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As an archetype reaction for pQCD multigluon hard processes in collisions of ultrarelativistic nuclei, we analyse
generic features of lepton pair production via multiphoton processes in peripheral heavy ion scattering. We
report explicit results for collisions of two photons from one nucleus with two photons from the other nucleus,
2y 425 — 117, The results found suggest that the familiar eikonalization of Coulomb distortions breaks down
for the oppositely moving Coulomb centers. The breaking of eikonalization in QED suggests that multigluon
pQCD processes cannot be described in terms of the collective nuclear gluon distributions. We discuss a loga-
rithmic enhancement of the contribution from the 2y + 2y — IT1~ process to production of lepton pairs with
large transverse momentum; similar enhancement is absent for the ny + m~ — 171~ processes with m,n > 2.
We comment on the general structure of multiphoton collisions and properties of higher-order terms that cannot

be eikonalized.

PACS: 25.75.-q

1. INTRODUCTION

The exact theory of Coulomb distortions of the
spectrum of ultrarelativistic lepton pairs photopro-
duced in the Coulomb field of a nucleus has been de-
veloped by Bethe and Maximon [1]. It is based on
the description of leptons by exact solutions of the
Dirac equation in the Coulomb field (see, e.g., text-
book [2]). In the Feynman diagram language, one has
to sum multiphoton exchanges between the produced
electrons and positrons and the target nucleus. For ul-
trarelativistic leptons, the result of this summation is
the eikonal factors in the impact parameter represen-
tation. In the momentum space, the same eikonal form
leads to simple recursive relations between the (n + 1)-
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and n-photon exchange amplitudes [3], where the in-
coming photon can be either real or virtual. There are
two fundamental points behind these simple results.

i) The lightcone momenta of ultrarelativistic lep-
tons are conserved in a multiple scattering process (i. e.,
if the nucleus moves along the n_-lightcone and the
produced leptons move along the n,-lightcone, then
the pj-components of the lepton momenta are con-
served).

ii) The s-channel helicity of leptons is conserved in
high-energy QED (see textbook [2]). It is the last prop-
erty by which distortions reduce to a simple eikonal
factor.

The same properties allow one to expcess the
pair production cross section in the dipole represen-
tation [4]. They also underlie the color dipole pertur-
bative Quantum Chromo Dynamics (pQCD) analysis
of nuclear distortions and the derivation of nonlinear
k. -factorization for multijet hard processes in DIS off
nuclei [5].

As shown in [6], the so-called Abelianization takes
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place in certain cases of practical interest. Specifically,
the hard dijet production in a hadron—nucleus collision
is dominated by a hard collision of an isolated parton
from the beam hadron simultaneously with many glu-
ons from the nucleus, which belong to different nucleons
of a target nucleus. Nevertheless, at least for single-
particle spectra, the interaction with a large number
of nuclear gluons can be reduced to that with a single
gluon from the collective gluon field of a nucleus, i.e.,
the nonlinear % -factorization reduces to the linear one,
and in terms of the collective glue, one only needs to
evaluate the familiar Born cross sections. Extending
the nonlinear k| -factorization for hard processes from
hadron—nucleus collisions to collisions of ultrarelativis-
tic nuclei is a formidable task that has not been prop-
erly addressed so far. The lightcone QED and QCD
share many properties, and we here address a much
simpler, Abelian problem of Coulomb distortions of lep-
ton pairs produced in peripheral collisions of relativistic
nuclei.

The process of lepton pair production in the
Coulomb fields of two colliding ultrarelativistic heavy
ions was intensely investigated recently [7-14]. Such
an activity is mainly connected with new practical in-
terest in pair production opened with operation of the
facilities such as RHIC and LHC. Despite the high ac-
tivity in this area, the issue of correct allowance for
the final-state interaction of produced leptons with the
colliding ion Coulomb field remains open. The main
results obtained so far in this direction are as follows.

i) The produced high-energy lepton pair interacts
strongly with the Coulomb field of heavy ions, and the
corresponding corrections have a noticeable impact on
the cross section of the process [10].

ii) The perturbation series corresponding to a mul-
tiple interaction of a produced pair with Coulomb fields
can be summed and the result can be expressed in an
eikonal-like form [14] if one restricts oneself to terms
growing with the energy in the cross section [12]. In
QED, such an approximation can be considered satis-
factory, but it is not warranted in QCD, and the prob-
lem of higher-order corrections in pair production re-
quires further investigation.

In our paper [12], we cited the amplitude Mg)),
which is irrelevant in the leading and next-to-leading
logarithmic approximations in QED. Nevertheless, the
knowledge of contributions of this type becomes im-
portant for similar processes in QCD with multigluon
exchanges between the color constituents of each of
the colliding hadrons and the created quark—antiquark
pair. This is the main motivation for our interest in
multiple exchanges and their impact on the lepton pair
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yield in the ultrarelativistic heavy ion collisions, an is-
sue that is not only useful in understanding the elec-
tromagnetic processes but also broadly applicable in
QCD.

We skip the previously studied case where one of
the ions radiates a single photon and the other radi-
ates an arbitrary number of photons absorbed by the
created pair [14]. The photon exchanges between the
ions were not taken into account either [13].

This paper is organized as follows. In Sec. 2, we
consider the case where each of the colliding ions ra-
diates two photons, which create a lepton pair. We
derive the relevant amplitude Mg)) using the power-
ful Sudakov technique, well suited for calculations of
processes at high energies. In Sec. 3, we study the
wide-angle limit in pair production kinematics corre-
sponding to the case of large transverse momenta of
pair components. In this limit, the results are much
more transparent than in the general case, as can be
seen from the form of the differential cross section given
below. In Sec. 4, we discuss the generalization of the
process under consideration to the case where the num-
ber of photons exchanged by each ion exceeds two.

2. THE LEPTON PAIR PRODUCTION

We are interested in the process of lepton pair pro-
duction in the collision of two relativistic nuclei A and
B with charge numbers Z; and Zs,

A(p1)+B(p2) = 17 (¢ )+" (q4)+A(P))+B(1Y),

with the kinematical invariants

(1)

s=(p +p)° q =1 —p)°
G=(2—1y)° s1=(q++0q )% (2)
pi=p" =M, p3=py’=M;, ¢&=m’

We are interested in peripheral kinematics, i.e.,

s> M7, M3, |qi], g3 > m?,

(3)

which corresponds to small scattering angles of ions A
and B.

It is convenient to use the Sudakov parameteriza-
tion for all 4-momenta entering process (1),

@ = ap2 +hipr + quu,
q2 = azpa + bap1 + 2.1,
ki = a1ps + pipr + ki,
ky = aapa + Bap1 + ka2,
q+ = axPa + BePr +qe1,

with lightcone 4-vectors p; » obeying the conditions

Pr=p3=0, Pip-qL=0, 2p-p2=s.
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2.1. The pair production by 4-photons

We consider the creation of a lepton pair by four
virtual photons (Fig. 1). The photons with momenta
k1 and ¢ — k1 (referred to as photons 1 and 2 hereafter)
are emitted by ion A and the photons with momenta
ko and go — ko (referred as the photons 3 and 4) by ion
B. The leading contribution to the cross section comes
from the following regions of the Sudakov variables:

ap L P ~by, By +p- =0y,
P2 L ag ~az, a4+ a_ =as,
|a1| < as, |b2‘ < bl-, qil = 4, (5)
d1+92 =94+ +q—,
2

a3 2 2

Ly = — >m-.
+ Sﬂj:’ qi

Hereinafter, the boldface q; denotes the two-dimensio-
nal transverse part of any considered 4-momentum. For
definiteness, we assume Sy, f_ > 0, which corresponds
to the situation where the pair moves along the mo-
mentum of ion A (the momentum p;). With a possi-
ble extension to pQCD in mind, we neglect the lepton
masses whenever appropriate.

The contribution to the matrix element of such a
set of the Feynman diagrams (FD) is given by

ug) = w22 )
y / d* ki d* ks
k2R3 (q1 — k1)? (g2 — k2)?
=" (p) O u (p1)u (ph) 05" 7 u (pa) x
X w(q-)T""P7v(q4)Gupr Gvvs Gpor Yoo+ (6)

where u and v are the leptonic Dirac bispinors and

Fig.1. A typical Feynman diagram for the amplitude
M(Q)

01,05, and T are the corresponding tensors of the up-
per, down, and pair production blocks. To see the pro-
portionality of matrix element (6) to the invariant en-
ergy s, we use the Gribov representation for the virtual
photon Green’s functions

Jups Jvvi 9pp1 Yoo =
9 4
= <;> PLuP1uP1py Ploy P2us P2uy P2pP20 - (7)

The numerators of the Green’s functions of nucleus A
can be written as s2/N; with

1
Ny = -a" ( N?=
1= @ (ph)pou" (p1), j{:l ]

and a similar expression exists for nucleus B. The de-
nominators of the virtual photon Green’s functions in
the considered kinematics depend only on the trans-
verse components of the corresponding 4-vectors, and
therefore
ki ks (g1 —k1)? (q2—k2)? = KTk3 (a1 —ki)* (qa—k2)*.
There are 24 FD contributing to Mg)) Instead of them,
it is convenient to consider 24-2-2 = 96 FD with all pos-
sible permutations of emission and absorption points of
the exchanged photons by the nuclei (Fig. 2). Then the
result must be divided by (2!)?. This trick [15] provides

the convergence of integrals over 35,

oo

1 s s
5= [ d =1,
271 / & L,@g—c—}—io-l_ — 59 —d+1i0 - ®)

— o0

and of a similar integral over ay. After all operations,
we can write the matrix element as

(2) _ . (1671'&221Z2)2N1N2
M(2) =1is @17
y / d*kyd* ks w(q—)Rv(qy) (9)
72 kik3 (a1 — ki1)?(q2 — ko)?’
where

dBido
R= vD2pD2o THP .
s / (2 Z)2 pl,upl p?pr

2.2. The classification of Feynman diagrams

It is convenient to classify FD by the ordering of
the exchanged photons absorbed by the lepton world
line (Fig. 3). We label them as Rjjii, R = > Riji.
with pairwise distinct integers i, j, k, [ from one to four,
counting from a negative lepton emission point.
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1

Aﬁb— + all permutations

n

Fig.2. The notation for the permutations of n virtual photons emitted by a heavy ion

Fig.3. The set of basic Feynman diagrams for the amplitude

a) We first consider the set of four FD (Fig. 4a),
labeled R1234, ]%21347 R1243, and R2143, in which the
interactions with two nuclei are ordered consecutively
against the lepton line direction. The sum of the rele-
vant contributions provides the convergence of the 3
and as integrations. After a standard calculation, we
obtain

Ri234 + Ro134 + Ri243 + Ra143 =
B-pr(d— —aq1)L Do _

- Bra® + f_(q- —q1)? s
_ G-1(G- —dq1)1
BraZ + f_(q- —a1)?’

A

D2

S

’ (10)

The last equality in Eq. (10) is the result of the Dirac
equation for massless particles,

i(q-)B-pi1p2 = —u(q- )4 LPa. (11)

A result similar to Eq. (10) is obtained for the set
of the crossing diagrams (Fig. 4b) corresponding to the
R3412, ]%34217 ]%43127 and R4321 terms in the amplitude7
with only the replacement B — B, where

(=G+ +q1)1G41

B = .
B} + By (a1 — qp)?

(12)

b) We next consider the set of the diagrams R340,
Ri432, Roga1, Roaz1 (Fig. 4¢) and Rgio4, Rs214, Ra123,
Ry213 (Fig. 4d), where exchanges with ion B (A) are at-
tached to the lepton line between the interactions with
ion A (B).
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@)
M,

For definiteness, we consider the sum Ry342 + R1432.
Using the relevant denominators of the lepton line, we
obtain the following integrals over 5, and as:

[
2mi sa_(B- — B1) — (q= — k)2 + 0
1
C Ssar(B =B - (—ar rar —K)Z+i0
@ s(B-=ph)
X / 2mi L(B_—,6’1)(a_—a2)—(q_—k1)2—|—i0+
8(67_51) (13)

TS =B (—aytas)—(—ag+ai—ki)2+i0]

The second integral after closing the integration
contour in the lower half-plane gives the function
sign(S_ — f31), and hence Eq. (13) becomes

/d_ﬂl sign(f; — B-) "
2mi sa_(B- — P1) — (q- — k)2 +i0
1
X —. (14
—sai(B- = B1) — (—a+ + a1 —ki)? +i0 (14)
Using the relation
/Oo da sign _
2mi (—ax — b +1i0)(cx —d +i0)
1 ad
=—In— 1
mi(ad + be) e (15)
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P1 D1 D1

D2 P’z D2

Fig.4. The Feynman diagrams for the amplitude M((QQ))

we obtain the result

Ri342 + Riazo + Rozar + Rasz1 =

_ b (G- = k) o (—detdi—k1) "
ins | ay(a-—ki)’+a_(—a+ + a1 —ki)?
o r(a- —ka)?

a_(—q+ + a1 —kp)?

(G- =G+ k1) (=ds + k1)L y
ay(q- —aqi +ki)? +a_(—qy +ki)?
ar(q- —qi+ki)?

o (—ar + k)
R3124 + R3214 + Ra123 + Ry213 =
(G=—F2) 1 (=4 +d2—ko) 1
Bi(a-—k2)?+B-(—a++a2—k2)?

_|_

X In ,

_ i

TS

B-(—a; + a2 — ky)?
Bi(a- —ka)?
(G- = Go+ ko) (g4 + Fa) 1
Bild- — a2 + ko)? + f-(—q4 + k2)?
B(—ar +ky)?
Bila- —az +ko)2 |~

We note that expressions (16) are purely imaginary,

_|_

X In

In

X

and therefore their interference with the Born term in
the cross section is zero.

c¢) We now consider the case of interactions with
different nuclei alternating along the lepton line, for
instance, the amplitude Ri324 (Fig. 4e). After some
algebra, we obtain the relevant numerator

Niszas = spipa(G— — k1)1 X

X (4= — k1 — ko) 1 (4= —d1 — ko)1, (17)

which is very different from the numerators of Born-li-
ke amplitudes. Specifically, it is a higher-order term in
the running transverse momenta k;.

The relevant denominators are given by

{1} =(g- —k1)? +i0 =

=s(f- = Br)a- — (a- — ki)* +10,

{2V =(¢. — k1 —k)?+i0=

= 5(B-—P1)(a-—az)—(q-—ki —ks)? + 0,

{3} = (g4 + g2 — k2)? +i0 =

(18)

= s(—f4)(a-—a2)—(—q +d2—ko)? + i0.
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The nonvanishing contribution only emerges if the place only if 31 < f_ (B+ > 0). Taking the residue at
poles are located in different as half-planes, which takes ~ pole {2}, we find

/SdOQ 1 __ H(ﬂ,—ﬂl) (19)
2mi {213} (B = B)(—at + @2 —k2)” — fi(a- — ki —ky)?

Further integration over ; can be done using the rela- integrations, we encounter a sequence of vertices with
tion conservation and nonconservation of the p_-component

of the lightcone momentum.
Similar results can be obtained for other contribu-

o0
/ dz 0(x) _ tions of these types.
) 2mi (az —b+i0)(cx + d + i0) d) The final result is given by (see Table)
1 i, ad .
- e is
2(ad+bc) <].+ ﬂ_ln bC> ) (20) M(2) — ' 2(167T042Z1Z2)2N1N2 >

with the result

_ 2) A
) / Pk Phy  Ula-)RG)bov(ay) )
Ri324 = —w —1 ad (21) T 71 skikj(ai —ki)?(q2 —ko)?’
28D1324 bC
Digos = B—(a- —k1)*(—qy + g2 — k»)*
Z [an n]i _
+8+a (q- — ki —ko)? = ad + be. 5 b2 + 3,a2
The highly nonlinear denominator given by Eq. (21)
makes the contribution of the considered case dramati- 10 [dnf)néndAn]l
cally different from the Born amplitude and corrections N Z?, 2[_b2d2 + B a2c2]
to it from the higher-order processes in which only one B
photon is emitted by one of the ions [12]. Technically, (—1)™1  B_b2d2
the nonlinearity is not surprising because of the related X (1 +1 In Grale? )
nonlinearity of the numerator. The principal difference T +8nCh
from the Born-like amplitude is that with the alternat- .
ing ordering of interactions, we have the situation in n Z ; nt [anbn] L . 5—b%. (23)
B-b} + Bray  Biay

which the p, component of the lightcone momentum is
conserved in the scattering on one ion but is not con-
served in the scattering on the second ion. Depending To verify gauge invariance, we give the explicit form
on the ordering of interaction vertices and the order of  for the real part of the amplitude:

n=11

2 ZKIT®, Bein. 4 737
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The coefficients in formula (23). The brackets denote index permutation, e.g., (12) = 12 4 21

n Rijn an by, Cn d,

1 R(lZ)(34) q- q— — ¢ - -

2 Ray12) Q= q+ q+ - -

3 Ry324 q- q- — k1 q— — ki — ks - —q1 — ko
4 Rig03 q- q- — k1 - —q2tka—Fky —q+ + ko
5 Ra314 q- - —q tk - — @1tk — ko —q+ +q2 — ko
6 Roqi3 q- - —q + k1 —q4 + k1 + k2 —q+ + k2
7 Ry231 q- — g2 + ko —qy + k1 + ko —q+ + ki q+

8 R3241 q- — ko - — @tk — ko —q+ t ki a+

9 Ry132 q- — G2 + ko ¢ —q2tka—Fk —q++q —k a+

10 R3142 q- — ko q— — k1 — ko —q++q — k1 q+

11 R3(12)4 q- — ko —q4+ +q2 — ko - -

12 Ry12)3 - — @+ ko —q+ + ko - -

Re R — (G- — @)L [(=d+ +d)d+]e

@) 7 Biq% + Bo(a- —a1)? B} + Byl(ar —qi)?
- [0 (4= = Ea)(G= = k1 — ko) (4= — a1 — Fo)]1 -
26 (q- —ki)*(—ay + @2 — k2)? + frq (q- — ki — ko)?]
(G- (G- — k1) (G- — 4o + ko — k1) (=G4 + k)]0 B
2[6-(q- —ki)?(—q+ + k)2 + Brq> (q- — q2 + ka2 — ky)?]
_ [6-(d— — G + k) (G- — G1 + k1 — F2) (=G4 + o — k2)] 1 B
2[f_(a- — a1 + ki)?(—ay + a2 —ko)? + f1q® (a- — a1 + ki —k»)?]
_ 0= (4= = d1 + k1) (=dy + k1 + Fo)(=dy + Fo)]1 _
2[-(q- — a1 +ki)?(—ay + k2)? + 1 q: (—qy + ki + ka)?]

_ [(4= = Go + ko) (—ds + k1 + ko) (=4 + E)dy] L _
2[8-q} (—ay + ki +ko)? + B (—ay +ki1)?(q- — a2 + k»)?]

~ (G- = ko)(G- — a1 + k1 — ko) (=G4 + k1)ds]L B
2[f_d’(a- —air + ki —ko)? + By (—qy + ki1)?(q- — ko)?]

B [(G— = Go + ko)(d— — G2 + ko — k) (—ds + 1 — k1)ds]L
2[f_di(a- — a2 + ko —ki)2 + B4 (q- — a2 + k2)?(—q4 + q1 — k1)?]
(G- — k) (G — by — ko) (=g + 1 — k1)dy] L
2[-ai (q- —ki —ko)? + B (—qy + a1 — ki) (q- — ko)?]

We can then verify that the following condition is satisfied:

2
2):0

) if k1 =0 or

Re R| k=0 or ki=q; or ky=aq. (24)

This fact is also correct for the whole amplitude (23). This property (24) is crucial for the gauge invariance and
infrared convergence of integrations over d?k;.

In the loop integration, we can shift the integration variable as k; — q; —k;. Then expression (23) for Re Rg;
can be simplified to
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Re R®) — G1(q- —q1) (=04 +q1)1q41
@ 7 B8rq2 +B-(a- —a1)?  B-a} + Bp(a1 —q4)?
6= (G- = F)(d= = ki = ko) (G- — 1 — k)]s -
B_(q- —k1)?(—a4 + a2 —ka)? + B1q: (q- — k; — ks)?
[(—ds + G+ ko) (—ds + by + ko) (—dy + k1)de]s

-2

-2 . 25
B (—aqy + ki +k2)? + By (—as + ki1)*(q- — a2 + ko)? (25)
. . . . ‘
Although the gauge invariance property is not mani-  where
fested here, as in the previous case, the final results
after integration over k; coincide. RE;; —BiB—
. _ (G= — ko)1 (4= — g1 — ko)1 B
3. THE WIDE-ANGLE LIMIT OF THE M} B — @ — ko) + Br(q_ — ko)?
AMPLITUDE T
_ (G+ — ko — 1)1 (G4 — ko)1 (31)
We consider the behavior of expression (25) in the Bi(a- —qs + ko)? + (g — ko)?’
case where the transverse component of lepton mo-
menta is large compared to the momenta transferred In the considered limit, this expression becomes
to the ions,
m 1 s
q-~ —q+ =q, [q] > |aiel. (26) Ry ~ e [(2&017 a1+ 4-q1) X
The main contribution to the matrix element is then (4(q7 -ko)? _ k_%) _
given by the region (q2)? q? (32)
2q- ko .
il < Jki] < al. @) = T + 26k - )] + (B — By),
2

(1)
1

The amplitude M( j

is

. (1)
. 87TC¥)2N1N2Z1Z2 _ R(l)
M(l)z—zs( 5 u(g— v(q
(1) qfqé ( ) s ( +)
R(l):ﬁ q— — q1 Do + P qr — 4+ b=
N e R (T S

= (B — B)ps. (28)
For wide-angle kinematics, we have

1.a) _ P2
S

1 .
W= s B 2a- q2(b1Gd +26-q - ai)+

5 b2
+ @ (b1Gida +2B+q1 - q2)],  (29)

where by = 3_ + 4+, q=q_ ~ —q4, and q; » are the
momenta transferred to ions.

For the matrix element M(l)

2
with the result obtained in paper [16])

we have (in agreement

27772a3Z1Z22N1N2
@~ ~F 2 X
qi

y / Py (0= R ov(ar)
T skj(qa —ko)?

(30)

739

k2| > [qal.

This expression vanishes after ang)ular averaging. It can
be shown that the quantity M((gl) also vanishes in the
limit of wide-angle pair production and is proportional
to |q2//|a| < 1, which is in agreement with [3].

For the amplitude M(%) considered in Eq. (22), the
(2)

quantity R(Z plays the role of a cut-off parameter in
the region |k;| > |q|. From very general arguments, it
can be written in the form

[k (1 — k1)(';112§;2(Q2 — k2)%]1 Ruvas, (33)

(2)
Re R(2) ~

with some dimensionless tensor matrix R,,q3 indepen-
dent of k; and q;. Expanding expression (25), we ob-
tain

/ &Pk &)
2 kik3(qi —ki)%q(q2 — ka)
I 4(6+ B 67) In q?nax In q?nax

PR (R a; ’ (34

—

3 ~

2*
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where I is the unit matrix and ¢., & 1/R is the up-
per integration limit, with R being the nucleus radius.
Such a logarithmic enhancement is absent if the num-
ber of the exchanged photons from each ion exceeds two
(Fig. 5). In fact, the amplitudes M((2;7 M((Qn)), n > 2 con-
tain only the first power of the large logarithm, whereas
M((::)l), m,n > 2 do not contain such a factor at all
because the corresponding loop momenta integrals are
convergent in both infrared and ultraviolet regions and
we can safely put |qi(2)| = 0 in loop integrations.
Thus, the differential cross section for the consid-

ered kinematics is determined by the interference term
(M((ll))) M((22;7 which has the form (for comparison, we

also present the Born term)

dO’O 16(Z1Z2a2)2 %

dbydx i
22+ (1-2)2
X —— " Pudiepd’q, (35
q%q% (q2 )2b1 q1 q2 q ( )
daint o 16(Z1Z2a2)3 1-22 %

dbydz — qialidiq® by

2 2
x In dmaz 1y maz g2 20, a2 | (36)

q; q5
where
_ q (q1—q )
Q_ 2 2
(I-z)a> +z(q- —a1)
a+ - (a+ —a1)
rq} + (1 —2)(qr —qy)?’
_ Am2x(1 —
x:ﬂ—, e<x, b1 <1-—gk, 6277711‘(2 2)
by q3

We note that expression (36) is symmetric under simul-
taneous substitutions q+ < q_ and g4 < [ due to
the C-even nature of the interference.

Finally, from a very straightforward generalization
of (33), it can be shown that the set of amplitudes with
an odd number of exchanges with one or both nuclei is
suppressed in the limit of wide-angle production:

e ol yemi o oldely
(2n+1) ( El ) (2n) ( q ) (37)
(2m+1) \Q1HQQ|
MG ~0(Sr):

4. MULTIPHOTON EXCHANGE

We generalize the above picture to the case of mul-
tiple photon exchanges (m,n > 2). Using the relation
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1
I, = 1 %
></ ki .. Py _
(k34+A2) .. (K2 +A)[(g—ki—. . .—kp_1)24A2]

™l (q2/0?)
= " (38)

and taking the combinatorial factor 1/n! coming from
the symmetric integration over a; and f3; into account,
we have to replace any single photon exchange with an
infinite set of photons by multiplying the amplitude by
eikonal factors of the type exp{ip;(q>)} with the phase
0i(q®) = £aZ;In(q?/A\?). The scattering amplitudes
of an electron and a positron differ only by the sign of
the phase (which is positive for electrons) [9]. This re-
placement is shown in Fig. 6, where the double photon
line corresponds to infinitely many photons.

Using the same technique as in [17], we can see that
the amplitude relevant to Fig. 7a and Fig. 7b can be
written as

RER = Bexp {—i[p1(aq}) — ¢2(a3)]} +

+ Bexp {i[%((ﬁ) - 992((13)]} - (39)

The interactions of the electron and the positron with
the Coulomb field differ only by signs. Although
this expression is infrared-unstable in the case where
Z1 # Zs, the regularization parameter \ enters it in a
standard way.

We now consider the class of diagrams shown in
Fig. 7¢. In subsection 2.2, we obtained expressions (16)
in the case where m = n = 2, with Re R34y, = 0. It
can be shown that higher-order terms with any even
number of photons from the same nucleus attached to
the lepton world line between two photons from other
nuclei do not contribute to the amplitude of the pro-
cess under consideration. This follows from the relation
(sign a)?**+1 =signa.

The general structure of the amplitude correspond-
ing to Fig. 7c can be constructed using the lowest-order
truncated amplitude (without single-photon propaga-

(1)
tors) R,
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P o
n q-—
— 4+
5
P2 Ph P2 Ph
b c
Fig.5. Some Feynman diagrams for amplitudes of the type M((j; (a), M((;)) (b), and M((:;) (¢) with m,n > 2

>

%)
i=1

D2 P D2 D

Fig.6. The representation of all eikonal exchanges

R = COS(%(Q?))RE;; y
x exp {i[p2(k?*) — pa((a2 — k)*)]},
R(l) — l (‘jf — g2 + ];3)1_(—(1+ + IA’C)J_ (40)
@) " ir B_(ay — k)% + By(q- — q2 + k)?

Bi(a- — q2 + k)?

xIn B-(q+ —k)?

The further generalization is obvious. For instance,
we give the expression corresponding to the diagram in
Fig. 7d,

5
Ry

;; = cos(p1 (k7)) exp [—igr (a1 — ki)?)] %

x cos(p2(k3)) exp [ip2((qz — k2)?)] Rizoa. (41)

From the above consideration, we conclud(e t)hat the
m

general structure of the matrix element M( corre-

n)
sponding to m photon exchanges from one ion (with
4-momenta k;) and n exchanges from the other (with

4-momenta ;) can be schematically written as
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Fig. 7. The Feynman diagrams for the amplitudes with

many photon exchanges. The double photon line rep-

resents any number of exchanged photons, the double

zigzag line represents only an odd number of exchanged
photons

2
(m) _ - m n T
M(n) —zleNQ(Zla) (Z2CY) W
% / d2k1 d2km—1 dZIil dzlin_l 1 %
r o T~ o k..k2
- = (m) D2
X mU(Q—)R(n) ~ vles), (42)

where m and n satisfy the condition |m —n| < 1. At
this stage, we omit phase factors in the structure REZ;)
(in order to understand the problem clearly), and it can

therefore be written as

»(m (1 (1 (2 (2 (2
R(" = R{) + Ry + RG) + R + RG) +
A3 | pOR | ROIL
+ Ry + R+ Ryt ., (43)
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where
JC I S e P Gl A T DN
M ir a_(—ap+a1—k)?+ay (q-—k)?
12
X In at(q- —k) ’
a_(—q+ + a1 — k)?
p(2) _ p3) _
Ry = R =0,
2
RE:;R: 1 7T_+lln20_1 ,

c1+ el 2 2 Co
c1=p(q- — k1)2(Q— —k; — ks — fi1)2 X
X (—q4 + @2 — K1 — K2)”,
¢ =B4q’ (q- — ki —K1)? x
X (qe — ki —ky — K1 — K2)?,
_ 1 2 1 d
R%:m 7+§1n2£ ,
di = B4(a= — K1)’ (a= — K1 — ko —ky)? x
X (q_ — Ky — Ky — k3 — ki —ky)?,
dy =B (q_ — K1 —kp)? x
X (q- — K1 — Ky —k; —ko)? x
X (—a4 + Q2 — K1 — Ko — K3)°. (44)
Here, Rgg is only the second term in the right-hand
side in Eq. (23) and the index R(L) denotes two pos-

sible configurations of photons for RE;;R (Fig. 7e) and

R (Fig. 7)),

Thus, the general algorithm for constructing an ar-
bitrary term is transparent. Unfortunately, we cannot
obtain a compact expression for the whole amplitude.
The reason is the increasing nonlinearity of the prop-
agators with the order of interaction. The behavior
of the above denominators is very different from the
Born-like case, where the simplicity of propagators al-
lows one to obtain eikonal-like expressions.

The result of partial summation like (41) suffers
from infrared divergences and cannot be considered fi-
nal. On the other hand, the final result (44) implies
the summation over the classes RE:)) of FD and must
contain all the dependence on the «photon mass» A in
the form of a general phase factor, proving the infrared
stability of the cross section. We believe that this ques-
tion will be the subject of a separate investigation.

3
3

5. CONCLUSIONS

The wide-angle lepton pair production in pe-
ripheral interactions of ultrarelativistic heavy ions is
an archetype reaction for hard processes in central
hadronic hard collisions of heavy nuclei. In the elec-
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tromagnetic case, the expansion parameter Z; s ~ 1
makes the multiple photon collisions m~y + ny — (1~
potentially important, and similarly, the effect of mul-
tiple gluon collisions in central collisions is enhanced by
a large number of nucleons at the same impact param-
eter. The crucial issue is whether such multiple photon
collisions can be described by the Born cross section in
terms of the collective photon fields of colliding nuclei.
We have obtained the expression for the amplitude for
the 2y + 2y — [T~ process and have shown that its
contribution is dominant in the wide-angle limit. Our
principal finding is that the amplitude is manifestly of
a non-Born nature, which is suggestive of the complete
failure of the linear k| -factorization even in the Abelian
case.

The leading term of the multiphoton collision con-
tribution to the amplitude of the production of high
transverse momentum leptons, 2y + 2y — [T~ is
found to have a logarithmic enhancement, while such
an enhancement is absent in higher-order terms. We
presented the algorithm that allows constructing the
full amplitude in all orders. The obtained results can
be useful in application to the QCD process of produc-
tion of high-£, jets as well as the bound state creation
(positronium, charmonium), the issue which will be
investigated elsewhere.
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