ВЫЧИСЛЕНИЕ ВОЛНОВЫХ ФУНКЦИЙ ОСНОВНОГО И СЛАБОВОЗБУЖДЕННЫХ СОСТОЯНИЙ ГЕЛИЯ-II

М. Д. Томченко*

Институт теоретической физики им. Н. Н. Боголюбова Национальной академии наук Украины 03143, Киев, Украина

Поступила в редакцию 29 июля 2004 г.

С помощью метода коллективных переменных, предложенного Боголюбовым и Зубаревым и развитого в работах Юхновского и Вакарчука, найдены волновые функции основного (Ψ_0) и первого возбужденного $(\Psi_{f k})$ состояний He-II во втором приближении, т. е. с точностью до двух первых поправок к соответствующим решениям для слабонеидеального бозе-газа. Функции Ψ_0 и $\Psi_{f k}$ находятся как собственные функции N-частичного уравнения Шредингера из системы зацепляющихся уравнений для Ψ_0 , $\Psi_{f k}=\psi_{f k}\Psi_0$ и спектра квазичастиц гелия-II E(k). Результаты состоят в том, что 1) эти уравнения были решены численно для более точного приближения, чем то, которое было исследовано раньше (первое приближение); 2) Ψ_0 и $\psi_{\mathbf{k}}$ выводятся из модельного потенциала взаимодействия атомов He^4 (а не из структурного фактора, как раньше), в котором потенциальный барьер «сшивается» с известным из эксперимента потенциалом притяжения. Высота потенциального барьера V_0 — свободный параметр. Кроме V_0 , задача не содержит каких-либо подгоночных параметров или функций. Вычисленные структурный фактор, энергия основного состояния (E_0) и спектр квазичастиц He-II, E(k), согласуются с экспериментом при $V_0 \approx 100$ K. Учет второй поправки к логарифму Ψ_0 заметно влияет на значение E_0 и обеспечивает асимптотику E(k o 0)=ck, а учет второй поправки к $\Psi_{f k}$ мало изменяет E(k). Вторые поправки к ψ_0 и $\psi_{f k}$ уже меньше влияют на результаты, чем первые, и теория согласуется с экспериментом, поэтому можно считать, что рассмотренные «укороченные» Ψ_0 и $\psi_{f k}$ неплохо описывают микроструктуру He-II. Так что допустимо обрывать ряды для Ψ_0 и $\Psi_{f k}$, несмотря на не совсем малое значение ($\sim 1/2$) параметра разложения.

PACS: 67.40.Db

1. ВВЕДЕНИЕ

Со времени пионерских работ Ландау [1, 2] предложено множество различных моделей для объяснения свойств гелия-II [3–30]. По нашему мнению, наиболее строгое, с точки зрения микротеории, описание гелия-II дают два подхода.

I. Теоретико-полевой формализм, в котором развиваются идеи Боголюбова [31], Беляева [32], Бракнера и Савады [5] (недавно интересные результаты получены Пашицким [28]).

II. Квантово-механический подход, в котором прямо или косвенно решается *N*-частичное уравнение Шредингера для основного и первого возбужденного состояний He-II, — в работах Фейнмана [3, 4], Юхновского и Вакарчука [15–17], Фейнберга [9], в методах «correlated basis function» (CBF) [10, 11], «hypernetted chain» (HNC) [12, 13] и «shadow wave function» (SWF) [14].

В первом подходе важную роль играет конденсат, во втором конденсат остается «за кадром», но эти два подхода дополняют друг друга. Наличие указанных выше работ позволяет утверждать, что микротеория He-II в значительной степени уже построена, но не завершена (к сожалению, во всех известных нам моделях He-II при переходе от исходных точных микроскопических уравнений к конечным приближенным отбрасываются немалые слагаемые — не удается построить теорию возмущений, в которой бы все разложения проводились только по малым параметрам; кроме того, обычно используются несколько подгоночных параметров). Ниже исследован основанный на подходе II метод коллективных переменных (КП), предложенный Боголюбовым и Зубаревым [33] и развитый Юхновским и

^{*}E-mail: mtomchenko@bitp.kiev.ua

Вакарчуком [15-19].

Интерес представляет описание микроструктуры тонких пленок гелия-II толщиной в несколько атомных слоев и меньше. Из-за конечного размера реальных пленок одночастичный конденсат, по-видимому, в пленках должен присутствовать [34]. Достаточно строгий расчет структуры конденсата для этого случая никем не сделан. Вероятно, в пленках конденсат с уровня k = 0 «размывается» по нескольким низколежащим уровням с k > 0 (точнее, $k \sim \pi/L$, где L — ширина пленки). Однако, если окажется, что конденсата нет или очень мало, то в рамках теоретико-полевых моделей описать микроструктуру пленок затруднительно, но модели типа II позволяют это сделать (см., например, [13]). Метод КП мы выбрали, учитывая это обстоятельство.

В работе будут рассматриваться только возбуждения фононного типа, другие типы возбуждений (например, вихри) не рассматриваются. Боголюбов и Зубарев [33] показали, что для слабонеидеального бозе-газа состояние с одной квазичастицей описывается волновой функцией

$$\Psi_{\mathbf{k}}(\mathbf{r}_1,\ldots,\mathbf{r}_N) = \rho_{-\mathbf{k}}\Psi_0(\mathbf{r}_1,\ldots,\mathbf{r}_N), \qquad (1)$$

где Ψ_0 — волновая функция основного состояния, а спектр квазичастиц

$$E_b(k) = \sqrt{\left(\frac{\hbar^2 k^2}{2m}\right)^2 + 2n\nu(k)\frac{\hbar^2 k^2}{2m}}.$$
 (2)

Спектр квазичастиц Не-II впервые был предсказан в известной работе Ландау [2]. Фейнман [3], а затем Фейнман и Коэн [4], построили приближенную микромодель Не-II, используя вариационный метод. Сначала для $\Psi_{\bf k}$ было получено решение (1), при котором спектр квазичастиц имеет вид

$$E(k) = \frac{\hbar^2 k^2}{2mS(k)}.$$
(3)

Это спектр слабонеидеального бозе-газа [33], и он только качественно согласуется с экспериментальным спектром He-II. Исходя из интуитивных соображений, Фейнман [4] предложил более точную формулу для $\Psi_{\mathbf{k}}$:

$$\Psi_{\mathbf{k}} \equiv \psi_{\mathbf{k}} \Psi_{0} \approx \\ \approx \left(\rho_{-\mathbf{k}} + \sum_{\mathbf{k}_{1}}^{\mathbf{k}_{1} \neq \mathbf{k}} A \frac{\mathbf{k}_{1} \mathbf{k}}{k_{1}^{2}} \rho_{\mathbf{k}_{1} - \mathbf{k}} \rho_{-\mathbf{k}_{1}} \right) \Psi_{0}, \quad (4)$$

или

$$\Psi_{\mathbf{k}} = \sum_{l} e^{i\mathbf{k}\cdot\mathbf{r}_{l}} \left[1 + \sum_{j}^{j\neq l} g(r_{lj}) \right] \Psi_{0},$$

$$g(r) = A \frac{\mathbf{k}\cdot\mathbf{r}}{r^{3}}.$$
(5)

Параметр A выбирался так, чтобы опустить спектр E(k) как можно ниже. Был получен спектр

$$E(k) = \frac{\hbar^2 k^2}{2m^* S(k)},\tag{6}$$

где m^* — эффективная масса, слабо зависящая от $k: m^* = m$ при $k \to 0$, и $m^* \approx 1.5m$ для k в области ротонного минимума. Такая формула дает неплохое согласие с экспериментальным спектром He-II.

Идеи Фейнмана получили развитие в ряде работ, в частности в [20], в подходах CBF [10, 11], HNC [12] и SWF [14]. В подходах CBF, HNC и SWF развиваются различные непрямые методы решения *N*-частичного уравнения Шредингера и найденный спектр квазичастиц He-II оказывается в хорошем согласии с экспериментальным. Функция Фейнмана-Коэна уточнена также в работах Сунакавы [21], где уравнения выведены на основе исследования полного гамильтониана системы бозе-частиц и для расчета спектра квазичастиц использовался модельный потенциал с несколькими подгоночными параметрами. Недостатки следующие: 1) во всех подходах типа II [6–22, 30] разложения проводятся по не вполне малому параметру, но ряды приходится обрывать; 2) в большинстве моделей типа II, например CBF [11], SWF [14], HNC [12], в работах [21] и во всех теоретико-полевых моделях используется несколько подгоночных параметров; 3) часто [6, 8, 11, 14] в решении используются пробные функции простого вида с подгоночными параметрами (как и в подходе Фейнмана (4), (5)) — поскольку численное решение точных микроскопических уравнений затруднитель-HO.

Мы будем использовать для вычисления Ψ_0 , $\Psi_{\mathbf{k}}$ и E(k) метод КП. Преимущество нашего подхода состоит в том, что 1) удается получить решение с использованием только одного подгоночного параметра (а в [15, 30, 35] — вовсе без каких-либо подгоночных параметров); 2) не используются подгоночные функции, все функции в решении находятся численно из исходных микроскопических уравнений, единственная неточность которых связана с обрывом рядов для Ψ_0 и $\psi_{\mathbf{k}}$.

Кроме работ [15–19], метод КП исследовался раньше, по-видимому, в работе Редже и соавторов [22], в первом приближении и с модельным потенциалом. Дальнейшие исследования Не-II с помощью метода КП являются актуальными, представляет интерес вычисление следующих поправок к $\psi_{\mathbf{k}}$ и Ψ_0 , так как параметр разложения не малый, около 1/2.

Результат данной работы — численное решение уравнений в более точном по сравнению с [15, 22] приближении — мы нашли не одну, а две первые поправки к нулевому приближению для $\Psi_0, \ \psi_k$ и спектра квазичастиц E(k) слабонеидеального бозе-газа [33]. В связи с неизвестностью потенциала взаимодействия атомов He⁴ на малых расстояниях в работах [15, 30] волновые функции Ψ_0 и $\psi_{\mathbf{k}}$ выводились из структурного фактора. Мы же вычислили Ψ_0 и $\psi_{\mathbf{k}}$, исходя из модельного потенциала взаимодействия атомов He⁴. В таком подходе удается численно найти логарифм Ψ_0 в более точном приближении, а также исследовать зависимости энергии основного состояния, спектра квазичастиц и структурного фактора от вида модельного потенциала, что представляет интерес.

2. ОСНОВНОЕ СОСТОЯНИЕ Не-ІІ

Подробное изложение метода КП можно найти в работах [15–17, 33]. Согласно [16, 17, 33] решение для логарифма волновой функции основного состояния имеет вид

$$\ln \Psi_{0}(\mathbf{r}_{1}, \dots, \mathbf{r}_{N}) = \sum_{\mathbf{k}_{1} \neq 0} \sigma(k_{1}) \rho_{\mathbf{k}_{1}} \rho_{-\mathbf{k}_{1}} + \\ + \sum_{\mathbf{k}_{1}, \mathbf{k}_{2} \neq 0}^{\mathbf{k}_{1} + \mathbf{k}_{2} \neq 0} \frac{f(\mathbf{k}_{1}, \mathbf{k}_{2})}{\sqrt{N}} \rho_{\mathbf{k}_{1} + \mathbf{k}_{2}} \rho_{-\mathbf{k}_{1}} \rho_{-\mathbf{k}_{2}} + \\ + \sum_{\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3} \neq 0}^{\mathbf{k}_{1} + \mathbf{k}_{2} + \mathbf{k}_{3} \neq 0} \frac{g(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3})}{N} \times \\ \times \rho_{\mathbf{k}_{1} + \mathbf{k}_{2} + \mathbf{k}_{3}} \rho_{-\mathbf{k}_{1}} \rho_{-\mathbf{k}_{2}} \rho_{-\mathbf{k}_{3}} + \dots, \quad (7)$$

где $\rho_{\mathbf{k}}$ — коллективные переменные

$$\rho_{\mathbf{k}} = \frac{1}{\sqrt{N}} \sum_{j=1}^{N} e^{-i\mathbf{k}\cdot\mathbf{r}_j} \quad (\mathbf{k}\neq 0).$$
(8)

Следующими поправками к $\ln \Psi_0$ пренебрегаем. Везде в работе $\mathbf{k} \neq 0$ и принимает дискретные значения, например, в одномерном случае $k_i = i \cdot 2\pi/L$, i = 1, 2, ...; L — размер системы.

Для жидкостей подавляющее число конфигураций $\{\mathbf{r}_j\}$ атомов соответствует нерегулярному и в среднем равномерному распределению атомов в пространстве. Рассмотрим одномерный случай, тогда $k_i = i \cdot 2\pi/L$. При случайном разбросе атомов значение ρ_k изменяется при переходе от k_i к k_{i+1} также случайным образом. Для разных k величины $\operatorname{Re} \rho_k$, $\operatorname{Im} \rho_k$ принимают случайные значения из отрезка [-1,1], редко выходя за его пределы. С учетом этого можно показать, что для нерегулярных конфигураций N атомов первые $i \ll N^{1/3}$ слагаемых в разложении $\ln \Psi_0$ (7) имеют порядок N, а в разложении $\psi_{\mathbf{k}}$ (27) — порядка единицы. Это следует также и из ортонормированности базиса $\psi_{-\mathbf{k}_1}(\rho)$, $\psi_{-\mathbf{k}_1,-\mathbf{k}_2}(\rho),\ldots$ волновых функций для системы N невзаимодействующих бозонов [16]. В работе Бийла [36] была получена неточная оценка $\ln \Psi_0 \sim \sqrt{N}$ (для нескольких первых поправок), так как $\ln \Psi_0$ раскладывался в ряд по взаимодействию, а нужно — по корреляционным слагаемым (7). Поскольку $\ln \Psi_0 \sim N$, ясно, что в ряд (7) нужно раскладывать именно логарифм Ψ_0 , а не Ψ_0 .

Из N-частичного уравнения Шредингера выводится система уравнений для неизвестных функций σ, f, g (7) и энергии основного состояния E_0 :

$$\frac{1}{2}\sigma(k_{1})k_{1}^{2} + \frac{n\nu(k_{1})m}{4\hbar^{2}} - \sigma^{2}(k_{1})k_{1}^{2} =
= \frac{1}{N}\sum_{\mathbf{k}_{2}}f_{s}(\mathbf{k}_{1},\mathbf{k}_{2})0.5(k_{2}^{2} + \mathbf{k}_{1}\mathbf{k}_{2}) +
+ \frac{1}{N}\sum_{\mathbf{k}_{2}}1.5k_{2}^{2}\left[g(\mathbf{k}_{1},\mathbf{k}_{2},-\mathbf{k}_{1}) + g(\mathbf{k}_{1},\mathbf{k}_{2},-\mathbf{k}_{2})\right], \quad (9)$$

$$f(\mathbf{k}_{1},\mathbf{k}_{2})\left[e(\mathbf{k}_{1} + \mathbf{k}_{2}) + e(k_{1}) + e(k_{2})\right] +$$

$$+ \frac{3}{N} \sum_{\mathbf{k}_3} F(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) = -2\sigma(k_1) 2\sigma(k_2) \mathbf{k}_1 \cdot \mathbf{k}_2, \quad (10)$$

$$F(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}) = (\mathbf{k}_{1} - \mathbf{k}_{3})\mathbf{k}_{3}g(\mathbf{k}_{1} - \mathbf{k}_{3}, \mathbf{k}_{2}, \mathbf{k}_{3}) + + (\mathbf{k}_{2} - \mathbf{k}_{3})\mathbf{k}_{3}g(\mathbf{k}_{1}, \mathbf{k}_{2} - \mathbf{k}_{3}, \mathbf{k}_{3}) - - 2\mathbf{k}_{3}(\mathbf{k}_{1} + \mathbf{k}_{2} + \mathbf{k}_{3})g(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}), \quad (11)$$

$$3g(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}) = = \frac{U(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3})(\mathbf{k}_{1} + \mathbf{k}_{2})f_{s}(\mathbf{k}_{1}, \mathbf{k}_{2})}{e(\mathbf{k}_{1} + \mathbf{k}_{2} + \mathbf{k}_{3}) + e(\mathbf{k}_{1}) + e(\mathbf{k}_{2}) + e(\mathbf{k}_{3})} + (\mathbf{k}_{3} \leftrightarrow \mathbf{k}_{1}) + (\mathbf{k}_{3} \leftrightarrow \mathbf{k}_{2}), \quad (12)$$

$$U(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}) =$$

= $-4\sigma(k_{3})\mathbf{k}_{3} + (\mathbf{k}_{1} + \mathbf{k}_{2})f_{s}(\mathbf{k}_{3}, \mathbf{k}_{1} + \mathbf{k}_{2}),$ (13)

$$NE_{0} = \frac{1}{2}Nn\nu(0) - \frac{n}{2}\sum_{\mathbf{k}}\nu(k) - \sum_{\mathbf{k}}\frac{\hbar^{2}k^{2}}{m}\sigma(k), \quad (14)$$

где $n = N/\Omega, \, \Omega$ — объем системы и

$$e(k) = k^2 (1 - 4\sigma(k)), \tag{15}$$

$$\begin{aligned} f_s(\mathbf{k}_1, \mathbf{k}_2) &= f(\mathbf{k}_1, \mathbf{k}_2) + f(-\mathbf{k}_1 - \mathbf{k}_2, \mathbf{k}_1) + \\ &+ f(-\mathbf{k}_1 - \mathbf{k}_2, \mathbf{k}_2), \quad (16) \end{aligned}$$

$$\nu(k) = \int V(r)e^{-i\mathbf{k}\cdot\mathbf{r}}d\mathbf{r},$$
(17)

V(r) — потенциал взаимодействия. При выводе учтено, что [33]

$$\frac{1}{2}\sum_{i\neq j} V(r_{ij}) = \sum_{\mathbf{k}\neq 0} \frac{n\nu(k)}{2}\rho_{\mathbf{k}}\rho_{-\mathbf{k}} + \frac{1}{2}Nn\nu(0) - \frac{n}{2}\sum_{\mathbf{k}}\nu(k).$$

Уравнения, эквивалентные (9)–(17), были раньше получены Юхновским и Вакарчуком [16, 17]. Мы получили уравнения для Ψ_0 и $\psi_{\mathbf{k}}$ (см. ниже (28)–(34)) в несколько другой форме, чем в [16, 17], чтобы упростить уравнения и уменьшить ошибку численного метода. Мы не симметризовали функции f и g для Ψ_0 (и P, Q для $\psi_{\mathbf{k}}$), как это сделано в [16, 17], — у нас не выполняются, например, $f(\mathbf{k}_1, \mathbf{k}_2) = f(\mathbf{k}_1, -\mathbf{k}_1 - \mathbf{k}_2), P(\mathbf{k}, \mathbf{k}_1) = P(\mathbf{k}, \mathbf{k} - \mathbf{k}_1).$ Уравнения для наблюдаемых $E_0, S(k), E(k)$ можно записать в виде, содержащем только симметризованные f_s, P_s , и т. д.

3. АНАЛИЗ УРАВНЕНИЙ И ЧИСЛЕННОЕ РЕШЕНИЕ

Сначала рассмотрим предел слабонеидеального бозе-газа, $n\nu(k) \rightarrow 0$. Нулевое приближение для Ψ_0 (7) соответствует f = 0, g = 0. Для $\sigma(k)$ из (9) получим [33]

$$4\sigma(k) = 1 - \frac{E_b(k)2m}{\hbar^2 k^2}.$$
 (18)

Рассмотрим (9)–(17) в первом приближении, g = 0. Задача состоит в нахождении из (9)–(17) неизвестных функций σ и f. Из (10) получаем

$$f(\mathbf{k}_1, \mathbf{k}_2) = -\frac{2\sigma(k_1)2\sigma(k_2)\mathbf{k}_1 \cdot \mathbf{k}_2}{e(\mathbf{k}_1 + \mathbf{k}_2) + e(k_1) + e(k_2)},$$
 (19)

а $\sigma(k)$ нужно найти из (9), зная потенциал $\nu(k)$.

Эффективный потенциал V(r) взаимодействия между двумя атомами He⁴ будем моделировать следующим образом (рис. 1, 2). Для области $r \ge a \approx 2.64$ Å потенциал хорошо известен из эксперимента, здесь погрешность не превышает ± 5 %.

Рис.1. Исследованные потенциалы взаимодействия. Сплошная линия — эллиптический барьер (21), $V_0 = 60$ K; штриховая линия — потенциал (22), b = 1, $V_0 = 100$ K; пунктир — потенциал (22), b = 8, $V_0 = 54$ K; V(r) < 0 — потенциал Леннарда – Джонса (20)

Рис.2. Фурье-образы $V(k) = n\nu(k)$ для потенциалов, изображенных на рис. 1, у которых потенциальный барьер отталкивания в точке r = a сшивается с потенциалом Леннарда – Джонса. Сплошная линия — потенциал (20), (21), $V_0 = 60$ К; пунктир потенциал (20), (22), b = 1, $V_0 = 100$ К; кружки — (20), (22), b = 8, $V_0 = 54$ К; крестики — модель полупрозрачных сфер: при $r \le a$ потенциал (22), b = 8, $V_0 = 54$ К, при r > a V(r) = 0

Анализ возможных потенциалов проведен, в частности, в [37, 38]. В этой области V(r) < 0 и потенциал очень близок к потенциалу Леннарда-Джонса, параметры *а* и ε берем из [37]:

$$V(r) = 4\varepsilon \left(\left(\frac{a}{r}\right)^{12} - \left(\frac{a}{r}\right)^6 \right),$$

$$\varepsilon = 11 \text{ K}, \quad a = 2.64 \text{ Å}, \quad r \ge a.$$
(20)

При r < a потенциал примерно известен для $r \geq 2$ Å, а при меньших r в разных работах [30, 37-40] получены разные оценки для потенциала. В [37] высота барьера $V(r = 0) \sim 2 \cdot 10^6$ K, а в [30, 35, 40], где потенциал восстанавливался по структурному фактору, $V(r = 0) \approx 200$ К. Другие оценки [38, 39] находятся в этих же пределах. Высокое значение $V(r = 0) \sim 10^{6} \text{ K}$ получено в приближении среднего поля [37, 41] или путем аппроксимации потенциала, найденного для $r \ge 2$ Å, в область малых r с использованием квазиклассического приближения [39]. В [28] указывается на необходимость учета кулоновского отталкивания между ядрами. Иногда авторы настаивают на необходимости использования именно потенциала Азиза [37], который почему-то считается наилучшим. Однако потенциал в области $r \leq 2$ Å имеет только символический, эффективный смысл, так как реально при сильном перекрытии двух атомов He⁴ важна уже структура атомов, которую можно описать корректно только при явном учете взаимодействия двух ядер и четырех электронов (вместо двух «точечных» атомов гелия), что затруднительно. Поэтому для области $r \lesssim 2 \,\mathrm{\AA}$ могут быть получены очень разные модельные потенциалы в зависимости от рассматриваемого физического процесса, математического метода и приближения. Естественной мерой высоты потенциального барьера является энергия связи электрона в атоме электронвольт, или 10⁴ К.

Но реально можно строить модели Не-II типов I, II, только считая атомы точечными, а структуру атомов приближенно учитывая в эффективном потенциале. Как будет видно ниже, в таком приближении мы получим, что вероятность перекрытия двух атомов очень мала, т.е. приближение оправдано. Точное знание потенциала при $r \leq 2$ Å не очень нужно (правда, значение E_0 «чувствует» и небольшие вариации потенциала, см. разд. 3), но оказывается, что потенциальный барьер не должен быть слишком высоким, $V(0) \leq 10^3$ K (см. разд. 4).

Ввиду эффективности потенциала при малых *г* для его моделирования использовались простые функции (см. рис. 1, 2): Вычисление волновых функций ...

Рис. 3. Функция $4\sigma k/k_0$ для потенциала (20), (21), $V_0 = 60$ К. Здесь $k_0 = 2\pi/d$, где d = 3.578 Å — среднее межатомное расстояние. Квадраты — нулевое приближение (18) для $\sigma(k)$; кружки — первое приближение

Рис. 4. Энергия E_0 основного состояния He-II, приходящаяся на один атом как функция от V_0 для потенциала (20), (21). Те же приближения для $\sigma(k)$, что и на рис. 3; пунктир — экспериментальное $E_0 = -7.16$ К

$$V(r) = V_0 \sqrt{1 - \left(\frac{r}{a}\right)^2}, \quad r \le a, \tag{21}$$

$$V(r) = V_0 \left(1 - \left(\frac{r}{a}\right)^b \right), \quad r \le a, \tag{22}$$

 V_0 — свободный параметр. Рассмотрены b = 1; 4; 8.

Результаты вычислений величин $\sigma(k)$ и E_0 в первом приближении для потенциала (20), (21) показа-

11 ЖЭТФ, вып.1

ны на рис. 3, 4. Для He-II экспериментальное значение энергии основного состояния, приходящейся на один атом, есть $E_0 = -7.16 \text{ K} \pm 0.02 \text{ K}$ [42]. Уравнение (9) мы решали методом итераций. Погрешность численного метода для $\sigma(k)$ и E_0 составляет не более $\pm 2\%$.

Во втором приближении необходимо решить систему уравнений (9)-(12). В (12) пренебрегаем малой квадратичной поправкой f_s^2 ($f_s^2 \sim 0.01$ при $k \sim k_0$), в этом случае уравнение (10) линеаризуется относительно f. Имеем (9) — одномерное и нелинейное уравнение для $\sigma(k)$ и (10) — трехмерное линейное интегральное уравнение для $f = f(k_1, k_2, \theta), \theta$ — угол между \mathbf{k}_1 и \mathbf{k}_2 . На современных персональных компьютерах уже можно решать такие уравнения, если f достаточно гладкая. Мы исследовали 4 численных метода для решения (10) — методы итераций, Положего, разложения по базису и квадратур [43]. Сошлись только два последних метода, а мощности ПК Celeron-2000 хватило на один из них — метод квадратур. Система (9)-(11) в целом решалась методом итераций с затравочным $\sigma(k)$ (2). По k мы интегрировали от 0 до $3.2k_0$, где $k_0 = 2\pi/d$, d = 3.578 Å среднее межатомное расстояние при плотности Не-П ho = 0.1451г/см³ (T = 0 K, svp) [44]. В области $k > 3k_0$ функции σ, f, g пренебрежимо малы. Интеграл заменялся суммой по методу трапеций, 30 шагов по k, 12 шагов по θ , и 24 шага по φ (угол между \mathbf{k}_1 и \mathbf{k}_3). После 30 итераций (15 часов счета) колебания решения не превышали 0.01 %. Погрешность определения $\sigma(k)$ не превышает ± 10 %, а для E_0 — около ± 1 —2 К. Учет g перенормирует f в среднем примерно в 1.5 раза. Результаты изображены на рис. 3, 4.

На рис. 5 показаны значения функции

$$S_1(r) = \frac{1}{N} \sum_{\mathbf{k}} \sigma(k) e^{i\mathbf{k}\cdot\mathbf{r}} =$$
$$= \frac{1}{n(2\pi)^3} \int d\mathbf{k} \sigma(k) e^{i\mathbf{k}\cdot\mathbf{r}} \quad (23)$$

для $V_0 = 60$ К. Так как $\sum_{\mathbf{k}\neq 0} \sigma(k) \rho_{\mathbf{k}} \rho_{-\mathbf{k}} = \sum_{i,j} S_1(\mathbf{r_i} - \mathbf{r_j}),$

значения $S_1(r)$ согласно (7) при малых r определяют, насколько быстро Ψ_0 убывает при перекрытии атомов. Согласно рис. 5, $S_1(0) \approx -1.8$, т. е. при перекрытии двух атомов Ψ_0 уменьшается не очень резко, в $e^{-2S_1(0)} \approx 30$ раз. Но плотность вероятности уменьшается сильно, в 1000 раз; учитывая значения $S_1(r)$ (рис. 5), можно говорить о наличии у атомов гелия достаточно твердой «сердцевины» диаметром $d_c \approx 2$ Å. Поэтому при $r \leq d_c$ взаимодействие атомов Не-II действительно можно описывать эффективным потенциалом. Это согласуется с результата-

Рис. 5. Функция $S_1(r/a)$ (23) для потенциала (20), (21), $V_0 = 60$ К, те же приближения для $\sigma(k)$, что и на рис. 3

Рис. 6. Зависимость $E_0(V_0)$ для потенциала (20), (22), b = 1; кружки — нулевое и первое приближения для $\sigma(k)$; треугольники — второе приближение; пунктир — экспериментальное E_0

ми [45, 46], где получено, что парная функция распределения гелия-II g(r) при $r \leq 2$ Å близка к нулю.

Мы также исследовали зависимость результатов от формы потенциального барьера и провели вычисления с потенциалом (22) вместо (21). Результаты для E_0 показаны на рис. 6, 7. Для рассмотренных b = 1, 4, 8 подбором V_0 удается получить согласие теоретического E_0 с экспериментальным при $V_0 = 60$ –100 K.

Значение E_0 очень чувствительно к изменению ширины барьера a и глубины «ямочки» ε в (20), (21). Например, при экспериментальных a = 2.64 Å, $\varepsilon = -11$ К имеем $E_0 = -11$ К для $V_0 = 60$ К, а при несколько отличных a = 2.6 Å, $\varepsilon = -10$ К, еще допустимых экспериментом, $E_0 = -7$ К для того же V_0 (все во втором приближении). Значение $|E_0|$ много меньше высоты барьера V_0 , и небольшие (по сравнению с V_0) изменения потенциала V(r) приводят к значительному изменению E_0 . Поэтому вычисление энергии основного состояния — это вычисление «тонкого эффекта» — нужно с высокой точностью знать потенциал взаимодействия (и для области $r \leq 2$ Å), а также, возможно, учитывать следующие поправки к (7). Все существующие в настоящее время модели, на наш взгляд, дают только грубую оценку E_0 , поскольку ни одна из моделей типа I, II не описывает вполне корректно структуру атомов, т. е. область $r \leq 2$ Å.

Важным для проверки модели является вычисление структурного фактора Не-II S(k), который вычисляется по формуле Вакарчука ((2.7) в [19]):

$$\begin{split} 1 - \frac{1}{S(k)} &= 4\sigma(k) + \int d\mathbf{q} \frac{8\sigma(q)\sigma(\mathbf{k} + \mathbf{q}) + 4f_s(\mathbf{q}, \mathbf{k}) + 8f_s^2(\mathbf{q}, \mathbf{k})}{[1 - 4\sigma(q)][1 - 4\sigma(\mathbf{k} + \mathbf{q})]} + \\ &+ \int d\mathbf{q} \frac{2\sigma(k)(k^2 + \mathbf{k} \cdot \mathbf{q}) + 2\sigma(q)(q^2 + \mathbf{k} \cdot \mathbf{q}) + (\mathbf{k} + \mathbf{q})^2 f_s(\mathbf{q}, \mathbf{k})}{[1 - 4\sigma(q)][e(k) + e(q)]} 8f_s(\mathbf{q}, \mathbf{k}). \end{split}$$

На рис. 8 показан результат вычисления S(k) для двух потенциалов, функции σ и f_s найдены во втором приближении. Можно считать согласие теоретического S(k) с экспериментальным удовлетворительным.

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ ДЛЯ Ψ_0

Как видно на рис. 4–8, в нашем подходе удается вывести структурный фактор и энергию E_0 основного состояния He-II, выбирая только один параметр V_0 , при $V_0 \approx 60$ –80 К. Причем E_0 согласуется с экспериментом только при учете в разложении $\ln \Psi_0$ второй поправки к функции Джастрова.

Результаты не очень сильно зависят от формы потенциального барьера, так что потенциал можно моделировать с одним только подгоночным параметром — высотой барьера.

В ряде работ получена оценка для высоты барьера $V_0 \sim 10^6$ К. В рамках нашего подхода такой высокий барьер исключен. 1) Как видно на рис. 4–12, даже небольшое увеличение высоты барьера на несколько десятков кельвинов заметно изменяет E_0 , S(k) и спектр Не-II, и согласие с экспериментом теряется. При потенциале $V_0 \sim 10^6$ К для $k < k_0$ имеем $n\nu(k) \sim 10^6$ К. При больших k величины $n\nu(k)$ и $\sigma(k)$ быстро убывают с ростом k и осциллируют, меняя знак. Учитывая, что $\hbar^2 k_0^2/2m \approx 18.5$ К, из формул (9), (14) видно, что при таком $n\nu(k)$ должно быть $\sigma k/k_0 \sim 10^4$ при $k < k_0$, чтобы сумма (14) дала малое экспериментальное $E_0 = -7$ К. При таких больших $\sigma(k)$ ряд (7), очевидно, просто разойдется, так как параметр разложения в (7), $\sigma k/k_0$, будет порядка 10⁴ при $k \leq k_0$. 2) В эксперименте характерные энергии для спектра He-II — это 10 К. Масштаб энергий задается в уравнениях потенциалом взаимодействия. При потенциале 10⁶ К значения $\sigma(k)$ большие, тогда каждое слагаемое в правой части уравнения для спектра (28), в том числе и отброшенные слагаемые, будет порядка 10⁴, но сумма этих слагаемых должна давать число порядка единицы при всех k. Такое совпадение невероятно. Нельзя, конечно, исключить небольшую перенормировку, не более чем на порядок. Таким образом, высота V_0 барьера не должна заметно превышать 10³ К.

В работах [30, 35, 40] по структурному фактору восстановлен потенциал взаимодействия атомов He^4 . Высота потенциального барьера оказалась ~ 200 K, что согласуется с нашей оценкой V_0 .

В большинстве работ [7, 8, 14] Ψ_0 и E_0 для Не-ІІ получены вариационным методом, при этом функциональный вид Ψ_0 обычно выбирается «руками», с использованием нескольких подгоночных параметров. Таким образом, удается получить экспериментальную величину E_0 . Найденная нами функция $S_1(r)$ (рис. 4) является значительно более плавной кривой, чем популярные «вариационные» функции вида [7, 8]

$$S_1(r) = -\left(\frac{a}{r}\right)^b, \quad b \sim 5, \quad a \approx 2.6 \,\text{\AA}.$$
(24)

11*

Рис.7. $E_0(V_0)$ для потенциала (20), (22), b = 8; квадратики — нулевое приближение для $\sigma(k)$; кружки — первое приближение; треугольники — второе приближение; пунктир — экспериментальное E_0

Рис. 8. Теоретический структурный фактор, S(k), для He-II. Крестики — для потенциала (20), (21), $V_0 = 60$ K; кружки — для потенциала (20), (22), b = 8, $V_0 = 50$ K; пунктир — экспериментальное значение S(k) [46], приведенное к T = 0

В работах [7] использовались потенциалы с высоким барьером, $V_0 \ge 10^6$ К. При этом правильное значение $E_0 \approx -7$ К получается, поскольку а) функция $S_1(r)$ выбирается такой, что Ψ_0 очень быстро убывает при перекрытии двух атомов, полностью «зарезая» потенциальный барьер, и б) в области r > a, где атомы не перекрываются, потенциал характе-

ризуется «ямочкой» глубиной около $1.5E_0$. Однако вместо [24] можно подобрать множество других [6] функций $S_1(r)$, дающих требуемую $E_0 \approx -7$ K, но разные значения для конденсатов и разный спектр квазичастиц. Поэтому лучше выводить $S_1(r)$, Ψ_0 и E_0 точнее — из точных микроскопических уравнений (хотя и в этом случае при r < a функция $S_1(r)$ будет определена не совсем точно, из-за неточной модели взаимодействия для r < a). Наше решение получено именно так, и для него барьер отталкивания оказывается небольшим, порядка 100 К. Раньше быстродействие компьютеров было небольшим и вариационный метод был единственной возможностью получения какого-то решения.

5. ПЕРВОЕ ВОЗБУЖДЕННОЕ СОСТОЯНИЕ Не-II И СПЕКТР КВАЗИЧАСТИЦ

При температурах $T \leq 1$ К квазичастицы в He-II можно считать невзаимодействующими. В этом случае волновая функция He-II записывается в виде [4]

$$\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N) = \prod_{i=1}^n \left(\psi_{\mathbf{k}_i}\right)^{n_i} \Psi_0, \qquad (25)$$

где $\psi_{\mathbf{k}_i}$ описывает фонон с импульсом \mathbf{k}_i , n_i — число таких фононов. При $T \to T_\lambda$ такое описание становится неточным. Рассмотрим состояние с одной квазичастицей. Волновая функция этого состояния имеет вид [17]

$$\Psi_{\mathbf{k}}(\mathbf{r}_1,\ldots,\mathbf{r}_N)=\psi_{\mathbf{k}}\Psi_0,\qquad(26)$$

$$\psi_{\mathbf{k}} = \rho_{-\mathbf{k}} + \sum_{\mathbf{k}_{1}\neq0}^{\mathbf{k}_{1}\neq\mathbf{k}_{1}} \frac{P(\mathbf{k},\mathbf{k}_{1})}{\sqrt{N}} \rho_{\mathbf{k}_{1}-\mathbf{k}}\rho_{-\mathbf{k}_{1}} + \sum_{\mathbf{k}_{1}+\mathbf{k}_{2}\neq0}^{\mathbf{k}_{1}+\mathbf{k}_{2}\neq\mathbf{k}} \frac{Q(\mathbf{k},\mathbf{k}_{1},\mathbf{k}_{2})}{N} \rho_{\mathbf{k}_{1}+\mathbf{k}_{2}-\mathbf{k}}\rho_{-\mathbf{k}_{1}}\rho_{-\mathbf{k}_{2}} + \dots \quad (27)$$

Следующими поправками к $\psi_{\mathbf{k}}$ пренебрегаем. Мы ищем решение для Ψ_0 и $\psi_{\mathbf{k}}$ в «минимальной» калибровке для сумм, являющейся, по-видимому, оптимальной. Отметим, что если немного поработать с переменными $\rho_{\mathbf{k}}$ и знать нулевое приближение для $\psi_{\mathbf{k}}$, то формула (27) становится почти очевидной. Фейнман и Коэн искали решение в другой форме (5), формула (5) уже не столь очевидна, и она была угадана интуитивно с использованием рассуждений о «backflow».

В формуле (27) для $\psi_{\mathbf{k}}$ неизвестны функции P и Q. Подставляя (27) в N-частичное уравнение Шредингера и пользуясь независимостью переменных

 $\rho_{\mathbf{k}},$ получим цепочку зацепляющихся уравнений для функций P,Q и E(k):

$$\tilde{E}(k) = e(k) + \int d\mathbf{k}_1 P(\mathbf{k}, \mathbf{k}_1) 2\mathbf{k}_1(\mathbf{k} - \mathbf{k}_1) + \int d\mathbf{k}_1(-2k_1^2) \left[Q(\mathbf{k}, \mathbf{k}_1, -\mathbf{k}_1) + 2Q(\mathbf{k}, \mathbf{k}, \mathbf{k}_1) \right], \quad (28)$$

$$P(\mathbf{k}, \mathbf{k}_1) \left[e(k_1) + e(\mathbf{k} - \mathbf{k}_1) - \tilde{E}(k) \right] + \int d\mathbf{k}_2 F(\mathbf{k}, \mathbf{k}_1, \mathbf{k}_2) =$$
$$= 4\sigma(k_1)\mathbf{k} \cdot \mathbf{k}_1 + 2k^2 f_s(\mathbf{k}_1, \mathbf{k} - \mathbf{k}_1), \quad (29)$$

$$W(\mathbf{k}, \mathbf{k}_1, \mathbf{k}_2) = 4\mathbf{k}_2(\mathbf{k} - \mathbf{k}_1 - \mathbf{k}_2)Q(\mathbf{k}, \mathbf{k}_1, \mathbf{k}_2) + + 2\mathbf{k}_2(\mathbf{k}_1 - \mathbf{k}_2)Q(\mathbf{k}, \mathbf{k}_1 - \mathbf{k}_2, \mathbf{k}_2), \quad (30)$$

$$Q(\mathbf{k}, \mathbf{k}_{1}, \mathbf{k}_{2}) \left[e(k_{1}) + e(k_{2}) + e(\mathbf{k} - \mathbf{k}_{1} - \mathbf{k}_{2}) - \tilde{E}(k) \right] = P_{s}(\mathbf{k}, \mathbf{k}_{1} + \mathbf{k}_{2})G(\mathbf{k}_{1}, \mathbf{k}_{2}) + L(\mathbf{k}, \mathbf{k}_{1}, \mathbf{k}_{2}), \quad (31)$$

$$P_s(\mathbf{k}_1, \mathbf{k}_2) = P(\mathbf{k}_1, \mathbf{k}_2) + P(\mathbf{k}_1, \mathbf{k}_1 - \mathbf{k}_2), \qquad (32)$$

$$G(\mathbf{k}_{1}, \mathbf{k}_{2}) = [2\sigma(k_{1})\mathbf{k}_{1} + 2\sigma(k_{2})\mathbf{k}_{2}](\mathbf{k}_{1} + \mathbf{k}_{2}) + 2f_{s}(\mathbf{k}_{1}, \mathbf{k}_{2})(\mathbf{k}_{1} + \mathbf{k}_{2})^{2}, \quad (33)$$

$$L(\mathbf{k}, \mathbf{k}_1, \mathbf{k}_2) = 2f_s(\mathbf{k}_1, \mathbf{k}_2)\mathbf{k}(\mathbf{k}_1 + \mathbf{k}_2) + + 2k^2 \left[g(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k} - \mathbf{k}_1 - \mathbf{k}_2) + 3g(\mathbf{k}_1, \mathbf{k}_2, -\mathbf{k})\right].$$
(34)

Уравнения записаны в безразмерных переменных $k' = k/k_0$, $\tilde{E}(k') \equiv E(k)2m/\hbar^2k_0^2$, где $k_0 = 2\pi/d$. Штрихи опускаем.

Соответствие между обозначениями [16, 17] и нашими следующее:

$$a_2(\mathbf{k}) = 2\sigma(\mathbf{k}),$$

 $a_3(\mathbf{k}_1, \mathbf{k}_2, -\mathbf{k}_1 - \mathbf{k}_2) = 2f_s(\mathbf{k}_1, \mathbf{k}_2),$

$$\begin{split} \frac{1}{6} a_4(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3, -\mathbf{k}_1 - \mathbf{k}_2 - \mathbf{k}_3) &= g(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) + \\ &+ g(-\mathbf{k}_1 - \mathbf{k}_2 - \mathbf{k}_3, \mathbf{k}_2, \mathbf{k}_3) + \\ &+ g(\mathbf{k}_1, -\mathbf{k}_1 - \mathbf{k}_2 - \mathbf{k}_3, \mathbf{k}_3) + g(\mathbf{k}_1, \mathbf{k}_2, -\mathbf{k}_1 - \mathbf{k}_2 - \mathbf{k}_3), \end{split}$$

$$c_2(-\mathbf{k}_i,\mathbf{k}_i-\mathbf{k};\mathbf{k})=P_s(\mathbf{k},\mathbf{k}_i),$$

$$\begin{split} &\frac{1}{2}c_3(-\mathbf{k}_1,-\mathbf{k}_2,\mathbf{k}_1+\mathbf{k}_2-\mathbf{k};\mathbf{k}) = Q(\mathbf{k},\mathbf{k}_1,\mathbf{k}_2) + \\ &+ Q(\mathbf{k},\mathbf{k}-\mathbf{k}_1-\mathbf{k}_2,\mathbf{k}_2) + Q(\mathbf{k},\mathbf{k}_1,\mathbf{k}-\mathbf{k}_1-\mathbf{k}_2). \end{split}$$

С точки зрения численных методов, как показал анализ, лучше решать уравнения (28)–(31) и (9)–(17), чем симметризованные уравнения из [16, 17] — спектр квазичастиц и E_0 находятся во втором приближении на 1–2 К точнее.

Из физических соображений ясно, что в системе должна существовать классическая звуковая мода $E(k \rightarrow 0) = ck$. В теоретико-полевых моделях иногда возникают решения со щелью в спектре квазичастиц, $E(k \rightarrow 0) = \text{const} > 0$, как правило, из-за 2-частичного конденсата (см. ссылки и некоторое обсуждение в [27], а также [26]).

Оказывается, что в подходе КП (9)–(17), (28)–(34) звуковая мода получается $(E(k))_{k\to 0} = ck + \gamma k^3$ [17]), если выполняется $\sigma(k)|_{k\to 0} \sim 1/k$. Обозначим правую часть (9) как $\delta(k_1)$. Можно убедиться, что для первого приближения (g = 0) справедливо

$$\delta(k_1)|_{k_1 \to 0} \approx \int 0.5k_2^2 \frac{(2\sigma(k_2)k_2)^2}{2e(k_2)} \, d\mathbf{k}_2 > 0. \tag{35}$$

Здесь k измеряется в единицах $k_0 = 2\pi/d$. При достаточно высоком барьере отталкивания, $V_0 \ge 50$ К (как показывает численный анализ), перенормированный потенциал

$$n\tilde{\nu}(k_1) \equiv n\nu(k_1) - \frac{4\hbar^2}{m}\delta(k_1)$$
(36)

при $k_1 \to 0$ оказывается меньше нуля, поэтому из (9) получаем мнимое $\sigma(k_1 \to 0)$.

Во втором приближении $(g \neq 0)$ выражение для $\delta(k_1)$ усложняется и знак $\delta(k_1)$ неясен. Численный анализ дает $n\tilde{\nu}(k_1 \to 0) > 0$ для всех исследованных потенциалов, поэтому имеем $\sigma(k_1 \to 0) \sim 1/k_1$. Что будет в следующих приближениях, мы не можем сказать. Можно убедиться, что для слабонеидеального бозе-газа асимптотика $\sigma(k_1 \to 0) \sim 1/k_1$ выполняется и при учете всех последующих поправок к (7).

Таким образом, из нашего анализа видно, что звуковая мода $E(k)|_{k\to 0} = ck$ справедлива для спектра квазичастиц слабонеидеального бозе-газа, а как для He-II — неизвестно: в первом приближении эта асимптотика для ряда потенциалов не выполняется (см. рис. 9–11), во втором — выполняется для всех исследованных потенциалов, о следующих приближениях ничего сказать нельзя. Поэтому доказательство асимптотики $E(k \to 0) = ck$ для спектра квазичастиц He-II является актуальным. Согласно расчету [23], для He-II справедливо $E(k \to 0) = ck$. Мы предполагаем, что и в нашем подходе, при учете всех поправок к Ψ_0 для He-II будет получена асимптотика $E(k)|_{k\to 0} = ck$.

Рис.9. Спектр квазичастиц гелия-II, для Ψ_0 и ψ_k в первом приближении. Зависимость спектра от высоты барьера V_0 для потенциала (20), (21). Квадраты – $V_0 = 50$ К; кружки – $V_0 = 67$ К, треугольники – $V_0 = 90$ К; крестики – нулевое приближение для ψ_k ($\psi_k = \rho_{-k}$, $\tilde{E}(k) = e(k)$), $V_0 = 67$ К; сплошная линия – экспериментальный спектр [47]

Рис. 10. Спектр квазичастиц He-II, первое приближение, зависимость спектра от ширины барьера a для потенциала (20), (21) при $V_0 = 67$ К. Квадраты — a = 2.5 Å; кружки — a = 2.64 Å; треугольники — a = 2.8 Å; пунктир — экспериментальный спектр. Для всех других рисунков a = 2.64 Å

6. ЧИСЛЕННОЕ РЕШЕНИЕ ДЛЯ СПЕКТРА КВАЗИЧАСТИЦ

В нулевом приближении для Ψ_0 и ψ_k имеем спектр Боголюбова $E_b(k)$ (2). Рассмотрим первое

Рис.11. Первое приближение для спектра квазичастиц He-II, зависимость спектра от формы потенциального барьера, потенциал (20), (22). Квадраты $-b = 1, V_0 = 140$ К; кружки $-b = 4, V_0 = 72$ К; треугольники $-b = 8, V_0 = 54$ К; пунктир - эксперимент

приближение: $Q=0,\ g=0$ в (28)–(34). Из формулы (29) имеем

$$P(\mathbf{k}, \mathbf{k}_1) = \frac{4\sigma(k_1)\mathbf{k} \cdot \mathbf{k}_1 + 2k^2 f_s(\mathbf{k}_1, \mathbf{k} - \mathbf{k}_1)}{e(k_1) + e(\mathbf{k} - \mathbf{k}_1) - \tilde{E}(k)}.$$
 (37)

Для первого приближения нужно решить (28) с P (37). Уравнение (28) мы решали численно методом итераций для разных V_0 . Полученные спектры квазичастиц изображены на рис. 9. Спектру Не-II лучше всего соответствует теоретический спектр для $V_0 \approx 70$ К. На рис. 10 показано, как спектр зависит от ширины a (21), (20) потенциального барьера. На других рисунках приведены результаты для экспериментального $a = (2.64 \pm 0.04)$ Å [37].

Мы также исследовали зависимость спектра квазичастиц от формы потенциального барьера, заменяя барьер (21) на (22) с b = 1; 4; 8 (см. рис. 1, 2). Как видно на рис. 11, зависимость спектра от формы барьера существует, но она не критическая: для широкого класса форм выбором одного параметра V_0 можно добиться приближенного согласия спектра с экспериментальным.

Во втором приближении необходимо решить систему уравнений (28)–(31). Мы решали уравнение (29) методом квадратур, а систему (28), (29) в целом — методом итераций. В первом приближении спектр квазичастиц находится с ошибкой ±2%, а во втором ошибка численного метода возрастает

Рис.12. Второе приближение для спектра квазичастиц He-II для потенциала (20), (21). Квадраты — $V_0 = 50$ K (близкий спектр — для потенциала (20), (22), b = 8 при $V_0 = 42$ K); кружки — $V_0 = 60$ K; треугольники — $V_0 = 80$ K (показан только ротонный минимум); пунктир — эксперимент

до ± 5 %, а в некоторых точках до ± 10 %. Значения затравочной $P(\mathbf{k}, \mathbf{k}_1)$ (37) в среднем порядка единицы, не малые, а поправка к (37), идущая от W в (29), как правило, в несколько раз меньше.

Спектр во втором приближении лучше всего согласуется с экспериментальным [47] при $V_0 \approx 60$ K, см. рис. 12.

Как видно на рис. 9, учет в $\psi_{\mathbf{k}}$ поправки Фейнмана $P(\mathbf{k}, \mathbf{k}_1)$ принципиально важен, она существенно улучшает согласие спектра с экспериментом (спектр для $\psi_{\mathbf{k}}$ без этой поправки обозначен крестиками). Вторая поправка Q лишь немного подправляет спектр, что свидетельствует о разумности метода — первые поправки к спектру квазичастиц убывают, хотя параметр разложения не совсем малый (~ 1/2).

«Полочка» $E(k \gtrsim 2.5 \text{ Å}^{-1}) \approx 17 \text{ K}$ у экспериментального спектра квазичастиц Не-II обусловлена, видимо, гибридизацией дисперсионной кривой одной квазичастицы с двухротонным уровнем [24].

7. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ ДЛЯ СПЕКТРА КВАЗИЧАСТИЦ

Согласно нашему анализу, спектр квазичастиц типа кривой Ландау с ротонным минимумом является общим свойством для систем бозе-частиц, у которых взаимодействие между бозонами описывается потенциалом с достаточно высоким барьером отталкивания (но не слишком высоким).

Вид спектра квазичастиц определяется потенциалом, причем в основном высотой и шириной потенциального барьера, а глубину «ямочки» Леннарда-Джонса можно заметно изменять — если ее уменьшить до нуля или увеличить в два раза по сравнению с экспериментальной $\epsilon \approx -11$ K, то спектр квазичастиц это слабо чувствует, он смещается только на 1 K для k в максон-ротонной области. «Ямочка» нужна для получения связанного состояния и правильного значения энергии основного состояния. Модель твердых сфер [5] с перенормированным конечным потенциалом и модель полупрозрачных сфер [28] используют неточный потенциал без «ямочки», но при вычислении спектра квазичастиц это допустимо.

Ротоный минимум возникает в спектре квазичастиц Не-II из-за того, что при $k \sim k_0$ фурье-образ $n\nu(k)$ потенциала обращается в нуль. Для получения спектра, подобного кривой Ландау, нужно, чтобы при $k < k_0$ величина $n\nu(k)$ была положительной и убывала до нуля при приближении $k \kappa k_0$, а при $k > k_0$ модуль $n\nu(k)$ должен быть малым (см. рис. 2; у потенциала $n\nu(k)$ в модели полупрозрачных сфер эти свойства также наблюдаются). Для реальных потенциалов V(r) имеем осцилляции $n\nu(k)$ при больших k. Эти осцилляции неважны, важна малость $|n\nu(k)|$ при $k > k_0$. Если увеличить амплитуду осцилляций $n\nu(k)$ в 2 раза или больше, по сравнению с рис. 2, то спектр квазичастиц уже будет сильно отличаться от кривой Ландау.

8. ЗАКЛЮЧЕНИЕ

С помощью метода коллективных переменных, развитого в работах Юхновского и Вакарчука [15–17], мы нашли волновые функции основного (Ψ_0) и первого возбужденного $(\psi_{\mathbf{k}})$ состояний Не-II с точностью до двух поправок к соответствующим решениям для слабонеидеального бозе-газа. Для этих приближений численно найдены спектр квазичастиц, E(k), энергия основного состояния (E_0) и структурный фактор гелия-II. Взаимодействие между атомами He⁴ моделировалось эффективным потенциалом, в котором модельный потенциал отталкивания сшивался с экспериментальным потенциалом притяжения. Ψ_0 и $\psi_{\mathbf{k}}$ выводятся из точного *N*-частичного уравнения Шредингера и не содержат каких-либо подгоночных функций, а высота V₀ потенциального барьера — единственный подгоночный параметр в задаче.

Новизна наших результатов состоит в том, что 1) мы нашли численные решения для Ψ_0 и E(k) в более точном приближении, по сравнению с [15, 19, 22, 30]; 2) исследована зависимость решений от вида модельного потенциала, в то время как в [15, 19, 30] решения получены из структурного фактора.

Модель позволяет вывести с удовлетворительной точностью основные экспериментальные данные по микроструктуре He-II — спектр квазичастиц, структурный фактор и энергию основного состояния — при подборе только одного параметра V_0 , для $V_0 \approx 100$ К. Поэтому мы считаем, что модель приближенно верно описывает микроструктуру He-II, несмотря на то что параметр разложения $2\sigma(k)k$ не совсем малый: его среднее значение составляет примерно -1/2 для $k \leq 1$ (в единицах k_0), см. рис. 3.

К сожалению, абсолютно все известные нам методы вычисления Ψ_0 и $\psi_{\mathbf{k}}$ для He-II используют разложения по не совсем малым параметрам. «Идеальная» микроскопическая модель Не-II, не содержащая подгоночных параметров и функций и использующая только разложения по малым параметрам, пока отсутствует. Насколько мы сейчас видим, есть небольшой шанс, что такую модель нужно построить в теоретико-полевом подходе, но мы не представляем, как это можно сделать в квантовомеханическом подходе. В теоретико-полевом подходе для этого, видимо, нужно [48] решать цепочку зацепляющихся уравнений для одночастичной, двухчастичной и высших функций Грина, и чтобы оборвать такую цепочку, нужно корректно построить теорию возмущений по нескольким малым параметрам (в качестве которых можно выбрать одночастичный конденсат и, вероятно, двухчастичный [49]; согласно [49] высшие *s*-частичные конденсаты ($s \ge 3$) отсутствуют в He-II при T = 0), но пока это не сделано.

Автор благодарен П. И. Фомину и Ю. В. Штанову за обсуждение результатов и полезные замечания, В. Е. Кирееву и В. В. Кузьмичеву за обсуждение численных методов, а также А. А. Ровенчаку за предоставление копий своих работ.

ЛИТЕРАТУРА

- 1. L. Landau, J. Phys. USSR 5, 71 (1941).
- 2. L. Landau, J. Phys. USSR 11, 91 (1947).
- 3. R. Feynman, Phys. Rev. 94, 262 (1954).

- R. P. Feynman and M. Cohen, Phys. Rev. 102, 1189 (1956).
- К. А. Brueckner and K. Savada, Phys. Rev. 106, 1117, 1128 (1957); К. Бракнер, *Теория ядерной материи*, Мир, Москва (1964).
- 6. R. Jastrow, Phys. Rev. 98, 1479 (1955).
- W. L. McMillan, Phys. Rev. A 138, 442 (1965);
 D. Schiff and L. Verlet, Phys. Rev. 160, 208 (1967);
 M. H. Kalos, M. A. Lee, P. A. Whitlock et al., Phys. Rev. B 24, 115 (1981);
 T. McFarland, S. A. Vitiello, L. Reatto et al., Phys. Rev. B 50, 13577 (1994).
- C.-W. Woo and R. L. Coldwell, Phys. Rev. Lett. 29, 1062 (1972).
- 9. E. Feenberg, Ann. Phys. 84, 128 (1974).
- H. W. Jackson and E. Feenberg, Rev. Mod. Phys. 34, 686 (1962); D. K. Lee and F. J. Lee, Phys. Rev. B 11, 4318 (1975).
- E. Manousakis and V. P. Pandharipande, Phys. Rev. B 30, 5062 (1984).
- C. E. Campbell, Phys. Lett. A 44, 471 (1973);
 C. C. Chang and C. E. Campbell, Phys. Rev. B 15, 4238 (1977); E. Krotscheck, Phys. Rev. B 33, 3158 (1986).
- B. E. Clements, H. Godfrin, E. Krotscheck et al., J. Low Temp. Phys. 102, 1 (1996).
- 14. L. Reatto, G. L. Masserini, S. A. Vitiello, Physica B 197, 189 (1994); D. E. Galli, L. Reatto and S. A. Vitiello, J. Low Temp. Phys. 101, 755 (1995).
- И. Р. Юхновський, И. О. Вакарчук, Вестник АН УРСР № 9, 32 (1977).
- 16. И. А. Вакарчук, И. Р. Юхновский, ТМФ 40, 100 (1979).
- **17**. И. А. Вакарчук, И. Р. Юхновский, ТМФ **42**, 112 (1980).
- 18. И. А. Вакарчук, ТМФ 80, 439 (1989).
- 19. И. А. Вакарчук, ТМФ 82, 438 (1990).
- 20. T. Nishiyama, Progr. Theor. Phys. 45, 730 (1971).
- S. Sunakawa, Sh. Yamasaki, and T. Kebukawa, Progr. Theor. Phys. 41, 919 (1969); 44, 565 (1970).
- 22. G. Barucchi, G. Ponzano, and T. Regge, in *Quanten und Felder*, Friedrich, Vieweg & Sohn, Braunschweig (1972), p. 279.
- 23. J. Gavoret and P. Nozieres, Ann. Phys. 28, 349 (1964).

- 24. A. Zavadski, S. Ruvalds, and J. Solana, Phys. Rev. A 5, 399 (1972).
- 25. D. Pines, Can. J. Phys. 65, 1357 (1987).
- 26. H. R. Glyde and A. Griffin, Phys. Rev. Lett. 65, 1454 (1990).
- 27. Ю. М. Полуектов, ФНТ 28, 604 (2002); Э. А. Пашицкий, С. И. Вильчинский, ФНТ 27, 253 (2000).
- 28. E. A. Pashitskii, S. V. Mashkevich, and S. I. Vilchinskyy, Phys. Rev. Lett. 89, 075301 (2002); J. Low Temp. Phys. 134, 851 (2004).
- **29**. А. А. Ровенчак, ФНТ **29**, 145 (2003).
- 30. M. D. Tomchenko, Ukr. J. Phys. 50, 720 (2005).
- 31. Н. Н. Боголюбов, J. Phys. USSR 11, 23 (1947).
- 32. С. Т. Беляев, ЖЭТФ 34, 417, 433 (1958).
- 33. Н. Н. Боголюбов, Д. Н. Зубарев, ЖЭТФ 28, 129 (1955).
- 34. Y. Imry, Ann. Phys. 51, 1 (1969).
- **35**. М. Д. Томченко, готовится к печати в JLTP.
- **36**. A. Bijl, Physica **7**, 869 (1940).
- R. A. Aziz, V. P. S. Nain, J. S. Carley et al., J. Chem. Phys. 70, 4330 (1979); A. R. Jansen and R. A. Aziz, J. Chem. Phys. 107, 914 (1997).

- 38. A. L. J. Burgmans, J. M. Farrar, and J. T. Lee, J. Chem. Phys. 64, 1345 (1976).
- 39. R. Feltgen, H. Pauly, F. Torello et al., Phys. Rev. Lett.
 30, 820 (1973).
- 40. I. O. Vakarchuk, V. V. Babin, and A. A. Rovenchak, J. Phys. Stud. 4, 16 (2000).
- R. Ahlrichs, P. Penco, and G. Skoles, Chem. Phys. 19, 119 (1976).
- 42. R. De Bruyn Ouboter, Physica B 144, 127 (1987);
 P. R. Roach, J. B. Ketterson, C.-W. Woo, Phys. Rev. A 2, 543 (1970).
- 43. А. Ф. Верлань, В. С. Сизиков, Интегральные уравнения, справочное пособие, Наукова Думка, Киев (1986).
- 44. Б. Н. Есельсон, В. Н. Григорьев, В. Г. Иванцов и др., Свойства жидкого и твердого гелия, Изд-во стандартов, Москва (1978).
- 45. F. H. Wirth and R. B. Hallock, Phys. Rev. B 35, 89 (1987).
- 46. E. C. Svensson, V. F. Sears, A. D. B. Woods et al., Phys. Rev. 21, 3638 (1980).
- 47. R. J. Donnelly, J. A. Donnelly, and R. N. Hills, J. Low Temp. Phys. 44, 471 (1981).
- 48. Э. А. Пашицкий, частное сообщение.
- 49. М. Д. Томченко, ФНТ 32, № 1 (2006).