ФОТОДЕТЕКТИРОВАНИЕ СЛАБОГО СИГНАЛА С ИСПОЛЬЗОВАНИЕМ ЛАЗЕРНОГО УСИЛИТЕЛЯ

А. В. Козловский*

Физический институт им. П. Н. Лебедева Российской академии наук 119991, Москва, Россия

Поступила в редакцию 20 июля 2004 г.

Анализируется процесс фотодетектирования слабых и ультраслабых световых сигналов, усиливаемых с помощью лазерных усилителей света. Рассмотрен линейный усилитель и усилитель четырехволнового смешения. Для источников света с различными квантово-статистическими свойствами рассчитаны распределения фотоэлектронов для широкого диапазона коэффициентов усиления. Рассчитаны и анализируются отношения сигнал/шум при линейной и четырехволновой схемах предусиления. Расчет показал, что необходимое для уверенного фотодетектирования слабых сигналов отношение сигнал/шум (намного больше единицы) достижимо лишь в случае четырехволновой схемы предусиления и качественно зависит от квантово-статистических свойств сигнальной и холостой волн.

PACS: 42.50.Ar, 42.60.Da, 42.65.Sf

1. ВВЕДЕНИЕ

Исследования в области современной квантовой оптики предполагают возможность точного измерения среднего числа и флуктуаций числа фотонов слабых и ультраслабых электромагнитных полей, содержащих порядка одного фотона. Используемые для этих целей лавинные фотодетекторы вследствие случайного характера усиления слабого фототока, вносят в результат измерения существенный дополнительный шум.

В настоящее время проводятся интенсивные экспериментальные исследования с целью создания новых фотодетекторов, позволяющих регистрировать ультраслабые сигналы. Однако уже существующие однофотонные детекторы (см., например, работы [1–3]) обладают необходимой чувствительностью, квантовой эффективностью и временным разрешением лишь в узких спектральных диапазонах. Кроме того, ввиду дополнительного шума, вносимого внутренним усилением, разрешение таких детекторов значительно превышает величину одного фотона и не позволяет точно измерить число фотонов в сигнале. Вследствие этого в экспериментах по созданию и использованию однофотонных источников света применяется схема интерферометра интенсивностей Хенбери-Брауна – Твисса, при которой информация о числе фотонов, излучаемых источником, извлекается путем анализа корреляционной функции интенсивности поля, поскольку прямое фотодетектирование таких ультраслабых сигналов не позволяет точно определить распределение и среднее число фотонов [3].

Использование метода предусиления с помощью лазерных усилителей света позволяет исключить этап усиления фототока, используемый в наиболее широко распространенных лавинных фотодетекторах, обладающих высокой квантовой эффективностью, и тем самым исключить погрешность эксперимента, связанную с «динодными» шумами, возникающими на этом этапе. Тем самым повышается детектирующая способность приемника.

Применение лазерного усиления света может также оказаться полезным в системе оптической связи в целях компенсации потерь при распространении в световоде.

Линейный лазерный усилитель вносит дополнительные шумы, возникающие вследствие спонтанного излучения в активной среде, что приводит к уменьшению отношения сигнал/шум для измеряемой величины. Для сигнала в когерентном состоянии при большом усилении отношение сигнал/шум

^{*}E-mail: kozlovsk@sci.lebedev.ru

понижается в два раза [4]. Квантовый анализ возможности применения линейного усилителя для предусиления измеряемого фотодетектором светового сигнала проведен в настоящей работе для случая слабого сигнала в различных квантовых состояниях с целью определения пределов применимости метода прямого фотодетектирования с предусилением.

Использование фазово-чувствительных усилителей света в схеме параметрического усиления сигнала представляет собой перспективное направление в области квантовых прецизионных измерений оптических сигналов, поскольку в этом случае, в отличие от линейного лазерного усилителя, реализуется режим «бесшумового» усиления сигнала, при котором исходное отношение сигнал/шум не изменяется при усилении сигнала [4]. Эффективность параметрического усиления с одноволновой накачкой удвоенной частоты для регистрации когерентного сигнала продемонстрирована в настоящее время экспериментально [5] с использованием среды с квадратичной нелинейностью.

Другим методом усиления слабого сигнала, рассмотренным в настоящей работе, является процесс нелинейного четырехволнового смешения света в среде с кубической нелинейностью. Как средство повышения отношения сигнал/шум в этом случае может служить холостая волна, участвующая в четырехволновом смешении. Использование холостой волны с определенными квантово-статистическими свойствами позволяет уменьшить степень деградации сигнала до приемлемого для последующего измерения уровня.

2. ФОТОДЕТЕКТИРОВАНИЕ СИГНАЛА, УСИЛИВАЕМОГО С ПОМОЩЬЮ ЛИНЕЙНОГО ЛАЗЕРНОГО УСИЛИТЕЛЯ

На рис. 1 изображена рассмотренная нами схема прямого фотодетектирования излучения, усиленного с помощью лазерного усилителя. Квазимонохроматический поток фотонов, прошедший через усилитель, поступает на фотодетектор. Проведение последовательности измерений фототока позволяет определить распределение фотоэлектронов, непосредственно связанное с вероятностной функцией распределения числа фотонов поля. Отметим, что распределение фотоэлектронов в общем случае не совпадает с распределением фотонов поля на входе фотодетектора. В настоящей работе нами рассматривается одномодовый режим счета фотонов, имеющий место при условии малости времени одиночно-

Рис.1. Схема фотодетектирования квазимонохроматического сигнала с предварительным усилением его с помощью линейного лазерного усилителя, N_a — число активных атомов среды, L_{amp} — длина усилителя, PD — фотодетектор

го измерения числа фотонов по сравнению со временем когерентности поступающего на вход усилителя излучения (т. е. величины, обратной ширине спектра излучения): $T \ll \tau_{coh}$. Кроме того, предполагается, что в режиме одномодового фотосчета площадь фотодетектора S меньше площади пространственной когерентности излучения, $S \ll S_{coh}$. Такие условия соответствуют приближению плоской квазимонохроматической волны, поступающей на вход усилителя света.

Распределение фотоэлектронов многоатомного широкополосного фотодетектора для времени измерения T может быть получено в рамках временной теории возмущений [6, 7], и может быть записано в следующем виде:

$$p(m,T) = \langle : \Omega^m e^{-\Omega} : \rangle / m! =$$

= Sp ($\rho(a, a^{\dagger}) : \Omega^m e^{-\Omega} : \rangle / m!$ (1)

где $\rho(a, a^{\dagger})$ — оператор плотности электромагнитного поля, поступающего на поверхность фотодетектора, : . . . : означает операцию нормального упорядочения операторов рождения (a^{\dagger}) и уничтожения (a)поля, а оператор Ω есть

$$\Omega = \varepsilon \int_{0}^{T} a^{\dagger}(s) a(s) ds, \qquad (2)$$

где ε — эффективный параметр, характеризующий чувствительность детектора. Среднее число фотоотсчетов в этом случае есть

$$\langle m \rangle = \sum_{m=0}^{\infty} mp(m,T),$$
 (3)

при этом также имеем

$$\langle \Omega \rangle = \varepsilon \int_{0}^{T} \langle a^{\dagger}(s)s(a) \rangle ds = \langle m \rangle.$$
(4)

Если в течение времени измерения T среднее число отсчетов постоянно, то $\langle m \rangle = \varepsilon \langle a^{\dagger} a \rangle T$.

Поскольку в уравнении (1) оператор, находящийся под знаком квантового среднего, записан в нормально-упорядоченной форме, взятие среднего может быть осуществлено с помощью функции квазивероятности, являющейся диагональным представлением оператора плотности в базисе когерентных состояний $|\alpha\rangle$. В результате для распределения фотоэлектронов получаем [6, 7]

$$p(m,T) = \int P(\alpha) \frac{\left(\varepsilon T |\alpha|^2\right)^m}{m!} \exp\left(-\varepsilon T |\alpha|^2\right) d^2\alpha, \quad (5)$$

считая, что $\langle |\alpha|^2 \rangle = \langle a^{\dagger} a \rangle$.

Входящая в выражение (5) функция квазивероятности Глаубера–Сударшана, $P(\alpha)$, определенная в фазовом пространстве { $\alpha_{\rm Re}, \alpha_{\rm Im}$ }, $\alpha = \alpha_{\rm Re} + i\alpha_{\rm Im}$ связана с оператором плотности поля:

$$\rho(a^{\dagger}, a) = \frac{1}{\pi} \int d^2 \alpha \, P(\alpha) |\alpha\rangle \langle \alpha|. \tag{6}$$

Отметим, что $\langle |\alpha|^2 \rangle$ и $\langle a^{\dagger}a \rangle$ есть число фотонов в объеме квантования $V_q = SL$, L = cT. Квантовая эффективность η фотодетектора удовлетворяет соотношению $0 \leq \eta \leq 1$ и определяется согласно выражению $\varepsilon T = \eta$ в предположении, что время измерения меньше времени когерентности поля. Можно показать, что среднее число фотоэлектронов $\langle m \rangle$ связано со средним числом фотонов $\langle n_a \rangle$ излучения, выходящего из лазерного усилителя следующим соотношением:

$$\langle m \rangle = \eta \langle n_a \rangle, \tag{7}$$

а флуктуации числа фотоэлектронов выражаются через флуктуации числа фотонов:

$$\begin{split} \langle (\Delta m)^2 \rangle &= \langle m \rangle (1 - \eta) + \eta^2 \langle (\Delta n_a)^2 \rangle = \\ &= \eta (1 - \eta) \langle n_a \rangle + \eta^2 \langle (\Delta n_a)^2 \rangle. \end{split}$$
(8)

Отношение сигнал/шум фотодетектирования в этом случае имеет вид

$$R = \frac{\langle m \rangle^2}{\langle (\Delta m)^2 \rangle}.$$
 (9)

Используя соотношения (7) и (8), находим

$$R = \frac{\langle n_a \rangle^2}{\frac{1 - \eta}{\eta} \langle n_a \rangle + \langle (\Delta n_a)^2 \rangle} \,. \tag{10}$$

Чтобы рассчитать *R*, воспользуемся линейной теорией лазерного усилителя и найдем в этих условиях входящие в выражение (10) средние величины. В линейном по полю приближении применим модель активной среды двухуровневых атомов, частоты переходов которых близки по величине к частоте поля. Уравнение движения для оператора уничтожения квазимонохроматического поля в лазерном усилителе в этом случае имеет следующий вид:

$$\frac{\partial \rho}{\partial t} = \frac{\kappa}{2} \left[N_{\uparrow} (2a^{\dagger} \rho a - aa^{\dagger} \rho - \rho aa^{\dagger}) + N_{\downarrow} (2a \rho a^{\dagger} - a^{\dagger} a \rho - \rho a^{\dagger} a) \right]. \quad (11)$$

В уравнении (11) использованы следующие обозначения:

$$\kappa \equiv \frac{2g^2}{\Gamma}, \quad g = d_{\downarrow\uparrow} \sqrt{\frac{2\pi\omega_{\uparrow\downarrow}}{\hbar V_q}},$$
(12)

 $d_{\uparrow\downarrow}$ — матричный элемент оператора дипольного момента атома для перехода из нижнего состояния $\langle\downarrow|$ в верхнее энергетическое состояние $|\uparrow\rangle$, $\omega_{\uparrow\downarrow}$ — частота перехода атома, V_q — объем квантования, Γ скорость спонтанных переходов в атоме, величины N_{\uparrow} и N_{\downarrow} представляют собой населенности соответственно верхнего и нижнего энергетических уровней лазерного перехода. Найдем с помощью уравнения (11) средние значения $\langle n_a \rangle$ и $\langle (\Delta n_a)^2 \rangle$ для поля на выходе лазерного усилителя. С этой целью запишем в общем виде уравнения движения для средних от операторов $Q = a, a^{\dagger}, a^{\dagger}a, (a^{\dagger}a)^2$:

$$\frac{\partial \langle Q \rangle}{\partial t} = \operatorname{Sp}\left(\frac{\partial \rho}{\partial t} Q\right). \tag{13}$$

Используя выражения (11), (12), в результате решения уравнения (13) находим

$$\langle n_a \rangle = |G|^2 \langle n \rangle_{in} + \mu, \tag{14}$$

где

$$\mu = \frac{N_{\uparrow}}{D} \left(|G|^2 - 1 \right), \tag{15}$$

— среднее число спонтанно излученных в усилителе фотонов, а $\langle n \rangle_{in}$ — среднее число фотонов на входе усилителя.

Флуктуации числа фотонов поля на выходе усилителя выражаются через средние величины $\langle n \rangle_{in}$, $\langle (\Delta n)^2 \rangle_{in}$ [8]:

$$\langle (\Delta n_a)^2 \rangle = = \{ \langle (\Delta n)^2 \rangle_{in} + u \left(1 - |G|^{-2} \right) - v \} |G|^4 + v, \quad (16)$$

где

$$u = \frac{N_{\uparrow} + N_{\downarrow}}{D} \left(\langle n \rangle_{in} + \frac{N_{\uparrow}}{D} \right), \qquad (17)$$

$$v = \frac{N_{\uparrow} N_{\downarrow}}{D^2} \,. \tag{18}$$

Выражение для коэффициента усиления лазерного усилителя имеет вид

$$G = \exp\left\{ (\kappa D/2 - i\omega_{\uparrow\downarrow}) T_{amp} \right\},\,$$

где $D = N_{\uparrow} - N_{\downarrow}$ — инверсия населенностей, поддерживаемая накачкой, $T_{amp} = L_{amp}/c_m$ — время уси-

ления, где L_{amp} — длина усилителя, c_m — скорость света в активной среде усилителя.

Подставляя соотношения (14)-(18) в уравнение (10), найдем выражение для отношения сигнал/шум:

$$R = \frac{\left(|G|^2 \langle n \rangle_{in} + \mu\right)^2}{\frac{1 - \eta}{\eta} \left[|G|^2 \langle n \rangle_{in} + \mu\right] + \left\{ \left[\langle (\Delta n)^2 \rangle_{in} + \frac{N}{D} \left(1 - |G|^{-2}\right) \langle n \rangle_{in} \right] |G|^4 + \mu(\mu + 1) \right\},\tag{19}$$

где $N = N_{\uparrow} + N_{\downarrow}$. Квазивероятностная функция распределения поля на выходе усилителя связана с функцией распределения поля на входе (см., например, [1]):

$$P_{out}(\alpha,t) = \frac{1}{\pi\mu} \int d^2 \alpha' P_{in}(\alpha') \exp\left(-\frac{|\alpha - G\alpha'|^2}{\mu}\right).$$
(20)

В дальнейших расчетах будут рассмотрены следующие состояния входного (измеряемого) поля:

$$P(\alpha', t = 0) \equiv P_{in}(\alpha') = \begin{cases} \delta(\alpha'), \text{ вакуумное состояние } |0\rangle, \\ \delta(\alpha' - \alpha_0), \text{ когерентное состояние } |\alpha_0\rangle, \\ \frac{1}{\pi \langle n \rangle_T} \exp\left(-\frac{|\alpha'|^2}{\langle n \rangle_T}\right), \text{ тепловое состояние } |T\rangle, \\ \frac{1}{\pi \langle n \rangle_T} \exp\left(-\frac{|\alpha' - \alpha_0|^2}{\langle n \rangle_T}\right), \text{ состояние когерентный сигнал + шум.} \end{cases}$$
(21)

Выполняя интегрирование в уравнении (20), на выходе усилителя находим

$$P_{out}(\alpha) = \begin{cases} \frac{1}{\pi\mu} \exp\left(-\frac{\alpha_{\rm Re}^{2} + \alpha_{\rm Im}^{2}}{\mu}\right), \\ \frac{1}{\pi\mu} \exp\left\{\frac{1}{\mu} \left[-(\alpha_{\rm Re}^{2} + \alpha_{\rm Im}^{2}) + 2|G|(\alpha_{\rm Re\,0}s_{-} + \alpha_{\rm Im\,0}s_{+}) - |G|^{2}(\alpha_{\rm Re\,0}^{2} + \alpha_{\rm Im\,0}^{2})\right]\right\}, \\ \frac{1}{\pi\mu\psi\langle n\rangle_{T}} \exp\left[\frac{|G|^{2}(s_{-}^{2} + s_{+}^{2})}{\mu^{2}w} - \frac{\alpha_{\rm Re}^{2} + \alpha_{\rm Im}^{2}}{\mu}\right], \\ \frac{1}{\pi\mu\psi\langle n\rangle_{T}} \exp\left\{\frac{1}{w} \left[\left(\frac{|G|s_{-}}{\mu} + \frac{\alpha_{\rm Re\,0}}{\langle n\rangle_{T}}\right)^{2} + \left(\frac{|G|s_{+}}{\mu} + \frac{\alpha_{\rm Im\,0}}{\langle n\rangle_{T}}\right)^{2}\right] - \frac{\alpha_{\rm Re}^{2} + \alpha_{\rm Im}^{2}}{\mu} - \frac{\alpha_{\rm Re\,0}^{2} + \alpha_{\rm Im\,0}^{2}}{\langle n\rangle_{T}}\right\}, \end{cases}$$
(22)

где использованы обозначения

$$w = \frac{|G|^2}{\mu} + \frac{1}{\langle n \rangle_T}, \qquad (23)$$

$$s_{-} = \cos(\omega_{\uparrow\downarrow} T_{amp}) \alpha_{\rm Re} - \sin(\omega_{\uparrow\downarrow} T_{amp}) \alpha_{\rm Im}, \qquad (24)$$

$$s_{+} = \sin(\omega_{\uparrow\downarrow} T_{amp}) \alpha_{\rm Re} + \cos(\omega_{\uparrow\downarrow} T_{amp}) \alpha_{\rm Im}, \qquad (25)$$

где $\alpha_0 = \alpha_{\rm Re\,0} + i\alpha_{\rm Im\,0}$ — когерентный сигнал, $T_{amp} = L_{amp}/c_m$. Для того чтобы воспользоваться для дальнейших расчетов формулой (19), необходимо найти средние значения числа фотонов, а также их дисперсии для всех указанных выше исходных состояний измеряемого поля. Для этих величин получаем

3 ЖЭТФ, вып.1

$$\langle n \rangle_{in} = \begin{cases} 0, & |\alpha_0|^2, \\ \langle n \rangle_T, & |\alpha_0|^2 + \langle n \rangle_T, \\ |\alpha_0|^2 + \langle n \rangle_T, & (26) \end{cases}$$

$$\langle (\Delta n)^2 \rangle_{in} = \begin{cases} 0, & (26) \\ |\alpha_0|^2, & |\alpha_0|^2, \\ \langle n \rangle_T^2 + \langle n \rangle_T, & |\alpha_0|^2 (2\langle n \rangle_T + 1) + \langle n \rangle_T (\langle n \rangle_T + 1), \end{cases}$$

где $\langle n \rangle_{in}$ — среднее число фотонов входящего в усилитель излучения. Средние значения числа фотонов и их дисперсии теперь могут быть рассчитаны с помощью следующих выражений:

$$\langle n_a \rangle = |G|^2 \langle n \rangle_{in} + \mu, \qquad (27)$$

$$\begin{split} \langle (\Delta n_a)^2 \rangle &= |G|^4 \langle (\Delta n)^2 \rangle_{in} + \\ &+ |G|^2 \left(1 - |G|^2 + 2\mu \right) \langle n \rangle_{in} + \mu(\mu + 1). \end{split} \tag{28}$$

Квазивероятностная функция распределения поля при идеальном усилении без внесения дополнительных шумов в усиленный сигнал в случае измеряемого поля в когерентном состоянии имеет вид

$$p^{id}(n) = \frac{\left(|G|^2 \langle n \rangle_{in}\right)^n}{n!} \exp\left(-|G|^2 \langle n \rangle_{in}\right)$$

Отметим, что в случае идеального фотодетектора $(\eta = 1)$ распределение фотоэлектронов совпадает с распределением фотонов излучения, поступающего на фотодетектор.

На рис. 2 изображены распределения p(m) фотоэлектронов, рассчитанные с помощью выражений (5) и (22) для больших средних значений числа фотонов в измеряемом поле $(n_0 \equiv \langle n \rangle_{in} \gg 1)$ при коэффициенте усиления |G| = 2 и величине инверсии активной среды лазерного усилителя, равной D = 20 %. Для сравнения на рис. 2 приведены соответствующие распределения p(n) фотонов (фотоэлектронов) при идеальном усилении, не вносящем дополнительных шумов в исходное когерентное состояние измеряемого поля. Как видно на рис. 2, при $n_0 = 100, 200$ с увеличением n_0 реальное распределение фотоэлектронов приближается к идеальному и резко отличается от распределения фотоэлектронов для вакуумного входного сигнала (штриховая линия). Как следует из рис. 2, распределение фотоэлектронов для сигнала в когерентном состоянии мало отличается

34

Рис.2. Распределения фотоэлектронов p(m) при линейном усилении входного сигнала в состоянии когерентный сигнал + шум для значений среднего числа фотонов на входе усилителя $n_0 = 100, 200$ и $\langle n \rangle_T = 0.388, |G| = 2, \eta = 0.9,$ а также в случаях когерентного сигнала (пунктир) и вакуумного состояния на входе (штрихи). Для сравнения изображены распределения фотоэлектронов при идеальном усилении для тех же значений n_0 . Инверсия населенностей активной среды лазерного усилителя составляет D = 20%

от соответствующего распределения для статистической смеси сигнал + шум, и это различие уменьшается с ростом n_0 . Таким образом, достоверное измерение сигнала в когерентном состоянии или в состоянии сигнал + шум (соответствующего выбранным нами для расчета параметрам теплового поля излучения Солнца) возможно в случае большого числа фотонов в измеряемом сигнале.

На рис. З изображены распределения фотоэлектронов в реальных и идеальных условиях для случая малого среднего числа фотонов в измеряемом поле $(n_0 = 3)$. Как следует из рисунка, распределение при реальном усилении качественно отличается от распределения при идеальном усилении вследствие большого шума, вносимого спонтанным излучением в лазерном усилителе. Детектируемое в единичном измерении число электронов с близкой по величине вероятностью может принимать значение как 0, так и значение ~ 100, вследствие чего для измерения числа фотонов в сигнале необходимы в данном случае тысячи и десятки тысяч повторных актов фотодетектирования.

Как показывают расчеты, увеличение инверсии населенностей активной среды лазерного усилителя заметно улучшает точность измерения. На

Рис. 3. То же, что на рис. 2 при $n_0 = 3$, |G| = 4. Штрихпунктирной линией изображено распределение фотоэлектронов для входного сигнала в состоянии когерентное поле + шум (S + N) при D = 98%

Рис. 4. То же, что на рис. 3, на входе усилителя для состояния когерентный сигнал + шум (S + N) при |G| = 16, $\langle n \rangle_T = 0.388$, $n_0 = 2.388$, $\langle (\Delta n_0)^2 \rangle = 4.092$, R = 1.16, а также когерентный сигнал (S) при $n_0 = 2$, R = 1.19 и тепловой шум (N) при $\langle n \rangle_T = 0.388$

рис. З приведены распределения фотоэлектронов для D = 20 % и 98%. На рис. 4 показаны зависимости p(n) и p(m) для случая большего усиления, |G| = 16, и малого числа фотонов. Для сравнения приведены распределения фотоэлектронов для когерентного сигнала $(n_0 = 2)$, состояния сигнал + тепловой шум $(n_0 = 2.388, T = 6000 \text{ K}, \omega = 10^{15} \text{ c}^{-1})$ и теплового шума $(n_0 = 0.388)$. Как следует из рисунка, выделение сигнала на фоне шума возможно

Рис.5. Сравнение распределений фотоэлектронов для |G| = 16 и следующих состояний входного сигнала: когерентный сигнал + шум при $n_0 = 2, 3, 4$ и соответственно R = 1.16, 1.283, 1.42, тепловой шум (N), R = 0.999 и вакуумное поле, R = 0.999

лишь при крайне высокой точности измерения фототока и большом числе повторных измерений, проведение которых необходимо для формирования статистического распределения. Зависимости p(m), представленные на рис. 5 в случае малого числа фотонов в детектируемом сигнале и большого усиления, при больших значениях m отличаются друг от друга крайне незначительно. В то же время они близки по величине к распределению фотоэлектронов для входного поля в вакуумном или шумовом состоянии, что в реальных условиях эксперимента делает практически невозможным точное измерение таких слабых полей.

На рис. 6 показана зависимость отношения сигнал/шум (S/N) от величины коэффициента усиления для различных значений среднего числа фотонов в измеряемом поле. Как следует из рисунка, отношение сигнал/шум не зависит от величины коэффициента усиления уже для значений $|G| \approx 3$ и при малых значениях $n_0 \sim 1$ оказывается чрезвычайно малым, не превышая значения, равного двум. При увеличении среднего числа фотонов в измеряемом поле отношение сигнал/шум монотонно возрастает.

3. УСИЛЕНИЕ В СХЕМЕ ЧЕТЫРЕХВОЛНОВОГО СМЕШЕНИЯ

На рис. 7 изображена схема, позволяющая усиливать слабый сигнал методом четырехволнового сме-

Рис. 6. Зависимость отношения сигнал/шум от величины модуля коэффициента усиления при линейном усилении сигнала, $n_0 = 1, 11, 21, \dots, 91$

Рис.7. Схема фотодетектирования квазимонохроматического сигнала с предварительным усилением с помощью четырехволнового смешения

шения в нелинейной среде объема V_{amp} , обладающей кубической нелинейностью $(\chi^{(3)})$. Две интенсивные волны накачки $(E_p \ u \ E'_p)$, распространяющиеся в противоположных направлениях, смешиваются в нелинейной среде с сигнальной и холостой волнами, также противоположно направленными. Частоты четырех квазимонохроматических плоских волн предполагаются равными, а интенсивности волн накачки значительно превышающими интенсивности сигнальной и холостой волн, вследствие чего моды накачки в дальнейшем будем рассматривать классически и в расчетах будем пренебрегать их истощением.

Операторы а и d представляют собой операторы

уничтожения соответственно сигнальной и холостой мод электромагнитного поля, а операторы *c* и *b* — соответственно отраженной и проходящей волн. Числа фотонов в усиливаемых в процессе вырожденного четырехволнового смешения полей, соответствующих операторам *c* и *b*, могут быть измерены путем прямого фотодетектирования.

Уравнения движения Гейзенберга для операторов уничтожения полей, a(z) и d(z), соответствующих сигнальному полю с начальным условием $E_S(z = 0)$ и холостому полю с начальным значением $E_i(z = L)$ (см. рис. 7), могут быть записаны в следующем виде (см., например, [6]):

$$\frac{\partial a(z)}{\partial z} = i \frac{\chi}{c_m} p p' d^{\dagger}(z), \qquad (29)$$

$$\frac{\partial d(z)}{\partial z} = -i\frac{\chi}{c_m}pp'a^{\dagger}(z), \qquad (30)$$

где $\chi \equiv \chi^{(3)} V_{amp}/\hbar$, $p' = |p'| \exp(i\phi_{p'})$, а p, p' и ϕ , ϕ' — соответственно амплитуды и фазы классических волн накачки:

$$p = |p| \exp(i\phi_p), \quad p' = |p'| \exp(i\phi_{p'}).$$

Решая уравнения (29) и (30) для любых z и полагая, ввиду рассматриваемой геометрии задачи, что a есть функция от $z/c_m + t$, а d — функция от $z/c_m - t$, находим следующие соотношения для выходных полей [6]:

$$b \equiv a(z = L) = a \sec(KL) - \zeta d^{\dagger} \operatorname{tg}(KL), \qquad (31)$$

$$c \equiv d(z=0) = d \sec(KL) - \zeta a^{\dagger} \operatorname{tg}(KL), \qquad (32)$$

где введены обозначения

$$a \equiv a(z = 0), \quad d \equiv d(z = L),$$

$$\zeta \equiv i \exp\left[i(\phi_p + \phi_{p'})\right], \quad K \equiv \frac{\chi |pp'|}{c_m}.$$
(33)

Применяя для расчета плотности квазивероятности метод характеристической функции [9], находим для усиленного поля, характеризуемого оператором *b*, следующие выражения:

$$P_{out}(\beta) = \frac{1}{\pi \overline{N}} \exp\left(-\frac{|\beta - G'\alpha_0|^2}{\overline{N}}\right), \qquad (34)$$
$$\overline{N} \equiv \left(|G'|^2 - 1\right) \left(\langle n_d \rangle + 1\right),$$

если сигнальная волна находится в когерентном состоянии $|\alpha_0\rangle$, а холостая волна — в тепловом, и

$$P_{out}(\beta) = \frac{1}{\pi \overline{N}} \exp\left(-\frac{|\beta|^2}{\overline{N}}\right),$$

$$\overline{N} \equiv |G'|^2 \langle n_a \rangle + \left(|G'|^2 - 1\right) \left(\langle n_d \rangle + 1\right),$$

(35)

если обе волны находятся в тепловом состоянии. Здесь $\langle n_a \rangle$ и $\langle n_d \rangle$ — средние числа фотонов соответственно в сигнальной и холостой модах, $|G'| \equiv \sec(KL)$ — коэффициент усиления проходящей волны в случае вырожденного четырехволнового смешения. Если же обе волны находятся в когерентном состоянии, т.е. вектор состояния входящих волн есть $|\alpha_0, \delta_0\rangle$, то распределение проходящей волны имеет вид

$$P_{out}(\beta) = \frac{1}{\pi (|G'|^2 - 1)} \exp\left(-\frac{|\beta - \overline{\beta}_0|^2}{|G'|^2 - 1}\right), \quad (36)$$

$$\overline{\beta}_0 \equiv |G'|\alpha_0 - \zeta \delta_0^* \sqrt{|G'|^2 - 1}.$$

Используя выражения (31) и (32), найдем средние числа фотонов и дисперсии чисел фотонов в проходящей и отраженной волнах для различных квантовых состояний входных полей.

В случае, когда холостая мода поля находится в вакуумном состоянии $|0\rangle$, для произвольного состояния сигнального поля могут быть получены следующие выражения для средних чисел фотонов и флуктуаций чисел фотонов для проходящего (b) и отраженного (c) полей:

$$\langle n_b \rangle = |G'|^2 \langle n_a \rangle + \mu', \qquad (37)$$

$$\langle n_c \rangle = \left(|G'|^2 - 1 \right) \langle n_a \rangle + \mu', \tag{38}$$

$$\langle (\Delta n_b)^2 \rangle = |G'|^4 \langle (\Delta n_a)^2 \rangle + |G'|^2 \mu' \langle n_a \rangle + |G'|^2 \mu', \quad (39)$$

$$\langle (\Delta n_c)^2 \rangle = \left(|G'|^2 - 1 \right)^2 \langle (\Delta n_a)^2 \rangle + |G'|^2 \langle n_c \rangle, \quad (40)$$

где $\mu' \equiv tg^2(KL)$ — среднее число спонтанно излученных фотонов в проходящей волне. Сравнивая соотношения (39) и (28), нетрудно убедиться, что формула для флуктуаций числа фотонов проходящего поля в случае четырехволнового смешения полностью аналогична формуле для флуктуаций числа фотонов поля на выходе линейного усилителя. При этом для одного и того же значения коэффициента усиления |G| = |G'| среднее значение числа спонтанных фотонов для линейного усилителя (μ) совпадает с соответствующей величиной для четырехволнового смешения (μ') при полной инверсии активной среды линейного усилителя.

Если холостая волна или/и сигнальное поле находится в тепловом состоянии, характеризующемся оператором плотности ρ_T , средние величины удовлетворяют соотношениям

$$\langle n_b \rangle = |G'|^2 \langle n_a \rangle + \left(|G'|^2 - 1 \right) \langle n_d \rangle + \mu', \qquad (41)$$

$$\langle (\Delta n_b)^2 \rangle = |G'|^4 \langle (\Delta n_a)^2 \rangle + (|G'|^2 - 1)^2 \langle (\Delta n_d)^2 \rangle + + |G'|^2 (|G'|^2 - 1) \times \times [\langle n_a \rangle \langle n_b \rangle + (\langle n_a \rangle + 1) (\langle n_d \rangle + 1)], \quad (42)$$

при этом формулы для $\langle n_c \rangle$ и $\langle (\Delta n_c)^2 \rangle$ получаются из выражений (41) и (42) путем перестановки индексов $a \leftrightarrow d$. Среднее число фотонов в сигнальной моде, $\langle n_a \rangle$, может быть найдено из уравнения (41) путем подстановки в него измеренного значения $\langle n_b \rangle$ при заданном значении среднего числа фотонов в холостой моде, $\langle n_d \rangle$.

Анализ отношения сигнал/шум с использованием в выражении (19) формул (41) и (42) показывает, что для больших коэффициентов усиления $|G'|^2 \gg 1$ и тепловых состояний обоих входящих полей это отношение равно R = 1. Если же сигнальная волна находится в тепловом состоянии, а холостая волна — в когерентном, то при условии, что $\langle n_d \rangle \gg \langle n_a \rangle$, $\langle n_d \rangle \gg 1$, $\eta \approx 1$, получим

$$R = 1 + \frac{\langle n_d \rangle}{2(\langle n_a \rangle + 1)} \gg 1.$$
(43)

Формула (43) показывает, что для малых значений среднего числа фотонов в сигнальном поле использование сильной когерентной холостой волны позволяет получить большое отношение сигнал/шум фототока, превышающее отношение сигнал/шум измеряемого сигнала, которое меньше единицы. На рис. 8 приведены зависимости R от модуля коэффициента усиления при различных средних числах фотонов в тепловой сигнальной и когерентной холостой модах для $\eta = 0.9$, иллюстрирующие отмеченные выше зависимости. Из рисунка видно, что в отличие от случая линейного усиления, рассмотренного в предыдущем разделе, при больших значениях коэффициента усиления отношение сигнал/шум будет наибольшим при наименьших средних числах фотонов в сигнальном поле в случае как малого, так и большого среднего числа фотонов в холостой моде.

Если же сигнальная волна находится в когерентном состоянии, а холостая — в тепловом, то достижение высокого отношения сигнал/шум становится невозможным для малых чисел фотонов. В данном случае получаем

$$R = 1 + \frac{\langle n_a \rangle^2}{\langle n_d \rangle^2} \approx 1 \tag{44}$$

при $\langle n_d \rangle \gg \langle n_a \rangle, \, \langle n_d \rangle \gg 1, \, \eta \approx 1$ и

$$R = 1 + \frac{\langle n_a \rangle}{2(\langle n_d \rangle + 1)} \gg 1 \tag{45}$$

Рис. 8. Зависимости отношения сигнал/шум от величины модуля коэффициента усиления при четырехволновом смешении для тепловой сигнальной и когерентной холостой волн при $\eta = 0.9$, $\langle n_d \rangle = 1$ (*a*) и $\langle n_d \rangle = 100$ (δ), $\langle n_a \rangle = 1, 2, \dots, 11$. При $\langle n_a \rangle \to \infty$ величина $R \to 1$

при $\langle n_a \rangle \gg \langle n_d \rangle$, $\langle n_a \rangle \gg 1$, $\eta \approx 1$. Это означает, что в данном случае большое отношение сигнал/шум достижимо только для сильной сигнальной волны в когерентном состоянии. Отметим также, что в этом случае, если $\langle n_d \rangle \approx \langle n_a \rangle$, опять $R \approx 1$.

Если же сигнальная и холостая волны обе находятся в когерентных состояниях, соответственно $|\alpha\rangle$ и $|\delta\rangle$, то для средних величин находим

$$\langle n_b \rangle = |G'|^2 \langle n_a \rangle + (|G'|^2 - 1) \langle n_d \rangle + \mu' - - 2\sqrt{|G'|^2 (|G'|^2 - 1) \langle n_a \rangle \langle n_d \rangle} \cos \Phi , \quad (46)$$

где $\Phi \equiv \phi_a + \phi_d - \phi_p - \phi_{p'} - \pi/2$, ϕ_a и $\phi_d - \phi_a$ зы соответственно сигнальной и холостой мод. Для флуктуаций числа фотонов в проходящей моде получаем

$$\langle (\Delta n_b)^2 \rangle = |G'|^4 \langle (\Delta n_a)^2 \rangle + \left(|G'|^2 - 1 \right)^2 \langle (\Delta n_d)^2 \rangle + + \mu'(\mu'+1) \left[\langle n_d \rangle + \langle n_a \rangle + 1 \right] - 2 \left(2|G'|^2 - 1 \right) \times \times \sqrt{|G'|^2 \left(|G'|^2 - 1 \right) \langle n_a \rangle \langle n_d \rangle} \cos \Phi,$$
 (47)

формулы для $\langle n_c \rangle$ и $\langle (\Delta n_c)^2 \rangle$ опять могут быть получены путем перестановки $a \leftrightarrow d$ в выражениях (43) и (44).

Как показано на рис. 9, при росте величины $\langle n_a \rangle$ и при $\langle n_d \rangle < \langle n_a \rangle$ значение R убывает, а при $\langle n_d \rangle > \langle n_a \rangle$ возрастает монотонно, если $\Phi = 2m\pi$, m -любое целое число. Вследствие такой закономерности отношение сигнал/шум принимает большие значения при малом числе фотонов в измеряемом поле (рис. 10*a*). В то же время, если выполнено условие фазового согласования вида $\Phi = (2m + 1)\pi$, m -любое целое число, зависимость R от среднего числа фотонов $\langle n_a \rangle$ имеет иной характер. Как видно на рис. 10*б*, величина R монотонно возрастает с увеличением $\langle n_a \rangle$.

Используя соотношение (47), нетрудно убедиться, что при больших значениях коэффициента усиления $|G'|^2 \gg 1$ и при выполнении условия фазового согласования $\Phi = 2m\pi$, m — любое целое число, среднее число фотонов есть

$$\langle n_b \rangle \approx |G'|^2 \left[\left(\sqrt{\langle n_a \rangle} - \sqrt{\langle n_d \rangle} \right)^2 + 1 \right],$$
 (48)

откуда, в частности, следует, что если интенсивности сигнальной и холостой волн равны между собой, то среднее число фотонов проходящей волны равно квадрату коэффициента усиления: $\langle n_b \rangle \approx |G'|^2$. Флуктуации числа фотонов при этом составляют

$$\langle (\Delta n_b)^2 \rangle \approx 2|G'|^4 \langle n_b \rangle - |G'|^4.$$
(49)

Из выражений (47) и (49) следует, что флуктуации числа фотонов всегда значительно превышают уровень дробового шума (суперпуассоновская статистика усиленного поля).

Зависимости отношения сигнал/шум от среднего числа фотонов в сигнальной моде для разных значений среднего числа фотонов в холостой моде при $|G'|^2 \gg 1$ приведены на рис. 11 для фазовых соотношений $\Phi = (2m + 1)\pi$ и $\Phi = 2m\pi$. Как следует из рис. 11 *a*, при $\Phi = (2m + 1)\pi$ отношение сигнал/шум монотонно возрастает с ростом среднего числа фотонов в холостой моде, $\langle n_{\rm Im} \rangle$. В то же время вследствие эффекта, описанного выше (формулы (48), (49)), зависимость отношения сигнал/шум от средних чисел фотонов при $\Phi = 2m\pi$ приобретает сложный немонотонный характер. Как следует из формул (48) и (49), флуктуации числа фотонов приближаются к

Рис. 9. То же, что на рис. 8, для когерентных сигнальной и холостой волн при $\Phi = 2\pi m$ (m — любое целое число), $\langle n_d \rangle = 10, \langle n_a \rangle = 1, 11, 21, \dots, 101$ (*a*) и $\langle n_a \rangle = 1, 2, \dots, 11$ (*б*)

Рис.10. То же, что на рис. 9, для $\langle n_d \rangle = 10000$, $\langle n_a \rangle = 1, 11, 21, \dots, 101$, $\Phi = 2\pi m$ (a) и $\Phi = (2m+1)\pi$ (б), $m - \pi$ юбое целое число

тепловым при равенстве средних чисел фотонов в сигнальной и холостой волнах, как видно на рис. 116, при этом отношение сигнал/шум составляет величину, равную единице.

4. ЗАКЛЮЧЕНИЕ

Квантовомеханический анализ статистики прямого фотодетектирования усиленного сигнала показал, что линейный лазерный усилитель неприменим при детектировании слабых сигналов, содержащих несколько фотонов (меньше или порядка десяти). В данном случае при больших коэффициентах усиления результат единичного измерения фототока оказывается неотличимым от результата измерения в случае вакуумного состояния на входе усилителя или теплового фонового поля. Детектирование непрерывных слабых сигналов возможно лишь в случае чрезвычайно высокой точности измерения фототока детектора (ошибка около 1 %). Число фотонов в сигнале, для которого при разумной точности возможно надежное измерение его статистических свойств, составляет величину больше или порядка ста фотонов в объеме измерения.

Анализ фотодетектирования сигнала, усиливаемого в схеме четырехволнового смешения, показал, что слабый сигнал (соответствующий одному или нескольким фотонам) может быть измерен с высокой точностью. При этом оказывается, что точ-

Рис. 11. Зависимость отношения сигнал/шум от среднего числа фотонов в сигнальной моде для четырехволнового смешения для когерентных сигнальной и холостой волн при различных значениях среднего числа фотонов в холостой моде при $|G'|^2 \gg 1$, $\eta = 0.9$: $a - \langle n_d \rangle = 1, 21, 41, \ldots, 201$, $\Phi = (2m+1)\pi$; $\delta - \langle n_d \rangle = 1, 51, 101, 151, 201$, $\Phi = 2m\pi$

ность измерения, характеризующаяся отношением сигнал/шум фототока детектора, качественно зависит от интенсивности и квантово-статистических свойств холостой волны. Смешение когерентного сигнала в четырехволновой схеме усиления с холостой волной в произвольном квантовом состоянии способно повысить отношение сигнал/шум фототока. Если же измеряемое поле находится в хаотическом (тепловом) квантовом состоянии, то для увеличения отношения сигнал/шум необходимо использование когерентной холостой волны. Принципиально важным при этом оказывается фазовое согласование четырех когерентных волн, участвующих в нелинейном процессе. В частности, если сумма фаз четырех взаимодействующих волн равна $\Phi \approx 2\pi m + \pi/2$, где т — любое целое число, и интенсивности сигнальной и холостой волн равны между собой, то отношение сигнал/шум усиленного поля оказывается чрезвычайно низким (около единицы), в то же время большое отношение сигнал/шум возможно при условии $\Phi \approx \pi (2m+1) + \pi/2$. Установлено также, что при фазовом согласовании вида $\Phi \approx 2\pi m + \pi/2$ и при равенстве интенсивностей сигнальной и холостой волн интенсивность выходного излучения не зависит от интенсивности исходного сигнала, поступающего на вход усилителя, и определяется лишь величиной коэффициента усиления среды. В таких условиях вместо усиления сигнала может иметь место его рассеяние с передачей энергии от сигнальной и холостой волн в волны накачки.

В заключение отметим, что достаточные для уверенного измерения слабых сигналов шумовые характеристики присущи также нелинейному лазерному усилителю. Как показано в работе [10], путем выбора оптимальной длины (или времени) усиления флуктуации, вносимые спонтанным излучением в процессе нелинейного усиления с насыщением, могут быть уменьшены существенно по сравнению со случаем линейного усиления.

В недавно вышедшей из печати статье [11] рассмотрен подход к процессу фотодетектирования слабых сигналов света, альтернативный стандартному подходу, используемому нами. В указанной работе предложена новая схема лазерного детектирования на основе связанных электронов детектора. Предполагаемое в этих условиях отсутствие фотоотсчетов означает, в рамках развиваемой в работе [11] теории, подавление дробового шума в детекторе.

Работа выполнена при частичной поддержке Программы государственной поддержки ведущих научных школ РФ (грант № НШ-1512.2003.2).

ЛИТЕРАТУРА

- P. A. Hiskett, J. M. Smith, G. S. Buller, and P. D. Townsend, Electron. Lett. 37, 1081 (2001).
- A. J. Miller, S. W. Nam, J. M. Martines, and A. V. Sergienko, Appl. Phys. Lett. 83, 791 (2003).
- V. Zwiller, T. Aichele, and O. Benson, New J. Phys. 6, 96 (2004).
- 4. C. M. Caves, Phys. Rev. D 26, 1817 (1982).

- S.-K. Choi, M. Vasilyev, and P. Kumar, Phys. Rev. Lett. 83, 1938 (1999).
- 6. Л. Мандел, Э. Вольф, Оптическая когерентность и квантовая оптика, Физматлит, Москва (2000).
- 7. Р. Глаубер, в кн. Квантовая оптика и квантовая радиофизика, под ред. К. де Витт, А. Бландена, К. Коэн-Таннуджи, Мир, Москва (1966), с. 91.
- J. A. Vaccaro and D. T. Pegg, Phys. Rev. A 49, 4985 (1994).
- B. R. Mollow and R. J. Glauber, Phys. Rev. 160, 1076 (1967).
- А. В. Козловский, А. Н. Ораевский, ЖЭТФ 109, 1524 (1996).
- 11. В. П. Быков, УФН 175, 495 (2005).