РЕЛЯТИВИСТСКОЕ ОБОБЩЕНИЕ КВАЗИЧАПЛЫГИНСКИХ УРАВНЕНИЙ

В. П. Власов*

Институт ядерного синтеза Российского научного центра «Курчатовский институт» 123182, Москва, Россия

Поступила в редакцию 3 августа 2005 г.

Дано релятивистское обобщение квазичаплыгинских (квазигазовых) уравнений, описывающих эволюцию неустойчивых сред с отрицательной сжимаемостью. Приведены примеры сред, динамика которых описывается предложенными уравнениями. Для одномерного случая получено аналитическое решение этих нелинейных уравнений.

PACS: 05.45.-a, 47.75.+f

1. ВВЕДЕНИЕ

Нелинейная эволюция многих неустойчивых сред описывается в длинноволновом приближении квазичаплыгинскими уравнениями (КЧУ):

$$\frac{d\mathbf{v}}{dt} = c_0^2 m \nabla \rho_*^{1/m}, \quad \frac{d}{dt} = \frac{\partial}{\partial t} + (\mathbf{v}\nabla), \qquad (1.1)$$

$$\frac{d\rho_*}{dt} + \rho_*(\nabla \mathbf{v}) = 0, \qquad (1.2)$$

где ρ_* — эффективная плотность (безразмерная величина), **v** — скорость, c_0 — скорость «звука», m параметр, называемый азимутальным числом. Уравнения отличаются от уравнений идеального газа лишь наличием отрицательной сжимаемости. Но это отличие существенно — вместо бегущих волн, свойственных обычным газам, типичными становятся стоячие нарастающие во времени возмущения. Такие неустойчивости встречаются в природе достаточно часто: так, в работах [1,2] приведено около 50 соответствующих примеров, там же изложена общая теория КЧУ; дальнейшее систематическое изучение свойств системы КЧУ проведено в [3]. Среды, эволюция которых описывается квазичаплыгинскими уравнениями, принято называть квазичаплыгинскими или квазигазовыми. Наличие у нелинейных уравнений (1.1), (1.2) аналитических решений (как для одномерного случая, так и для двумерного, но стационарного случая) является их большим

достоинством. Поэтому обобщения этих уравнений, для которых имелись бы аналитические решения, представляют интерес как для описания конкретных физических процессов, так и для тестирования численных методов решения похожих нелинейных уравнений, относящихся к классу некорректных задач, в которых определяющими оказываются мелкомасштабные возмущения, нарастающие наиболее быстро.

В настоящей статье дается релятивистское обобщение КЧУ (1.1) и (1.2) и показывается его связь с рядом физических задач. Для одномерного случая эти уравнения имеют вид

$$\left(\gamma \frac{\partial}{\partial \tau} + u \frac{\partial}{\partial z}\right) y = m \left(u \frac{\partial}{\partial \tau} + \gamma \frac{\partial}{\partial z}\right) \frac{c_0^2}{c^2} \rho_*^{1/m}, \quad (1.3)$$

$$\left(\gamma \frac{\partial}{\partial \tau} + u \frac{\partial}{\partial z}\right) \ln \rho_* = -\left(u \frac{\partial}{\partial \tau} + \gamma \frac{\partial}{\partial z}\right) y. \quad (1.4)$$

В них временная координата $\tau = ct, c$ — скорость света,

$$\gamma = (1 - v^2/c^2)^{-1/2} = \operatorname{ch} y$$

— параметр Лоренца, z — координата, $u = \gamma v/c =$ = sh y — пространственная составляющая четырехмерной скорости, смысл остальных обозначений остался прежним. Уравнения (1.3) и (1.4) будем называть релятивистскими квазичаплыгинскими уравнениями (РКЧУ), так как в нерелятивистском пределе ($v/c \rightarrow 0$) они переходят соответственно в одномерные уравнения (1.1) и (1.2). В этом

^{*}E-mail: vlasov@nfi.kiae.ru

обобщении мы исходили из ранее полученных в работе [4] уравнений (1.3) и (1.4) для случая m = -1, описывающих в приближении «узкого канала» динамику плазмы в релятивистском скинированном токовом пинче без продольного магнитного поля. При этом плазма считалась нерелятивистской в собственной системе координат, и для ее описания использовалось обычное уравнение адиабаты с показателем 5/3. С использованием этих уравнений (для m = -1) в работах [4,5] аналитически был вычислен энергетический спектр ускоряемых в пинче частиц при развитии на нем перетяжек. Оказалось, что этот спектр хорошо описывает энергетический спектр галактических космических лучей во всем диапазоне наблюдаемых энергий, что позволило высказать гипотезу о генерации галактических космических лучей в космических токовых пинчах.

Уравнения (1.3) и (1.4) получаются из уравнений движения и непрерывности релятивистской гидродинамики [6]:

$$wu^k \frac{\partial u_i}{\partial x^k} = \frac{\partial p}{\partial x^i} - u_i u^k \frac{\partial p}{\partial x^k}, \qquad (1.5)$$

$$\frac{\partial(nu^i)}{\partial x^i} = 0, \tag{1.6}$$

где w = e + p — энтальпия, $e = \rho c^2$, ρ , p, n — плотность массы, давление и плотность числа частиц в собственной системе координат, x^k , u^k , $u_k - 4$ -векторы координат и скорости: $u^k = (\gamma, \gamma \mathbf{v}/c)$. Три пространственные компоненты уравнения (1.5) представляют собой релятивистское обобщение уравнения Эйлера, временная же компонента есть следствие первых трех (скалярное произведение вектора скорости на векторное уравнение движения (i = 1, 2, 3) дает уравнение (1.5) для i = 0). Уравнение (1.6) есть уравнение непрерывности.

Для получения уравнений (1.3), (1.4) из уравнений (1.5) и (1.6) положим для квазичаплыгинских сред

$$e = \rho_* c^2, \quad p = -\frac{c_0^2 m}{1+m} \rho_*^{1+1/m}$$
 (1.7)

для $m \neq -1$ и $p = -c_0^2 \ln \rho_*$ для m = -1. Приведенные выражения для «давления» p получаются из уравнения (1.1), если умножить его на ρ_* и записать его правую часть в обычном виде: $-\nabla p$. Отметим, что в формулах (1.7) величины e и p имеют размерность квадрата скорости. Далее будем пренебрегать давлением в формуле для энтальпии, полагая $w \approx \rho_* c^2$. Подставляя (1.7) в (1.5), получаем релятивистское квазичаплыгинское уравнение движения:

$$\gamma \frac{d}{dt}(\gamma \mathbf{v}) = -\nabla p_{ef} - \left(\frac{\gamma}{c}\right)^2 \mathbf{v} \frac{d}{dt} p_{ef}, \qquad (1.8)$$

где $p_{ef} = -c_0^2 m \rho_*^{1/m}$. В одномерном случае это уравнение имеет вид уравнения (1.3).

Теперь обратимся к уравнению непрерывности (1.6). Замена в нем n на ρ_* приводит к уравнению (1.4). Следует обратить внимание на то, что эта замена автоматически предполагает, что «эффективная» плотность ρ_* в (1.6) относится к собственной системе координат, т. е. при преобразовании Лоренца она преобразуется как обычная плотность.

В заключение раздела скажем несколько слов о обобщении квазичаплыгинских уравнений на случай сильных гравитационных полей, т.е. о виде КЧУ в общей теории относительности. В силу того что РКЧУ получены из уравнений релятивистской гидродинамики (1.5) и (1.6), обсуждаемое обобщение КЧУ должно происходить по той же схеме, по которой оно осуществляется в релятивистской гидродинамике. Для этого следует в уравнениях (1.5), (1.6) заменить обычные производные ковариантными (см. [6]), а затем использовать выражения (1.7).

2. СВЕДЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ (1.3), (1.4) К ЛИНЕЙНЫМ УРАВНЕНИЯМ

Для решения «одномерных» РКЧУ воспользуемся методом годографа. Следуя ему, перейдем к обратным функциям z = z(x, y) и $\tau = \tau(x, y)$, в которых переменная $x = (c_0/c)^2 \rho_*^{1/m}$. Дифференцируя их по τ и z, получаем выражения для производных:

$$\frac{\partial y}{\partial \tau} = \frac{1}{J} \frac{\partial z}{\partial x}, \quad \frac{\partial x}{\partial \tau} = -\frac{1}{J} \frac{\partial z}{\partial y},
\frac{\partial y}{\partial z} = -\frac{1}{J} \frac{\partial \tau}{\partial x}, \quad \frac{\partial x}{\partial z} = \frac{1}{J} \frac{\partial \tau}{\partial y},$$
(2.1)

где

$$J = \frac{\partial \tau}{\partial y} \frac{\partial z}{\partial x} - \frac{\partial \tau}{\partial x} \frac{\partial z}{\partial y}$$

— якобиан перехода. Подставляя (2.1) в РКЧУ (1.3) и (1.4), получаем уравнения

$$\gamma \frac{\partial z}{\partial x} - u \frac{\partial \tau}{\partial x} = m \left(-u \frac{\partial z}{\partial y} + \gamma \frac{\partial \tau}{\partial y} \right),$$

$$\gamma \frac{\partial z}{\partial y} - u \frac{\partial \tau}{\partial y} = \frac{x}{m} \left(u \frac{\partial z}{\partial x} - \gamma \frac{\partial \tau}{\partial x} \right).$$
 (2.2)

Далее вводим координату z' и время $\tau' = ct'$ события в собственной системе координат (в которой рассматриваемый элемент объема покоится). Они связаны с координатой z и временем τ того же события в лабораторной системе координат преобразованием Лоренца:

$$z' = \gamma z - u\tau, \quad \tau' = \gamma \tau - uz. \tag{2.3}$$

 13^{*}

Дифференцируя функции z'(x, y) и $\tau'(x, y)$ по переменным x и y, получаем, учитывая (2.2), выражения

$$\frac{\partial z'}{\partial y} = -\left(\tau' + \frac{x}{m} \frac{\partial \tau'}{\partial x}\right), \quad \frac{\partial z'}{\partial x} = m\left(z' + \frac{\partial \tau'}{\partial y}\right), \quad (2.4)$$

из которых следует уравнение

$$x\frac{\partial^2\tau'}{\partial x^2} + (1+m-xm)\frac{\partial\tau'}{\partial x} + m^2\left(\frac{\partial^2\tau'}{\partial y^2} - \tau'\right) = 0. \quad (2.5)$$

Вначале рассмотрим это уравнение в нерелятивистском приближении $(v/c \to 0)$, в котором $y \approx \varepsilon \eta$, где $\eta = v/c_0, \varepsilon = c_0/c \ll 1$. Переходим в уравнении (2.5) к переменным η и $r = x^{1/2}/\varepsilon = \rho_*^{1/2m}$. Устремляя $\varepsilon \to 0$, получим для функции $\tau(x, y)$, в которую переходит τ' в нерелятивистском приближении, уравнение Дарбу:

$$\frac{\partial^2 \tau}{\partial r^2} + \frac{(1+2m)}{r} \frac{\partial \tau}{\partial r} + 4m^2 \frac{\partial^2 \tau}{\partial \eta^2} = 0.$$
(2.6)

Это уравнение для m = -1/2 является двумерным уравнением Лапласа, а для иных значений параметра m уравнение (2.6), как показано в работе [1], сводится к трехмерному уравнению Лапласа. Из множества решений уравнения Лапласа в дальнейшем нас будут интересовать лишь решения, описывающие возмущения неустойчивых сред, исчезающие в пределе $t \to -\infty$. В общей теории КЧУ такие возмущения и решения названы спонтанными. Их эволюция протекает плавно — без опрокидывания или обострения профилей, типичных для нелинейных систем без диссипации.

Для нахождения спонтанных решений в работах [1,2] используется метод, основанный на аналогии с задачами электростатики. По этой аналогии функция $\tau(r, \eta)$ рассматривается как электростатический потенциал, а невозмущенному состоянию системы ($\rho_* = 1, v = 0$) соответствует точка $r_0 = 1, \eta_0 = 0$ в пространстве r, η . Чтобы в этой точке «электростатический» потенциал $\tau(r, \eta)$ имел нужную особенность $\tau \to -\infty$, надо в нее поместить «электрические заряды». Математически это сводится к замене в правой части уравнения (2.6) нуля на плотность этих зарядов, т.е. к переходу от уравнения Лапласа к уравнению Пуассона.

Эту же замену следует сделать и для общего уравнения (2.5), переписав его в виде

$$x\frac{\partial^{2}\tau'}{\partial x^{2}} + (1+m-xm)\frac{\partial\tau'}{\partial x} + m^{2}\left(\frac{\partial^{2}\tau'}{\partial y^{2}} - \tau'\right) = \sigma(x,y), \quad (2.7)$$

где $\sigma(x, y)$ — плотность «зарядов», сосредоточенных в точке $x_0 = \varepsilon^2$, $y_0 = 0$, отвечающей невозмущенному состоянию среды: $\rho_* = 1$, v = 0. Тогда решения уравнения (2.7) будут являться спонтанными решениями РКЧУ.

3. ФУНКЦИЯ ГРИНА РЕЛЯТИВИСТСКИХ КВАЗИЧАПЛЫГИНСКИХ УРАВНЕНИЙ

Прежде чем выписать функцию Грина уравнения (2.7), приведем частные решения однородного уравнения (2.5). Для положительных азимутальных чисел m > 0 они имеют вид

$$\tau'(x, y) = L_n^m(xm) \exp(-|y|q_n), q_n = \sqrt{1 + \frac{n}{m}},$$
(3.1)

где $L_n^m(xm)$ — полиномы Лагерра. Для отрицательных азимутальных чисел m < 0 частные решения несколько иные:

$$\tau'(x,y) = h(x)L_n^{|m|}(x|m|)\exp(-|y|q_n),$$

$$h(x) = x^{|m|}\exp(-x|m|), \quad q_n = \sqrt{1 + \frac{1+n}{|m|}}.$$
 (3.2)

Функцию Грина G уравнения (2.7) ($\sigma = \delta(x-x_0)\delta(y-y_0)$) ищем в виде ряда по полиномам Лагерра, которые образуют полную систему функций. В результате несложных действий получаем для G выражение, применимое как для m > 0, так и для m < 0; оно имеет вид

$$G(\zeta, y, \zeta_0, y_0) = B(\zeta, \zeta_0) \times \\ \times \sum_{n=0}^{\infty} \frac{n! L_n^{|m|}(\zeta) L_n^{|m|}(\zeta_0)}{q_n \Gamma(n+|m|+1)} \exp(-|y-y_0|q_n), \quad (3.3)$$

где $\zeta = x|m| = \varepsilon^2 r^2 |m|$, Γ — гамма-функция, величины q_n определены формулами (3.1) и (3.2). Для m > 0 функция $B(\zeta, \zeta_0)$ зависит только от ζ_0 : $B(\zeta, \zeta_0) = b(\zeta_0)$, где

$$b(\zeta_0) = -(2|m|)^{-1} \zeta_0^{|m|} \exp(-\zeta_0),$$

а для m < 0 функция $B(\zeta, \zeta_0) - функция лишь от <math>\zeta$: $B(\zeta, \zeta_0) = b(\zeta).$

Выполним переход к нерелятивистскому случаю $(v/c \to 0)$. При $\varepsilon = c_0/c \to 0$ сумму (3.3) заменяем на интеграл, который с учетом формулы

$$L_n^{|m|}(\zeta) \approx \left(\frac{n}{\zeta}\right)^{|m|/2} J_{|m|}\left(2\sqrt{n\zeta}\right)$$

справедливой при $\zeta \to 0$ и $n \gg |m|$ (см. [7]), принимает вид

$$G(r, r_0, u', u'_0) = -\frac{1}{2|m|\varepsilon} \left(\frac{r_0}{r}\right)^m \times \\ \times \int_0^\infty J_{|m|}(qr) J_{|m|}(qr_0) \exp\left(-|u'-u'_0|q\right) dq, \quad (3.4)$$

где

$$r = \rho_*^{1/2m}, \quad u' = \frac{v}{2|m|c_0}.$$

Эта формула справедлива как для m > 0, так и для m < 0; отметим, что в показатель сомножителя $(r_0/r)^m$ входит азимутальное число m, а не его модуль. Интеграл в формуле (3.4) выражается через $Q_{|m|-1/2}$ — функцию Лежандра второго рода [8]:

$$\int_{0}^{\infty} J_{|m|}(qr) J_{|m|}(qr_{0}) \exp\left(-|u'-u'_{0}|q\right) dq =$$
$$= \frac{1}{\pi \sqrt{r_{0}r}} Q_{|m|-1/2} \left(\frac{(u'-u'_{0})^{2}+r^{2}+r_{0}^{2}}{2r_{0}r}\right). \quad (3.5)$$

Умножим функцию Грина на «заряд» $e_* = 2\pi c_0 t_* |m|$, где положительная константа t_* имеет размерность времени (в следующем разделе покажем, что $2\pi c_0 t_*$ — длина волны возмущения вдоль оси z). Тогда в нерелятивистском случае, используя (3.4), (3.5) и значения $u'_0 = 0$, $r_0 = 1$ для невозмущенного состояния среды, получаем формулу, приведенную в работах [1,2]:

где

$$\nu = -m - \frac{1}{2}, \quad \chi = \frac{u'^2 + r^2 + 1}{2r}.$$

 $\frac{t}{t_{+}} = -r^{\nu}Q_{|m|-1/2}(\chi),$

Выражение (3.4) можно было получить непосредственно из уравнения (2.6). Его частные решения имеют вид

$$\tau = r^{-m} J_m(qr) \exp(\pm qu'),$$

где $J_m(qr)$ — функция Бесселя, $u' = \eta/2|m| = v/2|m|c_0$. Поэтому для нахождения функции Грина (3.4) из уравнения (2.6) надо сделать замену в правой части (2.6): $0 \rightarrow \delta(r - r_0)\delta(\eta - \eta_0)$, а затем воспользоваться известным интегральным преобразованием Фурье-Бесселя (преобразованием Ханкеля):

$$f(r, u') = \int_{0}^{\infty} f(q, u') J_{|m|}(qr) dq,$$

$$\delta(r - r_{0}) = r_{0} \int_{0}^{\infty} q J_{|m|}(qr) J_{|m|}(qr_{0}) dq.$$
(3.7)

В итоге получаем прежний результат (3.4).

4. ПАРАМЕТРИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ КООРДИНАТЫ

Формула для координаты z' получается интегрированием уравнений (2.4), в которые следует подставить выражение $\tau' = e_*G$. Вначале проделаем эти вычисления для линейной стадии развития возмущения, для которой $u' \to 0, r \to 1$, так что формула (3.6) сводится к выражению

$$\frac{t}{t_*} = \frac{1}{2} \ln \frac{u'^2 + (r-1)^2}{4}.$$
 (4.1)

При этом мы воспользовались асимптотикой для функции Лежандра ($Q_{|m|}(\operatorname{cth} \xi) \approx \xi$ при $\xi \to \infty$), получающейся из гипергеометрического представления этой функции (см. [7]). Из (2.4) и (4.1) находим выражение для координаты:

$$\frac{z}{c_0 t_*} = -\frac{|m|}{m} \operatorname{arctg} \frac{u'}{r-1}.$$

Так что для плотности и скорости получаем формулы

$$\rho_* = r^{2m} = 1 - 4m \exp \frac{t}{t_*} \cos \frac{z}{c_0 t_*},$$

$$\frac{v}{c_0} = 4m \exp \frac{t}{t_*} \sin \frac{z}{c_0 t_*},$$
(4.2)

описывающие периодические по координате *z* возмущения.

Рассмотрим общий случай, в котором функция Грина G выражается формулой (3.3). Из (2.4) и (3.3) получаем

$$z' = \pm e_* B(\zeta, \zeta_0) \sum_{n=0}^{\infty} g_n F_n, \qquad (4.3)$$

где знак плюс берется для $y - y_0 > 0$, а знак минус — для $y - y_0 < 0$, $g_n - n$ -е слагаемое суммы (3.3) для G,

$$F_n = \frac{1}{q_n} \left\{ 1 + \frac{\zeta}{m} \frac{d}{d\zeta} \ln \left[B(\zeta, \zeta_0) L_n^{|m|}(\zeta) \right] \right\}.$$
 (4.4)

(3.6)

Отметим, что в множитель ζ/m в формуле для F_n входит само азимутальное число m, а не его модуль. Нерелятивистский предел формулы (4.3) получается так же, как осуществлялся переход от (3.3) к (3.4).

Подробно рассмотрим этот переход для газа Чаплыгина, для которого зависимости $\rho_*(z,t)$ и v(z,t) в нерелятивистском случае описываются явными выражениями. Для квазичаплыгинских сред с m < 0, к которым относится и газ Чаплыгина, из (4.3) при $v/c \to 0$ получаем формулу

$$\frac{z'}{c_0 t_*} = \pm \pi r^{|m|+1} \int_0^\infty J_{|m|+1}(qr) J_{|m|}(q) \times \exp\left(-|u'|q\right) \, dq, \quad (4.5)$$

в которой знак плюс берется для $u' = v/2|m|c_0 < 0$, а знак минус — для u' > 0. Ниже рассмотрим лишь газ Чаплыгина, для которого m = -1/2. Для него интеграл (4.5) легко вычисляется, так как входящие в него функции Бесселя имеют простой вид:

$$J_{1/2}(q) = \sqrt{\frac{2}{\pi q}} \sin q,$$
$$J_{3/2}(q) = \sqrt{\frac{2}{\pi q}} \left(\frac{1}{q} \sin q - \cos q\right).$$

Интегрируя (4.5) и учитывая, что для данного примера формула (3.6) принимает вид (см. [7])

$$\frac{t}{t_*} = \frac{1}{2} \ln \left[\frac{u'^2 + (r-1)^2}{u'^2 + (r+1)^2} \right],$$
(4.6)

получаем, используя преобразования Лоренца (2.3), для координаты z, относящейся к лабораторной системе координат, следующее выражение:

$$\frac{z}{c_0 t_*} = -\arctan g \frac{2u'r}{u'^2 + 1 - r^2} \,. \tag{4.7}$$

Обращая формулы (4.6) и (4.7), получаем явные зависимости плотности и скорости от координаты и времени:

$$\rho_*(z,t) = \frac{1}{r} = \frac{-\operatorname{sh}(t/t_*)}{\operatorname{ch}(t/t_*) - \cos(z/c_0 t_*)}, \\
\frac{v(z,t)}{c_0} = \frac{\sin(z/c_0 t_*)}{\operatorname{sh}(t/t_*)},$$
(4.8)

приведенные в работах [1,2]. При $t \to -\infty$ они переходят в выражения (4.2) при m = -1/2, описывающие линейную стадию развития возмущения.

5. НЕУСТОЙЧИВЫЕ СРЕДЫ, ОПИСЫВАЕМЫЕ РЕЛЯТИВИСТСКИМИ КВАЗИЧАПЛЫГИНСКИМИ УРАВНЕНИЯМИ

Ниже рассмотрим следующие примеры: одномерный газ Чаплыгина, газ Ван-дер-Ваальса в неустойчивой области, цилиндр жидкости с поверхностным натяжением. Эволюция этих сред в нерелятивистском случае описывается квазичаплыгинскими уравнениями (1.1) и (1.2), в которых азимутальные числа соответственно равны: m = -1/2, 1, -2 (см. [1,2]). Далее покажем, что в релятивистском случае динамика этих квазичаплыгинских, или квазигазовых, сред описывается РКЧУ (1.3) и (1.4). Для этого воспользуемся уравнениями движения и непрерывности релятивистской гидродинамики (1.5) и (1.6). Пренебрегая давлением в формуле для энтропии $(p \ll \rho c^2)$, запишем эти уравнения для одномерного случая:

$$\left(\gamma \frac{\partial}{\partial \tau} + u \frac{\partial}{\partial z}\right) y = -\frac{p_0}{\rho_0 c^2} \frac{\rho_0}{\rho} \left(u \frac{\partial}{\partial \tau} + \gamma \frac{\partial}{\partial z}\right) \frac{p}{p_0}, \quad (5.1)$$
$$\frac{\partial}{\partial \tau} (n\gamma) + \frac{\partial}{\partial z} (nu) = 0, \quad (5.2)$$

где все величины имеют прежний смысл, а нулевой индекс относится к невозмущенным значениям соответствующих величин. Уравнение непрерывности (5.2) можно переписать в виде (1.4) при $\rho_* = n$.

Одномерный газ Чаплыгина. Этот гипотетический газ, рассмотренный Чаплыгиным [9], имеет необычную адиабату $p = p_0 \rho_0 / \rho$, по которой давление увеличивается с уменьшением плотности. Если ввести безразмерную эффективную плотность $\rho_* = \rho / \rho_0$, то уравнения (5.1) и (5.2) для такого газа примут вид РКЧУ — (1.3), (1.4), в которых $m = -1/2, c_0^2 = p_0 / \rho_0$.

Газ Ван-дер-Ваальса в неустойчивой области. Уравнение состояния реальных газов приближенно описывает известная модель Ван-дер-Ваальса:

$$p = 8T\rho(3-\rho)^{-1} - 3\rho^2,$$

где все величины отнесены к их значениям в критической точке [10]. Рассмотрим далее изотермический процесс. Как известно, при температуре, меньшей критической (T < 1), в области $0 \le \rho \le 3$ имеется интервал значений ρ , в котором $dp/d\rho < 0$, а слева и справа от него $dp/d\rho \ge 0$. Именно в том интервале плотностей, в котором производная $dp/d\rho$ меньше нуля, в газе возникают стоячие возмущения, нарастающие во времени. Их развитие можно описать

аналитически, используя квазичаплыгинские уравнения. Для этого следует представить $dp/d\rho$ в виде степенной функции от плотности. Это можно сделать, как легко проверить, лишь при низких температурах в интервале $8T/9 \ll \rho \ll 3$, в котором $dp/d\rho \approx -6\rho < 0$, что и приводит к РКЧУ с азимутальным числом m = 1. Однако в этом интервале плотностей давление газа отрицательно, так что квазичаплыгинское описание в данном случае является формальным.

Цилиндр жидкости с поверхностным натяжением. Рассмотрим возмущения такого цилиндра, вытянутые вдоль его оси и разбивающие его на капли под действием сил поверхностного натяжения. Для рассматриваемых в дальнейшем длинноволновых возмущений давление, создаваемое поверхностным натяжением, описывается выражением $p = \sigma_*/a(z,t)$, в котором σ_* — коэффициент поверхностного натяжения, a(z,t) — радиус поперечного сечения цилиндра. Для этих же возмущений воспользуемся известным приближением узкого канала или струи [6], по которому давление, плотность и продольная скорость жидкости внутри цилиндра считаются постоянными по его сечению. При этих условиях уравнение продольного движения принимает вид (5.1), а уравнение непрерывности, как показано в работах [1, 4], имеет вид уравнения (5.2), в котором плотность *n* следует заменить на эффективную плотность $\rho_* = \rho a^2 / \rho_0 a_0^2$. Далее считаем, что плотность жидкости изменяется слабо, т.е. полагаем $\rho = \text{const.}$ В итоге уравнения движения и непрерывности записываются в виде РКЧУ, в которых $m = -2, c_0^2 = \sigma_*/2\rho_0 a_0, \rho_* = a^2/a_0^2.$

Эта неустойчивость приводит к выдавливанию частиц из перетяжек в области утолщений, расположенные между перетяжками; при этом частицы ускоряются. В момент обрыва перетяжек происходит окончательное формирование их функции распределения по энергиям макроскопического движения. Обозначим эту функцию как F(E), где энергия $E = \gamma M c^2, M$ — масса покоя частицы. Вычислим функцию F(E). Подобная задача рассматривалась в работе [4] для скинированного плазменного пинча; повторим ход этих вычислений применительно к нашей задаче. На длину dz цилиндра радиусом a(z,t)приходится $dN = \gamma n \pi a^2 dz$ частиц, где $\gamma n, n -$ плотности частиц в лабораторной и собственной системе координат. Следовательно, для функции F(E) получаем выражение

$$F(E) = \frac{dN}{dE} = \pi a_0^2 n_0 \rho_* \frac{\gamma}{Mc^2 u} \frac{dz}{dy}, \qquad (5.3)$$

в котором нулевые индексы относятся к невозмущенным значениям величин. При вычислении производной

$$\frac{dz}{dy} = \frac{\partial z}{\partial y} + \frac{\partial z}{\partial \zeta} \frac{d\zeta}{dy}$$

следует учесть, что спектр F(E) вычисляется в фиксированный момент времени: $\tau(\zeta, y) = \text{const}$, из чего находим

$$\frac{d\zeta}{dy} = -\frac{\partial\tau}{\partial y} \left(\frac{\partial\tau}{\partial\zeta}\right)^{-1}$$

В результате получаем

$$F(E) = K\rho_* \frac{\gamma}{u} \left(\frac{\partial z}{\partial y} \frac{\partial \tau}{\partial \zeta} - \frac{\partial z}{\partial \zeta} \frac{\partial \tau}{\partial y}\right) \left(\frac{\partial \tau}{\partial \zeta}\right)^{-1}, \quad (5.4)$$

где

$$K = \frac{\pi a_0^2 n_0}{M c^2} = \text{const.}$$

В этих формулах τ и z — время и координата в лабораторной системе координат, они связаны с временем τ' и координатой z' в собственной системе координат преобразованием Лоренца (2.3).

Далее рассмотрим лишь периодические вдоль оси цилиндра возмущения. Они, согласно общей теории КЧУ [1, 2], описываются «кулоновским» решением уравнения (2.7), т.е. функцией Грина (3.3), в которой $\zeta_0 = \varepsilon^2 |m|, y_0 = 0$. В момент обрыва перетяжек радиус утолщений между ними стремится к бесконечности, так что в утолщениях $\zeta \to 0$. Тогда из (3.3) и (2.4) получаем при m = -2 следующие выражения для области утолщений: $\tau' \approx \zeta^2 f_0(y),$ $z' \sim \zeta^3$, в которых

$$f_0(y) = -\frac{1}{4} \sum_{0}^{\infty} \frac{n! L_n^2(0) L_n^2(2\varepsilon^2)}{q_n \Gamma(n+3)} \exp\left(-|y|q_n\right),$$

$$q_n = \sqrt{1 + \frac{1+n}{2}},$$
 (5.5)

где L_n^2 — полином Лагерра с верхним индексом 2. Из этих формул, используя преобразования Лоренца (2.3), получаем для τ и z выражения

$$\tau \approx \zeta^2 f_0(y) \operatorname{ch} y, \quad z \approx \zeta^2 f_0(y) \operatorname{sh} y.$$

Подставляя их в (5.4) и учитывая, что $\rho_* = 4\varepsilon^4/\zeta^2$, находим выражение для спектра F(E):

$$F(E) = \operatorname{const} \frac{f_0(y)}{\operatorname{sh} y} \,. \tag{5.6}$$

Для ультрарелятивистских энергий оставляем в формуле (5.5) для $f_0(y)$ лишь один член с n = 0.

Учитывая, что при $\gamma \gg 1$ величина $E = \gamma M c^2 \sim e^y,$ получаем для спектра выражение

$$F(E \gg Mc^2) \sim E^{-(1+\sqrt{3/2})}$$
. (5.7)

Плазменный пинч. В заключение раздела напомним, что релятивистская динамика скинированного плазменного пинча без продольного магнитного поля также описывается РКЧУ с азимутальным числом m = -1 (см. [4]).

6. ЗАКЛЮЧЕНИЕ

Квазичаплыгинские уравнения описывают эволюцию многих неустойчивых сред (с отрицательной сжимаемостью), встречающихся в природе. В математическом плане эти среды различаются значениями параметра *m*, получившего название азимутального числа. Особенность этих нелинейных уравнений состоит в том, что они имеют аналитические решения. В силу этих двух обстоятельств естественно было провести релятивистское обобщение квазичаплыгинских уравнений и построить для них аналитические решения. Это было сделано в данной работе. В этом обобщении мы исходили из уравнений одножидкостной релятивистской гидродинамики, а также из результатов статьи [4], в которой на примере плазменного пинча было получено релятивистское обобщение квазичаплыгинских уравнений для частного случая m = -1. В работе [4] релятивистский пинч рассматривался как источник ускорения космических лучей.

В настоящей работе это обобщение дано для уравнений с произвольным значением азимутального числа *m*, приведены примеры сред (газ Чаплыгина, газ Ван-дер-Ваальса в неустойчивой области, цилиндр жидкости с поверхностным натяжением), динамика которых описывается предложенными релятивистскими квазичаплыгинскими уравнениями. Для одномерного случая получено аналитическое решение этих нелинейных уравнений.

Автор благодарен профессору Б. А. Трубникову за подробное обсуждение данной работы.

ЛИТЕРАТУРА

- 1. С. К Жданов, Б. А. Трубников, *Квазигазовые* неустойчивые среды, Наука, Москва (1991).
- B. A. Trubnikov, S. K. Zhdanov, and S. M. Zverev, Hydrodynamics of Unstable Media, CRC Press, USA (1996).
- А. В. Аксенов, Дисс. ... докт. физ.-матем. наук, МГУ, Москва (2004).
- В. П. Власов, С. К. Жданов, Б. А. Трубников, Письма в ЖЭТФ 49, 581 (1989).
- Б. А. Трубников, Вопросы атомной науки и техники (Украина) 2, 78 (2005); ЖЭТФ 128, 183 (2005).
- 6. Л. Д. Ландау, Е. М. Лифшиц, *Гидродинамика*, Наука, Москва (1988).
- 7. Справочник по специальным функциям, под ред. М. Абрамовица, И. Стиган, Наука, Москва (1979).
- 8. И. С. Градштейн, И. М. Рыжик, Таблицы интегралов, сумм, рядов и произведений, Физматлит, Москва (1963).
- С. А. Чаплыгин, Избранные труды, Наука, Москва (1976).
- М. А. Леонтович, Введение в термодинамику. Статистическая физика, Наука, Москва (1983).