ПОРОГОВАЯ НЕОДНОРОДНАЯ ПЕРЕОРИЕНТАЦИЯ ДИРЕКТОРА В ПЛАНАРНОЙ НЕМАТИЧЕСКОЙ ФЛЕКСОЭЛЕКТРИЧЕСКОЙ ЯЧЕЙКЕ С КОНЕЧНОЙ ЭНЕРГИЕЙ СЦЕПЛЕНИЯ

М. Ф. Ледней , И. П. Пинкевич

Киевский национальный университет им. Тараса Шевченко 03680, Киев, Украина

Поступила в редакцию 24 июня 2004 г.

Рассмотрено влияние энергии сцепления директора флексоэлектрического нематического жидкого кристалла с поверхностью планарно ориентированной ячейки на порог и период пространственно-периодической переориентации директора в электрическом поле. При произвольных значениях энергии сцепления проведены численные расчеты величины порогового поля и соответствующего ему волнового числа пространственной структуры директора. В случае сильного сцепления директора в одноконстантном приближении получены соответствующие аналитические выражения. Показано, что с уменьшением значения азимутальной энергии сцепления области допустимых значений флексоэлектрического параметра ν и отношения K_2/K_1 упругих постоянных Франка расширяются, в то время как с уменьшением значения полярной энергии сцепления сужаются по сравнению со случаем абсолютно жесткого сцепления директора с поверхностью ячейки.

PACS: 61.30.Cz, 61.30.Gd, 61.30.Hn, 64.70.Md

1. ВВЕДЕНИЕ

Значительный интерес к физике процессов в ячейках жидких кристаллов во внешних полях и, в частности, к пороговой переориентации директора нематического жидкого кристалла (НЖК) во внешнем электрическом поле (эффект Фредерикса) связан с широким использованием этих ячеек в различного рода электрооптических устройствах [1–3]. Хотя пороговая переориентация директора является объемным эффектом, такие ее характеристики как величина порогового поля и степень переориентации директора существенно зависят от взаимодействия нематика с поверхностью ячейки. Влияние поверхности ячейки оказывается настолько значительным, что может возникать так называемый самопроизвольный, а точнее говоря, стимулированный изменением условий на поверхности, переход Фредерикса [4–7]. Одним из важнейших параметров, определяющих условия для директора на поверхности

ячейки, является энергия сцепления директора с поверхностью. Обычно используемая модель абсолютно жесткого сцепления директора с поверхностью ячейки является самой простой, учет конечности энергии сцепления весьма существенно усложняет решение задач.

Было установлено, что в определенных условиях при пороговой переориентации директора возникает его пространственно-периодическая структура в плоскости НЖК-ячейки. Это явление было рассмотрено в планарно ориентированной ячейке флексоэлектрического нематика с бесконечно жесткими граничными условиями [8, 9]. В работе [10] изучалось влияние поверхности на пороговую пространственно-периодическую переориентацию директора электрическим полем, однако, в гомеотропно ориентированной ячейке флексоэлектрического НЖК. Найдены значения порогового поля и пространственного периода директора в зависимости от значений энергии сцепления директора с поверхностью ячейки и флексоэлектрических коэффициентов НЖК. Возможность образования двумерных пе-

^{*}E-mail: ledney@univ.kiev.ua

риодических структур флексоэлектрического происхождения в гомеотропной ячейке НЖК рассматривалась также в работе [11].

В работе [12] было показано, что в планарно ориентированной нематической ячейке с бесконечно жесткими граничными условиями пространственно-периодическая структура поля директора может возникать и при отсутствии флексополяризации в зависимости от соотношения между упругими модулями Франка K_1 и K_2 . При этом, если отношение $K_2/K_1 < r_o \approx 0.3$, имеет место переход Фредерикса с образованием пространственно-периодической структуры, при $K_2/K_1 > r_o$ возможен только однородный переход Фредерикса. Кроме того, в работах [13–15] показано, что характер периодической структуры, образующейся при такой геометрии, существенно зависит также от величины энергии сцепления директора с поверхностью ячейки.

Теоретические и экспериментальные исследования периодических структур, возникающих в ячейках лиотропных нематических жидких кристаллов при превышении внешним магнитным полем порога перехода Фредерикса, проведены авторами работ [16, 17]. В работах [18–21] исследовалось влияние упругой постоянной K_{24} на возникновение спонтанного периодического искажения в планарно ориентированной ячейке НЖК, а в работе [22] проанализирована связь между постоянной K_{24} и параметрами периодической структуры, возникающей при переходе Фредерикса во внешнем магнитном поле.

В настоящей работе рассмотрено влияние энергии сцепления директора с поверхностью ячейки на пороговую пространственно-периодическую переориентацию директора в планарной ячейке флексоэлектрического НЖК.

2. УРАВНЕНИЯ ДЛЯ ДИРЕКТОРА

Пусть мы имеем плоскопараллельную ячейку флексоэлектрического НЖК, ограниченную плоскостями z = -L/2 и z = +L/2, с исходной планарной ориентацией директора вдоль оси x, помещенную во внешнее однородное электрическое поле с вектором напряженности $\mathbf{E} = (0, 0, E)$.

Свободная энергия ячейки НЖК может быть записана в виде

$$F = F_{el} + F_E + F_d + F_S,$$

$$F_{el} = \frac{1}{2} \int_{V} \left\{ K_1 \left(\operatorname{div} \mathbf{n} \right)^2 + K_2 \left(\mathbf{n} \cdot \operatorname{rot} \mathbf{n} \right)^2 + K_3 \left[\mathbf{n} \times \operatorname{rot} \mathbf{n} \right]^2 \right\} dV,$$

$$F_E = -\frac{\varepsilon_a}{8\pi} \int_{V} \left(\mathbf{n} \cdot \mathbf{E} \right)^2 dV,$$

$$F_d = -\int_{V} \left\{ e_1 \left(\mathbf{n} \cdot \mathbf{E} \right) \operatorname{div} \mathbf{n} + e_3 \left(\left[\operatorname{rot} \mathbf{n} \times \mathbf{n} \right] \cdot \mathbf{E} \right) \right\} dV,$$

$$F_S = -\frac{W_{\varphi}}{2} \int_{S_{1,2}} \cos^2 \varphi \, dS - \frac{W_{\theta}}{2} \int_{S_{1,2}} \cos^2 \theta \, dS,$$

$$W_{\varphi} > 0, \quad W_{\theta} > 0.$$
(1)

Здесь п — директор, F_{el} — упругая энергия Франка, F_E , F_d — соответственно, анизотропный и флексоэлектрический вклады в энергию взаимодействия НЖК с электрическим полем, F_S — поверхностная свободная энергия НЖК, $\varepsilon_a = \varepsilon_{\parallel} - \varepsilon_{\perp} > 0$ — анизотропия статической диэлектрической проницаемости, e_1 , e_3 — флексоэлектрические коэффициенты, W_{θ} , W_{φ} — соответственно, полярная и азимутальная энергии сцепления директора с поверхностью ячейки, θ и φ — углы отклонения директора, соответственно, в плоскостях xz и xy.

Следует заметить, что поскольку нас интересует влияние конечности энергии сцепления НЖК с поверхностью ячейки, при записи поверхностной свободной энергии мы ограничились простейшей (но, по-видимому, наиболее часто используемой) моделью Рапини [23]. В этой модели, как известно, предполагается, что энергия взаимодействия НЖК с поверхностью пропорциональна квадрату угла между директором и его легкой осью на поверхности ячейки. При этом, однако, мы также приняли во внимание, что изменение поверхностной энергии может быть различным при отклонении директора от его легкой оси в азимутальном и полярном направлениях [24].

Поскольку при планарной геометрии пороговая переориентация директора приводит к возникновению пространственно-периодической структуры вдоль оси *у* [8, 9], будем искать директор в виде

$$\mathbf{n} = \mathbf{i}\cos\theta(y, z)\cos\varphi(y, z) + \mathbf{j}\cos\theta(y, z)\sin\varphi(y, z) + \mathbf{k}\sin\theta(y, z), \quad (2)$$

где **i**, **j**, **k** — орты декартовой системы координат.

В случае малых деформаций директора $(|\varphi|, |\theta| \ll 1),$ минимизируя свободную энер-

12*

$$r \frac{\partial^2 \theta}{\partial y^2} + \frac{\partial^2 \theta}{\partial z^2} + \epsilon E^2 \theta + (1-r) \frac{\partial^2 \varphi}{\partial y \partial z} + eE \frac{\partial \varphi}{\partial y} = 0, \quad (3)$$
$$\frac{\partial^2 \varphi}{\partial y^2} + r \frac{\partial^2 \varphi}{\partial z^2} + (1-r) \frac{\partial^2 \theta}{\partial y \partial z} - eE \frac{\partial \theta}{\partial y} = 0$$

и граничные условия к ним:

$$\left[\left(\frac{W_{\theta}}{K_1} \mp e_o E \right) \theta \pm \left(\frac{\partial \theta}{\partial z} + \frac{\partial \varphi}{\partial y} \right) \right]_{z=\pm L/2} = 0,$$

$$\left[\frac{W_{\varphi}}{K_1} \varphi \pm r \left(\frac{\partial \varphi}{\partial z} - \frac{\partial \theta}{\partial y} \right) \right]_{z=\pm L/2} = 0.$$

$$(4)$$

Здесь введены обозначения:

$$\epsilon = \frac{\varepsilon_a}{4\pi K_1}, \quad r = \frac{K_2}{K_1},$$
$$e = \frac{e_1 - e_3}{K_1}, \quad e_o = \frac{e_1 + e_3}{K_1}.$$

Учитывая симметрию системы уравнений (3), ищем ее решение в виде

$$\theta(y,z) = \cos(qy)\theta_1(z), \quad \varphi(y,z) = \sin(qy)\varphi_1(z), \quad (5)$$

где функции $\theta_1(z), \varphi_1(z)$ удовлетворяют следующим уравнениям:

$$\begin{pmatrix} \frac{d^2}{dz^2} - rq^2 + \epsilon E^2 & (1-r)q\frac{d}{dz} + eEq\\ eEq - (1-r)q\frac{d}{dz} & r\frac{d^2}{dz^2} - q^2 \end{pmatrix} \times \\ \times \begin{pmatrix} \theta_1(z)\\ \varphi_1(z) \end{pmatrix} = 0. \quad (6)$$

Полагая в (6)

$$\begin{pmatrix} \theta_1(z) \\ \varphi_1(z) \end{pmatrix} = e^{\lambda z} \begin{pmatrix} \theta_{10} \\ \varphi_{10} \end{pmatrix}, \qquad (7)$$

получаем однородную систему двух алгебраических уравнений для определения неизвестных коэффициентов θ₁₀ и φ₁₀. Условие ее нетривиального решения дает уравнение для определения значений λ:

$$\left(\lambda^2 - q^2\right)^2 + \epsilon E^2 \left(\lambda^2 - q^2\right) - \frac{1}{r} \left[\epsilon E^2 q^2 (1-r) + (eEq)^2\right] = 0, \quad r \neq 0.$$
 (8)

Решив уравнение (8), получаем $\lambda = \pm i p_1, \pm p_2,$ где p_1 и p_2 принимают действительные значения:

$$p_{1} = \left\{ \frac{1}{2} \left[\epsilon E^{2} + \left((\epsilon E^{2})^{2} + \frac{1}{2} + 4q^{2} \epsilon E^{2} \frac{1 - r + 1/\nu}{r} \right)^{1/2} - q^{2} \right\}^{1/2},$$

$$p_{2} = \left\{ q^{2} - \frac{1}{2} \left[\epsilon E^{2} - \left((\epsilon E^{2})^{2} + \frac{1}{2} + 4q^{2} \epsilon E^{2} \frac{1 - r + 1/\nu}{r} \right)^{1/2} \right] \right\}^{1/2},$$
(9)

где $\nu = \epsilon/e^2$.

Из уравнений (6) также находим, что

$$\frac{\varphi_{10}}{\theta_{10}} = \frac{eEq - (1-r)q\lambda}{q^2 - r\lambda^2}.$$

Тогда общее решение системы уравнений (6) имеет вид

$$\theta_{1}(z) = a_{1} \cos(p_{1}z) + a_{2} \sin(p_{1}z) + + b_{1} \operatorname{ch}(p_{2}z) + b_{2} \operatorname{sh}(p_{2}z), \varphi_{1}(z) = a_{1}(\alpha_{1} \cos(p_{1}z) - \beta_{1} \sin(p_{1}z)) + + a_{2}(\alpha_{1} \sin(p_{1}z) + \beta_{1} \cos(p_{1}z)) + + b_{1}(\alpha_{2} \operatorname{ch}(p_{2}z) + \beta_{2} \operatorname{sh}(p_{2}z)) + + b_{2}(\alpha_{2} \operatorname{sh}(p_{2}z) + \beta_{2} \operatorname{ch}(p_{2}z)),$$
(10)

где

$$\alpha_1 = \frac{eEq}{q^2 + rp_1^2}, \quad \alpha_2 = \frac{eEq}{q^2 - rp_2^2}, \tag{11}$$

$$\beta_1 = -\frac{(1-r)qp_1}{q^2 + rp_1^2}, \quad \beta_2 = -\frac{(1-r)qp_2}{q^2 - rp_2^2}.$$
 (12)

Здесь a_i , b_i (i = 1, 2) — произвольные постоянные, значения которых определяются из граничных условий (4).

3. ЗАВИСИМОСТЬ ПОРОГА ПЕРЕОРИЕНТАЦИИ ОТ АЗИМУТАЛЬНОЙ ЭНЕРГИИ СЦЕПЛЕНИЯ

Будем считать, что полярная энергия сцепления W_{θ} директора с поверхностью ячейки является бесконечно большой ($W_{\theta} = \infty$), а азимутальная энергия сцепления W_{φ} может быть произвольной. В этом случае граничные условия (4) принимают вид

$$\theta_1|_{z=\pm L/2} = 0,$$

$$\left[\frac{W_{\varphi}}{K_1}\varphi_1 \pm r \frac{d\varphi_1}{dz}\right]_{z=\pm L/2} = 0.$$
(13)

Подставив решение (10) в граничные условия (13), получаем однородную систему четырех алгебраических уравнений для определения коэффициентов $a_i, b_i, i = 1, 2$. Условие ее нетривиального решения приводит к уравнению

$$\begin{bmatrix} \beta_2 \operatorname{ctg} \frac{p_1 L}{2} \left(\frac{W_{\varphi}}{K_1} + rp_2 \operatorname{cth} \frac{p_2 L}{2} \right) + \\ + \beta_1 \operatorname{cth} \frac{p_2 L}{2} \left(\frac{W_{\varphi}}{K_1} + rp_1 \operatorname{ctg} \frac{p_1 L}{2} \right) \end{bmatrix} \times \\ \times \left[\beta_2 \left(\frac{W_{\varphi}}{K_1} \operatorname{cth} \frac{p_2 L}{2} + rp_2 \right) - \\ - \beta_1 \left(\frac{W_{\varphi}}{K_1} \operatorname{ctg} \frac{p_1 L}{2} - rp_1 \right) \right] + \\ + \left[\alpha_2 \operatorname{ctg} \frac{p_1 L}{2} \left(\frac{W_{\varphi}}{K_1} \operatorname{cth} \frac{p_2 L}{2} + rp_2 \right) - \\ - \alpha_1 \operatorname{cth} \frac{p_2 L}{2} \left(\frac{W_{\varphi}}{K_1} \operatorname{ctg} \frac{p_1 L}{2} - rp_1 \right) \right] \times \\ \times \left[\alpha_1 \left(\frac{W_{\varphi}}{K_1} + rp_1 \operatorname{ctg} \frac{p_1 L}{2} \right) - \\ - \alpha_2 \left(\frac{W_{\varphi}}{K_1} + rp_2 \operatorname{cth} \frac{p_2 L}{2} \right) \right] = 0. \quad (14)$$

Решая уравнение (14), получим значение электрического поля E как функцию параметра q. Порог E_c возникновения неустойчивости определяется минимумом на кривой E(q).

В общем случае уравнение (14) допускает только численное решение. При этом заметим, что для возникновения пороговой пространственно-периодической переориентации директора необходимо также выполнение неравенства

$$\left. \frac{dE}{dq} \right|_{q=0} < 0. \tag{15}$$

Дифференцируя уравнение (14) по q, находим $dE/dq|_{q=0}$ и, учитывая (15), приходим к следующему выражению, связывающему параметры нематического жидкого кристалла r, ν и $\varepsilon_{\varphi} = W_{\varphi}L/K_1$ при пороговой пространственно-периодической переориентации директора:

$$(1-r)^2 - \frac{\pi^2}{8} \left(1 - 2r + \frac{1}{\nu} + \frac{4r}{\nu\varepsilon_{\varphi}} \right) \left(1 + \frac{2r}{\varepsilon_{\varphi}} \right) < 0.$$
 (16)

а) Рассмотрим сначала случай, когда флексо-

Рис. 1. Зависимости порогового поля E'_c (a) и волнового числа Q_c (б) от азимутальной энергии сцепления ε_{φ} в отсутствие флексополяризации ($\nu = \infty$); r = 0.1 (1), 0.15 (2), 0.2 (3), 0.25 (4), 0.3 (5), 0.35 (6), 0.4 (7)

электрическая поляризация в ячейке НЖК отсутствует. В этом случае уравнение (14) принимает вид

$$\beta_2 \operatorname{ctg} \frac{p_1 L}{2} \left(\frac{W_{\varphi}}{K_1} + r p_2 \operatorname{cth} \frac{p_2 L}{2} \right) + \beta_1 \operatorname{cth} \frac{p_2 L}{2} \left(\frac{W_{\varphi}}{K_1} + r p_1 \operatorname{ctg} \frac{p_1 L}{2} \right) = 0. \quad (17)$$

Решая уравнение (17), находим значения порогового электрического поля E_c и соответствующего ему волнового числа q_c при произвольных значениях азимутальной (безразмерной) энергии сцепления ε_{φ} директора с поверхностью ячейки и отношения r упругих модулей Франка. На рис. 1 приведены полученные зависимости безразмерного порогового поля $E'_c = \sqrt{\epsilon} E_c L$ и соответствующего ему значения безразмерного волнового числа $Q_c = q_c L$ от величины азимутальной энергии сцепления ε_{φ} для различных значений параметра r. Как видно, значение порогового электрического поля растет с ростом величины азимутальной энергии сцепления ε_{φ} .

Значение периода $\lambda_c = 2\pi/q_c$ возникающей пространственной структуры директора убывает с ростом ε_{φ} для значений $r \leq 0.2$ и растет при больших значениях параметра r. При этом значения λ_c при $\varepsilon_{\varphi} \to \infty$ принимают некоторое постоянное конечное значение, если

$$r < r_o = 1 - \frac{\pi^2}{8} + \frac{\pi}{8}\sqrt{\pi^2 - 8} \approx 0.3.$$

Если же $r_o < r < 0.5$, то для каждого r из этого интервала существует предельное (критическое) значение азимутальной энергии сцепления:

$$\varepsilon_{\varphi th}(r) = \frac{2\pi^2 r (1-2r)}{8(1-r)^2 - \pi^2 (1-2r)},$$
(18)

определяемое из неравенства (16), так что при $\varepsilon_{\varphi} < \varepsilon_{\varphi th}$ имеет место переход Фредерикса с образованием пространственно-периодической структуры, а при $\varepsilon_{\varphi} > \varepsilon_{\varphi th}$ возможен только переход Фредерикса с однородным (по оси y) распределением директора. Для значений параметра $r \ge 0.5$ имеет место только однородный переход Фредерикса, что согласуется с результатами работы [13].

На рис. 2 приведены зависимости порогового поля E'_c и волнового числа Q_c от величины отношения r упругих модулей Франка при различных значениях азимутальной энергии сцепления ε_{φ} директора с поверхностью. Пороговое значение электрического поля и соответствующее ему значение периода λ_c возникающей пространственной структуры директора растут с увеличением параметра r. Для каждой заданной величины азимутальной энергии сцепления ε_{φ} существует критическое значение отношения упругих модулей Франка

$$r_{th}(\varepsilon_{\varphi}) = \left\{ 1 - \frac{\pi^2}{8} + \frac{\pi^2}{8\varepsilon_{\varphi}} + \left[\left(1 - \frac{\pi^2}{8} + \frac{\pi^2}{8\varepsilon_{\varphi}} \right)^2 - \left(1 + \frac{\pi^2}{2\varepsilon_{\varphi}} \right) \left(1 - \frac{\pi^2}{8} \right) \right]^{1/2} \right\} \left(1 + \frac{\pi^2}{2\varepsilon_{\varphi}} \right)^{-1}, \quad (19)$$

определяемое неравенством (16): при $r < r_{th}$ имеет место переход Фредерикса с образованием пространственно-периодической структуры директора,

Рис. 2. Зависимости порогового поля E'_c (*a*) и волнового числа Q_c (*б*) от значений параметра r при $\nu = \infty$; $\varepsilon_{\varphi} = 50$ (1), 5 (2), 1 (3), 0.1 (4)

при $r > r_{th}$ — однородный переход Фредерикса, что согласуется и с результатами работ [13, 15]. В предельном случае абсолютно жесткого сцепления директора с поверхностью ячейки ($\varepsilon_{\varphi} \to \infty$), как следует из (19), критическое значение отношения упругих модулей Франка равно $r_{th} = r_o$ [12].

б) Теперь рассмотрим случай флексоэлектрического НЖК. В случае сильного (но не абсолютно жесткого) сцепления директора с поверхностью ячейки ($\varepsilon_{\varphi} \gg 1$), решая уравнение (14) в одноконстантном приближении ($K_1 = K_2$), получаем пороговое значение электрического поля:

$$E_c = E(q_c) = \frac{2\pi}{|e|(1+\nu)L} \left(1 - \frac{1-\nu}{\varepsilon_{\varphi}}\right), \qquad (20)$$

Рис. 3. Зависимости порогового поля E'_c (a) и волнового числа Q_c (б) от азимутальной энергии сцепления ε_{φ} при r = 0.75; $\nu = 0.2$ (1), 0.5 (2), 0.7 (3), 0.9 (4), 1.5 (5), 2.0 (6), 2.2 (7), 2.5 (8), 2.8 (9), 3.0 (10)

где соответствующее волновое число равно

$$q_c = \frac{\pi}{L} \sqrt{\frac{1-\nu}{1+\nu}} \left(1 + \frac{1}{\varepsilon_{\varphi}} \frac{3\nu - 1}{1-\nu} \right)$$

если $\nu < 1$ и $\varepsilon_{\varphi}(1-\nu) \gg 1$, или

$$q_c = \frac{\pi}{\sqrt{2}L} \sqrt{\frac{4}{\varepsilon_{\varphi}} + 1 - \nu},$$

если $|1 - \nu| \ll 1$.

При произвольных значениях азимутальной энергии сцепления ε_{φ} и $K_1 \neq K_2$ уравнение (14)

решалось численно. На рис. 3 приведены зависимости порогового поля E'_c и соответствующего ему волнового числа Q_c от величины азимутальной энергии сцепления ε_{φ} при различных значениях флексоэлектрического параметра *v*. Отношение упругих модулей Франка при этом полагалось для определенности равным r = 0.75. Как и следовало ожидать, пороговое значение электрического поля растет с ростом величины азимутальной энергии сцепления ε_{φ} и с увеличением флексоэлектрического параметра *ν*. Однако период λ_c возникающей пространственной структуры директора может быть, как видно на рис. 36, немонотонной функцией энергии сцепления ε_{φ} . С ростом флексоэлектрического параметра ν значения λ_c возрастают. При этом для значений

$$\nu > \frac{\pi^2}{8(1-r)^2 - \pi^2(1-2r)}$$

существует критическое значение азимутальной энергии сцепления, которое монотонно убывает с ростом ν , приближаясь в предельном случае $\nu \to \infty$ к значению $\varepsilon_{\varphi th}(r)$, определяемому соотношением (18).

На рис. 4 приведены зависимости порогового значения электрического поля и соответствующего волнового числа от величины отношения r упругих модулей Франка для нескольких значений флексоэлектрического параметра ν , полученные при значении азимутальной энергии сцепления $\varepsilon_{\varphi} = 10$. Значения порогового поля и соответствующего периода λ_c пространственной структуры директора растут с увеличением параметра r. Как видно на рис. 46, критическое значение отношения упругих модулей Франка убывает с ростом параметра ν и в предельном случае отсутствия флексополяризации (кривая 7) принимает значение $r_{th}(\varepsilon_{\varphi})$, определяемое соотношением (19). Следует отметить, что значения порогового поля E_c при увеличении параметра r стремятся к одному и тому же предельному значению $E_c(r_{th}) = \pi/\sqrt{\epsilon}L$, не зависящему от величин азимутальной энергии сцепления ε_{φ} и флексоэлектрического параметра ν .

Как следует из рис. 1–4, область существования периодической структуры директора как по параметру r, характеризующему величину отношения упругих модулей Франка, так и по флексоэлектрическому параметру ν , расширяется при конечных значениях азимутальной энергии сцепления ε_{φ} в сравнении со случаем бесконечно жесткого сцепления директора.

Рис. 4. Зависимости порогового поля E'_c (a) и волнового числа Q_c (б) от значений параметра r при $\varepsilon_{\varphi} = 10; \ \nu = 0.5$ (1), 0.7 (2), 0.9 (3), 1.5 (4), 2.0 (5), 3.0 (6), ∞ (7)

4. ЗАВИСИМОСТЬ ПОРОГА ПЕРЕОРИЕНТАЦИИ ОТ ПОЛЯРНОЙ ЭНЕРГИИ СЦЕПЛЕНИЯ

Предположим теперь, что бесконечно большой является азимутальная энергия сцепления директора с поверхностью ячейки ($W_{\varphi} = \infty$), а полярная энергия сцепления W_{θ} произвольна. В этом случае граничные условия (4) принимают следующий вид:

$$\left[\left(\frac{W_{\theta}}{K_1} \mp e_o E \right) \theta_1 \pm \frac{d\theta_1}{dz} \right]_{z=\pm L/2} = 0, \qquad (21)$$
$$\varphi_1|_{z=\pm L/2} = 0.$$

Подставив решение (10) в граничные условия (21), получаем однородную алгебраическую систему уравнений для коэффициентов a_i , b_i (i = 1, 2). Условие нетривиального решения этой системы дает детерминантное уравнение для определения дисперсионной зависимости E(q), которое мы здесь не приводим ввиду его громоздкости. Область пороговой пространственно-периодической переориентации директора определяется, в соответствии с (15), неравенством

$$A(1-r)^{2} + B(1-r) - \frac{1}{2}Cu\left(1-2r+\frac{1}{\nu}\right) - D < 0, \quad (22)$$

которое справедливо при всех значениях полярной (безразмерной) энергии сцепления $\varepsilon_{\theta} = W_{\theta}L/K_1$ директора с поверхностью ячейки. Здесь использованы обозначения

$$A = 2 \frac{\varepsilon_{\theta} + 2u \operatorname{ctg} u}{u \operatorname{ctg} u}, \quad B = \frac{8}{\sqrt{\nu\nu_o}} (1 - u \operatorname{ctg} u),$$

$$C = \left(\frac{\varepsilon_{\theta}}{\sin^2 u} + 2\right) \frac{\varepsilon_{\theta} + 2u \operatorname{ctg} u}{u} - \frac{4u}{\nu_o \sin^2 u} - \frac{2}{2} \frac{\varepsilon_{\theta} \operatorname{ctg} u - 2u}{u} \left(\operatorname{ctg} u - \frac{u}{\sin^2 u}\right),$$

$$D = \frac{1}{\nu} \left(\frac{8u}{\nu_o} \operatorname{ctg} u - \varepsilon_{\theta} \operatorname{ctg} u \frac{\varepsilon_{\theta} + 2u \operatorname{ctg} u}{u} - \frac{1}{2} \frac{\varepsilon_{\theta} \operatorname{ctg} u - \varepsilon_{\theta} \operatorname{ctg} u}{u} \frac{\varepsilon_{\theta} + 2u \operatorname{ctg} u}{u} - \frac{1}{2} \frac{\varepsilon_{\theta} \operatorname{ctg} u - \varepsilon_{\theta} \operatorname{ctg} u}{u} \frac{\varepsilon_{\theta} + 2u \operatorname{ctg} u}{u} \frac{\varepsilon_{\theta} \operatorname{ctg} u - 2u}{u} \frac{\varepsilon_{\theta} \operatorname{ctg} u - 2u}{u} \frac{\varepsilon_{\theta} \operatorname{ctg} u - 2u}{u} \frac{\varepsilon_{\theta} \operatorname{ctg} u}{u} \frac{\varepsilon_{\theta}$$

где *u* — наименьший положительный корень следующего трансцендентного уравнения

$$\frac{4u^2}{\nu_o} \operatorname{ctg} u = \left(\varepsilon_\theta \operatorname{ctg} u - 2u\right) \left(\varepsilon_\theta + 2u \operatorname{ctg} u\right).$$

 а) Если флексоэлектрическая поляризация в ячейке НЖК отсутствует, то уравнение для определения порогового поля принимает вид

$$\beta_2 \left(\frac{W_\theta}{K_1} \operatorname{ctg} \frac{p_1 L}{2} - p_1 \right) + \beta_1 \left(\frac{W_\theta}{K_1} \operatorname{cth} \frac{p_2 L}{2} + p_2 \right) = 0. \quad (23)$$

На рис. 5 *а* приведены зависимости волнового числа возникающей пространственной структуры директора от значений полярной энергии сцепления ε_{θ} для нескольких значений параметра *r*, полученные в результате решения уравнения (23). Видно, что значения периода $\lambda_c = 2\pi/q_c$ директора монотонно убывают с увеличением ε_{θ} . При этом для

Рис. 5. Зависимости волнового числа Q_c в отсутствие флексополяризации: a — от полярной энергии сцепления ε_{θ} при r = 0.1 (1), 0.15 (2), 0.2 (3), 0.22 (4), 0.25 (5), δ — от значений параметра r при $\varepsilon_{\theta} = 50$ (1), 10 (2), 5 (3), 2 (4), 1 (5)

каждого заданного значения параметра r < 0.5 существует критическое значение полярной энергии сцепления $\varepsilon_{\theta th}(r)$, определяемое условием (22): при $\varepsilon_{\theta} < \varepsilon_{\theta th}$ имеет место однородный переход Фредерикса, а при $\varepsilon_{\theta} > \varepsilon_{\theta th}$ — переход Фредерикса с образованием пространственно-периодической структуры. При $r \ge 0.5$, как и в случае конечной азимутальной энергии сцепления ε_{φ} , возможен только однородный переход Фредерикса.

На рис. 56 представлена зависимость волнового числа Q_c от значений параметра *r*. Критическое значение параметра r, получаемое из условия (22), равно

$$r_{th}(\varepsilon_{\theta}) = 1 - \frac{u_o^2}{2\sin^2 u_o} - \frac{u_o^2}{\varepsilon_{\theta}} + \left[\left(\frac{u_o^2}{2\sin^2 u_o} + \frac{u_o^2}{\varepsilon_{\theta}} \right)^2 - \frac{u_o^2}{2\sin^2 u_o} - \frac{u_o^2}{\varepsilon_{\theta}} \right]^{1/2}, \quad (24)$$

где u_o — наименьший положительный корень уравнения сtg $u_o = 2u_o/\varepsilon_{\theta}$. При $r < r_{th}$ — имеет место пространственно-периодический, а при $r > r_{th}$ — однородный переход Фредерикса.

Как и в случае конечной азимутальной энергии сцепления, значения порогового электрического поля монотонно растут с ростом полярной энергии сцепления ε_{θ} и с увеличением значений параметра r. Однако при увеличении параметра r значения порогового электрического поля E_c стремятся к разным предельным значениям, равным $E_c(r_{th}) = 2u_o/\sqrt{\epsilon}L$, зависящим от величины полярной энергии сцепления ε_{θ} .

Как видно на рис. 5 δ , конечность полярной энергии сцепления ε_{θ} приводит к сужению области существования периодической структуры директора по параметру r в сравнении со случаем бесконечно жесткого сцепления.

б) Пусть теперь мы имеем флексоэлектрический НЖК. При сильном сцеплении директора с поверхностью ячейки ($\varepsilon_{\theta} \gg 1$) в одноконстантном приближении значение порогового поля равно

$$E_c = E(q_c) = \frac{2\pi}{|e|(1+\nu)L} \left(1 - \frac{1+\nu}{\varepsilon_{\theta}}\right), \qquad (25)$$

где волновое число

$$q_c = \frac{\pi}{L} \sqrt{\frac{1-\nu}{1+\nu}} \left(1 - \frac{1}{\varepsilon_{\theta}} \frac{1+\nu}{1-\nu} \right)$$

при $\nu < 1$ и $\varepsilon_{\theta}(1-\nu) \gg 1$, и

$$q_c = \frac{\pi}{\sqrt{2}L} \sqrt{1 - \nu - \frac{4}{\varepsilon_{\theta}}}$$

при $|1 - \nu| \ll 1$.

При произвольных значениях полярной энергии сцепления ε_{θ} и параметра r, как и в предыдущем случае, задачу необходимо решать численно. При этом оказывается, что в флексоэлектрическом НЖК с $r \neq 1$ при увеличении полярной энергии сцепления ε_{θ} и параметра r значения порогового электрического поля E_c монотонно растут при всех значениях флексоэлектрического параметра ν . Период λ_c возникающей пространственной структуры директора с ростом ε_{θ} монотонно убывает, а с ростом параметра r монотонно возрастает при всех значениях параметра ν . Критическое значение полярной энергии сцепления растет с увеличением параметра ν для произвольных значений r в отличие от рассмотренного выше случая конечных значений азимутальной энергии сцепления. Критическое значение параметра r монотонно убывает с ростом ν , приближаясь в предельном случае $\nu \to \infty$ к конечному значению $r_{th} (\varepsilon_{\theta})$, определяемому выражением (24).

Для типичных значений параметров НЖК $\varepsilon_a = 0.2, r = 0.4, K_1 = 5.5 \cdot 10^{-7}$ дин при абсолютно жестком сцеплении ($W_{\varphi} = W_{\theta} = \infty$) директора с поверхностью ячейки в отсутствие флексополяризации имеет место только переход Фредерикса с однородным (вдоль оси у) распределением директора. Однако, если энергия сцепления конечная, то, например, при азимутальной энергии сцепления, такой что параметр $\varepsilon_{\varphi} = 0.1$ (но $W_{\theta} = \infty$), возникает пространственно-периодическая структура директора с периодом $\lambda_c \approx 4.6L$, в то время как при конечной полярной энергии сцепления с параметром $\varepsilon_{\theta} = 0.1$ (но $W_{\varphi} = \infty$) возможен только однородный переход Фредерикса. Аналогично, для флексоэлектрического НЖК при значениях параметров $\nu = 0.5, \nu_o = 0.1$, которым соответствуют значения флексоэлектрических коэффициентов е1 и e_3 из интервала $(0.7-2.5) \cdot 10^{-4}$ дин^{1/2} [3], в случае абсолютно жесткого сцепления период пространственной структуры директора равен $\lambda_c \approx 2.3L$, при $\varepsilon_{\varphi} = 0.1$ и $W_{\theta} = \infty - \lambda_c \approx 3.4L$, а при $\varepsilon_{\theta} = 0.1$ и $W_{\varphi} = \infty$ имеет место только однородный переход Фредерикса. Таким образом, период возникающей пространственной структуры директора значительно сильнее зависит от значений азимутальной энергии сцепления (что можно использовать для ее оценки), в то время как значение порогового поля зависит, вообще говоря, более сильно от значений полярной энергии сцепления.

Наконец, подчеркнем еще раз, что при исходной планарной ориентации директора конечность его энергии сцепления с поверхностью ячейки существенно влияет не только на значения порогового поля и период возникающей пространственной структуры директора, но и на область допустимых значений флексоэлектрического параметра *ν* и отношения *r* упругих постоянных Франка. В случае конечных значений азимутальной энергии сцепления область существования пространственно-периодической структуры директора по значениям параметров r и ν расширяется, а при конечных значениях полярной энергии сцепления, наоборот, сужается в сравнении с соответствующей областью значений r и v при абсолютно жестком сцеплении директора.

ЛИТЕРАТУРА

- 1. П. де Жен, Физика жидких кристаллов, Мир, Москва (1977).
- 2. Л. М. Блинов, Электро- и магнитооптика жидких кристаллов, Наука, Москва (1978).
- А. С. Сонин, Введение в физику жидких кристаллов, Наука, Москва (1983).
- 4. А. Н. Чувыров, Кристаллография 25, 188 (1980).
- 5. Л. М. Блинов, А. А. Сонин, ЖЭТФ 87, 476 (1984).
- V. G. Nazarenko and O. D. Lavrentovich, Phys. Rev. E 49, 990 (1994).
- I. P. Pinkevich and M. F. Lednei, Proc. SPIE 2651, 167 (1996).
- 8. Ю. П. Бобылев, С. А. Пикин, ЖЭТФ **72**, 369 (1977).
- Y. P. Bobylev, V. G. Chigrinov, and S. A. Pikin, J. de Phys. Coll. 40, C3-331 (1979).
- **10**. В. П. Романов, Г. К. Скляренко, ЖЭТФ **116**, 543 (1999).
- G. Barbero and I. Lelidis, Phys. Rev. E 67, 061708 (2003).
- 12. F. Lonberg and R. B. Meyer, Phys. Rev. Lett. 55, 718 (1985).
- 13. C. Oldano, Phys. Rev. Lett. 56, 1098 (1986).
- 14. W. Zimmermann and L. Kramer, Phys. Rev. Lett. 56, 2655 (1986).
- E. Miraldi, C. Oldano, and A. Strigazzi, Phys. Rev. A 34, 4348 (1986).
- 16. M. Simões, A. J. Palangana, and L. R. Evangelista, Phys. Rev. E 54, 3765 (1996).
- 17. A. J. Palangana, M. Simões, L. R. Evangelista, and A. A. Arrotéia, Phys. Rev. E 56, 4282 (1997).
- 18. V. M. Pergamenshchik, Phys. Rev. E 47, 1881 (1993).
- 19. V. M. Pergamenshchik, Phys. Rev. E 61, 3936 (2000).
- 20. A. L. Alexe-Ionescu, G. Barbero, and I. Lelidis, Phys. Rev. E 66, 061705 (2002).
- 21. G. Barbero, L. R. Evangelista, and I. Lelidis, Phys. Rev. E 67, 051708 (2003).
- 22. A. D. Kiselev and V. Yu. Reshetnyak, Mol. Cryst. Liq. Cryst. 321, 133 (1998).
- 23. A. Rapini and M. Papolar, J. Phys. Collod. 30, 54 (1969).
- 24. W. Zhao, C.-X. Wu, and M. Iwamoto, Phys. Rev. E 65, 031709 (2002).