (5.30), it yieldsM(t1;n1; t2;n2; r) = �8 Z dn3
d 
 n2n1;n3 !�� �PgK(t1; t2;n1)gK(t2; t1;n3) ++ (n1 $ n3)� : (5.38)Expression (5.27) for the vertex 
 enables us to estab-lish the following properties of kernel (5.38):M(t1;n1; t2;n2) =M(t1;n2; t2;n1) ==M(t2;n2; t1;n1); (5:380)

the operator M̂ is therefore Hermitian.It is instru
tive to �nd M̂ in the thermal equi-librium. With Eq. (5.14), be
ause Eq. (5.24) impliesthat the retarded and advan
ed 
omponents of ĝ arestill given by Eq. (5.23), it follows from Eqs. (5.28)and (5.38) thatMeq(t1;n1; t2;n2; r) == Z d!2� ei!(t2�t1)M̂eq(!;n1;n2);Meq(!;n1;n2) = �! 
th� !2T � hŜt�i(n1;n2): (5.39)Equation (5.39) is useful in 
he
king the �u
tuation�dissipation theorem.5.3. Polarization operators and propagatorsThe knowledge of the linear-order 
orre
tions to theGreen's fun
tion permits the 
al
ulation of the polar-ization operators as variational derivatives of the origi-nal Green's fun
tions (i.e., before the gauge transforma-tion) in the limit t2 ! t1, see Eq. (5.17). In the linearorder, the 
orre
tions to the original Green's fun
tionsare given by the relations (
f. Eq. (5.21))ÆgK ! ÆgK � i �K+; gK�� 2K�Æ(t1 � t2); (5.40a)ÆgZ ! 2K�Æ(t1 � t2): (5.40b)By 
onstru
tion in the previous subse
tion,limt2!t1 ÆgK(t1; t2;n; r) = 0; (5.41)and using Eq. (5.31), we havelimt2!t1�i �K+; gK� = � 2��tK+(t;n; r): (5.42)Substituting these results in Eq. (5.17) and usingEqs. (5.26), (5.32), and (5.35), we obtain�R(1; 2) = � [Æ12 � �t1Lg(1; 2)℄ ;�A(2; 1) = � �Æ12 � �t2 �Lg(1; 2)� ; (5.43a)we use notation (5.2) throughout this subse
tion. Theresult for the Keldysh 
omponent is�K(1; 2) = 2i� hL̂gM̂ �̂Lgi (1; 2): (5.43b)The a
tions of the operators M̂ and D̂ are de�nedin Eqs. (5.26) and (5.33).It is easy to 
he
k that the �u
tuation�dissipationrelation between the polarization operators holds in387 9*



G. Catelani, I. L. Aleiner ÆÝÒÔ, òîì 127, âûï. 2, 2005the thermal equilibrium. As follows from Eqs. (5.25)and (5.26), �2L̂gŜt� �̂Lg = L̂g + �̂Lg : (5.44)We perform the time Fourier transformation for all thepropagators and the polarization operators in thermo-dynami
 equilibrium,A(1; 2) = Z d!2� ei!(t2�t1)A(!; 1�; 2�): (5.45)Substituting Eqs. (5.39) and (5.44) in Eq. (5.43b), weobtain that in equilibrium,�Keq(!; 1�; 2�) == h�R(!; 1�; 2�)��A(!; 1�; 2�)i 
th !2T : (5.46)With the help of Eq. (5.15), we then derive the�u
tuation�dissipation relationDKeq(!; 1�; 2�) == hDR(!; 1�; 2�)�DA(!; 1�; 2�)i 
th !2T : (5.47)With the expressions for the polarization operatorsobtained above, we 
an solve Dyson equation (5.15)and obtain the expli
it expressions for the intera
tionpropagators. In the operator notation,�D̂R = � 11 + F̂ � �tF̂ L̂g F̂ ; (5.48a)�D̂A = �F̂ 11 + F̂ + �t �̂LgF̂ ; (5.48b)D̂K = 2i�D̂RL̂gM̂ �̂LgD̂A; (5.48
)where the a
tion of the operator F̂ on any fun
tiona(t;n; r) is de�ned by�F̂ a�(t;n; r) � Z dn1
d �F �(
nn1)a(t;n1; r) ++ Z dr1�V (r�r1)a(t;n1; r1)�; (5.49)see also the text after Eq. (5.15).To �nd the propagators for the �elds K� given inEqs. (5:260) and (5.35), de�ned ashhK+(1)K+(2)ii = i2KK(1; 2);hhK+(1)K�(2)ii = i2KR(1; 2);hhK�(1)K+(2)ii = i2KA(1; 2);hhK�(1)K�(2)ii = 0; (5.50)

we use Eqs. (5.1) and (5.48) and obtain the retardedand advan
ed propagatorsK̂R = L̂gD̂RL̂g ; K̂A = �̂LgD̂A �̂Lg ; (5.51a)whereas the result for the Keldysh propagator isK̂K = �L̂gD̂K �̂Lg + 2ihL̂g(�t)�1M̂ �̂LgD̂A �̂Lg �� L̂gD̂RL̂gM̂(�t)�1 �̂Lgi: (5.51b)The �u
tuation�dissipation relation between the Dpropagators in Eq. (5.47), the equilibrium form for M̂in Eq. (5.39), and identity (5.44) allow us to verify the�u
tuation�dissipation relation for the K propagators:KKeq(!; 1�; 2�) = �KR(!; 1�; 2�)�KA(!; 1�; 2�)��� 
th !2T : (5.52)5.4. Additional bosoni
 �eldsEquation (5.51b) together with Eqs. (5.51a)and (5.38) allows expressing the Keldysh propagatorKK in terms of the ele
tron distribution fun
tion.This relation, however, is nonlo
al on the spatial s
alemu
h larger than the temperature lengthLT � min "~vFT ; vFr~�T # ; (5.53)re
all the dis
ussion in Se
. 2.2. Indeed, the 
ollisionintegral and all physi
al quantities are then given byintegrals of the typeI� = Z d!f(!)K�(!); � = R;A;K;where the fun
tion f(!) depends on its argument atthe 
hara
teristi
 s
ale of T . A retarded fun
tion is ananalyti
 fun
tion of ! at Im! > 0, whi
h implies thatfor � = R, the integral is determined only by singulari-ties of f(!), i.e., IR � KR(! = iT ). This immediatelyrestri
ts the spatial s
ales to LT . The same argumentapplies to the advan
ed 
ase, be
ause of the analyti
-ity at Im! < 0. But the fun
tion KK(!) is not ana-lyti
. Moreover, a

ording to Eq. (5.51b), it 
ontainsoverlapping singularities of the retarded and advan
edpropagators. This means that the 
hara
teristi
 fre-quen
ies entering IK are determined by the poles ofthe propagator rather than by the width of the fun
-tion f , i.e., the spatial s
ale may by far ex
eed LT andany expression of the type IK is therefore nonlo
al.To over
ome this di�
ulty, the standard paramete-rization of the Keldysh fun
tion DK = DRÆN�NÆDA388
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tion 
orre
tions to thermal transport 
oe�
ients : : :is usually introdu
ed and the kineti
 equation for thedistribution fun
tion N is then derived. All the non-lo
ality in the problem is then 
ontained in the partialsolution of the kineti
 equation, to be 
ompared withEq. (2.14), whereas the kineti
 equation itself is lo
al.In what follows, we adopt this program in a slightlymodi�ed form. We introdu
e a new retarded propaga-tor L�(1; 2) (to be 
ompared with Eq. (5.25))hiĤe�h(i�t1 ;�ir1)� bSt�iL� = Æ12;Ĥe�h(!;q) = v � q� !1 + F̂ (5.54)and its advan
ed 
ounterpart �L�(1; 2) = L�(2; 1). Themultipli
ations in Eq. (5.54) are to be understood inthe operator sense and the a
tion of the operator F̂ ona fun
tion a(t;n; r) is de�ned by Eq. (5.49).For F̂ = 0, L� ( �L�) redu
es to the usual di�usonLg ( �Lg). Physi
ally, L� des
ribes the spe
trum of apropagating ele
tron�hole pair and the operator in theleft-hand side of Eq. (5.54) 
orresponds to the kineti
equation for the 
olle
tive mode in the Fermi-liquid the-ory [26℄. The operator Ĥe�h(!;q) 
an be interpretedas a �Hamiltonian� (see also Appendix C) of the inter-a
ting ele
tron�hole pair.In terms of L� and Lg, Eqs. (5.51) a
quire the form�K̂R = (�t)�1 hL̂g � L̂�i;�K̂A = �h �̂Lg � �̂L�i (�t)�1 ; (5.55a)�K̂K == �2i (�t)�1 hL̂gM̂ �̂Lg � L̂�M̂ �̂L�i (�t)�1 : (5.55b)We introdu
e two bosoni
 �distribution fun
tions�(the density matri
es, to be more pre
ise) N̂ g and N̂ �that satisfy the equations(L̂g)�1N̂ g + N̂ g( �̂Lg)�1 = 2M̂; (5.56a)(L̂�)�1N̂ � + N̂ �( �̂L�)�1 = 2M̂: (5.56b)The operator M̂ is de�ned in Eqs. (5.33) and (5.38)and, in a more expli
it notation, the a
tion of the op-erators N̂ �;g on any fun
tion a(t;n; r) is to be under-stood as hN̂ �;gai (1) = Z d2 N �;g (1; 2)a(2);where short notation (5.2) is used. We note that theabove equations imply that the bosoni
 fun
tions N �;gare symmetri
: N �;g(1; 2) = N �;g(2; 1): (5.57)

Equations (5.56) allow us to rewrite Eq. (5.55b) as�K̂K = �i (�t)�1 hL̂gN̂ g + N̂ g �̂Lgi (�t)�1 ++ i (�t)�1 hL̂�N̂ � + N̂ � �̂L�i (�t)�1 : (5.58)This expression is lo
al in the sense dis
ussed above andis used in the 
onstru
tion of the 
onserved energy 
ur-rent. Obtaining the lo
al expression, however, requiresthe introdu
tion of two additional bosoni
 distributionfun
tions: N �, des
ribing the intera
ting ele
tron�holepairs, and the ghost �eld distribution N g , subtra
tingthe 
ontribution of the ele
tron�hole pairs in the ab-sen
e of intera
tions.Closing this subse
tion, we rewrite Eq. (5.56) in aform resembling the kineti
 equation in Se
. 2. We sub-stitute Eqs. (5.25) and (5.54) in Eq. (5.56) and obtainh�t + v � r; N̂ gi = bStb �N g ; gK	 ; (5.59a)hiĤe�h(i�t1 ;�ir1); N̂ �i = bStb �N �; gK	 ; (5.59b)where the 
ollision integrals arebStb �N�; gK	 � 2n bSt� ; N̂�o+ 2M̂ (5.59
)for � = g; �. They depend on gK via M̂ and we usethe notation nÂ; B̂o � 12(ÂB̂ + B̂Â);hÂ; B̂i � ÂB̂ � B̂Â: (5.60)We perform the time and spa
e Wigner transforma-tions of Eqs. (5.59) to introdu
e the bosoni
 distribu-tion fun
tions Ng;�,N̂ g;�(1; 2) = Z d!2� e�i!(t1�t2) Z ddq(2�)d eiq�(r1�r2)�� !�2Ng;� (!;q;n1;n2; t; r) + 
dÆ([n1;n2)�; (5.61)where t = (t1+ t2)=2, r = (r1 + r2)=2. Symmetry rela-tion (5.57) translates into the 
onditionNg;� (!;q;n1;n2) == � �Ng;� (�!;�q;n2;n1) + 
dÆ([n1;n2)� : (5.62)The physi
al meaning of this relation is the Bose statis-ti
s: at ! > 0, Ng;� 
orresponds to the o

upationnumbers entering the probability of the absorption ofthe bosons, whereas the ! < 0 part des
ribes the bosonemission.389
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 distribution fun
tion f is obtained intwo steps: (a) we introdu
e the gauge-invariant Green'sfun
tion g (also see the next subse
tion) and (b) weperform the time Wigner transformation:gK(t1; t2;n; r) �� exp0��i t1Zt2 d~t'(~t; r)1A g(t1; t2;n; r); (5.63a)g(t1; t2;n; r) == 2 Z d"2� e�i"(t1�t2)�1� 2f (";n; t; r) �: (5.63b)Performing su
h Wigner transformations ofEqs. (5.56) and (5.38), we �nd!��tN̂g + nv;rN̂go+ i hv � q; N̂gi� == bStb fNg; fg ; (5.64a)!�� 11 + F̂ ; �tN̂��+ nŝ(!;q);rN̂�o++ i hĤe�h(!;q); N̂�i� = bStb fN�; fg ; (5.64b)where the 
olle
tive mode velo
ity operator isŝ(!;q) = �Ĥe�h(!;q)�q = v + ! ��q  F̂1 + F̂ ! : (5.65)In the left-hand side of Eq. (5.64b), we limited ourselvesto the leading Poisson bra
kets (the equation be
omesexa
t for a short-range intera
tion be
ause �qF̂ = 0,and in the unitary limit, F̂ ! 1). However, no Pois-son bra
kets arise in the right-hand sides of Eqs. (5.64)as a 
onsequen
e of the lo
ality of the kineti
 equations.The right-hand sides of Eq. (5.64) des
ribe the de-
ay of an ele
tron�hole pair into an ele
tron and a holemoving in di�erent dire
tions. To write the expressionfor this 
ollision term, it is 
onvenient to introdu
e thefollowing obje
t:�g;�ij;kl ("; !;q; t; r) � Ng;� (!;q;ni;nj ; t; r)��nf(";nk; t; r)�f("�!;nk; t; r)o+
dÆ(dninj)�� nf(";nl; t; r) [1� f("� !;nk; t; r)℄o: (5.66)It is easy to see that �g;� = 0 in the thermal equilib-rium, Eq. (3.1).

In terms of this obje
t and vertex (5.27), we havebStb fNg;�; fg (!;q;n1;n2; t; r) = � Z d"Z dn3dn4
2d �� n
314�g;�32;41 ("; !) + 
234�g;�13;14 ("; !)o; (5.67)where we suppress the spe
tator arguments t, r, andq in the right-hand side of the equation. In deriv-ing Eq. (5.67), we used Eqs. (5.28) and (5:380) and theproperty Z d" �f(")� f("� !)� = �!:To understand the physi
al meaning of the pro-
esses des
ribed by 
ollision integral (5.67), we usethe expli
it form of the vertex 
 (Eq. (5.27)) for theisotropi
 impurity s
attering �(�12) = � . Then the 
ol-lision integrals 
an be de
omposed into the sum of two
ontributionsbStb�Ng;�; f	 = bStb
l�Ng;�; f	+ bStbq�Ng;�; f	:The �rst term in the right-hand side 
an be obtainedfrom a simple 
ounting of the probabilities of the pro-
esses depi
ted in Fig. 2a, b:bStb
l fNg;�; fg (!;n1;n2) == 1� Z d" Z dn3
d n�g;�12;32 ("; !) + �g;�12;13 ("; !)o:The se
ond term in the right-hand side originates fromthe interferen
e of two s
attering pro
esses, see Fig. 2
.It therefore makes 
ontributions to N̂ that are not di-agonal in the momentum dire
tions:bStbq fNg;�; fg (!;n1;n2) == �1� Z d" Z dn3
d n�g;�13;12 ("; !) + �g;�32;21 ("; !)o:5.5. The 
ollision integral for ele
tronsWith the bosoni
 propagators K at hand, we 
anpro
eed with the 
al
ulation and in
lude the se
ond-or-der 
ontributions in the �u
tuating �elds K� to the
ollision term of Eilenberger equation (5.22). With the�u
tuating �elds K� given by Eqs. (5:260) and (5.35),the Eilenberger equation be
omesh~�t + v � ~riĝ = �ĝ Æ; 12 bSt�� ĝ��i� bSt�K+ � 2 ~K�� 1̂1K + i bSt�K��̂xK� ; (5.68)390
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Fig. 3. S
hemati
 representation of averaging over the�u
tuation �elds K̂. a) Expansion of Eilenberger equa-tion (5.68) before averaging. b) The equation for theGreen's fun
tion averaged over K̂, see Eq. (5.69). 
) The
ontributions to the total 
ollision integral in the one-loopapproximationwhere we use notation (5.11) for the derivatives, bSt�� isde�ned after Eq. (5.22), ~K� is de�ned in Eq. (5.32),and �̂xK is the Pauli matrix.We expand the right-hand side of Eq. (5.68) up tothe se
ond order in K̂, see Fig. 3a; then we averageit to obtain Fig. 3b. The resulting se
ond-order 
on-tributions 
an have two di�erent origins: (1) they 
anarise from the expansion of the exponentials trun
atedat the se
ond order, the term bSt1 in Fig. 3
, or (2)they are obtained as produ
ts of the linear 
orre
tionÆgK of Eq. (5.36a) and the �rst-order expansion of theexponentials, the term bSt2 in Fig. 3
.The Eilenberger equation for the averaged Greenfun
tion takes the formh~�t + v � ~ri ĝ = b̂Stfĝ; N�; Ngg; (5.69)where b̂St 
ontains both zeroth and se
ond-order 
on-tributions. We �nd (see Appendix D for the details onthe 
an
ellation of se
ond-order 
orre
tions in the R,A, Z se
tors)b̂St�gR0 ; gA0 ; gK	 =  0 bSt�gK ; N�; Ng	0 0 ! ; (5.70)where gR0 = �gA0 = Æ(t1 � t2). This means that thematrix Green's fun
tion of form (5.23) is still a solu-tion of the Eilenberger equation � the main gain of

gauge transformation (5.21) � provided that the ki-neti
 equation for the Keldysh 
omponent is satis�ed;a

ordingly, we 
on
entrate on this 
omponent only.Performing gauge transformation (5.63a) of theKeldysh 
omponent of the Eilenberger equation, we ar-rive at the expli
itly gauge-invariant form of the kineti
equation24�t1 + �t2 + v�r+ iv� t1Zt2 d~t eE(~t; r)35 g == bStfg;N�; Ngg: (5.71)In the 
ollision integral bStfg;N�; Ngg, we usebSt1fg;N�; Ngg to denote 
ontributions of type (1) andbSt2fg;N�; Ngg for those of type (2)6),bStfg;N�; Ngg = bSt�g � 4 bSt1fg;N�; Ngg �� 4 bSt2fg;N�; Ngg; (5.72)where bSt� is de�ned in Eq. (5.8). The numeri
al fa
-tors in front of the last two terms are introdu
ed tofa
ilitate the transformation to the 
anoni
al form ofthe kineti
 equation in subsequent se
tions.The expression for bSt1 written in terms of the Kpropagators (5.50) and the 
 vertex (5.27) ish bSt1i (t1; t2;n1) = � i16 Z dn2dn3
2d 
312 �� ng(t1; t2;n2) h ~KK32(t1; t2)� ~KK31(t1; t2)i++Z dt3g(t1; t3;n1)g(t3; t2;n2)�� �KA32(t3; t2)�KA31(t3; t2)��� g(t1; t3;n2)g(t3; t2;n1)�� �KR23(t1; t3)�KR13(t1; t3)�o: (5.73)We introdu
e the short notationKij(t1; t2) � K(t1;ni; t2;nj) (5.74)and~KK(t1; t2) � 2KK(t1; t2)�KK(t1; t1)�KK(t2; t2):We omit the variable r, whi
h always appears in thedistribution fun
tion as g(t1; t2;n; r) and in the propa-gators as K(t1;n1; r; t2;n2; r). The dependen
e on the6) This separation has no parti
ular physi
al meaning, it isjust a matter of pra
ti
ality in the 
al
ulations; we return to thephysi
al aspe
ts when we analyze the 
onservation laws in thenext subse
tion.391
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tron distribution fun
tion g is expli
it, whereas thedependen
e on the bosoni
 distribution fun
tions is hid-den into the propagators, see Eq. (5.58). For reasons tobe
ome 
lear in the next subse
tion, we split Eq. (5.73)into two parts: bSt1 = bStin1 + bStel1 ; (5.75a)h bStin1 i (t1; t2;n1) = � i32 Z dn2dn3
2d 
312 �� n2g(t1; t2;n2) h ~KK32(t1; t2)� ~KK31(t1; t2)i++ Z dt3 [g(t1; t3;n1)g(t3; t2;n2)++g(t1; t3;n2)g(t3; t2;n1)℄ �KA32(t3; t2)�KR23(t1; t3) ��KA31(t3; t2) +KR13(t1; t3)� o: (5.75b)h bStel1 i (t1; t2;n1) = � i32Z dt3 Z dn2dn3
2d 
312 ��n[g(t1; t3;n1)g(t3; t2;n2)�g(t1; t3;n2)g(t3; t2;n1)℄�� �KA32(t3; t2) +KR23(t1; t3) ��KA31(t3; t2)�KR13(t1; t3)�o: (5.75
)As regards bSt2, it is 
onvenient to separate it intotwo parts, depending on whi
h �eld, K+ or K�, weretain in the expansion,bSt2 = hh bSt+ii+ hh bSt�ii; (5.76a)where hh: : :ii denotes averaging over the �u
tuating�elds K� with propagators (5.50) andbSt�(t1; t2;n; r) = i4 Z dt3 Z dn1
d K�(t3;n1; r)�� 24ÆQ(t1; t2;n; t3;n1; r)� i�2 Æg+ (t1; t2;n; r) �� t1Zt2 dt5Q(t5; t5;n; t3;n1; r)35 ; (5.76b)bSt+(t1; t2;n) = i4 Z dn2dn3
2d 
 n3n;n2 !�� hK+(n3); �Æg(n2)� Æg(n)�i(t1; t2): (5.76
)The 
ommutator is de�ned in Eq. (5.10) and the kernelÆQ is the �rst variation of operator (5.30) with respe
t

to the Keldysh 
omponent of the ele
tron Green's fun
-tion,ÆQ(t1; t2;n; t3;n1; r) = 12 Z dn2
d 
 n1n;n2 !���hÆg+(t1; t3;n; r)g(t3; t2;n2; r) ++ g(t1; t3;n; r)Æg+(t3; t2;n2; r)i++ (n2 $ n)�: (5.76d)Finally, the fun
tions Æg� and Æg = Æg+ + Æg�are obtained by solving Eqs. (5.36a) and (5.36b) (aftertransformation (5.63a)); with the help of Eq. (5.37), wehaveÆg+(t1; t2;n; r) = �i Z d3 Z dn2dn4
2d 
432 ��Lg (t1;n; r; 3) hK+(t3;n4; r3)�K+(t3�t12;n4; r3)i�� hgK(t3; t3 � t12;n2; r3)�� gK(t3; t3 � t12;n3; r3)i; (5.77)Æg�(t1; t2;n; r) = �i Z d3 Z dt4 Z dn4
d ��Lg(t1;n; r; 3)K�(t4;n4; r3)�� 24Q(t3; t3 � t12;n3; t4;n4; r3)�� i�2 gK (t3; t3 � t12;n3; r3)�� t3Zt3�t12dt5Q(t5; t5;n3; t4;n4; r3)35 ; (5.78)where t12 = t1 � t2 and notation (5.2) is used7).For future use, we note the properties (see also thedis
ussion following Eq. (5.36))Æg�(t; t) = Æg+(t; t) = 0;Z dn ÆQ(t1; t2;n; t3;n1; r) = 0; (5.79)7) These solutions are exa
t only in the absen
e of the ele
tri
�eld, be
ause in its gauge invariant form, the operator a
ting onÆg� is the same that appears in the left-hand side of Eq. (5.71).We 
ould perturbatively in
lude �eld-dependent 
orre
tions intoour expressions, whi
h would be of the �rst order in E for Æg�and of the se
ond order for Æg+ (be
ause Æg+ vanishes in equilib-rium). However, as noted above, the �rst property in Eq. (5.79)implies that these 
orre
tions 
annot 
ontribute to the physi
alquantities in whi
h we are interested, and therefore we do notin
lude them in our 
al
ulations.392
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tion 
orre
tions to thermal transport 
oe�
ients : : :whi
h follow from Eqs. (5.77)�(5.78) and from de�ni-tions (5.76d) and (5.27).The 
anoni
al form of the kineti
 equation is ob-tained by performing the time Wigner transforma-tion (5.63b) of both sides of Eq. (5.71). It is 
learfrom the stru
ture of the 
ollision integrals that thispro
edure leads to the appearan
e of Poisson bra
k-ets in the right-hand side of the kineti
 equation. We
hoose another route, however: we prove the existen
eof the 
onservation laws before the Wigner transforma-tion. This then allows us to argue that these Poissonbra
kets (in our formulation of the kineti
 equation)give only small 
ontributions, whi
h 
an be negle
tedwithin the a

ura
y of the kineti
 equation.5.6. Conservation lawsThe derivation of the 
onservation laws is based onthe following properties of the 
ollision integrals in theprevious subse
tion: h bSt�gin = 0; (5.80a)h bSt�in = 0; (5.80b)h bStel1 in = 0: (5.80
)The physi
al meaning of 
onditions (5.80) is that the
orresponding terms in the 
ollision integral preservethe number of parti
les within the energy shell. Equa-tions (5.80) follow immediately from de�nitions (5.8),(5.75b), (5.76b), (5.76d), and (5.79).The two remaining 
ontributions to the 
ollision in-tegral have the propertieslimt1!t2 bSt+(t1; t2) = 0; (5.81a)limt1!t2 bStin1 (t1; t2) = 0; (5.81b)and limt1!t2 (�t1 � �t2) bSt+(t1; t2) = 0; (5.82a)limt1!t2 (�t1 � �t2) bStin1 (t1; t2) == 14� Z dn2dn3
2d 
312n ��t KK�t�31 (t1; t1)�� i�4 Z dt3 ��tKR�13 (t1; t3)�g(t1; t3;n1)g(t3; t1;n2)++ g(t1; t3;n2)g(t3; t1;n1)�� (n1 ! n2)o; (5.82b)where we use notation (5.74) and the vertex is de-�ned in Eq. (5.28). Equations (5.81a) and (5.82a)

immediately follow from de�nition (5.76
) and 
ondi-tion (5.79). Derivations of Eqs. (5.81b) and (5.82b) aregiven in Appendix E.Expressions (5.81) mean that while not preservingthe number of parti
les for a given energy shell, theterms bSt+ and bStin1 preserve the total number of par-ti
les for a given dire
tion (small-angle inelasti
 s
at-tering). Equation (5.82a) means that the inelasti
 bSt+term preserves not only the number of parti
les butalso the energy for a given dire
tion. Equation (5.82b)means that the bStin1 term does not preserve the energyfor a given dire
tion, thus des
ribing the energy ex-
hange between quasiparti
les and ele
tron�hole pairsdis
ussed in Se
. 5.3.The possibility to �nd the 
onserved energy 
urrentis based on a 
ertain relation between Eq. (5.82b) andthe 
ollision integral for ele
tron�hole pairs. We nowturn to the dis
ussion of this relation.We substitute Eqs. (5.55a) and (5.58) in Eq. (5.82b)and average the result over n; then using the analyti
alproperty KR(t; t) = Z d!2�KR(!) = 0 (5.83)together with L�(1; 2) = �L�(2; 1), Lg(1; 2) = �Lg(2; 1),N �;g(1; 2) = N �;g(2; 1), and Eq. (5.38), we �ndlimt1!t2 (�t1 � �t2) h bStin1 in == � i��Trn hL̂g �N̂ g bSt� + M̂�i++ i��Trn hL̂� �N̂ � bSt� + M̂ �i ; (5.84)where bSt� is de�ned in Eq. (5.8) and Trn a
ts ashTrnÂi (t; r) � Z dn
dA (t;n; r; t;n; r) : (5.85)The 
orresponding tra
es of the 
ollision integralsfor the ele
tron�hole pairs, Eq. (5.59
)8), areTrn hL̂g bStg fN g ; ggi = Trn�hL̂g ; bSt�iN̂ g ++ 2L̂g�N̂ g bSt� + M̂��; (5.86a)Trn hL̂� bSt� fN �; ggi = Trn�hL̂�; bSt�iN̂ � ++ 2L̂��N̂ � bSt� + M̂��: (5.86b)8) The operator M̂ is gauge-invariant and has the same formin terms of g or gK .393



G. Catelani, I. L. Aleiner ÆÝÒÔ, òîì 127, âûï. 2, 2005Comparing Eqs. (5.84) and (5.86) and using Eqs. (5.25)and (5.54) on
e again, we obtain the desired relationbetween the 
ollision integrals:2i�� limt1!t2 ��t1 � �t2�h bSt fg;N �;N ggin ++Trn hL̂� bSt� fN �; ggi�TrnhL̂g bStg fN g ; gg i == Trn�hv�r; L̂giN̂ g �� i�Ĥe�h(i�t;�ir); L̂��N̂ ��: (5.87)The left-hand side of Eq. (5.87) is the quantum
ounterpart of relation (2.3b) and Eqs. (5.80)�(5.81)are related to Eq. (2.3a); we now derive the expres-sions for the ele
tri
 and energy 
urrents in the spiritof our dis
ussion in Se
. 2.1.We begin with the 
onservation of ele
tri
 
harge.A

ording to Eqs. (5.4) and (5.6), the 
harge density isgiven by�(t; r) = �e��2 limt1!t2!thg(t1; t2;n; r)in: (5.88)Taking the limit t1 ! t2 ! t in both sides of Eq. (5.71)and using Eqs. (5.72), (5.80), and (5.81), we obtain the
ontinuity equation�t�+r � j = 0; (5.89)wherej(t; r) = �evF ��2 limt1!t2!thng(t1; t2;n; r)in; (5.90)to be 
ompared with Eqs. (2.5)�(2.7).Having found the usual equation for the ele
tri
 
ur-rents, we turn to the energy 
onservation. A
ting withthe operator (�t1 ��t2) on both sides of Eq. (5.71) andintrodu
ing the quantitiesue(t; r) = � i��4 limt1!t2!t ��t1 � �t2��� hg(t1; t2;n; r)in;j"e(t; r) = � i��vF4 limt1!t2!t ��t1 � �t2��� hng(t1; t2;n; r)in; (5.91)we �nd�tue +r � j"e = j � E++ i�� limt1!t2!t ��t1 � �t2�h bSt fg;N �;N ggin: (5.92)The expression in the left-hand side of Eq. (5.92) hasthe form of a 
ontinuity equation for the energy 
ur-rent of ele
trons: the �rst term in the right-hand side

is the Joule heat a
ting as an energy sour
e. The lastterm in the right-hand side indi
ates that the ele
tronsystem is open by itself, due to the energy ex
hangewith ele
tron�hole pairs. As we dis
ussed in Se
. 2.1,this means that the 
ontribution of these degrees offreedom must be taken into a

ount in the de�nition ofthe 
onserved energy and energy 
urrent densities. Forthis, we multiply Eqs. (5.59a) and (5.59b) by L̂g andL̂� respe
tively. Using Eqs. (5.25), (5.54), and (5.59
)and taking the tra
e Trn (see Eq. (5.85)) of both sides,we obtain�tug +r � j"g � 12Trnhv�r; L̂giN̂ g == 12TrnL̂g bStg ; (5.93a)�tu� +r � j"� � i2Trn�Ĥe�h(i�t;�ir); L̂��N̂ � == 12TrnL̂� bSt� ; (5.93b)where the energy densities u�;g and 
urrents j"�;g arede�ned asug(t; r) = 12TrnL̂g N̂ g ;u�(t; r) = 12Trn� 11 + F̂ ; L̂�N̂ �� ; (5.93
)j"g = 12TrnvL̂g N̂ g ; j"� = 12Trnnŝ ; L̂�N̂ �o: (5.93d)The velo
ity operator ŝ is de�ned in Eq. (5.65) andnotation (5.60) is used.We now add Eq. (5.93a) to Eq. (5.92) and subtra
tEq. (5.93b). A

ording to Eq. (5.87), all the 
ollisionterms and the 
ommutators 
an
el, and we obtain theenergy balan
e equation (
ompare with Eq. (2.8)):�tutot +r � j"tot = j � E; (5.94a)utot(t; r) = ue(t; r) + u�(t; r)� ug(t; r); (5.94b)j"tot(t; r) = j"e(t; r) + j"�(t; r) � j"g(t; r): (5.94
)Equations (5.94), (5.91), (5.93
), and (5.93d) 
on-stitute the main result in this subse
tion. They de-�ne the 
onserved 
urrents in terms of quantities tobe found from the kineti
 equations. We emphasizethat the 
onservation laws thus found are exa
t (at oneloop) in the sense that no approximation has been madebeyond the usual Fermi-liquid theory: spe
i�
ally, nogradient or harmoni
 expansion has been made and notime or spa
e Poisson bra
kets have been negle
ted yet(ex
ept those suppressed by the fa
tor q=pF ).394



ÆÝÒÔ, òîì 127, âûï. 2, 2005 Intera
tion 
orre
tions to thermal transport 
oe�
ients : : :Within the same a

ura
y with whi
h kineti
 equa-tions (5.64) were derived, performing Wigner transfor-mations (5.61)�(5.63) of Eq. (5.90), (5.91), and (5.93d),we �nd j = evF � Z d" hnf(";n; t; r)in (5.95)for the ele
tri
 
urrent density andj"e = vF � Z d" "hnf(";n; t; r)in; (5.96a)j"� =Z d!2� !Z ddq(2�)d �� Dnŝ(!;q); L̂�(!;q)N̂�(!;q; t; r)oEn ; (5.96b)j"g = Z d!2� ! Z ddq(2�)d �� DvL̂g(!;q)N̂g(!;q; t; r)En ; (5.96
)for the energy 
urrent densities, in agreement withEqs. (3.14)�(3.15).It remains to redu
e the expressions found to theusual form of the quantum Boltzmann equation. Thisis the subje
t of the next subse
tion.5.7. The quantum kineti
 equationAfter Wigner transformations (5.61)�(5.63b),Eq. (5.71) be
omes��t + v�r+ ev�E ��"� f(";n; t; r) == bStff;N�; Ngg: (5.97)The 
ollision integral is the sum of the inelasti
 andelasti
 parts,bStff;N�; Ngg = bStinff;N�; Ngg+ bStelffg: (5.98)The elasti
 part is obtained by adding the trans-form of the �bare� 
ollision integral (the �rst term inthe right-hand side of Eq. (5.72)) to the transforms ofbStel1 , Eq. (5.75
), and bSt�, Eq. (5.76b). The inelasti
part is given by the transform of bStin1 , Eq. (5.75b), plusthe transform of bSt+, Eq. (5.76
). However, for the sakeof 
ompa
tness, we do not make su
h a distin
tion be-tween elasti
 and inelasti
 
ontributions and, using a

notation resembling that in Se
. 5.5, write the 
ollisionintegral in the formbStff;N�; Ngg = bSt�f + bSt1ff;N�; Ngg++ bSt�ffg+ bSt+ff;N�; Ngg; (5.99)where the �rst term in the right-hand side is the trans-form of the �bare� 
ollision integral and the other termsare given below.With the elasti
 and inelasti
 parts of 
ollisionintegral (5.73) kept in a single formula, the 
orre-sponding 
ontribution is obtained by �rst substitut-ing Eqs. (5.58) and then performing Wigner transfor-mations (5.61)�(5.63) (and using their property (5.83)).We de
ompose the result into distin
t 
ontributions dueto the two bosoni
 degrees of freedom:bSt1(";n; t; r) = bSte��1 (";n; t; r)�� bSte�g1 (";n; t; r): (5.100)As usual, the 
ollisions with the �ghost� parti
les en-ter with the opposite signs. In terms of 
ombina-tion (5.66) of distribution fun
tions denoted by � andvertex (5.28), these 
ontributions are (we suppress thespe
tator arguments t and r in both sides of the equa-tions)bSte-�1 (";n1) = 1� Z d!2� 1! Z ddq(2�)d Z dn2dn3dn4
3d �� �
312�L�34��41;21("; !;q) + ��34;21("; !;q) �L�41�++ 
321�L�34��42;21("; !;q) ++��34;21("; !;q) �L�42�	; (5.101a)bSte-g1 (";n1) = 1� Z d!2� 1! Z ddq(2�)d Z dn2dn3dn4
3d �� �
312�Lg34�g41;21("; !;q) + �g34;21("; !;q) �Lg41�++ 
321�L�34�g42;21("; !;q) ++�g34;21("; !;q) �Lg42�	: (5.101b)Here and below, the short notationL�ij = L�(!;q;ni;nj); � = g; �is used. It is readily seen that these 
ontributions 
oin-
ide with the lo
al ele
tron�boson 
ollision integral inEq. (3.19b).Pro
eeding as above, we obtain the transform ofEq. (5.76b) asbSt�(";n1) = bStel(";n1) + bSt�;l(";n1); (5.102a)395
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5d 
213
546 �� [L� �Lg ℄52 [f("� !;n6)� f("� !;n4)℄�� hLg14f(";n3) + Lg34f(";n1)i; (5.102b)bSt�;l = 1� Z d!2� 1!2 Z ddq(2�)d Z dn2 : : : dn6
5d 
213
546 ��h2f(";n4)�f("�!;n4)�f("+!;n4)�(n4 ! n6)i�� Z d"1hf("1;n1)[1�f("1�!;n3)℄+(n1 $ n3)i�� [L� �Lg ℄52 Lg14 ++ 12 [L� �Lg ℄52 [Lg14 �Lg34℄ (5.102
)Equation (5.102b) is (the singlet part of) the elasti
ele
tron�ele
tron 
ollision integral, Eq. (3.20b). To ob-tain Eq. (5.102
) in the given form, we used the analyti
properties of the propagators and 
hanged the variableas "1 ! "1 + ! in some of the terms.We �nally transform Eq. (5.76
) and obtainbSt+(";n1) = bSte-en (";n1) ++ bSt+;n(";n1) + bSt+;l(";n1): (5.103a)The �rst term is given by (the singlet part of)Eq. (3.20d). The se
ond term isbSt+;n = bSte-�+;n � bSte-g+;n (5.103b)with bSte-�+;n given by Eq. (3.19d) ex
luding the last line.The third term isbSt+;l = 12� Z d!2� 1! Z ddq(2�)d Z dn2 : : : dn6
5d 
213
546 ��h2f(";n4)�f("�!;n4)�f("+!;n4)�(n4 ! n6)i�� [L� (2N� + 1)�Lg (2Ng + 1)℄52 �� [Lg34 �Lg14℄ : (5.103
)Adding Eqs. (5.103
) and (5.102
), we re
over the lastline in Eq. (3.19d) and (the singlet part of) the lo
alele
tron�ele
tron 
ollision integral, Eq. (3.20f). This
on
ludes the derivation of the quantum kineti
 equa-tion for the singlet 
hannel.5.8. The triplet 
hannelIn
lusion of the intera
tion in the triplet 
hannel isstraightforward; in Eilenberger equation (5.7), we addthe term i h�̂ � �; ĝi (5.104)

to the left-hand side, where �i are the Pauli matri
es(i = x; y; z) and the �u
tuating �eld �̂i is a 3-
ompo-nent ve
tor in the L = 1 angular momentum spa
e.Therefore, all the triplet 
hannel propagators, polar-ization operators, and density matri
es should be 
on-sidered 3� 3 matri
es; for example, we have[D0℄ij (1; 2) = �F �(�12) Æ(r12)� Æ(t12)Æij(
f. Eq. (5.15)) and the retarded polarization operatoris given by�Rij(1; 2) = � �Æ12 + �4Tr��i ÆgK(t1; t1;n1; r1)Æ�+j(t2; r2;n2) �� ;where the tra
e is over spin indi
es.The tra
e of triplet 
hannel operators in
ludes thesum over the indi
es i; j. In the absen
e of the magneti
�eld, all the operators are diagonal, e.g.,[L� ℄ij = L�Æij ;and the tra
e results in extra fa
tors of 3 in 
ompari-son to the singlet 
hannel. The derivation 
an thereforebe repeated with simple modi�
ations and it gives thequantum kineti
 equation presented in Se
. 3. We onlynote one main di�eren
e in the derivation for the triplet
hannel: the gauge transformation, whi
h has the formĝ ! e�iK̂�� ĝ eiK̂��;does not 
ommute with intera
tion term (5.104). Ad-ditional se
ond-order terms arise due to 
ommutatorsof the Pauli matri
es; however, these terms vanish inthe one-loop approximation and we 
an negle
t them.In the next se
tion, we use the quantum kineti
equation to 
al
ulate the intera
tion 
orre
tions to thetransport 
oe�
ients and spe
i�
 heat.6. DERIVATION OF TRANSPORTCOEFFICIENTS AND SPECIFIC HEATIn this se
tion, we 
al
ulate the transport 
oe�-
ients for quasi one-dimensional, two-dimensional, andthree-dimensional systems; the evaluation of the inter-a
tion 
orre
tion to the spe
i�
 heat is in the �nal sub-se
tion.To 
al
ulate the 
urrents in the presen
e of an exter-nal �eld (ele
tri
 �eld E or temperature gradient rT ),we need to solve the kineti
 equations. We assume thatthe external �elds are weak, i.e.,eELT � T; rTLT � T;396
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tion 
orre
tions to thermal transport 
oe�
ients : : :with the temperature length de�ned in Eq. (5.53).These 
onditions ensure that the deviations from theequilibrium distribution fun
tions are small and we 
ansolve the equations by iteration.In the lowest order, the distribution fun
tionsshould turn the 
ollision integrals in Eqs. (3.4) and (3.6)to zero, and the sought 
orre
tions Æf; ÆN� are linearin the ele
tri
 �eld or in the gradients of the distribu-tion fun
tions. In other words, we seek a solution ofthe kineti
 equations of the formf(";n; r) = fF ("; r) + Æf(";n; r);N̂�(!;q; r) = NP (!; r)1̂1 + ÆN̂�(!;q; r); (6.1)where the Fermi and Plan
k distribution fun
tions (2.2)depend on the spatial 
oordinate only through the tem-perature T (r). For 
ompa
tness, we 
onsider only thesinglet 
hannel expli
itly and indi
ate how to in
ludethe triplet 
hannel.We start from the ele
tron part of the kineti
 equa-tion. The bare impurity 
ollision part bSt� is larger thanthe other terms, and it therefore su�
es to 
al
ulate thelatter in the �rst order of perturbation theory. Consid-ering short-range impurities, su
h that � is independentof the s
attering angle, we �ndÆf = Æf0 + Æf1;Æf0 = �v ��eE� "rTT ����fF (")�" � ;Æf1 = �Æ bSt ffF + Æf0; NP + ÆN�; NP + ÆNgg ; (6.2)where Æ bSt is the linearized 
ollision integral. We notethat a

ording to the dis
ussion of the 
onservationlaws in Se
. 3, we need to 
onsider only the lo
alele
tron�boson 
ontribution, Eq. (3.19b), and the elas-ti
 ele
tron�ele
tron one, Eq. (3.20b).Expression (6.2) is to be substituted in Eqs. (3.14)and (3.15b) to �nd the ele
tri
 
urrent and the ele
-tron 
omponent of the energy 
urrent. Integration ofthe Æf0 term is straightforward. Due to the stru
tureof 
ollision integrals (3.19)�(3.20), the integration over" 
an be performed before the ! and q integrationsin the Æf1 term. For the 
ombination of distributionfun
tions entering Eq. (3.16a), we �ndÆ�ij;kl("; !) == ÆN(!;q;ni;nj) ffF (")� fF ("� !)g++
dÆ([ninj)NP (!) fÆf(";nk)� Æf("� !;nk)g++
dÆ([ninj)hÆf(";nl)�1� fF ("� !)��� fF (")Æf("� !;nk)i; (6.3)

where we next use the identitiesZ d" fF (")�fF ("� !)�" = ��! h!NP (!)i;Z d"�fF (")�" �1� fF ("� !)� = ��! h!NP (!)i; (6.4a)Z d" "�fF (")�" [1� fF ("� !)℄ == 12!2 �NP (!)�! ;Z d" ("� !)�fF ("� !)�" fF (") == �12!2 �NP (!)�! ;Z d" "2�fF (")�" �1� fF ("� !)� == �23 T 2 ��! h!NP (!)i+ 13!3 �NP (!)�! ;Z d" "("� !)fF (")�fF ("� !)�" == �23 T 2 ��! h!NP (!)i� 16!3 �NP (!)�!
(6.4b)

to obtain12 Z d"�Æ�ij;kl("; !;q)� Æ�ij;kl(";�!;�q)� == evF �E � (nk � nl) ��! �!N ijP � ; (6.5a)12 Z d" "�Æ�ij;kl("; !;q)� Æ�ij;kl(";�!;�q)� == �!22 ÆN(!;q;ni;nj)�vF �rT4T � (nl+nk)�� !3 �N ijP�! + vF �rTT � (nl � nk)�� "�2T 23 ��!N ijP ��! + !312 �N ijP�! # ; (6.5b)whereN ijP � hN̂P i (ni;nj) � NP (!)
dÆ([ninj) : (6.6)We here retained only the 
ontribution odd in ! be-
ause the even part vanishes after the ! integration inthe relevant 
ollision integral, see Eq. (3.19b).The 
ombination of the distribution fun
tions en-tering the elasti
 
ollision part, Eq. (3.20b), gives12 Z d"fF (")�Æf("� !;n)� Æf("+ !;n)� == �evF �E � n ��! h!NP (!)i; (6.7a)397



G. Catelani, I. L. Aleiner ÆÝÒÔ, òîì 127, âûï. 2, 200512 Z d" "fF (")�Æf("� !;n)� Æf("+ !;n)� == vF �n � rTT �� "�2T 23 ��!NP (!)��! � !36 �NP (!)�! # ; (6.7b)where we again retained only the part odd in !, non-vanishing after the ! integration in Eq. (3.20b).Using Eq. (3.14), we �nd the ele
tri
 
urrent j = �̂Ewith the 
ondu
tivity tensor �̂ given by�̂ = �D�1̂1+Z d! hŜel(!)+Ê(!)i�� ��! h!NP (!)i�; (6.8)where �D = �v2F e2�=d is the Drude 
ondu
tivity.With the spatial indi
es denoted by �; � = 1; : : : ; d,the elasti
 kernels Sel�� and E�� , whi
h originate fromEq. (3.19b) and Eq. (3.20b) respe
tively, are given bySel��(!) = S11��(!) + S12��(!);S11��(!) = d�!� Z ddq(2�)d Z dn1dn2(
d)2 n1�n1� ��Re�L�11 �Lg11�+Re [L�22 �Lg22℄�� 2Re [L�12 �Lg12℄ ;S12��(!) = 2d�!� Z ddq(2�)d �� Z dn1dn2(
d)2 n1�n2�Re[L�12 �Lg12℄ ;E��(!) = � d��!� Z ddq(2�)d Z dn1 : : : dn6(
d)6 
612
543�� (n1�n3� � n2�n3�)��Ren [L�56 �Lg56℄ [Lg13 + Lg14℄o;
(6.9)

where we keep only the singlet 
hannel 
orre
tion for
ompa
tness; in
lusion of the triplet 
hannel 
ontribu-tion is straightforward9). We show in Appendix F thatour expression for the 
ondu
tivity 
oin
ides with theone in Ref. [17℄. It is natural that the 
ondu
tivitydoes not involve any bosoni
 distribution fun
tion (
f.Eq. (6.5a)), be
ause the inelasti
 ele
tron 
ollision withsu
h bosons 
hanges the energy of the ele
tron but notthe dire
tion of its motion.In 
ontrast, even the ele
tron 
ontribution to thethermal 
ondu
tivity tensor �̂, su
h that j"tot = ��̂rT ,9) By the simple substitution L� � Lg ! L� + 3L� � 4Lg inthe kernels.

is sensitive to the bosoni
 distribution fun
tions. Werepresent the total thermal 
ondu
tivity as�̂ = �̂WF + Æ�̂+ �̂� � �̂g: (6.10)The �rst term in this expression obeys the Wiede-mann �Franz law with the intera
tion 
orre
tions tothe ele
tri
 
ondu
tivity in
luded, i.e., �̂WF = L�̂T ,with the Lorentz number given by Eq. (1.1). The se
-ond term represents the (ele
troni
) 
orre
tion to theWiedemann �Franz law due to the energy dependen
eof the elasti
 s
attering and due to the inelasti
 ele
-tron s
attering on bosons. Finally, the third and thefourth terms represent the 
ontribution of the � andg bosons to the thermal transport. These additional
ontributions are given byÆ�̂ = Æ�̂el + Æ�̂in; (6.11a)[Æ�el℄�� == �De2T Z d!hSel��(!)� 2E��(!)i�!312 �NP�! � ; (6.11b)[Æ�in℄�� = �De2T Z d!hS12��(!)�S11��(!)i �!34 �NP�! �++ vF Z d!2� ! Z ddq(2�)d Z dn1dn2dn3(
d)3 n1� �� nRehL�12Æ�N�23 + L�32Æ�N�21 �L�12Æ�N�21i��RehLg12Æ�Ng23 + Lg32Æ�Ng21 � Lg12Æ�Ng21io; (6.11
)���� = � Z d!2� ! Z ddq(2�)d �� Z dn1dn2(
d)2 �ŝ�� ;L�12Æ�N�21	 ; (6.12)whereÆ�N�ij = ÆÆ(r�T )�ÆN�(!;q;ni;nj)�: (6.13)Equations (6.8)�(6.12) are the 
omplete expressionsfor the ele
tri
 and thermal transport 
oe�
ients. Toobtain the expli
it result, we must solve Eqs. (3.6) to�nd the distribution fun
tions ÆN�. We do this byrestri
ting ourselves to the di�usive T� � 1 regime,ex
ept for two-dimensional systems for whi
h we 
on-398
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tion 
orre
tions to thermal transport 
oe�
ients : : :sider an arbitrary temperature range10). Moreover, forthe Coulomb intera
tion, we 
onsider the unitary limit(for infrared-�nite momentum integrals), whi
h enablesus to drop all the terms that depend on �qF̂ .From now on, we retain only the zeroth harmoni
of the Fermi-liquid 
onstants, for whi
h we use the no-tation F�0 . For the singlet 
hannel, this meansF �0 � Z d�2�F �(�) + �V (q) (6.14a)and for the triplet 
hannel,F �0 � Z d�2�F �(�): (6.14b)We re
all that F g = 0 and that the Coulomb intera
-tion potential is given byV (q) = 8>>>>>>><>>>>>>>:
4�e2q2 ; d = 3;2�e2q ; d = 2;e2 ln 1(qa)2 ; d = 1; (6.14
)where a is a length of the order of the quasi one-dimensional wire width.6.1. Di�usive regimeWe �rst 
onsider the distribution fun
tion Ng; sub-stituting expression (6.1) in Eq. (3.6), in the linear or-der in rT , we obtain� !T v1 �rT �N12P (!)�! + ihv�q; ÆNgi == 2n bSt� ; ÆNgo+ vF !T �NP (!)�! ��rT � �
dÆ([n1;n2)n1 � n1 � n2�; (6.15)with N ijP de�ned in Eq. (6.6). The (exa
t at this order)solution for ÆNg(!;n1;n2) isÆNg = ÆN0 � vF �n1 � rT !T �N12P (!)�! : (6.16)10) The Boltzmann equation des
ription of stri
tly one-di-mensional systems is not appli
able and 
onsidering the qua-si-one-dimensional ballisti
 
ase within our s
heme is meaning-less be
ause of the e�e
ts of boundary s
attering. The ballisti
regime in three dimensions also 
annot be 
onsidered within ours
heme be
ause the main e�e
t on the thermal 
ondu
tivity isdue to the inelasti
 s
attering pro
esses with momentum transferof the order of kF .

For the distribution fun
tion N�, the above is onlythe starting point for the iterative solution:ÆN� = ÆN0 + ÆN1: (6.17)The equation for ÆN1 is�� !T �N̂P (!)�! rT���! ��q F̂ �1 + F̂ ��++ i�! F̂ �1 + F̂ � ; ÆN̂g�+ ihĤe�h; ÆN̂1i == 2n bSt� ; ÆN̂1o : (6.18)In the di�usive limit T� � 1, the (�rst-iteration) solu-tion would be of the formÆN1 � !��vF � !T �NP (!)�! rT� �Vfor a ve
tor V with a magnitude of the order one.However, 
ontributions from frequen
ies ! larger thanthe temperature T are exponentially suppressed, i.e.,!� . T� � 1; therefore, ÆN1 
an be negle
ted in 
om-parison to ÆNg. Thus, in the di�usive limit,Æ�N�ij = vF � [ni℄� !T �N ijP (!)�! : (6.19)For the propagators L� in Eq. (3.11), the di�usiveapproximation amounts to the substitutionn�n� ! Æ��d ;whi
h leads to the expressionL�(n1;n2) = ��Æ([n1;n2)� 1�+ L�0 ++ (n1 + n2)�L�1� + n1�n2�L�2�� ; (6.20)where the fun
tions L�i depend on !; q only and areexpli
itly given byL�0 = 1�i!1 + F�0 +Dq2 ; (6.21a)L�1� = �i�vF q�L�0 ; (6.21b)L�2�� = �d�Dq�q�L�0 : (6.21
)Here, D = �v2F =d is the di�usion 
onstant. These for-mulas are valid whenever !; Dq2 � 1=� .Within this approximation, we haveS12��(!)� S11��(!) / L�2�� � Lg2�� :This means that in both �̂ and Æ�̂ (see Eqs. (6.8)and (6.11)), we 
an negle
t the 
ontributions of the399



G. Catelani, I. L. Aleiner ÆÝÒÔ, òîì 127, âûï. 2, 2005Ŝ kernels (we note that by inserting solution (6.19) inEq. (6.11
), Æ�̂in is given by twi
e the �rst line of thatequation). Indeed, the leading 
ontribution is given bythe kernel Ê in Eq. (6.11b). This kernel has the ap-proximate formE��(!) = 4��� 1d! �� Z ddq(2�)dRehLg0�L�2�� � Lg2���i: (6.22)Finally, the bosoni
 
ontributions (
f. Eq. (6.12)) tothermal 
ondu
tivity (6.10) 
an be written as11)�̂� � �̂g = �De2T Z d! B̂(!)�!34 �NP�! � (6.23)withB��(!) = �2Æ���!� Z ddq(2�)dRe [L�0 � Lg0℄ : (6.24)The next step is to evaluate the momentum inte-grals; we �rst give the results for the short-range inter-a
tion des
ribed by (the zeroth harmoni
 of) the Fermi-liquid 
onstant F0, and then we indi
ate the modi�
a-tions needed to a

ount for the long-range part of theCoulomb intera
tion in the singlet 
hannel. The triplet
hannel 
ontributions are obtained by multiplying theobtained results by three and identifying F0 with F �0 .For the elasti
 kernel, we �ndE��(!) = Æ��d e2�D 
d(2�)d � j!jD �d=2�1 1! 1
os �d4 �� �d2 � 1F0 �1 + F0 � (1 + F0)1�d=2�� : (6.25)The expression for the Coulomb intera
tion is obtainedby taking the unitary limit F0 ! +1.The result for the bosoni
 kernel isB��(!) = Æ��2 e2�D 
d(2�)d � j!jD �d=2�1 1! �� 1
os �d4 h1� (1 + F0)1�d=2i : (6.26)For d = 3, the limit F0 ! +1 gives the 
orre
t for-mula for the long-range 
ontribution, but for d = 1,the limit diverges. But with the full form of the in-tera
tion potential retained, this infrared divergen
e is11) We 
hoose to 
olle
t the bosoni
 
ontributions into a singlekernel su
h that the resulting momentum integral is 
onvergent.


ut o� at the inverse s
reening radius. With logarith-mi
 a

ura
y, the result for the Coulomb intera
tionis found by substituting [: : : ℄ ! �ak ln1=2(Dk2=j!j),where a is a length of the order of the wire width andk2 = 4�e2� is the square of the inverse s
reening radius(in the bulk).We 
an now pro
eed with the 
al
ulation of the in-tegrals over ! in Eqs. (6.8), (6.11), and (6.23) using theidentityZ d! !m�!NP (!) = �2Tm�(m)�(m+ 1): (6.27)Here, �(x) is the Riemann zeta fun
tion, whose valuesat the points relevant for our dis
ussion are� ��12� � �0:208; �(0) = �12 ; � �12� � �1:460;� �32� � 2:612; �(2) = �26 � 1:645; � �52� � 1:341;and �(x) is the Euler gamma fun
tion, with the values��12� = p�; �(1) = 1; ��32� = 12p�;��52� = 34p�; �(3) = 2; ��72� = 158 p�:Performing the �nal ! integrations, we obtain� = �D + e2 
d(2�)d 2d� �d2 � 1�� TD�d=2�1 �� ��d2� d� 42� d 1
os �d4 �� �d2 � 1F0 �1 + F0 � (1 + F0)1�d=2�� ; (6.28)Æ� = 13d 
d(2�)d � TD�d=2D � �d2 + 1��� ��d2 + 2� 1
os �d4 �� �d2 � 1F0 �1 + F0 � (1 + F0)1�d=2�� ; (6.29)�� � �g = �14 
d(2�)d � TD�d=2D � �d2 + 1��� ��d2 + 2� 1
os �d4 h1� (1 + F0)1�d=2i ; (6.30)400
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tion 
orre
tions to thermal transport 
oe�
ients : : :where in the absen
e of the magneti
 �eld, ��� = �Æ�� ,and a similar relation holds for the thermal 
ondu
-tivity. A

ording to the previous dis
ussion, for theCoulomb intera
tion, the 
orre
t expressions are givenby the limit F0 ! +1, with the ex
eption of the term�� � �g in the 
ase where d = 1 for whi
h, with log-arithmi
 a

ura
y, the result is obtained by substitut-ing [: : : ℄ ! �ak ln1=2(Dk2=T ). The �nal answers forthe 
orre
tions to the thermal 
ondu
tivity are givenin Eqs.(4.2)�(4.3).We note that for d = 3, the ! integration in �̂and �̂WF is a
tually ultraviolet-divergent. This diver-gen
e 
an be in
orporated as a renormalization into theDrude results; this renormalization, however, does notinvalidate the Wiedemann �Franz law.6.2. Two-dimensional systemTo evaluate the intera
tion 
orre
tions for the en-tire temperature range, we need the exa
t form of thepropagators. In two dimensions, they are given byL�(!;q;n1;n2) = 
dÆ([n1;n2)L0(!;q;n1) ++ L0(!;q;n1)L0(!;q;n2)�� ��i! F�01 + F�0 + 1� � CC ���i! F�01 + F�0 + 1� � ; (6.31)where L0(!;q;n) = 1�i! + iv � q+ 1=� ;C =q(�i! + 1=�)2 + (vF q)2: (6.32)We note that the variables ! and vF q are now boundedonly by the Fermi energy EF .As before, we need to �nd the nonequilibrium 
or-re
tions ÆN�;g to the bosoni
 distribution fun
tions.These are again given by Eqs. (6.16), (6.17), but toobtain the thermal 
ondu
tivity in an arbitrary tem-perature range, we 
al
ulate the solution of Eq. (6.18)exa
tly (in the linear order in rT ):ÆN1 = ~N�q � rTvF q2 + iivFq � (n1 � n2) + 2=� �� ���(n1)n?1 � �(n2)n?2 � � rT�; (6.33)where the bar denotes 
omplex 
onjugation and we in-trodu
e the quantities

~N = vF � !2T �NP�! F01 + F0 ;n? = n� (n � q)qq2 ;�(n) = a(n)a(n)� b ; b = �i! F01 + F0 + 1� ;a(n) =s(vF q)2 +��iq�v+ 2� �2: (6.34)
We do not 
al
ulate the 
orre
tions to the ele
-tri
 
ondu
tivity, whi
h would reprodu
e the results inRef. [17℄, as shown in Appendix F (see also Ref. [18℄for the generalization to arbitrary disorder). For 
on-venien
e in the 
al
ulations, we separate the 
ontri-butions due to ÆN0 and ÆN1 in Æ�̂in and �̂� (
f.Eqs. (6.11
) and (6.23)):Æ�̂in = Æ�̂0in + Æ�̂1in; (6.35a)Æ�̂0in = 2�De2T Z d!hŜ12(!)� Ŝ11(!)i�� �!34 �NP�! � ; (6.35b)�Æ�1in��� = vF Z d!2� ! Z d2q(2�)2 Z dn1dn2dn3(
2)3 �� n1�RenL�12Æ�N123 + L�32Æ�N121 ��L�12Æ�N121o; (6.35
)�̂� = �̂�0 + �̂�1; (6.36a)�̂�0 � �̂g = �De2T Z d! B̂0(!)�!34 �NP�! �; (6.36b)�̂�1 = � Z d!2� ! Z d2q(2�)2 Z dn1dn2(
2)2 �� �ŝ�;L�12Æ�N121	 ; (6.36
)where, as in Eq. (6.13), we use Æ�N1 to denote thevariational derivative with respe
t to the temperaturegradient andB0��(!) = � 4�!� Z d2q(2�)2 �� Z dn1
2 n1�n1�Re [L�11 �Lg11℄ : (6.36d)10 ÆÝÒÔ, âûï. 2 401
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tri
 
ondu
tivityand (6.11b) for the elasti
 
orre
tion to the ther-mal 
ondu
tivity and de�nition (6.9) for the kernelsremain un
hanged. The momentum and angularintegrals in (6.9) 
an be 
al
ulated exa
tly; for thesinglet 
hannel in the unitary limit, we �ndE��(!) = � e2Æ���D2�2 12!�2� 2!�H(!�) ar
tg 1!� ++ (!�)22 �12 �H(!�)� ln�1 + 1(!�)2��� (!�)2H(!�) ln 2�; (6.37a)S11��(!) = � e2Æ���D2�2 � �2 sign!; (6.37b)S12��(!) = � e2Æ���D2�2 ���2H(!�)� 1� ar
tg 1!� ++ �2 sign! + !�H(!�)�� �12 ln�1 + 1(!�)2�+ ln 2�� (6.37
)with the fun
tion H de�ned asH(x) = 14 + x2 : (6.37d)To perform the momentum integral in Eq. (6.36d), wemust keep the full form of the propagator in order toavoid the infrared divergen
e that we would obtain inthe unitary limit,B0��(!) = � e2Æ���D2�2 1!� ln�Dk2j!j �+ �j!j� �� 12 ln �1 + (!�)2�� !� ar
tg� 1!� ��; (6.37e)where k = 2�e2� is the inverse s
reening radius.Next, we 
al
ulate the angular integrals in Eqs. (6.35
)and (6.36
) as well as the angular part of the momen-tum integrals, with the result

Z d�q2� Z dn1dn2dn3(
2)3 �� n1�RenL�12Æ�N123 + L�32Æ�N121o == i4 ~NÆ��� 1(vq)2 1C �C � C�b0C � b + �Cb0�C � �b��� � �C � �b0 � C + b0�+ 1(vq)2 �C � b0C � �C � �b0�C ��� 1C �C � CC � b � �C�C � �b��; (6.38a)Z d�q2� Z dn1dn2(
2)2 n1�RenL�12Æ�N121o == i4 ~NÆ�� �2�� �C�C � �b � CC � b� � 1C + 1�C ��� 1(vq)2 � C�b0C�b+ �Cb0�C��b� �C�b0C � �C��b0�C ��: (6.38b)The fun
tion C is de�ned in Eq. (6.32) and b0 is given bythe F0 ! +1 limit of b in Eq. (6.34), where ~N is alsode�ned. The remaining integrals over the magnitudeof the momentum 
an be evaluated approximately; theresult 
an be written asÆ�̂1in + �̂�1 = �De2T Z d! B̂1(!)�!34 �NP�! �; (6.39a)withB1��(!) = e2Æ���D2�2 �� 2!�1 + (!�)2 ln�vF k2j!j��� ar
tg!� � !� ln� EFp!2 + ��2��: (6.39b)In the above kernel, the �rst term in the 
urly bra
ketsoriginates from �̂�1 only: as dis
ussed in Se
. 5.2, nolong-range terms 
an be present in the ele
tron 
ontri-bution to the thermal 
ondu
tivity. We note that these
ond term in the above expression is beyond the log-arithmi
 a

ura
y of our approximate 
al
ulation andmust be dropped. Similarly, most of the terms in theother kernels 
an be negle
ted, and 
olle
ting the loga-rithmi
 
ontributions, we obtain��s = � 12�2T Z d!�!24 �NP�! ����(!�)2 ln�EFj!j�+ 21 + (!�)2 ln�vF kj!j �++� 712(!�)2 � 56 + 163 14 + (!�)2 ��� ln�1 + 1(!�)2��; (6.40)402
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tion 
orre
tions to thermal transport 
oe�
ients : : :where we de�ne the singlet and triplet 
hannel 
orre
-tions as [�� �WF ℄�� = (��s + 3��t) Æ�� :The �nal integration 
an now be performed within thelogarithmi
 a

ura
y; we �nd (
f. Eq. (4.4b))��s = ��215T (T�)2 ln�EFT �+ T6 g1(2�T�)�� ln�vF kT �� T24g2(�T�) ln�1 + 1(T�)2� ; (6.41)whereg1(x) = 3x2 � 1x �2 0� 1x�� x2�� 2� ; (6.42a)g2(x) = 1415x2 + 83g1(x)� 53 ; (6.42b)and  0 is the derivative of the digamma fun
tion. Be-
ause the asymptoti
 behavior of g1(x) isg1(x) = 8>><>>:1� 15x2 + 17x4 + : : : ; x� 1;3x � 6x2 + �2x3 + : : : ; x� 1; (6.42
)both these fun
tions tend to 1 as T� ! 0; there-fore, in the di�usive limit, the main 
ontribution isT ln(Dk2=T )=12. On the other hand, for T� � 1, the�rst term in Eq. (6.41) is the dominant one.Turning to the triplet 
hannel, we restri
t ourselvesto the limiting di�usive and quasiballisti
 
ases for sim-pli
ity, although one 
an extend the 
al
ulation to theentire temperature range, as is done in Ref. [17℄ for theele
tri
 
ondu
tivity.In the di�usive limit T� � 1, we know from ourprevious analysis that we 
an dis
ard the B1 term aswell as the S terms. The relevant kernels are then12)E��(!) = � e2Æ���D2�2! �1� 1F �0 ln (1 + F �0 )� ; (6.43)B0��(!) = � e2Æ���D2�2! ln (1 + F �0 ) : (6.44)Their substitution in Eqs. (6.11)�(6.36b) gives��t = � T18 �1� 1F �0 ln (1 + F �0 )�++ T12 ln (1 + F �0 ) : (6.45)12) They 
an be obtained from Eqs. (6.25), (6.26) in the limitd! 2.

In the opposite limit T� � 1, the main 
ontribution
omes, as for the singlet 
hannel, from the logarithmi
divergen
e at large momenta in the kernel B1:B1��(!) = � e2Æ���D2�2 �� ��!� ln� EFp!2 + ��2��� F �01 + F �0 �2: (6.46)Then the 
orre
tion to the thermal 
ondu
tivity is��t = ��215T (T�)2 ln�EFT �� F �01 + F �0 �2 ; (6.47)whi
h 
on
ludes the derivation of Eq. (4.4
).This 
orre
tion to the thermal 
ondu
tivity (andthe 
orresponding one in the singlet 
hannel) is the 
on-tribution of inelasti
 pro
esses to the energy relaxationrate13). In a 
lean system, su
h inelasti
 pro
esses 
an-not relax momentum (be
ause of the Galilean invari-an
e), and hen
e they do not a�e
t the ele
tri
 
ondu
-tivity, but they 
an 
ontribute to the energy relaxationrate �". In the kineti
 theory, the thermal 
ondu
tivity
an be written, up to a numeri
al 
oe�
ient, as� / TEF=�";and the rate is given by the sum of the rates for therelevant pro
esses, namely the ele
tron�impurity andele
tron�ele
tron s
attering rates,�" = �imp + �e-ewith �imp = 1=� and�e-e = a T 2EF ln�EFT � :Here, a is a 
onstant whose exa
t value is irrelevant forour argument. In the limit (T 2=EF ) ln(EF =T )� 1=� ,we 
an expand the expression for the total rate, substi-tute the result into the above formula for � and obtain� / T�EF � aT (T�)2 ln�EFT � :The �rst term in the right-hand side is the usual Druderesult for the thermal 
ondu
tivity and the se
ond termhas the form of 
orre
tion (6.47). We note that in theopposite limit (
lean system), the result is� / E2FT ln�EFT � ;in agreement with the result in Ref. [30℄.13) A similar argument is presented in Ref. [21℄.403 10*
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i�
 heatRe
alling our dis
ussion on the stru
ture of the ki-neti
 equation in Se
. 2, we write the total spe
i�
 heatas the sum of the ele
troni
 and bosoni
 
ontributions,
V = 
0V + Æ
V ; (6.48a)
0V = �ue�T = �23 �T; (6.48b)Æ
V = ��T �u� � ug�; (6.48
)where, in a

ordan
e with Eq. (5.93
), the bosoni
 en-ergy densities (in the equilibrium (3.1)) areu� = Z d! ! b�(!)NP (!) (6.49)with14)b�(!) = Re2� Z ddq(2�)dTrn� 11 + F̂� ;L�(!;q)�: (6.50)As before, we expli
itly 
onsider the singlet-
hannel,short-range intera
tion in the zeroth harmoni
 approx-imation for the Fermi-liquid 
onstant (denoted by F0).The results for the long-range intera
tion in the unitarylimit are obtained by letting F �0 ! +1. For the triplet
hannel, we must substitute F �0 with F �0 and multiplyby an overall fa
tor of 3. The �nal answer with the
orre
t 
oe�
ients is given in Se
. 4.2.In the di�usive limit, to whi
h we restri
t our at-tention for d = 1; 3, we haveb�(!)� bg(!) = Re2� Z ddq(2�)d �� � 11 + F �0 L�0(!;q)� Lg0(!;q)� ; (6.51)with the fun
tions L�0 de�ned in Eqs. (6.20) and (6.21).After the momentum integration, we �ndb�(!)� bg(!) = 
d(2�)d � j!jD �d=2 14! �� 
os �4 (d� 2)sin �2 (d� 2) �1� 1(1 + F �0 )d=2 � : (6.52)14) This de�nition of the density of states is half the one inEqs. (2.19) be
ause of the di�erent limits for the ! integrationin the energy density and the spe
i�
 heat.

Inserting this in Eq. (6.48
) givesÆ
V = 12 
d(2�)d � TD�d=2 � �d2 + 1���d2 + 2��� 
os �4 (d� 2)sin �2 (d� 2) �1� 1(1 + F �0 )d=2 � : (6.53)The relevant numeri
al values for the zeta and gammafun
tions are given after Eq. (6.27), whi
h has beenused to evaluate the ! integral.For d = 2, we 
an keep the full form of the propa-gators to �nd the singular 
ontribution to the spe
i�
heat at an arbitrary value of T� ,b�(!)� bg(!) = �Re2� Z d2q(2�)2 � F �01 + F �0 1C � b �� (�i! + 1=�)C � 1C � b � 1C � 1=� ��; (6.54)with C and b de�ned respe
tively in Eqs. (6.32) and(6.34). The �rst term in the integral is formally di-vergent as jqj ! 1; this divergen
e gives a linear-in-T
ontribution to the spe
i�
 heat that does not dependon disorder. This term must be disregarded be
ause allthe linear terms are in
luded in the de�nition of the ef-fe
tive ele
tron mass, and taking it into a

ount wouldlead to a double 
ounting. To regularize the integral,we repla
e 1=(C � b)! 1=(C � b)�1=C in the �rst line.Evaluating the momentum integral, we obtainb�(!)� bg(!) = � 18�2D� F �01 + F �0 ln�EFj!j�++� F �01 + F �0 �2 �2 � j!j � 11 + F �0 ln(1 + F �0 )�: (6.55)The �nal answer for the 
orre
tion to the spe
i�
 heatis thenÆ
V = � 112 TD 11 + F �0 �F �0 ln�EFT �� ln(1 + F �0 )��� 14�2 h(2
 � 3)�(2)� 2� 0(2)i TD F �01 + F �0 �� 34� �(3) TD (T�)� F �01 + F �0 �2 ; (6.56)where �(2) � 1:645, � 0(2) � �0:938, and �(3) � 1:202.In the quasiballisti
 limit � ! +1, only the last lineis relevant: Æ
V = � 32� �(3)� F �01 + F �0 �2 T 2v2F :404
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tion 
orre
tions to thermal transport 
oe�
ients : : :This T 2-
orre
tion to the spe
i�
 heat has the sameform as the 
orre
tion found for two-dimensional Fermiliquids [28℄ and agrees (in the appropriate limit) withthe result in Ref. [29℄.As dis
ussed before, the long-range intera
tion 
anbe taken into a

ount by passing to the limit asF �0 ! +1, while the triplet 
hannel 
ontribution isthree times larger (see also Se
. 4.2).7. CONCLUSIONSLo
ality at the s
ale determined by the tempera-ture and the validity of the 
onservation laws are twomain requirements for a proper kineti
 des
ription ofany system. In the present paper, we derived su
h ades
ription for the intera
tion e�e
ts in disordered met-als (assuming that the 
lean 
ounterpart of the systemis a stable Fermi liquid).We showed that this des
ription requires the intro-du
tion of bosoni
 distribution fun
tions in addition tothe usual fermioni
 quasiparti
le distribution fun
tion.These neutral bosons are of two types: (i) the ones de-s
ribing os
illations in 
harge density (singlet) or spindensity (triplet) and (ii) �
titious (ghost) bosons thatprevent over
ounting the degrees of freedoms (ele
tron�hole pairs) already in
luded in the fermioni
 part. Theobtained 
onservation laws together with gauge invari-an
e allow an unambiguous de�nition of the 
orre-sponding ele
tri
 and energy 
urrents.For the ele
tri
 transport, the neutral bosons arenot important and our des
ription reprodu
es theknown results for the 
orre
tion to the 
ondu
tivityobtained in Ref. [11℄ for the di�usive regime and inRef. [17℄ in the ballisti
 and 
rossover regimes.The neutral bosons, however, are 
ru
ial for thethermal properties of the system. Namely, their 
ontri-butions to the energy density are responsible for non-analyti
 
orre
tions to the spe
i�
 heat, see Eqs. (4.6)and (4.8). Our kineti
 equation approa
h reprodu
esthe results for the intera
tion 
orre
tions to the spe-
i�
 heat previously 
al
ulated within the equilibriumdiagram te
hnique [12℄. Moreover, the neutral boson
ontributions to the energy 
urrent violate the Wiede-mann �Franz law, see Eq. (4.1) and the dis
ussionthat follows it. The violation is stronger for lower-dimensional systems (d = 1; 2) in the di�usive regime,see Eqs. (4.2) and (4.4b). Other e�e
ts 
ontributing tothe violation of the Wiedemann �Franz law are the en-ergy dependen
e of the ele
tron elasti
 s
attering andthe inelasti
 s
attering of the ele
trons on the neutralbosons. The latter e�e
t was found to be relevant in

the quasiballisti
 regime T� � ~ for two-dimensionalsystems, see Eqs. (4.4).The violation of the Wiedemann �Franz law wasinvestigated before in the di�usive regime in Refs. [20℄and [23℄ within the �quantum kineti
 equation�approa
h and by the Kubo formula in Ref. [22℄.Ironi
ally, even though the forms of the energy 
urrentoperator used in those referen
es are wrong, the �nalresults for the thermal 
ondu
tivity are 
onsistent withour Eqs. (4.2)�(4.4). We think that this agreement isa

idental.We are grateful to B. L. Altshuler for initiating thiswork. Interesting 
onversations with M. Yu. Reizer area
knowledged. We thank A. I. Larkin, A. J. Millis, andB. N. Narozhny for dis
ussions of our results. I. A. wassupported by the Pa
kard foundation.APPENDIX ACorre
tion to the thermodynami
 potentialA standard analyti
 
ontinuation of Eq. (2.17) givesÆ
 = Z d!4� 
th� !2T ��� Z ddq(2�)d Im ln�1 + F� �R(!;q)� == Z d!2� 12 
th� !2T � ImTr ln 1 + F̂� �̂R! : (A.1)In the se
ond line, we use the operator notation(see Eqs. (3.3) and (3.13)), whi
h gives the 
orre
tgeneralization for the momentum-dependent Fermi-li-quid parameter. Substituting the transform of the ex-pli
it expression (5.43a) for the polarization operator,we rewrite the argument of the logarithm as�1 + F̂�"�L̂g��1 + F̂1 + F̂ i!# L̂g :A

ording to de�nition (3.11), the term in the squarebra
kets is �L̂���1. Using the propertyTr ln�ÂB̂� = Tr ln Â+Tr ln B̂and the fa
t that ln�1 + F̂� does not 
ontribute to theimaginary part, we 
on
lude thatImTr ln 1 + F̂� �̂R! = �ImTr hln L̂� � ln L̂gi :Substituting this identity in Eq. (A.1), we �nally ob-tain Eq. (2.18).405
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ros
opi
 form of the energy 
urrentoperatorThe a
tion entering the partition fun
tion that de-s
ribes the ele
tron gas in the presen
e of an externalele
tri
 �eld is given byS = Z dt ddrhi y�t �  yĤgi �  y' i (B.1)with the 
ondition r�A = 0 that ensures the absen
eof the magneti
 �eld. The variables (t; r) on whi
h allthe �elds depend are suppressed. The gauge-invariantpart of the Hamiltonian for the nonintera
ting systemhas the usual form yĤgi = 12m (ir+A) y (�ir+A) ++  yVimp ; (B.2)where Vimp is the impurity potential and the potentials' and A des
ribe the external ele
tri
 �eld:eEext = �r'+ �tA:As usual, the 
harge 
onservation law�t�+r � j = 0 (B.3)follows from the requirement of gauge invarian
e, withthe 
harge and 
urrent densities given by� = e y ;j = e2m � y (�ir+A) + (ir+A) y � : (B.4)The invarian
e of the a
tion under the repla
ement (t; r)!  (t+ �(t; r); r)(and a similar repla
ement for  y) underlies the deriva-tion of the energy 
onservation law. A straightforward
al
ulation givesÆSÆ� = 0 = �0t( yĤgi ) + '�t( y )�� i2mr � ��t y(�ir+A) �(ir+A) y�t � ; (B.5)where the prime means that the derivative a
ts on ;  y only. By adding and subtra
ting terms propor-tional to ' in the last bra
ket and to �tA in the �rstterm, we �nd the energy 
onservation law�tu0 +r � j"0 = j �Eext � 1e' [�t�+r � j℄ ; (B.6)

where u0 =  yĤgi ; (B.7a)j"0 = � 12mh(i�t + ') y(�ir+A) �� (ir+A) y(i�t � ') i: (B.7b)The �rst term in the right-hand side of Eq. (B.6) is theusual Joule heat; the last term in that equation is notgauge invariant, but it vanishes be
ause it is propor-tional to the left-hand side of 
ontinuity equation (B.3).We now 
onsider the generalization to the intera
t-ing 
ase. The Hamiltonian then 
ontains the additionalterm 12 Z ddr1  y (r)V (r� r1) y (r1);where V (r) = e2=jrj des
ribes the density�density Cou-lomb intera
tion, whi
h 
an be de
oupled by the Hub-bard � Stratonovi
h transformation. This amounts tointrodu
ing the quantum �elds � and A in the a
tionby adding the term� y� + 12E2fl; eEfl = �r�+ �tA (B.8)and rede�ning the ve
tor potential as the sum of theexternal and �u
tuating ones:A! Aext +A: (B.9)The variation of the a
tion with respe
t to the �u
tu-ating potentials results in the �rst and fourth Maxwellequations relating the �u
tuating ele
tri
 �eld to the
harge and 
urrent densities,r �Efl = � ; 0 = j+ �tEfl; (B.10)where the ele
tri
 
urrent is de�ned in Eq. (B.4), butwith substitution (B.9) performed.To obtain the energy 
onservation law, we must 
on-sider the further transformation�(t; r)! �(t+ �(t; r); r)and a similar one for A. Pro
eeding as before, we �ndthe 
onservation law�u?�t +r � j"? = j � Eext;u? = u0 � 12E2fl + 1e ���+ �A�t � Efl� ;j"? = j"0 � 1e�j+ 1e ��j� ���t Efl� ; (B.11)
406
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tion 
orre
tions to thermal transport 
oe�
ients : : :where u0; j"0 are de�ned in eq. (B.7) (with substitu-tion (B.9)). Given the form of Eq. (B.11), one mightbe tempted to 
all u? and j"? the energy and energy
urrent densities, in terms of whi
h the 
onservationlaw takes exa
tly the same form as in the noninter-a
ting 
ase. But su
h a rede�nition would result ingauge-dependent expressions for the densities, be
ausethe terms in the square bra
kets taken separately arenot gauge invariant. Hen
e, this naive rede�nition ofthe 
onserved quantities is nonphysi
al, be
ause anyphysi
al perturbation 
an be 
oupled to only gauge-in-variant quantities. To �nd gauge-invariant de�nitions,we rewrite the 
ontribution of those gauge-noninvariantterms as��t ���+ �A�t � Efl�+r ��j� ���t Efl� == 1e� [�t�+r � j℄ + 1e ���t [��r �Efl℄ ++ 1e ��t (�tA�r�) � Efl + 1e [r� � j+ �tA �tEfl℄ :Here, the se
ond line vanishes be
ause of 
harge 
on-servation, Eq. (B.3), and be
ause of the �rst Maxwellequation (B.10). In the third line, we use the se
ondMaxwell equation to eliminate the 
urrent; in the re-sult, we substitute the de�nition of the �u
tuating �eldgiven in Eq. (B.8) and obtain that the third line of theabove equation is equal to �tE2fl. This enables us to
on
lude that the 
orre
t, gauge-invariant expressionsfor the energy and energy 
urrent densities areu =  yĤgi + 12E2fl; (B.12)j" = � 12mh(i�t + ') y(�ir+A) �� (ir+A) y(i�t � ') i; (B.13)where the potentials are the total ones:A = Aext +A; ' = 'ext + �We note that these expressions are gauge-invariant withrespe
t to gauge transformations of both the externaland �u
tuating potentials. We believe that only su
hquantities 
an be 
oupled to the �gravitational �eld� inthe Luttinger s
heme for the 
al
ulation of the thermal
ondu
tivity [5℄.The same �nal answer is obtained if the intera
tionis de
oupled in the �gauge-�xed� form A = 0. In this
ase, whi
h is most widely used in the literature, thereare two 
ontributions to the energy 
urrent vertex in

j" j
a bFig. 4. a) The energy 
urrent vertex for the noninter-a
ting 
ase; b) the additional vertex indu
ed by theintera
tion. The solid lines with arrows are the ele
-tron Green's fun
tions, the wavy line is the intera
tionpropagator, the dashed lines are the �standard� (non-intera
ting 
ase) energy and ele
tri
 
urrent operatorsde�ned respe
tively in Eqs. (B.7b) and (B.4)the diagram approa
h, see Fig. 4: in addition to theusual vertex of the nonintera
ting 
ase, whi
h arisesfrom the terms �� yr , there is a vertex from the� yr terms. These verti
es were not taken into a
-
ount in Refs. [20; 22; 23℄. However, analogous verti
eswere previuosly 
onsidered in the 
al
ulations of thethermoele
tri
 
oe�
ient15) with the in
lusion of theele
tron�ele
tron intera
tion in the parti
le�hole 
han-nel [31℄ and in the Cooper 
hannel [32℄ and for theele
tron�phonon intera
tion [33℄.APPENDIX CAlternative parameterizationThe operator Ĥe�h de�ned in Eq. (5.54) is 
learlynot a standard Hamiltonian. However, we 
an intro-du
e a di�erent de�nition of the propagator L�,� ��t1 + iĤe�h(�ir1)� bStouts �L� = Æ12; (C.1)su
h that the (new) Ĥe�h operator is indeed a Hamil-tonian:Ĥe�h(q) � F̂ v�q F̂ ; bStouts � F̂ bSt� F̂ ;F̂ � �1 + F̂�1=2 (C.2)15) A derivation similar to that in this appendix was performedindependently by M. Yu. Reyzer (private 
ommuni
ation).407
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tion of the operator F̂ is de�ned in Eq. (5.49)).Pro
eeding as in Se
. 5.4, we obtain the following ex-pressions for the K propagators:�K̂R = (�t)�1 hL̂g � F̂L̂�F̂i;�K̂A = �h �̂Lg � F̂ �̂L�F̂i (�t)�1 ; (C.3a)�K̂K = �i (�t)�1 hL̂gN̂ g + N̂ g �̂Lgi (�t)�1 ++ i (�t)�1 F̂hL̂�N̂ � + N̂ � �̂L�iF̂ (�t)�1: (C.3b)The �kineti
 equation� for N g , Eq. (5.64a), remainsun
hanged, while N � now satis�es the equationh�t + Ĥe�h(�ir); N̂ �i = bSt� �N �; gK	 ; (C.4)wherebSt� �N �; gK	 � 2n bStouts ; N̂ �o+ 2F̂M̂F̂ (C.5)or, after Wigner transformations (5.61)�(5.63),!��tN̂� + nŝ;rN̂�o+ i hĤe�h(q); N̂�i� == bSt� fN�; fg ; (C.6)bSt� fN�; fg (!;n1;n2) = Z d" Z dn3 : : : dn6
4d �� hF16
634��52;43("; !)F45 ++F56
634��15;34("; !)F42i; (C.7)with de�nitions (5.27) and (5.66) for 
 and �.We 
an then pro
eed as in Se
. 5.6 and obtain 
on-servation laws (5.89) and (5.94); the only formal di�er-en
e is in the de�nition of the bosoni
 energy density,whi
h is now u�(t; r) = 12Trn hL̂�N̂�i :In the alternative parameterization, the formalism
an be developed with not more di�
ulties than in theoriginal one. However, the evaluation of the thermal
ondu
tivity be
omes 
umbersome. In the original pa-rameterization, it is also easier to in
lude (at least per-turbatively) the e�e
ts due to higher harmoni
s of theFermi-liquid parameters.

APPENDIX DDerivation of the ele
tron 
ollision integralThe 
al
ulation of the matrix 
ollision integralis simpli�ed by the introdu
tion of two fun
tionsA(t; r;n; ~n) and B(t; r;n; ~n) su
h thateiK̂(t;n;r)e�iK̂(t;~n;r) = �A1̂1K + B�̂xK�n;~n : (D.1)We re
all that K̂ = K+1̂1K +K��̂xK and�̂xK =  0 11 0! :The 
ollision integral (i.e., the right-hand sideof Eq. (5.22)) in the matrix notation is then12� Dhĝ(n)Æ�A1̂1K+B�̂xK�n;~nĝ(~n)�A1̂1K+B�̂xK�~n;n�� �A1̂1K +B�̂xK�n;~nĝ(~n)�� �A1̂1K +B�̂xK�~n;nÆĝ(n)iE~n ; (D.2)where the open dot indi
ates the time 
onvolution(
f. Eq. (5.9)) and the time argument of the fun
tionsA and B is the �rst (se
ond) time argument of theGreen's fun
tion on their right (left), e.g.,BgBÆg � Z dt3B(t1)gK(t1; t3)B(t3)gK(t3; t2):Substituting the matrix Green's fun
tion ofform (5.23), we �nd that the 
ollision integral be
omes* bStR bStKbStZ bStA!+~n : (D.3)The expli
it expressions for the retarded, advan
ed,and �Z� 
omponents arebStR = gK(n)�B;A�+ gK(n)ÆB(n; ~n)gK(~n)B(~n;n);bStA = �A;B�gK(n)�B(n; ~n)gK(~n)B(~n;n)ÆgK(n);bStZ = 2Æ(t1 � t2)�A;B�� 2B(n; ~n)gK(~n)B(~n;n);where the (equal-time) 
ommutator is�A;B� � A(n; ~n)B(~n;n)�B(n; ~n)A(~n;n):The 
al
ulations performed so far are exa
t. But atthe one-loop level, we are interested in terms up tothe se
ond order in the �u
tuating �elds. Then expan-sion of the exponentials in Eq. (D.1) shows that anyprodu
t of two fun
tions B is proportional to terms408
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tion 
orre
tions to thermal transport 
oe�
ients : : :of the form K�K�, whi
h vanish after averaging overthe �u
tuating �elds; a

ordingly, we drop su
h terms.The remaining terms are all 
ommutators, whose ex-pli
it (approximate) form is�A;B� = 2i�K�(~n)�K�(n)�: (D.4)We note that the se
ond-order terms 
an
el ea
hother exa
tly. The surviving �rst-order terms leadto Eq. (5.24) for K�.For referen
e, we present the expression for bStKfrom whi
h Eq. (5.73) and Eq. (5.76) are derived (withthe ex
eption of the last line in Eq. (5.76b), whi
h is a
onsequen
e of requirement (5.34) for K+):bStK = 2Æ(t1�t2)�A;B�+2A(n; ~n)gK(~n)A(~n;n)�� gK(n)A(n; ~n)A(~n;n)�A(n; ~n)A(~n;n)gK(n) ++ gK(n)B(n; ~n)B(~n;n) +B(n; ~n)B(~n;n)gK(n) ++gK(n)ÆB(n; ~n)gK(~n)A(~n;n)��A(n; ~n)gK(~n)B(~n;n)ÆgK(n): (D.5)APPENDIX EDerivation of Eqs. (5.81b) and (5.82b)We start the derivation by separating the 
ontribu-tions of the Keldysh and retarded/advan
ed propaga-tors to bStin1 in Eq. (5.75b):bStK1 = � i16Z dn2dn3(
d)2 
312 g(�t; Æt;n2)�� �2KK(�t; Æt;n3;n2)�KK ��t+ Æt2 ; 0;n3;n2���KK ��t� Æt2 ; 0;n3;n2�� (n2 ! n1)�; (E.1)bStRA1 = � i32Z dt3 Z dn2dn3(
d)2 
312 ���KA(t3; t2;n3;n2)�KR(t1; t3;n2;n3)�(n2 ! n1)��� �g(t1; t3;n1)g(t3; t2;n2) ++ g(t1; t3;n2)g(t3; t2;n1)�: (E.2)For 
onvenien
e, we rewrite the Keldysh part in termsof the new time variables �t; Æt:�t = t1 + t22 ; Æt = t1 � t2 ;g(t1; t2)! g(�t; Æt);KK(t1; t1)! KK(�t+ Æt=2; 0); : : : (E.3)

We then 
onsider the limit of Eq. (E.1) as t2 ! t1;
learly, as Æt! 0, the square bra
ket vanishes. But weknow that in this limit, g ! �2i=�Æt (
f. Eq. (5.31)):in prin
iple, there 
ould be a nonvanishing 
ontributionfrom the �rst-order expansion of the propagators in Æt.The last two Keldysh propagators depend on Æt in their�rst variable, but with opposite signs, and hen
e theirrespe
tive �rst-order terms 
an
el ea
h other. As forthe �rst propagator, the property KK(1; 2) = KK(2; 1)translates into KK(t; Æt) = KK(t;�Æt), whi
h ensuresthe absen
e of �rst-order terms. We 
on
lude that inthe limit as Æt! 0, the Keldysh propagator terms van-ish. Similarly, from the property KA(1; 2) = KR(2; 1),it follows that Eq. (E.2) vanishes for t2 = t1; this 
on-
ludes the proof of Eq. (5.81b).We now turn to Eq. (5.82b). Be
ause �t1 � �t2 == 2�Æt, we must expand the Keldysh propagators to these
ond order in Æt. At this order, the square bra
ketin Eq. (E.1) is (up to the proper 
ombination of angularvariables)Æt2��2Æt � 14�2�t�KK(�t; 0) == �Æt2 limt2!t1 �t1�t2KK(t1; t2);where we restored the original time variables. In theoperator notation, this isÆt2h�tKK�tit2=t1 :Therefore,limt2!t1(�t1 � �t2) bStK1 (t1; t2) = 14� Z dn2dn3
2d 
312 �� nh�tKK�ti(t1; t1;n3;n1)�� h�tKK�ti(t1; t1;n3;n2)o;whi
h proves the �rst part of Eq. (5.82b).As regards Eq. (E.2), using the analyti
 propertyKA(1; 2) = KR(2; 1) again, we 
on
lude that whenthe derivatives �t1 , �t2 a
t on the distribution fun
-tions g, the terms in the se
ond line 
an
el ea
h other.However, there are nonvanishing 
ontributions when aderivative a
ts on the propagators, su
h asZ dt3 Z dn2dn3
2d 
312 g(t1; t3;n1)g(t3; t1;n2)�� nh�tKRi(t1; t3;n1;n3)� h�tKRi(t1; t3;n2;n3)o:Colle
ting all the terms, we arrive at409



G. Catelani, I. L. Aleiner ÆÝÒÔ, òîì 127, âûï. 2, 2005limt2!t1(�t1��t2) bStRA1 (t1; t2) == i16Z dt3 Z dn3dn2
2d 
312�� nh�tKRi(t1; t3;n2;n3)� h�tKRi(t1; t3;n1;n3)o���g(t1; t3;n1)g(t3; t1;n2)+g(t1; t3;n2)g(t3; t1;n1)�;whi
h 
on
ludes the derivation of Eq. (5.82b).APPENDIX FElasti
 kernels in terms of the intera
tionpropagator DTo 
ompare the kernels in Eq. (6.9) with the 
or-responding expressions in Ref. [17℄, we use the Fouriertransforms of Eqs. (5.51) and (5.55a) to obtainRehL̂� � L̂gi = ��! ImhL̂gD̂RL̂gi: (F.1)If we assume, as is done in Ref. [17℄, that the Fermi-li-quid parameters are independent of the momentum di-re
tion, then the intera
tion propagatorsDR;A are alsoindependent of it and the above equation be
omesRehL� �Lgi = ��! ImhLgiDRhLgi; (F.2)where we generalized the angular integral notation su
hthathLg = Z dn1
d Lg(n1;n2); Lgi = Z dn2
d Lg(n1;n2):We re
all that our ghost propagator Lg 
oin
ides withthe di�uson propagator D in Ref. [17℄.By substituting Eq. (F.2), we rewrite kernels (6.9)asS11��(!) = 2� Æ�� �� Z ddq(2�)d�hLgihLgi � hLgLgi�DR; (F.3)S12��(!) = �2d� Z ddq(2�)d hn�LgihLgn�iDR; (F.4)E��(!) = d�� Im Z ddq(2�)d DRhhLgn�Lgn�ihLgi �� hLgn�Lgihn�Lgi+ hLgn�ihLgn�ihLgi �� hLgihn�Lgn�ihLgii+DRhhLgihn�Lgn�Lgi �� hLgn�ihLgn�Lgi � hLgn�Lgn�Lgii: (F.5)The �rst square bra
ket in the kernel E 
an be ex-pressed as

��hLgn�Lghn� ; bSt�iLgi++ hLghn�; bSt�iLgn�ihLgi�: (F.6)Using the identityLghn; bSt�iLg = hn;Lgi; (F.7)we rewrite it as��Æ��d �hLgLgi � hLgihLgi�++ hLgihn�Lgn�i � hLgn�Lgn�i�: (F.8)In the se
ond square bra
ket, we use the identityLgnLg = ivF �qLg (F.9)to obtainivF hhLgi�q� hn�Lgi � hLgn�i�q� hLgi �� hLgn��q�Lgii: (F.10)Finally, the identityLgLg = �i�!Lg (F.11)enables us to 
on
lude that the sum of the three kernelsS11 + S12 + Ethat determines the 
orre
tion to the 
ondu
tiv-ity, Eq. (6.8), 
oin
ides with the 
ombination(K0 �K1 � L0=vF �) in the expression for the 
ondu
-tivity in Ref. [17℄. APPENDIX GInelasti
 kernel for the phase relaxation timeWe 
onsider a uniform system in whi
h the bosonsare assumed to be in equilibrium with the ele
trons. Inother words, the distribution fun
tion f is independentof r;n and the boson�ele
tron 
ollision integral (3.18)must vanish. The latter 
ondition enables us to expressthe bosoni
 distributions N� in terms of f and obtain�ij("; !) = �
dÆ([ninj) 1! Z d"1	("; "1;!) (G.1)(from now on, irrelevant angular and momentum vari-ables are omitted; all relevant de�nitions 
an be foundin Se
. 3). The former 
ondition implies that 
olli-sion integrals (3.19d), (3.20b), and (3.20f) vanish, and410
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tion 
orre
tions to thermal transport 
oe�
ients : : :therefore the kineti
 equation for (the zeroth harmoni
of) f redu
es to�tf("; t) = Z d! Z d"1A(!)	("; "1;!); (G.2)whereA(!) = �2��!2 ��ReTrnh2 bSt� �̂Lg + 1̂i bSt�hL̂� + 3L̂�� 4L̂gio: (G.3)We substitute Eq. (F.1) and a similar relation for thetriplet 
hannel (DRT being the triplet 
hannel propa-gator) in the expression for A(!); we then use iden-tity (5.44) and obtainA(!) = � 2�! ImTr h bSt� �̂Lg �D̂R + D̂RT � L̂gi : (G.4)Using Eq. (5.44) again, we immediately re
over theform of the inelasti
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